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Mathematische Programmierung und Spieltheorie ')
Von H. P. Künzi, Zürich

1
1. Die lineare Optimierung

In der linearen Optimierung befasst man sich mit der Maxi-
mierung oder Minimierung einer linearen Funktion, genannt
Zielfunktion, deren Variablen xi...xn einer Anzahl von
Nebenbedingungen, gegeben durch lineare Ungleichungen (oft auch

Gleichungen), unterworfen sind.

Die Maximumaufgabe lässt sich wie folgt formulieren :

Gesucht sind die Grössen xi, xs...xn, für die der lineare
Ausdruck

Q piXi + P2X2 + -I Pn An

Fig. 1

Graphische Lösung der Maximumaufgabe

maximiert wird. Bezüglich der m Restriktionen

ail Xi + ai2 X2 + + am xn ^ Ji

as1 xi + ass xs + + asn xn is

ami Xl Üm2 A*s I A ömn Xn ^ im

und den Vorzeichenrestriktionen

Xl 0, X2 0,..., xn 5; 0

oder kürzer geschrieben :

ö 2 /> i Xi

werde maximiert bezüglich

n

2 «il xi < ij
i 1

Xi ^ 0

(/

(/ l,...n)

65.012.122:518.9

Typische Beispiele aus dem ökonomisch-betrieblichen
Bereich, die auf die lineare Optimierung führen, sind z. B.

Produktionsplanungen in einem Betrieb. Es sei angenommen, eine
Firma kann n Produkte mit den Mengen xi, xs...xn herstellen,
für die sie (nach Abzug der Stückkosten) die Nettopreise pi,
p-2...pn je Stück lösen kann. Für die Produktion benötigt man
m nicht in beliebiger Menge vorhandene Produktionsfaktoren
(Arbeitskräfte, Maschinen, Rohstoffe, Energie usw.), und zwar
pro Stück i die Menge aji des Produktionsfaktors j (i 1,

2...n;j 1, 2...m). Die Produktionsfaktoren stehen nur bis zu
den Flöchstmengen .vi, in der betrachteten Periode zur
Verfügung. Welches ist das optimale Produktionsprogramm,
wenn die Firma ihren Periodengewinn maximieren will

Ein anderes Beispiel : Ein Betrieb fabriziert zwei verschiedene

Typen von Verstärkern, nämlich Vi und V2. Unter anderem

befinden sich in jedem Verstärker Röhren und Transformatoren;

diese beiden Teile sowie die verfügbare Arbeitszeit
stehen dem Betrieb nur in beschränktem Masse zur Verfügung.
Bei konstantem Gewinn pro Einheit suche man diejenige
Produktion, die bezüglich der Restriktionen den grössten Gewinn
abwirft.

Der Tabelle I können die verschiedenen Konstanten
entnommen werden.

Konstanten zum aufgeführten Beispiel
Tabelle 1

Vi V2 Tageskapazität

Nettogewinn pro Einheit 28 27 —
Arbeitsstunden pro Einheit 3 7 105

Transformator pro Einheit 1 1 20

Röhren pro Einheit 8 3 120

h Vortrag, gehalten im Rahmen des Vortragszyklus über den Stand
in wichtigen Bereichen der Elektronik des Eidg. Personalamtes in Bern.

Bezeichnet man mit xi bzw. X2 die Anzahl der zu fabrizierenden

Einheiten von Vi und V2, so ergibt sich der folgende
Modellansatz einer linearen Optimierungsaufgabe:

Man maximiere
Q 28 xi + 17 X2

bezüglich der drei Restriktionen

3 xi + 7 xs 105

xi + xs U 20

8 xi + 3 xs 120
und

xi jä 0, xs 2: 0

Da man hier nur zwei Variable hat, kann das Problem
graphisch gelöst werden (Fig. 1). Die Restriktionen besagen,
dass der Lösungspunkt im schraffierten Bereich liegen muss.
Die optimale Lösung liegt in der «äussersten Ecke» bezüglich
der Geradenschar Q const.

Analog zur Maximumaufgabe lässt sich auch eine
Minimumaufgabe formulieren:
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Graphische Lösung der Optimierung einer Zielfunktion

m Variable sind zu suchen, nämlich wi, W2...wm derart, dass

der lineare Ausdruck

K J'l W1 4- S2 W2....ÏW Wm

minimiert wird unter den // Nebenbedingungen

«11 Vfl + «21 W2 + + «ml Wm > pi
«12 W1 + «22 W2 + flm2 Wm 1' P'2

a In Wl + «2n W2 + + «mn Wm > Pn
und

Wl > O...Wm 0

In dieser Formulierung liegt eine gewisse Symmetrie zur
Maximumaufgabe. Man nennt diese Minimumaufgabe die

duale Aufgabe zum Maximumproblem und man kann zeigen,
dass das Maximum von Q gleich dem Minimum von K wird,
also:

Qmax — A"min

Zur allgemeinen Lösung einer linearen Optimierungsaufgabe

stehen heute verschiedene Algorithmen zur Verfügung.
Erwähnt sei der berühmte Simplex-Algorithmus, den wir
weitgehend G. B. Dantzig verdanken. Er arbeitet iterativ, indem

man von einer Lösung ausgeht, die wohl das Restriktionssystem

befriedigt, aber noch nicht das Optimum angibt.
Schrittweise verbessert man diese Lösung, bis man im

Optimum anlangt. Das Verfahren von Dantzig bricht nach

endlich vielen Iterationen mit Bestimmtheit ab und eignet sich

sehr gut zur Anwendung auf dem Computer.

2. Verwandte Probleme zur linearen Optimierung

2.1 Das Transportproblem

Generell lässt sich das Transportproblem folgendermassen
formulieren :

n Bestimmungsorte (Lager) sind von m Ausgangsorten
(Fabriken) mit einer Ware zu beliefern; dabei benötigt dery'-te
Bestimmungsort bj Wareneinheiten, während im /'-ten

Ausgangsort «i Einheiten zur Verfügung stehen. Es wird weiter

vorausgesetzt, dass:
m n

2 ai= 2 bi
i=i i=i

Die Transportkosten für eine Wareneinheit vom /'-ten

Ausgangsort zum y'-ten Bestimmungsort werden mit cij bezeichnet,
die zu befördernde Menge mit xij (1 < /' < m, I Vy < /;).

Die sich stellende Aufgabe lautet jetzt : Man bestimme die

zu transportierenden Mengen xij, so dass alle in den Ausgangsorten

verfügbaren Mengen nach dem Bedarf der Bestimmungsorte

verteilt werden, so dass die Transportkosten ein Minimum
aufweisen. Dies führt zur folgenden Aufgabe:

Man minimiere
m n

k 2 2 cii xn
i 1 i 1

bezüglich der Nebenbedingungen

m

2 xn b-, (1 <y C //)
i 1

n

2 *ij «i (1 £ / '£ m)
i= i

xn > 0

Die Restriktionen enthalten hier genau m + n Gleichungen
in denen sämtliche Koeffizienten der Variablen den Wert I

aufweisen.

Zur Lösung dieser speziellen Aufgabe eignet sich vor allem
die Stepping Stone-Methode von Charnes und Cooper.

2.2 Die ganzzahlige lineare Optimierungsaufgabe

Schon beim Transportproblem handelt es sich um einen

Spezialfall der ganzzahligen Optimierung, d. h. man verlangt
zusätzlich, dass die Werte xi...xn nur ganzzahlige Werte
annehmen dürfen. Diese Voraussetzung spielt für die Praxis oft
eine wichtige Rolle. Wenn es sich um ganzzahlige Probleme
handelt, eignet sich der Algorithmus von Gomory, der
allerdings schlecht konvergiert für grosse m und //.

2.3 Die stochastische Optimierung

Will man Optimierungsaufgaben, so wie sie in den

vorangegangenen Kapiteln behandelt wurden, in der Praxis anwenden,

so stösst man oft auf die Schwierigkeit, dass die erforderlichen

Konstanten pi, «ji oder jj nicht mit Sicherheit angegeben
werden können. Oft kann man für diese Grössen lediglich
obere und untere Schranken festlegen oder kennt für sie eine

Wahrscheinlichkeitsverteilung. Unter solchen Voraussetzungen
ist es nicht mehr möglich, die in den vorhergehenden Kapiteln
entwickelte Simplexmethode anzuwenden; man muss sich
dann der sog. stochastischen Optimierung zuwenden. Es ist

hier nicht möglich, tiefer in diesen Zweig der Optimierung
vorzudringen, der sich noch in voller Entwicklung befindet.

3. Die nichtlineare Optimierung
Bei der allgemeinen nichtlinearen Optimierung sind

Zielfunktion und/oder Restriktionen nicht mehr linear in den

Variablen xi...xn. Die Aufgabe heisst dann:
Man suche das Optimum (Minimum oder Maximum) der

Zielfunktion
G (xi....Yn)

bezüglich der Nebenbedingungen

gi (xi...xn) £ 0 (y l...m)
und

xi 0 (/' 1...«)

Die geometrische Interpretation für n 2 ist analog zu

Fig. 1, nur sind jetzt die Geraden durch Kurven ersetzt (Fig. 2).

Es gibt heute keinen Algorithmus, der eine Aufgabe in so

allgemeiner Form lösen kann.
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Beschränkt man sich auf konvexe bzw. konkave Funktionen,
so ist es möglich, die optimale Lösung rechnerisch zu bestimmen,

doch benötigen die Verfahren oft recht komplizierte
mathematische Überlegungen.

In der Praxis treten oft Probleme auf, in denen die
Zielfunktion quadratisch ist und die Restriktionen linear bleiben.
Für diesen Fall gibt es sehr gute Algorithmen.

4. Die dynamische Optimierung
Oft treten Probleme auf, bei denen Entscheidungen über

mehrere Stufen zu treffen sind, wobei wiederum eine Zielgrösse
einen optimalen Wert erhalten soll. Dies trifft häufig bei
bestimmten Produktionsprozessen zu, z. B. wenn ein
Unternehmer jeden Monat seine Entscheidung für den folgenden
Monat zu treffen hat. Bei vielen Problemen dieser Art ist es

im allgemeinen richtig, den Aufwand für jede einzelne Periode

zu minimieren, denn unter Umständen kann ein kleiner
Verzicht auf Erträge anfangs des Jahres für spätere Monate einen

grösseren Ertrag liefern. In solchen Fällen ist es zweckmässig,
die von R. Bellman entwickelte Methode der dynamischen
Optimierung (Entscheidungsprozesse) zu verwenden, die an
einem kleinen Beispiel erläutert werden soll:

Der Produktionsprozess eines verderblichen Gutes sei derart,

dass die Kosten, die durch die Veränderung der Produktion
von Monat zu Monat verursacht werden, das doppelte des

Quadrates der Produktionsveränderung betragen.
Produktionsmengen, die am Ende eines Monats nicht verkauft sind,
müssen vernichtet werden. Diese Vernichtungskosten sollen

pro Einheit Fr. 20.— betragen. Für die vier ersten Monate eines

Jahres mögen folgende Bestellungen vorliegen:

Monat Jan. Feb. März

Bestellung 210 220 195 180

und dann stufenweise rückwärts auf Fi (pà) für den Monat
Januar schliesst. Während nur /;s 200 nach Voraussetzung
gegeben ist, kann man die anderen Werte pi...pi erst am
Schluss der Rechnung bestimmen, diese Werte sind zunächst
noch variable Parameter. Entsprechend der obigen Beziehung
für Fn (pn+i) erhält man für n 1 :

April

Im Dezember des vorangegangenen Jahres wurden 200

Einheiten produziert. Man bestimme einen Produktionsplan,
der die Kosten bei Befriedigung der Nachfrage minimiert.

Zur Lösung dieser Aufgabe soll im Sinne der dynamischen
Optimierung ein Stufenverfahren angegeben werden. Im
folgenden soll n stets die Anzahl der noch bevorstehenden
Produktionsmonate bezeichnen. Dementsprechend sei mit pn die
kostenminimale Produktion bezeichnet, und allgemein mit xn
die Produktion in einem Monat, dem noch n Produktionsmonate

folgen, sowie mit bn die Bestellung im folgenden
Monat. Schliesslich seien Fn(xn+i) die Gesamtkosten für n

noch bevorstehende Monate, abhängig von der Produktion
Xn+i des Vormonates. Dann gilt die rekursive Relation:

Fn (pn+l) Min 2 (Xn — Pn+l)2 + 20 (in " bn) +Fn-1 (xn)
Xq =§; bn l

denn die Kosten setzen sich additiv zusammen aus den

Umstellungskosten, Vernichtungskosten und den Kosten Fn-i(xn)
der noch folgenden n—\ Monate.

Die Zahl Fn-i Cpn) gibt die Kosten für die kostenminimale
Produktion an, wenn über die letzten n— 1 Monate minimiert
wird. Da aber in der obigen Funktion Fn (pm i) über die letzten

n Monate minimiert wird, kann sich die kostenminimale
Produktion in den schon betrachteten Monaten noch ändern, so

dass sie in Fn-i als variabel angesetzt werden muss.
Es erweist sich als zweckmässig, die Werte Fn (pn+1) für

aufeinanderfolgende Monate, mit dem letzten beginnend,
auszurechnen, indem man mit Fi (pu) für den Monat April beginnt

Fi (po) Min < 2 (xi — pz)2 + 20 (xi — 180)
xi S 180 1

Das ist die Relation für den Monat April. Für den Monat
März erhält man :

Fi(p?,) Min | 2 (x2 — pa)2 + 20 (x2 — 195) + Fi (X2)
X2 S 192 1 J

Es sei hier auf eine detailliertere Behandlung verzichtet. Als
Resultat erhält man:

Die totalen minimalen Produktionskosten belaufen sich auf
Fr. 1450.—.

DieProduktionsgrössen (Entscheidungsvariablen) betragen :

Januar: 210,
Februar: 220,
März: 210,
April: 205.

Abschliessend sei noch das diesem Verfahren zugrunde
liegende Optimalitätskriterium erwähnt:

Ein optimales Verhalten hat die Eigenschaft, ungeachtet des

Anfangszustandes und der Anfangsentscheidung, für die
verbleibenden Entscheidungen ein optimales Verfahren hinsichtlich

des aus der ersten Entscheidung resultierenden Zustandes
darzustellen.

5. Spieltheorie
Wenn eine, zwei oder mehrere Personen im üblichen Sinne

ein Spiel durchführen, so heisst das, dass nach bestimmten
Regeln ein bestimmtes Ziel angestrebt wird. Spricht man
innerhalb des Operations Research von Spieltheorie, so denkt
man in erster Linie an die Theorie der strategischen Spiele,
deren grundlegende Arbeiten auf J. von Neumann zurückgehen.

Eine allgemeine Beschreibung der Spieltheorie oder deren
Ansätze würde sicherlich den Rahmen dieser Abhandlung
sprengen, so dass es sich als zweckmässig erweist, lediglich eine

spezielle Klasse von Spielen herauszugreifen, nämlich die sog.
Zweipersonen-Nullsummenspiele, bei denen zwei Personen
oder auch zwei Gruppen beteiligt sind, so dass der Gewinn der
einen Gruppe dem Verlust der anderen entspricht.

Man betrachte z. B. ein Spiel, an dem die Personen X und
Y beteiligt sind. Jeder Spieler hat eine gewisse Anzahl von
Verhaltensmöglichkeiten oder, wie man mit dem Fachausdruck
sagt, Strategien, die er zur freien Verfügung besitzt. In Tabellen,
die die sog. Gewinnmatrix für einen Spieler angibt (in diesem

Falle für X), sind auch die verschiedenen Strategien zusammengestellt.

Gewinnmatrix für X
Tabelle II\ X

Y
1 2 3

1

2

© ©
» G3

3

4

4 6 10

5 |T] 4
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Gewinn von X

Fig. 3

Bestimmung des Sattelpunktes

Spieler X verfügt im Beispiel über drei Strategien, Y über
deren vier. Die Zahlen in der Matrix geben die Gewinne für X
an, wenn mit den betreffenden Strategien gespielt wird, und
zugleich die Verluste für Y. X will natürlich seinen Gewinn maxi-
mieren, Y hingegen die Verluste minimieren. Wählt z. B. X
seine 1. Strategie, so reagiert Y vernünftigerweise ebenfalls mit
seiner 1. Strategie. Für X ist es klug, bei jeder ihm zur Verfügung

stehenden Strategie (Spalte) die kleinste Gewinnchance
herauszusuchen (rund umrandet) und unter diesen Minima das

Maximum zu bestimmen. Für Y ist es vernünftig, das
umgekehrte Verfahren einzuschlagen. Er sucht für jede Strategie

(Zeile), die ihm zur Verfügung steht, das Maximum und wählt
unter diesen Maxima das Minimum. Nach diesem Vorgehen
müssen sich die beiden Spieler je für ihre zweite Strategie ent-

schliessen, denn für diese gilt in der Matrix:

Max. der Spaltenminima Min. der Zeilenmaxima 5.

Wird so gespielt, so ist es Y nicht möglich, den Gewinn von
X zu verkleinern, anderseits kann X den Verlust von Y auch

nicht mehr vergrössern.
Die Lösung des Spieles wird, wie eben erläutert wurde, nach

dem Minimax-Prinzip gesucht. Graphisch heisst das, man
bestimmt den sog. Sattelpunkt der Matrix (Fig. 3).

Häufig kommt es aber vor, dass ein Spiel keinen Sattelpunkt
aufweist, und man hat es dann mit den «nicht strikte definierten»

Spielen zu tun. Ein Beispiel dafür ist die stumme Mora.
Dabei wird gespielt, indem der Spieler X auf Gerade und der

Spieler Y auf Ungerade setzt. Ergibt die Zahl der ausgestreckten

Finger eine gerade Summe, so hat X, andernfalls Y eine

Einheit gewonnen.
Werden solche Spiele öfters gespielt, so kommt es darauf

an, mit welcher Häufigkeit die einzelnen Strategien zur
Anwendung gelangen. Man spricht von einer optimalen gemischten

Strategie, wenn ein Spieler diejenige Gewinnerwartung
maximiert, die sein Gegner nicht verhindern kann. Man kann

beweisen, dass auch bei solchen allgemeineren Spielen ein

Minimax-Prinzip gilt, nach dem die grösste Gewinnerwartung

Fig. 4
Darstellung von Lage, Distanz und Käuferzahl

des einen Spielers, die er mit Sicherheit erwarten darf, mit der
kleinsten Verlusterwartung des anderen Spielers, die sich dieser

sichern kann, übereinstimmt.
Um die Gewinnerwartung sowie die gemischten Strategien

bei solchen Zweipersonen-Nullsummenspielen zu bestimmen,
bedient man sich der Methoden der linearen Programmierung.

In einem weiteren Beispiel soll nun ein ökonomisches
Problem erörtert werden, das auf ein Spiel mit Sattelpunkt
hinausläuft.

Angenommen, zwei Grossunternehmen X und Y (X sei

grösser als Y) beabsichtigen, in einer der vier Städte Wetzikon/
Winterthur/Frauenfeld/Weinfelden ein Warenhaus zu errichten.

Lage, Distanz und Käuferzahlen der vier Städte sind in
Fig. 4 angegeben.

Aus statistischen Erhebungen, die die beiden Geschäftsfirmen

führten, ging hervor, dass 80 % des Gesamtumsatzes in
einer Stadt auf X fallen, wenn sein Warenhaus der Stadt näher

liegt als dasjenige von Y. Hingegen fallen 60 % des

Gesamtumsatzes auf X, wenn die Kaufhäuser der beiden Unternehmungen

in der gleichen Stadt liegen. Befindet sich aber Y näher
als X, dann soll das Haus X 40 % des Umsatzes auf sich

vereinigen.

Man nimmt jetzt an, jeder oben angegebene Käufer kaufe
in der Woche für Fr. 1.— und der Gewinn sei dem Umsatz

proportional. Mit spieltheoretischen Überlegungen sollen nun
die optimalen Standpunkte der beiden Firmen errechnet

werden.
In der Umsatzmatrix (Tabelle III) ist der Umsatz von X

dargestellt in Abhängigkeit der Handlungsweisen von X und Y.
Die Gesamtumsatzsumme für beide Unternehmungen betrage
in der Woche Fr. 100000. Im Schema sind die Umsatzwerte

von X in Einheiten von Fr. 1000 dargestellt.

Umsatzmatrix
Tabelle III

'X x
Y Wetzikon

Winterthur Frauen -
feld

Wein —

felden

Wetzikon 60 72 64 56

Winterthur 0 60]\.y © 52

Frauenfeld 56 64 60 (")
Weinfelden 64 68 72 60

Nach den früheren Erörterungen im Zusammenhang mit
dem Minimax-Prinzip muss sich X für Winterthur entscheiden,
denn dann ist sein maximaler Minimumumsatz Fr. 60000 in
der Woche, und dieser Umsatz kann von der Konkurrenz auf
keinen Fall reduziert werden. Klugerweise wird auch Y die

Strategie Winterthur wählen, denn dann beträgt sein minimaler
Maximumumsatz Fr. 40000, den X nicht beeinträchtigen kann.

Vorausgesetzt, dass die beiden Geschäftspartner die Situation

voll überblicken können und alle möglichen Chancen

ausnützen, so ist die Platzfrage eindeutig bestimmt. Würde der
eine Partner aus irgendeinem Grunde einem anderen Ort den

Vorrang geben, so geschähe dies zum Vorteil seines Konkurrenten.
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