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Mathematische Programmierung und Spieltheorie ')
Von H. P. Kiinzi, Zirich

T2~ F4HA

1. Die lineare Optimierung

In der linearen Optimierung befasst man sich mit der Maxi-
mierung oder Minimierung einer linearen Funktion, genannt
Zielfunktion, deren Variablen xi...xn einer Anzahl von Neben-
bedingungen, gegeben durch lineare Ungleichungen (oft auch
Gleichungen), unterworfen sind.

Die Maximumaufgabe lisst sich wie folgt formulieren:

Gesucht sind die Grossen xi, xo...xn, fiir die der lineare
Ausdruck

OQ=pix1+paxs+ ..+ panxa

Fig. 1
Graphische Losung der Maximumaufgabe

maximiert wird. Beziiglich der m Restriktionen

ai1 x1+ a2 xs + ... + din Xn < 51

az1 x1 + az2 x2 + ... + aan xn < 52

am1 X1 + @mz X2 + ... + @mn Xn = Sm
und den Vorzeichenrestriktionen
x12>20,x2 20,...,x0 =0
oder kiirzer geschrieben:
n
0= Z P1Xi
i=1
werde maximiert beziiglich
n
z aji Xi = §j
i—1
xi =0

1) Vortrag, gehalten im Rahmen des Vortragszyklus iiber den Stand
in wichtigen Bereichen der Elektronik des Eidg. Personalamtes in Bern.
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Typische Beispiele aus dem 6konomisch-betrieblichen Be-

reich, die auf die lineare Optimierung fiihren, sind z. B. Pro-
duktionsplanungen in einem Betrieb. Es sei angenommen, eine
Firma kann » Produkte mit den Mengen x1, xsa...xn herstellen,
fiir die sie (nach Abzug der Stiickkosten) die Nettopreise p1,
p2...pn je Stiick 16sen kann. Fiir die Produktion bendtigt man
m nicht in beliebiger Menge vorhandene Produktionsfaktoren
(Arbeitskrifte, Maschinen, Rohstoffe, Energie usw.), und zwar
pro Stiick i/ die Menge aji des Produktionsfaktors j (i = 1,
2...n;j = 1, 2...m). Die Produktionsfaktoren stehen nur bis zu
den Hochstmengen si, s2...sm in der betrachteten Periode zur
Verfiigung. Welches ist das -optimale Produktionsprogramm,
wenn die Firma ihren Periodengewinn maximieren will?

Ein anderes Beispiel: Ein Betrieb fabriziert zwei verschie-
dene Typen von Verstarkern, namlich V1 und Va. Unter ande-
rem befinden sich in jedem Verstirker Rohren und Transfor-
matoren; diese beiden Teile sowie die verfligbare Arbeitszeit
stehen dem Betrieb nur in beschranktem Masse zur Verfiigung.
Bei konstantem Gewinn pro Einheit suche man diejenige Pro-
duktion, die beziiglich der Restriktionen den grossten Gewinn
abwirft.

Der Tabelle I konnen die verschiedenen Konstanten ent-
nommen werden.

Konstanten zum aufgefiihrten Beispiel

Tabelle 1
‘ V1 ‘ Vo Tageskapazitit
Nettogewinn pro Einheit 28 27 —
Arbeitsstunden pro Einheit 3 7 105
Transformator pro Einheit 1 1 20
Rohren pro Einheit 8 3 120

Bezeichnet man mit x1 bzw. x2 die Anzahl der zu fabrizie-
renden Einheiten von V1 und V3, so ergibt sich der folgende
Modellansatz einer linearen Optimierungsaufgabe:

Man maximiere

Q=28x1+ 17 x2

beziiglich der drei Restriktionen

3x1+ 7x2 <105
X1+ x2< 20
8x1-+3x2L120

und
x1=20,x2 =0

Da man hier nur zwei Variable hat, kann das Problem
graphisch gelost werden (Fig. 1). Die Restriktionen besagen,
dass der Losungspunkt im schraffierten Bereich liegen muss.
Die optimale Losung liegt in der «&ussersten Ecke» beziiglich
der Geradenschar Q = const.

Analog zur Maximumaufgabe ldsst sich auch eine Mini-
mumaufgabe formulieren:
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G(X1 ,X9) =const.

\*2

TNV //

"

Fig. 2
Graphische Losung der Optimierung einer Zielfunktion

m Variable sind zu suchen, niamlich w1, we...wm derart, dass
der lineare Ausdruck

K= 51 w1+ s2wa...85w Wm
minimiert wird unter den » Nebenbedingungen
ai wi + azi w2 + ... + ami1 wm = p1

a2 wi + az2 w2 -+ ... + Ame wm = p2

ain W1 -+ aszn w2 + ... -+ dmn Wn Z Pn

wi = 0..wm =0

und

In dieser Formulierung liegt eine gewisse Symmetrie zur
Maximumaufgabe. Man nennt diese Minimumaufgabe die
duale Aufgabe zum Maximumproblem und man kann zeigen,
dass das Maximum von Q gleich dem Minimum von K wird,

also:
Qmux - Km in

Zur allgemeinen Losung einer linearen Optimierungsauf-
gabe stehen heute verschiedene Algorithmen zur Verfiigung.
Erwihnt sei der beriihmte Simplex-Algorithmus, den wir weit-
gehend G. B. Dantzig verdanken. Er arbeitet iterativ, indem
man von einer Losung ausgeht, die wohl das Restriktions-
system befriedigt, aber noch nicht das Optimum angibt.

Schrittweise verbessert man diese LoOsung, bis man im
Optimum anlangt. Das Verfahren von Dantzig bricht nach
endlich vielen Iterationen mit Bestimmtheit ab und eignet sich
sehr gut zur Anwendung auf dem Computer.

2. Verwandte Probleme zur linearen Optimierung

2.1 Das Transportproblem

Generell lisst sich das Transportproblem folgendermassen
formulieren :

n Bestimmungsorte (Lager) sind von m Ausgangsorten
(Fabriken) mit einer Ware zu beliefern; dabei benotigt der j-te
Bestimmungsort b; Wareneinheiten, wiahrend im i-ten Aus-
gangsort ai Einheiten zur Verfiigung stehen. Es wird weiter
vorausgesetzt, dass:

m n
Sa=3n
i=—1 j=1

Die Transportkosten fiir eine Wareneinheit vom i-ten Aus-
gangsort zum j-ten Bestimmungsort werden mit ci; bezeichnet,
die zu befordernde Menge mit xi; (1 <7/ <m, 1 <j < n).
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Die sich stellende Aufgabe lautet jetzt: Man bestimme die
zu transportierenden Mengen xij, so dass alle in den Ausgangs-
orten verfiigbaren Mengen nach dem Bedarf der Bestimmungs-
orte verteilt werden, so dass die Transportkosten ein Minimum
aufweisen. Dies fiihrt zur folgenden Aufgabe:

Man minimiere

m n
K= Z z cij Xij

i=1j=1

beziiglich der Nebenbedingungen

> mm=h ZLiXn

i=1

n
Dxij=a (1=Zi<m)
i=1

xi; =0

Die Restriktionen enthalten hier genau m + n Gleichungen
in denen siamtliche Koeffizienten der Variablen den Wert 1
aufweisen.

Zur Losung dieser speziellen Aufgabe eignet sich vor allem
die Stepping Stone-Methode von Charnes und Cooper.

2.2 Die ganzzahlige lineare Optimierungsaufgabe

Schon beim Transportproblem handelt es sich um einen
Spezialfall der ganzzahligen Optimierung, d. h. man verlangt
zusitzlich, dass die Werte xi...xn nur ganzzahlige Werte an-
nehmen diirfen. Diese Voraussetzung spielt fiir die Praxis oft
eine wichtige Rolle. Wenn es sich um ganzzahlige Probleme
handelt, eignet sich der Algorithmus von Gomory, der aller-
dings schlecht konvergiert fiir grosse m und ».

2.3 Die stochastische Optimierung

Will man Optimierungsaufgaben, so wie sie in den voran-
gegangenen Kapiteln behandelt wurden, in der Praxis anwen-
den, so stosst man oft auf die Schwierigkeit, dass die erforder-
lichen Konstanten pi, a;i oder s; nicht mit Sicherheit angegeben
werden konnen. Oft kann man fiir diese Grossen lediglich
obere und untere Schranken festlegen oder kennt fiir sie eine
Wahrscheinlichkeitsverteilung. Unter solchen Voraussetzungen
ist es nicht mehr moglich, die in den vorhergehenden Kapiteln
entwickelte Simplexmethode anzuwenden; man muss sich
dann der sog. stochastischen Optimierung zuwenden. Es ist
hier nicht moglich, tiefer in diesen Zweig der Optimierung vor-
zudringen, der sich noch in voller Entwicklung befindet.

3. Die nichtlineare Optimierung

Bei der allgemeinen nichtlinearen Optimierung sind Ziel-
funktion und/oder Restriktionen nicht mehr linear in den
Variablen xi...xa. Die Aufgabe heisst dann:

Man suche das Optimum (Minimum oder Maximum) der
Zielfunktion

G (x1...Xn)

beziiglich der Nebenbedingungen
(j=1..m)

(i=1..n)

gi(x1..x0) =0
x1=0

und

Die geometrische Interpretation fiir n = 2 ist analog zu
Fig. 1, nur sind jetzt die Geraden durch Kurven ersetzt (Fig. 2).
Es gibt heute keinen Algorithmus, der eine Aufgabe in so all-
gemeiner Form losen kann.
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Beschriankt man sich auf konvexe bzw. konkave Funktionen,
so ist es moglich, die optimale Losung rechnerisch zu bestim-
men, doch bendtigen die Verfahren oft recht komplizierte
mathematische Uberlegungen.

In der Praxis treten oft Probleme auf, in denen die Ziel-
funktion quadratisch ist und die Restriktionen linear bleiben.
Fiir diesen Fall gibt es sehr gute Algorithmen.

4. Die dynamische Optimierung

Oft treten Probleme auf, bei denen Entscheidungen iiber
mehrere Stufen zu treffen sind, wobei wiederum eine Zielgrosse
einen optimalen Wert erhalten soll. Dies trifft hdufig bei be-
stimmten Produktionsprozessen zu, z. B. wenn ein Unter-
nehmer jeden Monat seine Entscheidung fir den folgenden
Monat zu treffen hat. Bei vielen Problemen dieser Art ist es
im allgemeinen richtig, den Aufwand fiir jede einzelne Periode
zu minimieren, denn unter Umstédnden kann ein kleiner Ver-
zicht auf Ertrige anfangs des Jahres fiir spitere Monate einen
grosseren Ertrag liefern. In solchen Féllen ist es zweckmaéssig,
die von R. Bellman entwickelte Methode der dynamischen
Optimierung (Entscheidungsprozesse) zu verwenden, die an
einem kleinen Beispiel erldutert werden soll:

Der Produktionsprozess eines verderblichen Gutes sei der-
art, dass die Kosten, die durch die Verianderung der Produktion
von Monat zu Monat verursacht werden, das doppelte des
Quadrates der Produktionsverinderung betragen. Produk-
tionsmengen, die am Ende eines Monats nicht verkauft sind,
miissen vernichtet werden. Diese Vernichtungskosten sollen
pro Einheit Fr. 20.— betragen. Fiir die vier ersten Monate eines
Jahres mogen folgende Bestellungen vorliegen:

Monat Jan. Feb. Mairz April

Bestellung 210 220 195 180

Im Dezember des vorangegangenen Jahres wurden 200
Einheiten produziert. Man bestimme einen Produktionsplan,
der die Kosten bei Befriedigung der Nachfrage minimiert.

Zur Losung dieser Aufgabe soll im Sinne der dynamischen
Optimierung ein Stufenverfahren angegeben werden. Im fol-
genden soll # stets die Anzahl der noch bevorstehenden Pro-
duktionsmonate bezeichnen. Dementsprechend sei mit pn die
kostenminimale Produktion bezeichnet, und allgemein mit x,
die Produktion in einem Monat, dem noch » Produktions-
monate folgen, sowie mit bn die Bestellung im folgenden
Monat. Schliesslich seien Fn(xn+1) die Gesamtkosten fiir »
noch bevorstehende Monate, abhidngig von der Produktion
xn+1 des Vormonates. Dann gilt die rekursive Relation:

Fn (pn+1) = Min

Xn = bn

{ 2 (Xn _ Pn+1)2 + 20 (xn = bn) +Fn (-Xn) }

denn die Kosten setzen sich additiv zusammen aus den Um-
stellungskosten, Vernichtungskosten und den Kosten Fpn-1(xn)
der noch folgenden n—1 Monate.

Die Zahl Fn-1 (pn) gibt die Kosten fiir die kostenminimale
Produktion an, wenn liber die letzten n—1 Monate minimiert
wird. Da aber in der obigen Funktion Fn (pn+1) liber die letzten
n Monate minimiert wird, kann sich die kostenminimale Pro-
duktion in den schon betrachteten Monaten noch dndern, so
dass sie in Fn-1 (.) als variabel angesetzt werden muss.

Es erweist sich als zweckmiissig, die Werte Fn (pn+1) fir
aufeinanderfolgende Monate, mit dem letzten beginnend, aus-
zurechnen, indem man mit F; (p2) fiir den Monat April beginnt
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und dann stufenweise riickwirts auf Fi1 (ps) fiir den Monat
Januar schliesst. Wihrend nur ps = 200 nach Voraussetzung
gegeben ist, kann man die anderen Werte pa...p1 erst am
Schluss der Rechnung bestimmen, diese Werte sind zunichst
noch variable Parameter. Entsprechend der obigen Beziehung
fiir Fn (pn+1) erhdlt man fiir n = 1:

Fi (p2) = Min

X1 =180

2 (x1 — p2)2 + 20 (x1 — 180) }

Das ist die Relation fiir den Monat April. Fiir den Monat
Mirz erhilt man:

Fa(p3) = Min 2{ 2 (x2 — p3)2 + 20 (x2 — 195) + F1 (x2)
X2 = 19

usw.
Es sei hier auf eine detailliertere Behandlung verzichtet. Als
Resultat erhdlt man:

Die totalen minimalen Produktionskosten belaufen sich auf
Fr. 1450.—.

Die Produktionsgrossen (Entscheidungsvariablen) betragen:

Januar: 210,
Februar: 220,
Mirz: 210,
April: 205.

Abschliessend sei noch das diesem Verfahren zugrunde
liegende Optimalitdtskriterium erwahnt:

Ein optimales Verhalten hat die Eigenschaft, ungeachtet des
Anfangszustandes und der Anfangsentscheidung, fiir die ver-
bleibenden Entscheidungen ein optimales Verfahren hinsicht-
lich des aus der ersten Entscheidung resultierenden Zustandes
darzustellen.

5. Spieltheorie

Wenn eine, zwei oder mehrere Personen im iiblichen Sinne
ein Spiel durchfiihren, so heisst das, dass nach bestimmten
Regeln ein bestimmtes Ziel angestrebt wird. Spricht man
innerhalb des Operations Research von Spieltheorie, so denkt
man in erster Linie an die Theorie der strategischen Spiele,
deren grundlegende Arbeiten auf J. von Neumann zuriickgehen.

Eine allgemeine Beschreibung der Spieltheorie oder deren
Ansitze wiirde sicherlich den Rahmen dieser Abhandlung
sprengen, so dass es sich als zweckmassig erweist, lediglich eine
spezielle Klasse von Spielen herauszugreifen, nimlich die sog.
Zweipersonen-Nullsummenspiele, bei denen zwei Personen
oder auch zwei Gruppen beteiligt sind, so dass der Gewinn der
einen Gruppe dem Verlust der anderen entspricht.

Man betrachte z. B. ein Spiel, an dem die Personen X und
Y beteiligt sind. Jeder Spieler hat eine gewisse Anzahl von
Verhaltensmoglichkeiten oder, wie man mit dem Fachausdruck
sagt, Strategien, die er zur freien Verfiigung besitzt. In Tabelle I1,
die die sog. Gewinnmatrix fiir einen Spieler angibt (in diesem
Falle fiir X), sind auch die verschiedenen Strategien zusammen-
gestellt.

Gewinnmatrix fiir X

Tabelle 11

¥ 1 2 3

[c @
7 N

2 4 Q 3

N
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Gewinnvon X

[}

Strategie von Y

Strategie von X

Fig. 3
Bestimmung des Sattelpunktes

Spieler X verfiigt im Beispiel tiber drei Strategien, Y iiber
deren vier. Die Zahlen in der Matrix geben die Gewinne fiir X
an, wenn mit den betreffenden Strategien gespielt wird, und zu-
gleich die Verluste fiir Y. X will natiirlich seinen Gewinn maxi-
mieren, Y hingegen die Verluste minimieren. Wéhlt z. B. X
seine 1. Strategie, so reagiert Y verniinftigerweise ebenfalls mit
seiner 1. Strategie. Fiir X ist es klug, bei jeder ihm zur Verfii-
gung stehenden Strategie (Spalte) die kleinste Gewinnchance
herauszusuchen (rund umrandet) und unter diesen Minima das
Maximum zu bestimmen. Fiir Y ist es verniinftig, das umge-
kehrte Verfahren einzuschlagen. Er sucht fiir jede Strategie
(Zeile), die ihm zur Verfiigung steht, das Maximum und wahlt
unter diesen Maxima das Minimum. Nach diesem Vorgehen
miissen sich die beiden Spieler je fiir ihre zweite Strategie ent-
schliessen, denn fiir diese gilt in der Matrix:

Max. der Spaltenminima = Min. der Zeilenmaxima = 5.

Wird so gespielt, so ist es Y nicht méglich, den Gewinn von
X zu verkleinern, anderseits kann X den Verlust von Y auch
nicht mehr vergrossern.

Die Losung des Spieles wird, wie eben erldutert wurde, nach
dem Minimax-Prinzip gesucht. Graphisch heisst das, man be-
stimmt den sog. Sattelpunkt der Matrix (Fig. 3).

Hiufig kommt es aber vor, dass ein Spiel keinen Sattelpunkt
aufweist, und man hat es dann mit den «nicht strikte definier-
ten» Spielen zu tun. Ein Beispiel dafir ist die stumme Mora.
Dabei wird gespielt, indem der Spieler X auf Gerade und der
Spieler Y auf Ungerade setzt. Ergibt die Zahl der ausgestreck-
ten Finger eine gerade Summe, so hat X, andernfalls Y eine
Einheit gewonnen.

Werden solche Spiele ofters gespielt, so kommt es darauf
an, mit welcher Haufigkeit die einzelnen Strategien zur An-
wendung gelangen. Man spricht von einer optimalen gemisch-
ten Strategie, wenn ein Spicler diejenige Gewinnerwartung
maximiert, die sein Gegner nicht verhindern kann. Man kann
beweisen, dass auch bei solchen allgemeineren Spielen ein
Minimax-Prinzip gilt, nach dem die grosste Gewinnerwartung

Wein—
felden

Fig. 4
Darstellung von Lage, Distanz und Kiuferzahl
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des einen Spielers, die er mit Sicherheit erwarten darf, mit der
kleinsten Verlusterwartung des anderen Spielers, die sich dieser
sichern kann, iibereinstimmt.

Um die Gewinnerwartung sowie die gemischten Strategien
bei solchen Zweipersonen-Nullsummenspielen zu bestimmen,
bedient man sich der Methoden der linearen Programmierung.

In einem weiteren Beispiel soll nun ein Skonomisches
Problem erdrtert werden, das auf ein Spiel mit Sattelpunkt
hinauslauft.

Angenommen, zwei Grossunternehmen X und Y (X sei
grosser als Y) beabsichtigen, in einer der vier Stddte Wetzikon/
Winterthur/Frauenfeld/Weinfelden ein Warenhaus zu errich-
ten. Lage, Distanz und Kiuferzahlen der vier Stiddte sind in
Fig. 4 angegeben.

Aus statistischen Erhebungen, die die beiden Geschéfts-
firmen fihrten, ging hervor, dass 80 9 des Gesamtumsatzes in
einer Stadt auf X fallen, wenn sein Warenhaus der Stadt ndher
liegt als dasjenige von Y. Hingegen fallen 60 9, des Gesamt-
umsatzes auf X, wenn die Kaufhiuser der beiden Unterneh-
mungen in der gleichen Stadt liegen. Befindet sich aber Y naher
als X, dann soll das Haus X 40 % des Umsatzes auf sich ver-
einigen.

Man nimmt jetzt an, jeder oben angegebene Kiufer kaufe
in der Woche fiir Fr. |.— und der Gewinn sei dem Umsatz
proportional. Mit spieltheoretischen Uberlegungen sollen nun
die optimalen Standpunkte der beiden Firmen errechnet
werden.

In der Umsatzmatrix (Tabelle III) ist der Umsatz von X
dargestellt in Abhingigkeit der Handlungsweisen von X und Y.
Die Gesamtumsatzsumme fiir beide Unternehmungen betrage
in der Woche Fr. 100000. Im Schema sind die Umsatzwerte
von X in Einheiten von Fr. 1000 dargestellt.

Umsatzmatrix

Tabelle 111
X . Winter - | Frauen — | Wein —
W
Y etzikon | pur feld felden
Wetzikon 60 64 56

. 7~ N\
Winterthur @ 52
Frauenfeld 56 64 50
Weinfelden 64 68 60

Nach den fritheren Erérterungen im Zusammenhang mit
dem Minimax-Prinzip muss sich X fiir Winterthur entscheiden,
denn dann ist sein maximaler Minimumumsatz Fr. 60000 in
der Woche, und dieser Umsatz kann von der Konkurrenz auf
keinen Fall reduziert werden. Klugerweise wird auch Y die
Strategie Winterthur wihlen, denn dann betrdgt sein minimaler
Maximumumsatz Fr. 40000, den X nicht beeintriachtigen kann.

Vorausgesetzt, dass die beiden Geschiftspartner die Situa-
tion voll uberblicken konnen und alle moglichen Chancen
ausniitzen, so ist die Platzfrage eindeutig bestimmt. Wiirde der
eine Partner aus irgendeinem Grunde einem anderen Ort den
Vorrang geben, so geschihe dies zum Vorteil seines Konkur-
renten.
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