Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 60 (1969)

Heft: 20

Rubrik: Energie-Erzeugung und -Verteilung : die Seiten des VSE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

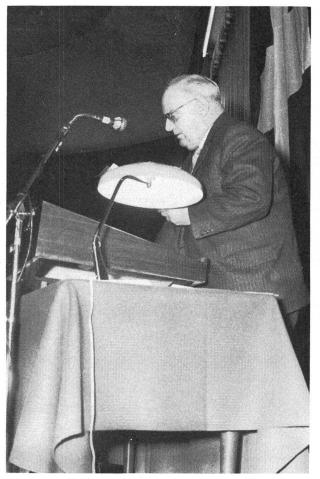
Energie-Erzeugung und -Verteilung

Die Seiten des VSE

Jubilarenfeier 1969 des VSE

06.09:621.31(494)

Nachdem im vergangenen Jahr die Jubilarenfeier erst nach der Feriensaison durchgeführt werden konnte, fand sie dieses Jahr wie üblich in der ersten Hälfte des Monats Juni statt. Tournusgemäss war sie im Welschland durchzuführen. So fiel die Wahl auf Montreux, da vor 15 Jahren, als die diesjährigen Verteranen als Jubilare geehrt wurden, die Stadt Lausanne die Feiernden beherbergte. Die Auswahl an Orten zur Durchführung solcher Veranstaltungen wird jedes Jahr kleiner, da es sehr schwer ist, Säle und Restaurants zu finden, die über 700 Personen aufnehmen und verpflegen können.


Schon am Freitag konnte man feststellen, dass viele Deutschschweizer in Montreux anwesend waren, hörte man doch am Abend in Restaurants und Cafés viel Schweizerdeutsch. Am Samstag erreichte die «Überfremdung» ihren Höhepunkt, als der Hauptharst angereist kam. Eine ganze Kolonne strebte vom Hauptbahnhof her nach dem Kino Rex, wo die Teilnehmer von den freundlichen Ehrendamen gleich am Eingang empfangen und an die ihnen zugeteilten Plätze gewiesen wurden. Wie gut sie ihre Aufgaben erfüllten, zeigte sich erst, als die Uhrzeiger auf 11 Uhr rückten und der Saal

sich beängstigend füllte, ohne dass es zu Verstopfungen der Durchgänge kam. Über 200 zusätzliche Sitzgelegenheiten waren in früher Morgenstunde vom Casino-Kursaal herübertransportiert worden, so dass allen Teilnehmern ein Sitzplatz zur Verfügung stand. Wenn die Platzverhältnisse auch nicht gerade ideal waren, durften die Veranstalter mit Freude vom Verständnis der Teilnehmer Kenntnis nehmen, wofür allen bestens gedankt sei.

Gleich zur Eröffnung der Feier brachten die Mitglieder der Chanson de Montreux eine recht frohe Stimmung in den Saal. Mit frischen Stimmen und viel Anmut trugen sie ihr Lied vom Vigneron vor. Daraufhin begrüsste Herr *Dr. Frank* alle Anwesenden im Namen des Verbandes und wünschte ihnen einen glücklichen Tag. Die Festansprache hielt Herr *E. Manfrini*, Delegierter des Verwaltungsrates der Energie de l'Ouest-Suisse, der sich wie folgt an die Veteranen und Jubilare wandte, wobei er anschliessend noch besonders herzliche Worte fand für Herrn *P. Payot*, Delegierten des Verwaltungsrates der Société Romande d'Electricité, der seinen Becher für 40 Dienstjahre in Empfang nehmen konnte.

Der Becher beweist es: P. Payot ist Veteran

Der Festredner E. Manfrini

Herr A. Vogelsang, Präsident, Montreux

«Liebe Veteranen und Jubilare,

Sie sind alle hier am Ufer des «Léman» versammelt, um vom Verband Schweizerischer Elektrizitätswerke nicht nur herzliche Gratulationen für Ihre vergangene Tätigkeit entgegenzunehmen, sondern auch aufrichtige Wünsche für Ihre Zukunft und diejenige Ihrer Familien.

Sie sind aus allen Gauen des Landes hergekommen, aus den Bündneralpen, aus der Zentralschweiz, aus Industrie-

städten, vom Bodenseegebiet und von vielen anderen Orten noch.

Heute sind Sie aber eine einzige grosse Familie, eine Familie von Bürgern, die während langer Jahre mit Eifer und Können die Interessen der Unternehmen vertraten.

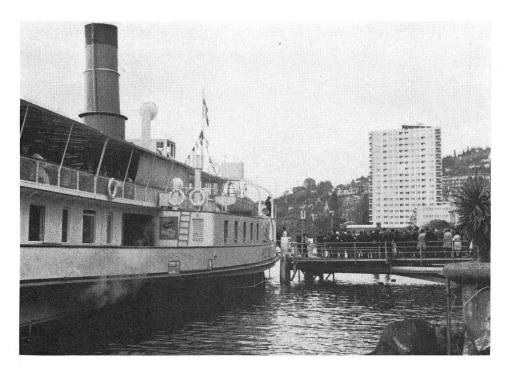
Gestatten Sie einem Vertreter des Vorstandes — der den Vorzug hatte, je ungefähr ein Drittel seiner Karriere in jedem Sprachgebiet der Schweiz auszuüben — Ihnen zu sagen,

Beim Einschiffen

Alle schön der Reihe nach

wie sehr er die Treue zu schätzen wusste, mit der die meisten Mitarbeiter der Produktionswerke ihre Pflicht erfüllten.

Die heutige Feier ist in der Tat die Feier der Treue, nicht nur dem Unternehmen gegenüber, sondern vor allem Pflichttreue gegenüber der Gemeinschaft.


Die Erzeugung und die Verteilung elektrischer Energie sind im Verlauf der Zeit nicht nur ein Hauptfaktor der Nationalwirtschaft geworden, sondern eine Notwendigkeit auf allen Stufen der Familie und der Gemeinschaft. In der ganzen Hierarchie, vom Maschinisten bis zum Linien-Monteur, vom Zentralenchef bis zum Betriebsleiter, vom einfachen Bürolisten bis zum Chefbuchhalter, habe ich oft das Pflichtbewusstsein sowie den Verantwortungssinn eines jeden dem öffentlichen Wohl gegenüber bewundern müssen.

Deshalb möchte ich nochmals als Vertreter des Verbandes Schweizerischer Elektrizitätswerke und insbesondere seines Vorstandes diese Gelegenheit wahrnehmen, um Ihnen zu danken und aufrichtig zu gratulieren. Diese Gratulationen jedoch, wie es Ihren welschen Kollegen bereits mitgeteilt wurde, sind nicht für Sie allein gedacht. Sie haben alle einen viel zu ausgesprochenen Familiensinn, um diejenige zu vergessen, die immer die Hüterin des Heimes war und sein wird, und die Ihnen stets geholfen hat, Ihre Pflichten zu erfüllen. Um das Wohlergehen der Kinder besorgt, vergass sie daneben nie, wie wichtig die Wärme des Familienheimes für den Mann ist, der nach einem schweren Arbeitstag, oft bei Wind und Wetter, zurückkam. Die treue Gefährtin und Mitarbeiterin soll heute besonders gefeiert werden!»

Von Seiten der Gemeinde begrüsste Herr A. Vogelsang, Gemeindepräsident von Montreux, die Feiernden und gab seiner Freude Ausdruck, dass die vielen treuen Mitarbeiter der Elektrizitätswerke ihren Ehrentag in der schönen Westschweiz begehen können.

Dreimal 50 Dienstjahre

Montreux

Dann erfolgte die Ehrung der 3 Veteranen mit 50 Dienstjahren, 120 Veteranen mit 40 Dienstjahren und 255 Jubilare mit 25 Dienstjahren. Einzelne von Jahren harter Arbeit gezeichnet, andere in jugendlicher Frische, stiegen sie auf die Bühne, die die SRE eigens zu diesem Zwecke aufbauen liess, und konnten aus den Händen der Ehrendamen das Geschenk des Verbandes entgegennehmen. Zum Abschluss sangen nochmals die Mitglieder der Chanson de Montreux Lieder in deutscher, französischer und italienischer Sprache, die mit einem Beifallsturm verdankt wurden. Damit war die Feier beendet, und es stand nun die Pflege des leiblichen Wohls im Vordergrund.

Im Casino-Kursaal de Montreux war für die Stillung des Hungers und des Durstes alles bestens vorbereitet. Wohltuend wirkte die Weite des Saales nach der Enge des Kinos. Dank einem vorzüglichen Service konnte sich bald jedermann an Speise und Trank erfreuen. Das Absinken des Unterhaltungsgeräusches im Saal liess darauf schliessen, dass das Gebotene dankbare Abnehmer fand. Beim schwarzen Kaffee ging es dann wieder lebhafter zu, und je näher der Zeitpunkt des Aufbruchs heranrückte, desto ausgelassener wurde die Unterhaltung.

Am Nachmittag erfolgte die Rundfahrt auf dem See. Da sich das Wetter nicht von der besten Seite zeigte, wurden zwei Schiffe eingesetzt, damit sich alle Teilnehmer in geschlossenen Räumen aufhalten konnten. Zeitraubend war die Besteigung der Schiffe, weil nur ein Landungssteg zur Verfügung stand. Doch mit Geduld wurde auch dieser Engpass überwunden. Als auch die «Savoie» nach einem lauten «Tut» aus der Dampfpfeife in Richtung Clarens davonstampfte, hatte schon jeder ein ihm zusagendes Plätzchen gefunden. Bei einem Tässchen Kaffee oder einem Fläschen Wein fanden sich gesellige Grüppchen zusammen und genossen die Freuden des irdischen Daseins. Andere zogen es vor, sich die frische Luft des Lémans um die Ohren blasen zu lassen und die Landschaft zu bewundern. Kurz vor 5 Uhr kehrte die frohe Gesellschaft nach Montreux zurück, wo die 55. Jubilarenfeier ihren offiziellen Abschluss fand. Der Berichterstatter hat dieses Jahr seinen Aufsatz absichtlich weniger wortreich ausgeführt, dafür vermehrt illustriert, um Bilder sprechen zu lassen. Nicht unterlassen möchte er aber, der Société Romande d'Electricité und ihren Mitarbeitern für die Beratung und Unterstützung bei der Vorbereitung zur Feier ein herzliches Dankeschön zuzurufen. Auch dankt er, sicher im Namen aller, für die Übernahme der Kosten für die Chanson de Montreux und die Unterhaltungsmusik auf dem Schiff.

So ist der Becher doppelt schön...

Liste der Jubilare des VSE 1968 — Liste des jubilaires de l'UCS en 1968

Liste der Veteranen

Liste des vétérans

50 Dienstjahre

50 années de service

Städtische Werke Baden:

Johann Meier, Kaufmännischer Angestellter

Elektrizitäts- und Wasserwerk Wettingen:

Josef Kramer, Elektromonteur

Lonza A.G., Elektrizitätswerke, Visp:
Emil Zenhäusern, Maschinist

40 Dienstjahre

40 années de service

Aargauisches Elektrizitätswerk Aarau:
Walter Gygax, Vermessungstechniker
Caspar Hard, Kaufmännischer Angestellter
Samuel Roth, Zeichner

Industrielle Betriebe der Stadt Aarau: Willi Scherz, Ableser Alfred Schmid, Zentralenchef Walter Hächler, Zentralenarbeiter

Etzelwerk A.G., Altendorf Otto Wirz, Chefbuchhalter

Elektrizitätswerk des Kantons Thurgau, Arbon

Alfred Ritzmann, Kreismonteur

Wasser- und Elektrizitätswerk Arbon: Josef Ribler, Einzüger

Elektrizitätswerk Arosa:

Siegfried Klotz, Magaziner

Städtische Werke Baden:

Fritz Barth, Kabelmonteur Albert Stenz, Elektromonteur Marcel Roth, Elektromonteur Gustav Müller, Ableser/Einzüger Stephan Voser, Kontrolleur

Azienda Elettrica Ticinese, Bellinzona: Sergio Marconi, capo operaio con mansioni speciali

Bernische Kraftwerke A.G., Bern:
Hans Matti, Chefmonteur
Rudolf Stöckli, Platzmonteur
Hans Moning, Chefmagaziner
Walter Boreux; adjoint d'exploitation
Fritz Jordan, technicien de réseau
Hans Siegrist, contrôleur de compteurs
Théodore Zwahlen, monteur d'exploitation

Elektrizitätswerk der Stadt Bern:
Edmund Santschi, Chefmonteur
Hans Morgenthaler, Chef Zählerwesen
Germann Hansjakob, Standabnehmer/Einzieher

Aar e Ticino S. A. di Elettricità Bodio: Tarcisio Darni, direttore-aggiunto Elso Bianchi, disegnatore-tecnico Industrielle Betriebe der Stadt Brugg: Gottfried Leimgruber, Elektromonteur

Services Industriels de la Ville de Bulle: Oscar Rime, sous-chef d'usine

Elektrizitätswerk Burgdorf: Fräulein Margrit Mohni, Sekretärin

Services Industriels, La Chaux-de-Fonds:
André Giroud, ingénieur
Ernest Robert, mécanicien-électricien
Marcel Jeanrenaud, adj. contremaîtres

William Vuagneux, chef atelier Georges Noirjean, contremaître Louis Schaffroth, mécanicien-électricien

Gérard Imhof, contremaître

Société Romande d'Electricité, Clarens:
Pierre Payot, directeur, administrateur-délégué
Edouard Muller, chef monteur
César Emonet, régleur
André Pilet, chef des réseaux

Entreprises Electriques Fribourgeoises, Fribourg:

Lucien Desgraz, chef monteur

Arthur Boffi, commis Joseph Clerc, chef magasinier Jean Hostettler, monteur stationné Louis Schaller, aide-monteur

Elektrizitätswerk Jona-Rapperswil A.G., Jona:

Georges Müller, Chefmonteur Werner Pfenninger, Prüfbeamter Karl Guggenbühl, Zähler-Gruppenchef

Elektrizitätswerk Obwalden, Kerns:
Fräulein Anna Reinhard, Büroangestellte
Losef Bucher, Magaziner

Josef Bucher, Magaziner Thadeus Durrer, Magaziner

Elektrizitätswerke Wynau, Langenthal: Paul Gerber, Magaziner

Ernst Tanner, Techniker

Compagnie Vaudoise d'Electricité, Lausanne:

Frédéric Gaulaz, dessinateur-constructeur

Louis Matti, agent I

Albert Besuchet, monteur-électricien I

Marcel Cornuz, employé de bureau I Gotthold Wildi, sous-chef de centrale René Grand, contremaître I

Service de l'Electricité, Lausanne: Gilbert Wust, contremaître

Elektrizitätswerk Linthal:

Heinrich Stüssi-Kubli, Elektromonteur

Centralschweizerische Kraftwerke, Luzern:

Hans Brücker, Zentralenchef-Stellvertreter

Fritz Kupferschmid, Leitungs-Gruppenchef Heinrich Delb, Elektrochef Armin Niederhauser, Elektromonteur

Alois Mattmann, Bauleiter Adolf Furrer, Magaziner

Centralschweizerische Kraftwerke Elektrizitätswerk Altdorf:

Karl Aschwanden, Garagechef Alois Kempf, Leitungs-Gruppenchef

Centralschweizerische Kraftwerke Elektrizitätswerk Schwyz:

Karl Camenzind, Kreismonteur Fridolin Inderbitzin, Bauchef

Elektrizitätswerk der Stadt Luzern: Werner Leutwyler, Werkmeister

Elektra Briseck, Münchenstein:
Max Briefer, Kaufmännischer Angestellter
René Goepfert, Zählermonteur
Ernst Mattmüller, Zählermonteur
Walter Pfister, Kassier

Electricité Neuchâteloise S.A., Neuchâtel:

Mademoiselle Marcelle Borel, préposée à l'office de renseignements

Service de l'Electricité de la Ville de Neuchâtel:

Albert Linder, monteur

Aare-Tessin A.G. für Elektrizität, Olten:

Eugen Schenker, Schaltwärter Theodor Grob, Kaufmännischer Angestellter

Kraftwerke Brusio A.G., Poschiavo: Primo Trombini, impiegato d'ufficio Franz Rampa, macchinista

Société des forces électriques de la Goule, St-Imier:

Robert Baroni, chef magasinier

Installaziun Electrica S.A. Sedrun: Thomas Cavegn, Verwalter

Service Electrique de la Vallée de Joux, Le Sentier:

Armand Doebeli, monteur électricien

Services Industriels de la Ville de Sion: Georges Oggier, contremaître Emile Vadi, chef-monteur

Städtische Werke, Solothurn: Werner Salaroli, Installationschef

Trogenerbahn, Speicher:

Adolf Ringeisen, Chef des EW und Elektrogeschäftes

Elektrizitäswerk des Kantons Schaffhausen:

Hans Ruf, Monteur

 $Elektrizit\"{a}tswerk~Schwanden:$

Hans Bühler, Monteur

Elektrizitätswerk Uetikon am See: Hans Kunz, Verwalter

Elektrische Verteilungsanlage, Unterkulm:

Ernst Elsasser, Elektriker

Lonza A.G., Elektrizitätswerke, Visp: Walter Fischer, Bürochef Paul Barlatey, Bürochef Albin Berchtold, Schichtenführer Adolf Furrer, Schichtenführer-Stellvertreter

Elektrizitätswerk Wald/ZH: Louis Zoller, Betriebsmonteur

Wasser- und Elektrizitätswerk Walenstadt:

Robert Albertin, Obermonteur

Elektrizitäts- und Wasserwerk, Wettingen:

Arnold Zehnder, Elektromonteur

Elektrizitätswerk der Stadt Winterthur: Caspar Buol, Spezialarbeiter

Wasserwerke Zug:

Josef Berlinger, Buchhalter Walter Herger, Kaufmännischer Angestellter

Elektrizitätswerke des Kantons Zürich:

Franz Karl Betscha, FreileitungsObermonteur
Hermann Bär, Kaufmännischer
Angestellter
Jakob Keller, Installations-Monteur
Emil Müller, InstallationsMonteur
Ernst Lüssy, Chefmonteur
Hugo Elmer, InstallationsMonteur
Kral Graf, Magaziner
Walter Zumsteg, Kaufmännischer
Angestellter

Elektrizitätswerk der Stadt Zürich:

Emil Faes, Einzüger Karl Roth, Kaufmännischer Angestellter Ludwig Salvenmoser, Chefmonteur Walter Schoch, Kanzleisekretär Emil Wirz, Techniker Edwin Bauert, Handwerker Julius Thalmann, Magaziner

Liste der Jubilare Liste des jubilaires

25 Dienstjahre

25 années de service

Aargauisches Elektrizitätswerk Aarau:
Hans Dürsteler, Chefmonteur
Otto Moser, Chauffeur
Max Schwarz, ChefbuchhalterStellvertreter

Industrielle Betriebe der Stadt Aarau: Georg Weber, Zählereicher

Etzelwerk A.G. Altendorf:
Willy Schilling, Schichtführer
Theodor Baumann, Maschinist

Technische Gemeindebetriebe Amriswil: Erwin Lussy, Kaufmännischer Angestellter

Wasser- und Elektrizitätswerk Arbon: Armin Schaufelberger, Betriebsbuchhalter

Elektrizitätswerk Arth: Eugen Kamer, Elektromonteur Kraftwerk Rupperswil-Auenstein A.G., Baden:

Ernst Wassmer, Schichtführer

Nordostschweizerische Kraftwerke A.G., Baden:

Hans Amrein, Techniker
Josef Betschon, Dipl. Ingenieur
Erwin Gall, Chefmonteur
Jakob Gebhard, Zeichner
Peter Grosvernier, Schichtführer
Gottlieb Hofer, Feinmechaniker
Dr. Albert Laubi, Jurist
Josef Lemmenmeier, Dipl. Ingenieur
Hans Richner, Kanzlist
Emil Schärer, Kraftwerkarbeiter
Jean Schifferle, Kraftwerkarbeiter
Arthur Zoderer, Zeichner
Paul Knecht, Maschinist

Städtische Werke Baden:

Werner Fenner, Kontrolleur Fräulein Anny Beeler, Verkäuferin

A.G. Elektrizitätswerke Bad Ragaz: Robert Bollhalder, Einzüger

Elektrizitätswerk Basel:

Walter Studer, Chauffeur
Waltfried Schneider, Einzüger
Louis Peter, Einzüger
Fritz Burkhard, Werkmeister
Fritz Burkhalter, Technischer
Assistent
Edwin Wüthrich, Einzüger
Samuel Eger, Werkmeister
Ernst Widmer, Ingenieur
Bernhard Wernli, Werkführer

Gemeinde Beckenried: Josef Amstad, Chefmonteur

Bernische Kraftwerke A.G., Bern: Heinrich Bütikofer, Vorarbeiter Jakob Dubach, Berufsarbeiter Willy Haussener, Dipl. Automechaniker Walter Morgenthaler, Zentralenchef Hugo Knecht, Zentralenchef-Stellvertreter Karl Luginbühl, Gruppenchef Zählerdienst Otto Zenger, Platzmonteur Hans Schneider, Schichtenführer Fritz Büttikofer, Platzmonteur Alfred Bucher, Maschinist Albert Hostettler, Betriebsmonteur Fritz Ramseier, Betriebsmonteur Ernst Schärz, Betriebsmonteur Fritz Burger, Zählerkontrolleur Marcel Beck, Gruppenchef Hans Ammon, Maschinist/Schichtenführer Franz Ehrsam, Caissier Rudolf Scherrer, Installationsmonteur Hans Wenger, Installationschef Meinrad Willi, Ingenieur Techniker Emile Graber, Monteur d'exploitation

Elektrizitätswerk der Stadt Bern: Rudolf Grunder, Chef Lohnbüro Ernst Wiedmer, Spezialhandwerker Marcel Widmer, Maschinist Elektrizitätswerk der Stadt Biel: Paul Gygax, Kabelmonteur

Aar e Ticino S.A. di Elettricità, Bodio: Luca Danzi, Capo Centrale Lucendro Signorina Dina Sciolli, Impiegata contabile Ugo Genoni, Macchinista Centrale Lucendro Delio Giannini, Capo officina meccanica Angelo Martini, Muratore Giuseppe Ortelli, Montatore linee Alfonso Pedroli, Operaio costruzioni Ezio Raselli, Macchinista Centrale Lucendro Luigi Troglia, Sorvegliante sottostazione Lavorgo

Industrielle Betriebe der Stadt Brugg: Werner Zeier, Zeichner

Services Industriels de la Ville de Bulle: Roger Sottas, chef d'usine Charles Caille, monteur

Elektrizitätswerk Burgdorf: Hermann Bachmann, Kontrolleur

Hans Gerber, Elektromonteur Paul Widmer, Chefmonteur

Société des Forces Motrices de Chancy-Pougny:

Louis Pochon, directeur d'usine

Services Industriels de la Ville de La Chaux-de-Fonds:

Pierre Von Aesch, monteur électricien Bertrand Godat, serrurier Armand Vuillenmier, mécanicien électricien Charles Matthey, secrétaire Louis Linder, chef d'équipe René Kapp, commis au service des paies

Industrielle Betriebe der Stadt Chur: Constantin Rabaglio, Eichbeamter

Société Romande d'Electricité, Clarens:
Marcel Dubuis, contrôleur
d'abonnements
Mademoiselle Jacqueline Schwaar,
secrétaire
Alphonse Monnier, régleur
Pierre Magnin, étalonneur

Services Industriels Colombier:
Camille Weissbrodt, contremaître

Services Industriels de la Ville de Delémont:

René Mertenat, monteur électricien

Dorfkorporation Ebnat-Kappel: Gottlieb Häner, Werkmeister

Elektrizitätswerk Erlenbach: Josef Züger, Kontrolleur

Gemeindewerke Erstfeld:
Josef Huber, Zählerableser und
Magaziner
Johann Huber, Hilfsmonteur

Technische Betriebe der Gemeinde Flawil:

Hans Widmer, Betriebsleiter-Stellvertreter Elektrizitätswerk Frauenfeld: Ernst Gremlich, Magaziner

Entreprises Electriques Fribourgeoises, Fribourg:

Charles Barras, chef d'usine Gaston Bel, monteur Prosper Conus, monteur Jean Brugger, aide-monteur Philippe Genoud, monteur Henri Jaquillard, magasinier Jean Joye, chef d'équipe Henri Macherel, magasinier Paul Michel, monteur Charles Pittet, magasinier Marcel Ruffieux, machiniste Henri Ruchti, monteur Roger Sauteur, machiniste Robert Scherwey, aide-monteur Emile Stoll, aide-monteur René Thalmann, chef équipe Paul Yersin, sous-chef équipe

Services-Industriels de Genève:
Charles Pfaffhauser, chef d'équipe
Paul Dubois, contremaître
Pierre Bill, chef de bureau
Claude Guillod, employé technique
principal
Jean Bouvier, chef de bureau

Jean Bouvier, chef de bureau François Thomé, chef du bureau Henri Locher, chef d'équipe Roger Blandin, chef de section

Elektrizitätsversorgung der Gemeinde Glarus:

Stefan Saxer, Maschinist

Elektrizitätswerk der Stadt Grenchen: Werner Flükiger, Zählermonteur

Elektrizitätswerk Grindelwald A.G., Grindelwald:

Arnold Müller, Elektromonteur

Gemeindewerke Horgen:

Oswald Lüchinger, Zählermonteur

Kraftwerke Oberhasli A.G., Innertkirchen:

Fritz Zingg, Vizedirektor

Industrielle Betriebe Interlaken:
Wilhelm Feuz, VorarbeiterMaschinist
Hans Joost, Maschinist
Walter Wittwer, Monteur

A.G. Bündner Kraftwerke, Klosters: Ernst Fischer, Chefmaschinist Johann Vital, Maschinist

Elektrizitätswerk Küsnacht: Hans Böppli, Monteur Ernst Isler, Zählermonteur

Elektrizitätswerke Wynau, Langenthal: Kuno Achermann, Dipl. Ingenieur

Compagnie Vaudoise d'Electricité, Lausanne:

> Henri Chesaux, employé de bureau I Jules Parmelin, manœuvre spécialisé Louis Brugger, monteur électricien I Jean-Pierre Paccaud, agent I Joseph Brugger, aide-agent I René Derendinger, chef d'équipe I André Bornand, agent I Charles Cachemaille, contremaître I Michel Bourgeois, contremaître II Roger Chevalier, manœuvre I

Inspection des installations à courant fort, Lausanne

Charles Ammann, chef du Bureau

S.A. l'Energie de l'Ouest-Suisse, Lausanne

Paul Alméras, comptable Marcel Bruchez, barragiste Camille Lambiel, monteur Jacob Währy, monteur Joseph Jacquemoud, surveillant de lignes

Eugène Debétaz, chef monteur Service de l'Electricité de la Ville de Lausanne:

> Roger Collaud, chef de chantier Edouard Giroud, secrétaire Henri Spori, monteur I Emile Ungaro, chef d'équipe

Elektrizitätswerk Lauterbrunnen: Hans Gertsch, Hilfsmonteur

Elektra Baselland, Liestal: Fräulein Erna Seiler, Verkäuferin Hans Mangold, Kreismonteur

Società Elettrica Sopracenerina S.A., Locarno:

Alberto Bianchi, capo centrale Services Industriels de la Ville du Locle, Le Locle:

Marcel Ducommun, magasinier

Officina Elettrica Comunale, Lugano: Piero Schiannini, aggiunto-contabile Sergio Stefanini, montatore

Centralschweizerische Kraftwerke, Luzern:

Max Hof, Bauleiter Fritz Brun, Garagechef-Stellvertreter Josef Röösli, Elektrochef Hans Allemann, Magaziner Fräulein Marlis Fellmann, Kaufmännische Angestellte Anton Stöckli, Schaltwart Adolf Trucco, Mechaniker

Centralschweizerische Kraftwerke, Luzern

Elektrizitätswerk Altdorf:
Anton Christen, LeitungsGruppenchef
Josef Zwyssig, Betriebsmonteur
Willy Walker, ZentralenchefStellvertreter
Hans Loretz, Maschinist
Willy Suter, Mechaniker
Josef Schilter, Leitungs-Gruppenchef

Centralschweizerische Kraftwerke Elektrizitätswerke Schwyz: Franz Schilter, Gruppenchef

Kabelbau

Elektrizitätswerk der Stadt Luzern: Josef Furrer, Vorarbeiter Hans Herzog, Meister

Elektrizitätswerk der Dorfgemeinde Meiringen:

Ernst Pulver, Dorfkassier

Azienda Elecctrica Comunale, Mendrision:

Enrico Lurà, montatore controllore

Elektra Birseck, Münchenstein:
Fräulein Alice Jeanmonod, Sekretärin
Robert Betsche, Technischer
Angestellter

Meinrad Henz, Schaltwärter Siegfried Hofer, Technischer Angestellter Rudolf Münch, Technischer Angestellter Walter Suter, Chefmonteur

Electricité Neuchâteloise S.A., Neuchâtel:

Pierre Kull, employé au service d'exploitation

Services Industriels, Service de l'électricité de la Ville de Neuchâtel:

Mademoiselle Marguerite Grandjean, secrétaire Edgar Dubois, monteur Charles Hadorn, monteur Henri Froidevaux, aide-monteur

Aare-Tessin Aktiengesellschaft für Elektrizität, Olten:

Albert Affolter, Prokurist

Société des Usines de l'Orbe: Gilbert Vallotton, machiniste André Duruz, machiniste

Kraftwerke Brusio A.G., Poschiavo: Guerrino Zala, macchinista

Wasser- und Elektrizitätswerk Romanshorn:

Hans Blattner, Elektromonteur

Elektrizitätswerk Rorschach:
Alfred Högger, Zählermechaniker

Elektrizitätsversorgung Rothrist: Walter Hofer, Chefmonteur

Société des Forces électriques de la Goule, St-Imier:

Ewald Biedermann, conciergemagasinier

Elektrizitätswerk der Stadt St. Gallen: Adolf Akermann, Spezialhandwerker I Werner Würth, Handwerkervorarbeiter I

St.-Gallisch-Appenzellische Kraftwerke A.G., St. Gallen:

Marino Ropele, Chefmonteur Werner Peter, Platzmonteur

Service Electrique de la Vallée de Joux, Le Sentier:

Daniel Meylan, monteur-électricien

Services Industriels de la Commune de Sierre:

Georges Nanzer, chef-magasinier Joseph Thalmann, magasinier Georges Zufferey, appareilleur

Electricité de la Lienne S.A., Sion: Roger Métral, machiniste Etienne de Riedmatten, machiniste Jérémie Jean, machiniste

Lizerne et Morge S.A., Sion:
Alfred Blondey, chef électricienmachiniste

Services Industriels de la Ville de Sion:
Ignace Bayard, monteur-électricien
Edouard Cherix, employé de bureau
Marc Gay-Balmaz, monteur de lignes
Gilbert Mévillot, employé de bureau
Jérémie Moix, lecteur de compteurs
Mademoiselle Esther Zermatten,
dactylo

Gesellschaft des Aare- und Emmenkanals, Solothurn:

Max Lerch, Chef der Installationsabteilung Fräulein Anny Weber, 1. Kanzlistin der Installationsabteilung Walter Bichsel, Magaziner

Städtische Werke Solothurn:

Fräulein Verena Furrer, Kanzlistin Hans Stucki, Einzüger Salvatore Orlando, Elektromonteur

A.G. für Verkehrsbetriebe Leuk-Leukerbad und Umgebung, Susten: Charles Mooser, Maschinist

Elektrizitätswerk der Stadt Schaffhausen:

Andreas Eggenberger, Monteur Jakob Eigenheer, Vorarbeiter

Kantonales Elektrizitätswerk Nidwalden, Stans:

August Wild, Installationskontrolleur Lonza A.G., Elektrizitätswerke Visp:
Emil Bachmann, Werkmeister
Prosper Andenmatten, Schlosser
Felix Hasler, Maschinist
Paul Furrer, Schichtenführer

Gemeindewerke Wetzikon: Bruno Rigoni, Elektromonteur

Wasserwerke Zug:

Josef Schicker, Zählermechaniker Josef Meyer, Einzüger

Elektrizitätswerke des Kantons Zürich: Ernst Becker, Meister Werner Walder, Zählermechaniker Heinrich Derrer, Maschinenmeister Hans Lippuner, Obermonteur Alfred Gut, Betriebschefmonteur Rudolf Wild, Techniker
Eugen Wildi, Revisionsmonteur
Paul Grau, Freileitungs-Obermonteur
Robert Zandel, Freileitungs-Chefmonteur
Hermann Rüegg, Chefmonteur
Walter Bertsch, Chefmonteur
Adolf Martin, Monteur
Max Eglauf, Betriebsmonteur

Elektrizitätswerk der Stadt Zürich:

Emil Günter, Techniker
Josef Hätterich, Verwaltungsbeamter
Fritz Knabenhans, Einzüger
Paul Spalinger, Einzüger
Hans Stroebl, Einzüger
Eugen Brand, Chauffeur
Johann Heinz, angelernter Berufsarbeiter
Erwin Thomas, Spezial-Handwerker

14. Kongress der Union Internationale des Producteurs et Distributeurs d'Energie Electrique (UNIPEDE)

Bericht der Arbeitsgruppe über die Qualität des Betriebes bei der Erzeugung

Von Marcel Boiteux, Paris

621.31:004.2

Fortsetzung aus Nr. 18/1969.

Die kritische Periode des spanischen Systems erstreckt sich somit auf die Zeitspanne von September bis Dezember. Da die Speicherbecken ca. 14 Stunden pro Wochentag eingesetzt werden, erstreckt sich die kritische Periode auf 1400 Stunden.

3.2.2 Als zusätzliche Ausrüstung, welche im Bedarfsfalle zur Erhöhung der Sicherheit eingesetzt würde, käme eine thermische Zentrale in Betracht, deren Kosten etwa 8000 Ptas pro installiertes kW, bezw. 9200 Ptas pro rein verfügbares kW beträgt. Die jährlichen Zinsen und die Amortisation ergeben einen jährlichen Kostenbeitrag von 1380 Ptas/kW. Die mit einer modernen Zentrale verbundenen Brennstoffeinsparungen liegen wesentlich höher als die Auslagen, so dass man die Differenz als einen jährlichen Gewinn von etwa 350 Ptas/kW betrachten darf.

Die Deckung eines (allfälligen) Defizits von 1400 kWh während der Ausfallperiode (was einem Defizit von 1 kW während der gesamten kritischen Periode entspricht) erfordert demnach eine Auslage von ungefähr 1030 Ptas.

- 3.2.3 Der mittlere Wert des spanischen Stromaufwandes ¹¹) wird nach den Leitsätzen des ersten «Entwicklungsplanes» während den 1400 kritischen Stunden und für die Periode 1969 1970 auf 6600 MW geschätzt; nach dem vierjährigen Ausrüstungsprogramm kann die Streuung des effektiven Verbrauches gegenüber diesem Mittelwert durch die typische Abweichung von 4,2 %, bzw. von 280 MW gekennzeichnet werden.
- 3.2.4 Die durch eine hydraulische Ausrüstung während 1400 Stunden gelieferte mittlere Leistung wird auf 5100

MW geschätzt; trotz der Regulierung durch die saisonmässigen hydraulischen Speicherbecken ist die typische Abweichung mit 21 % (1070 MW) recht beachtlich.

- 3.2.5 Die mathematische Erwartung der während der kritischen Periode verfügbaren thermischen Leistung wird auf 4300 MW geschätzt. Die zufälligen Nichtverfügbarkeiten können mit einer Wahrscheinlichkeit von 5 % mehr als 4 % des Schätzungswertes betragen; dies entspricht einer typischen Abweichung der thermischen Leistung von 2,5 %, bzw. von 110 MW.
- 3.2.6 Der angegebene Verbrauch bezieht sich ausschliesslich auf Spanien allein; die Energieerzeugung muss aber ebenfalls vertragsmässige Lieferungen an Frankreich in der Höhe von annähernd 300 MW decken.
- 3.2.7 Zur Abschätzung der Reserven des Systems muss ebenfalls die Dauer der kritischen Periode berücksichtigt werden: wenn sich diese kritische Periode wie im Falle Spaniens und Frankreichs auf einige Monate erstreckt, so wird die tatsächliche Energieverteilung recht wesentlich von der theoretischen Einteilung abweichen. Für Spanien wird man den bereits für Frankreich gewählten Unzulänglichkeitsfaktor, nämlich 0,94 wählen.

Die mittlere Spanne entspricht:

$$(5100 + 4300) 0.94 - 6600 - 300 = 1930 MW$$

Die gesamte typische Abweichung beträgt:

$$\sqrt{\overline{280}^2 + \overline{1070}^2 + \overline{110}^2} = 1110 \text{ MW}$$

Die bei diesem System verfügbare Spanne beträgt somit: $\frac{1930}{1100} = 1,74$ mal die typische Abweichung, so dass eine

¹¹) Unter Ausschluss der Energieausfuhr.

konventionelle Ausfallswahrscheinlichkeit von 4,1 % besteht. *Damit beträgt der Qualitätsindex 95,9* % ¹²).

Die implizierten Ausfallskosten belaufen sich somit auf:

$$\frac{1034}{0.041} = 25\,000 \text{ Ptas/kW}$$

selbstverständlich unter der Voraussetzung, dass ein eventueller Ausfall von 1 kW einem Defizit von 1400 kWh während der kritischen Periode entspricht.

Dadurch ergibt sich eine mathematische Erwartung der Dauer der jährlichen Ausfälle von $1400 \times 0,041 = 57$ Stunden, und «implizierte Kosten pro ausfallender kWh» von 1030/57 = 18 Ptas/kWh.

3.3 Qualitätsindex des französischen Netzes

In Frankreich bildet die hydraulische Leistung einen wesentlichen Teil der gesamten Energieerzeugung. Dieser seinerzeit auf 50 % veranschlagte Anteil wird durch die Erschöpfung der hydraulischen Ausbaumöglichkeiten progressiv vermindert, wird aber noch 1975 mehr als 30 % betragen.

Die hydraulische Leistung ist, unter der Berücksichtigung der unterschiedlichen Betriebe und der installierten Flusskraftwerke, gesamthaft betrachtet, recht komplex. Die saisonmässigen Staubecken verfügen über ein beachtliches Fassungsvermögen, das 1975 bei einer Erzeugung von 60 TWh ca. 8,3 TWh betragen wird.

Die Stauseen werden zur Deckung der im Winter auftretenden Nachfrage benützt; sie werden normalerweise ab September bis zum Zeitpunkt der Hochwasser des Frühlings entleert, welcher dem Beginn der Schneeschmelze entspricht.

Die mit dem Betrieb der saisonmässigen Speicherbecken verbundenen Risiken werden energiemässig ausgedrückt; ein Ausfall würde eintreten, wenn das Fassungsvermögen Anfangs Winter die erforderliche Entleerung während des Winters nicht gewährleisten könnte. Genauer ausgedrückt entspricht die kritische Periode 1975 den 1600 am stärksten belasteten Stunden während der fünfmonatigen Dauer von Oktober bis Februar ¹³).

Da die installierte Leistung den Bedarf decken kann, bezieht sich die Anpassung des Ausrüstungsprogrammes lediglich auf das Energiekriterium der 1600 Winterstunden.

3.3.2 Zur Erhöhung der Sicherheit würde eine mit leichtem Heizöl gespiesenes Kraftwerk eingesetzt. Die zusätzlichen Kosten dieses Ergänzungskraftwerkes umfassen die jährlichen Festkosten, die sich aus der 1 Jahr früheren Konstruktion eines Basiskraftwerkes ergeben, und welche die Zinsen und die Amortisation im Nettobetrag von 54,8 fFr/kW umfassen.

Die mittlere Verfügbarkeit dieses kW beträgt 0,90. Die Ausgleichsmethode des Betriebsprogrammes berücksichtigt jedoch den Umstand, dass nicht sämtliche hydraulischen und thermischen Ausrüstungen während den kritischen 1600 Stunden mit voller Leistung eingesetzt werden können: für diese «Unzulänglichkeit» wird noch ein zusätzlicher Abzug von 6 % vorgesehen.

Die neue Netto-kW-Leistung wird die Netzleistung während den 1600 kritischen Stunden nur um $0.90 \times 0.94 = 0.846$ kW verbessern.

Die Kosten der zusätzlich erforderlichen Ausrüstung betragen somit:

$$\frac{54.8}{0.846}$$
 = 64.8 fFr/kW

Infolge seiner höheren Leistungsfähigkeit ermöglicht das neue Basiskraftwerk eine gewisse Brennstoffeinsparung gegenüber den bereits bestehenden thermischen Kraftwerken. Man darf annehmen, dass diese Einsparungen die Betriebslasten während der um ein Jahr vorverschobenen Inbetriebnahme ausgleichen.

3.3.3 Die Verbrauchsprognosen werden 5 Jahre zum voraus erstellt, da diese Zeitspanne für die Beschlussfassung und die Errichtung neuer Anlagen erforderlich ist. Die Ausbauprogramme sehen eine Deckung des oberen Viertelwertes des Verbrauches vor (welcher in 25 von hundert Fällen übertroffen werden kann).

Da die typische Abweichung des Verbrauches innert 5 Jahren 5,2 % beträgt, wird der Viertelwert den wahrscheinlichen Wert des Verbrauches um 3,5 % übersteigen.

Das Verhältnis des Verbrauches des «Zwischen»-Jahres ¹⁴) zur mittleren Leistung während der kritischen Periode beträgt 6650 h (kWh/kW).

Da der jährliche Energieverbrauch für 1975 den Wert von 215 TWh erreichen wird bzw. 223,6 TWh für das «Zwischen»-Jahr 1975–1976, so beträgt die mittlere Leistung während der kritischen Periode 33,6 GW.

Daraus resultiert eine typische Abweichung von:

$$\frac{33.6 \times 5.2}{100}$$
 = 1.74 GW.

3.3.4 Während der kritischen Periode wird das Speichervermögen der Speicherbecken im höchsten Masse ausgenützt. Der Beitrag der saisonbedingten Speicherbecken an der gesamten hydraulischen Leistung während der kritischen Periode beläuft sich auf 75 %.

Unter diesen Umständen ergibt sich ein voraussichtlicher Wert der mittleren hydraulischen Leistung während den 1600 kritischen Stunden von 10,9 GW.

Die auf eine Anzahl hydrologischer Jahre berechnete typische Abweichung beläuft sich auf 1,14 GW.

3.3.5 Der voraussichtliche, nach den Normen des V. Planes berechnete Wert der thermischen Leistung erreicht 28,3 GW, was einer ständigen Nettoleistung von $\frac{28,3}{0,9}$ = 31,5 GW entspricht 15).

Die typische Abweichung der thermischen Produktion während der kritischen Periode wird auf 1 % bzw. auf 0,32 GW geschätzt.

3.3.6 Der Saldo des internationalen Energieaustausches während des Winters 1975–1976 stellt eine Energiezufuhr von 250 MW dar. Die typische Abweichung dieser Leistung wird auf 4 bis 5 % geschätzt und kann auf jeden Fall gegenüber den anderen Ungewissheiten vernachlässigt werden.

¹²) Könnte die Energieausfuhr im Falle schlechter hydraulischer Verhältnisse aufgehoben werden, um damit 300 MW einzusparen, so könnte der Qualitätsindex auf 97,75 steigen, ohne dabei eine eventuelle Unterstützung durch die Nachbarländer zu berücksichtigen.

¹³) Diese kritische Periode verändert sich im Laufe der Zeit infolge des Rückganges der hydraulischen Anlagen. Bei der Aufstellung des V. Planes haben wir hier die Werte für 1975 berücksichtigt.

¹⁴) In der energiewirtschaftlichen Zeitrechnung beginnt das Jahr am 1. Juli und endet am nachfolgenden 30. Juni («Zwischen»-Jahr).

¹⁵) Der Abzug von 10 % bezieht sich auf die voraussichtlichen Unverfügbarkeiten. Die seit weniger als einem Jahr in Betrieb gesetzten Gruppen werden nur zu einem Bruchteil ihrer Leistung berechnet.

3.3.7 Die mittlere Leistung der Energie, die während 1600 Stunden tatsächlich erzeugt werden kann, unterschreitet, wie bereits erwähnt, den berechneten Mittelwert während einer langen Dauer (von 5 Monaten) der kritischen Periode um 6%. Dieser durch die Unzulänglichkeit begründete und experimentell berechnete Abzug deckt die verschiedenen Schwankungen der Nachfrage, der hydraulischen Zufuhr, der Regelleistung, welche in den Berechnungen nicht berücksichtigt wurden.

Die «mittlere Marge» des Systems berechnet sich folgendermassen:

$$[(28.3 + 10.9 + 0.25) \times 0.94] - 33.6 = 3.5 \text{ GW}.$$

Die gesamte typische Abweichung beträgt:

$$\sqrt{(1,74)^2 + (1,14 \times 0.94)^2 + (0.32 \times 0.94)^2} = 2.1 \text{ GW}.$$

Die Marge, welche zur Deckung der Ungewissheiten des Verbrauches zur Verfügung steht, beträgt somit 1,66 mal die typische Abweichung.

Der entsprechende Qualitätsindex beträgt 95,2 %.

Die implizierten mittleren Ausfallskosten belaufen sich demzufolge auf:

$$\frac{64.8}{0.048}$$
 = 1350 fFr/kW,

wobei ein eventueller Ausfall von 1 kW selbstverständlich einem Defizit von 1600 kWh während der kritischen Periode entsprechen würde.

Die mathematische Erwartung der Ausfallsdauer ergibt sich aus dem Produkt von $1600 \times 0,048 = 77$ Stunden und die implizierten Kosten der ausfallenden kWh durch die Division: 64,8/77 = 0,83 fFr/kWh.

3.4 Qualitätsindex des englischen Netzes

3.4.1 In dem vom CEGB (Grossbritannien und Wales) betriebenen Netz erfolgt die Energieerzeugung vorwiegend durch thermische Kraftwerke; die hydraulischen Anlagen erzeugen weniger als 1 % der Gesamtleistung.

Die kritische Periode bezieht sich in diesem Fall auf die Belastungsspitzen der Wochentage im Winter. Genauer ausgedrückt, dauert diese kritische Periode ungefähr 150 Stunden, die sich während den Monaten Dezember, Januar und Februar auf die Zeit zwischen 8 bis 13 h und 16 bis 22 h verteilen.

- 3.4.2 Die Kosten der ein Jahr früher in Betrieb genommenen zusätzlichen Ausrüstungen zur Verminderung dieser Ausfallrisiken werden auf 2,8 £/kW bzw. auf 3,1 £ pro netto verfügbares kW geschätzt.
- 3.4.3 Der CEGB benützt bei der Aufstellung ihrer Programme, welche fast 85 % der gesamten britischen Produktion decken, eine Wahrscheinlichkeitstheorie, welche dem konventionellen Schema der Arbeitsgruppe in hohem Masse gleicht.

Die Verbrauchsprognosen werden 5½ Jahre zum voraus erstellt, was eine typische Abweichung der Prognose von 6 % bewirkt.

Die Witterungsverhältnisse ergeben eine weitere Ungewissheit, deren typische Abweichung schätzungsweise 3,87 % beträgt.

Die typische Abweichung der Prognose der Spitzenbelastung erreicht somit:

$$\sqrt{(6)^2 + (3.87)^2} = 7.1 \%$$
 der Nachfrage.

Für 1970–1971 ist ein voraussichtlicher maximaler Bedarf von 54 GW mit einer typischen Abweichung von $54 \times 0.071 = 3.84$ GW vorgesehen.

3.4.4 Die thermischen Produktionseinrichtungen umfassen klassische und nukleare Anlagen, deren Nettoleistung 1970–1071 insgesamt 62,824 GW erreicht und deren voraussichtlich verfügbare Leistung 56,541 GW beträgt. Die Nichtverfügbarkeit sämtlicher klassischen und nuklearen Anlagen beträgt 10 % der installierten Leitung.

1970–1971 wird die hydraulische Energieerzeugung während der kritischen Periode 429 MW erreichen, wovon 324 MW auf Pumpspeicherkraftwerke entfallen.

Die typische Abweichung sämtlicher Produktionsmittel wird global auf 2,3 % der Nachfrage angesetzt, ohne dabei eine Unterscheidung zwischen thermischen und hydraulischen Anlagen zu treffen. Die typische Abweichung der Produktion während der kritischen Periode erreicht somit:

$$54 \times 0.023 - 1.24$$
 GW oder $\frac{1.24}{56.541 + 0.429} = 2.1$ %

der verfügbaren Leistung.

Verschiedene Selbstversorger können zusätzlich noch 180 MW produzieren.

3.4.5 Das Seekabel im Ärmelkanal, dessen Verfügbarkeit auf 80 % eingeschätzt wird, kann eine wahrscheinliche Leistung von 128 MW einführen.

Der Energieaustausch mit Schottland ist normalerweise ausgeglichen. Da aber die Abweichungen der Prognosen und die klimatischen Ungewissheiten nicht vollkommen abgestimmt sind, so wird die Verbindung mit Schottland 1970 in schwierigen Zeiten einen Beitrag von 112 MW erbringen.

3.4.6 Für 1970–1971 beläuft sich die globale Differenz zwischen dem Stromaufwand und der Stromerzeugung auf:

$$(56,541 + 0,429 + 0,180 + 0,128 + 0,112) - 54 = 3,390 \text{ GW}.$$

Der CEGB rechnet mit einer gesamten typischen Abweichung von 7,5 % der Nachfrage bzw. mit $54 \times 0,075 = 4,05$ GW 16).

Die als Berechnungsgrundlage angenommene Situation im Jahre 1970–1971 entspricht in der Tat einer Überausrüstung von 0,54 MW.

Daraus ergibt sich die zu berücksichtigende Marge von 3,39 - 0,54 = 2,85 GW.

Dieses Ergebnis entspricht $\frac{2,85}{4,05}$ = 0,7mal der typischen Abweichung oder einer Ausfalls-Wahrscheinlichkeit von 24 %, welche bei der Erstellung der Programme berücksichtigt wird.

Das Erzeugungssystem des CEGB verfügt somit über einen Qualitätsindex von 76 %.

Die mittleren implizierten Kosten eines Ausfalles während der Spitzenbelastung betragen damit:

$$\frac{3,1}{0,24} = 12,9 \text{ } £/kW.$$

$$\sqrt{(3,84)^2 + (1,24)^2} = 4,05$$

¹⁶) Die Berechnung der gesamten typischen Abweichung kann indirekt erfolgen:

Dabei wird wieder vorausgesetzt, dass es sich um einen eventuellen kurzfristigen Ausfall handelt, wobei die Möglichkeit einer Reduktion der Frequenz oder der Spannung nicht berücksichtigt wurde.

Bei einer mathematischen Erwartung einer Ausfallsdauer von 1,6 Stunden berechnen sich die implizierten Kosten der ausfallenden kW (infolge der Verminderung der Frequenz oder der Spannung) mit 3,1/1,6=1,94 £/kWh.

Infolge der aussergewöhnlichen Betriebsverhältnisse beim CEBG beträgt die Wahrscheinlichkeit einer Unterbrechung 3 % und die mathematische Erwartung der Unterbrechungsdauer 0,1 Stunden.

Diesen Angaben entsprechend beträgt der implizierte Wert des unterbrochenen kW 3,1/0,03=103 £/kW, und die implizierten Kosten der ausfallenden kWh 3,1/0,1=31 £/kWh.

4. Synthese und Schlussfolgerungen

4.1 Verschiedenheit der Systeme

Die vier im vorgehenden Kapitel analysierten Produktionssysteme sind in jeder Hinsicht sehr unterschiedlich und differieren sowohl bezüglich ihres Ausmasses, der Struktur der Belastungskurve, des prozentualen Anteils der hydraulischen Energie usw. Die kritischen Perioden zeichnen sich dementsprechend ebenfalls hinsichtlich ihres Zeitpunktes und ihrer Dauer durch grosse Abweichungen aus.

Die eventuellen Ausfälle gewinnen je nach dem betrachteten System — wie dies nochmals deutlich hervorgehoben werden muss — eine recht unterschiedliche Bedeutung. In Spanien und Frankreich bezieht sich das Risiko auf die während gewissen Perioden erforderliche Energie, während sich die eventuellen Ausfälle in Belgien und Grossbritannien auf die Leistung auswirken.

Eine vergleichsmässige Beurteilung derart verschiedener Situationen erfordert viele verschiedene Vereinfachungen der Methode, mit deren Hilfe dann abschliessend ein Qualitätsindex gewonnen wird, der jedoch trotz seiner scheinbar intuitiven Einfachheit die derart komplexen Tatsachen nicht allein veranschaulichen kann.

Das bei diesen Berechnungen benützte Schema stützt sich übrigens auf Konventionen: wie dies bereits ersichtlich war, kann der Ausfall nicht rein versuchsmässig erfasst werden.

Bei der Untersuchung der numerischen Ergebnisse der Anwendungsbeispiele muss man deren konventionellen und schematischen Charakter nie ausser acht lassen. Bevor wir die Schlussfolgerungen aus diesen Unterlagen ziehen, müssen wir noch einige bedeutende Unterschiede der Systeme hervorheben.

4.2 Prognosen bezüglich der Nachfrage

Die Ungewissheiten des Verbrauches sind teilweise von der Natur der Kundschaft abhängig: infolge der relativen Bedeutung des industriellen Verbrauches sind die saisonbedingten Schwankungen der Nachfrage in Belgien weniger ausgeprägt und die Spitzenbelastungen weniger empfindlich gegenüber den Witterungseinflüssen. In England dagegen beobachtet man infolge der gegenteiligen Ursachen einen starken Temperatureinfluss auf die winterlichen Spitzenlasten. In jedem Land sind die Prognosen den eigenen Verhältnissen und der Ungewissheit angepasst: der CEGB verfolgt mit spe-

ziellem Interesse die klimatischen Bedingungen, während Belgien die gleichmässige Entwicklung der Vergangenheit zur Festlegung seines künftigen Verbrauches ausnützt.

Insgesamt kann man feststellen, dass die Prognosen der Nachfrage sich auf Ungewissheiten stützen, welche je nach den betreffenden Ländern zwischen 2,3 % und 7,1 % schwanken können.

4.3 Die vertraglichen Lastabwürfe

Die Schwierigkeit einer Definition des Ausfalls unter ständig schwereren Betriebsverhältnissen wurde bereits hervorgehoben: der Übertritt von den normalen Betriebsverhältnissen zu einer Ausfallssituation erfolgt immer progressiv.

Die vertraglichen Lastabwürfe, die ja vereinbarungsgemäss nicht als Ausfälle bewertet werden, spielen in der Wahrscheinlichkeitsberechnung der Ausfälle eine recht bedeutende Rolle. In Frankreich und in Spanien fast unbekannt, bilden die vertraglichen Lastabwürfe ca. 3,5 % der erforderten Leistung in Grossbritannien und in Wales, und 2 % in Belgien. Dieser Unterschied ist leicht erklärlich: ein Ausschluss ist bedeutend wirksamer in den Ländern mit vorwiegend thermischer Energieerzeugung als in Ländern mit dominierenden hydraulischen Anlagen.

4.4 Massnahmen bei Ausfällen

Die Mittel zur Verteilung der Ausfälle sind von einem Land zum andern recht verschiedenartig. Eine Verminderung der Frequenz ist nur in Grossbritannien infolge seines inselartigen Charakters möglich. Es ist ausserdem das einzige Land, das bei Spitzenlasten die Spannungsabsenkung praktiziert: die längere Dauer der kritischen Perioden in den anderen Ländern lässt erkennen, weshalb diese Massnahme dort nicht angewendet wird.

4.5 Erzeugungs- und Austauschmittel

Die Vergleiche der Produktionsmittel erfordern wenig Kommentar, ausser dass die Leistungsberechnungen in den verschiedenen Ländern und Systemen vielleicht nicht genau übereinstimmen, was zu Ungenauigkeiten in den Berechnungen der Reserven führen kann. Bezüglich des Energieaustausches sei hervorgehoben, dass sein Beitrag an der Energiebilanz in weitem Masse schwanken kann: während ein solcher Austausch in Grossbritannien praktisch überhaupt nicht besteht, beläuft er sich in Belgien dagegen auf 3,6 %.

Der Qualitätsindex eines gegebenen Erzeugungssystemes kann somit in beträchtlichem Masse von den Energielieferungen eines Nachbarlandes abhängen.

4.6 Schlussfolgerungen

Das von der Arbeitsgruppe entwickelte und bei den vier vorerwähnten Produktionssystemen angewendete konventionelle Modell ermöglicht die Ermittlung folgender Qualitätsindizes: CEGB 76 %, Frankreich 95,2 %, Spanien 95,9 % und Belgien 99 %.

Die Streuung dieser Indizes wird durch verschiedene Faktoren begründet. Der Ausfall stützt sich dabei vorerst auf eine konventionelle Definition, deren Veränderung auch vollkommen andere Ergebnisse zeitigen würde. Das Beispiel Englands ist in dieser Hinsicht bezeichnend: Wären die zu-

fälligen Absenkungen der Frequenz und der Spannung nicht als Ausfälle des Systemes betrachtet worden, so wäre der Qualitätsindex von 76 auf 97 % gestiegen. Zwischen den normalen Situationen und den Ausfällen bestehen in der Tat aussergewöhnliche Betriebsmöglichkeiten, die den besonderen Eigenschaften jedes Systemes eigen sind, und demzufolge kaum von einem Netz auf das andere übertragen werden können.

Die Streuung der Ergebnisse kann ebenfalls durch eine zweite Tatsache begründet werden: der Qualitätsindex ermittelt keine Unterscheidungen zwischen kurzfristigen Ausfällen bei Spitzenbelastungen und den Energieausfällen, welche sich auf mehrere Monate erstrecken. Die kritischen Perioden der untersuchten Systeme sind nun recht verschiedenartig:

Dauer der kritischen Perioden (in Stunden) Qualitätsindex (%)	Belgien	Spanien	Frank- reich	England und Wales (CEGB)
	400 99,0	1400 95,9	1600 95,2	150 76

Ein kurzfristiger Ausfall während einer Spitzenbelastung bewirkt in der Wirtschaft eines Landes selbstverständlich bedeutend weniger schwerwiegende Folgen als ein Ausfall während einer längeren Zeitdauer. Die Berechnungsergebnisse bezüglich der implizierten Ausfallskosten bestätigen dies recht eindrücklich. In Spanien wie in Frankreich, wo die kritische Periode recht lange dauert, stellt man verhältnismässig hohe Werte fest (25 000 Ptas./kW, bzw. 1350 fFr./kW), während beim CEGB diese Kosten beträchtlich niedriger ausfallen (12,98 £/kW). Belgien dagegen weist infolge seines hohen Sicherheitsgrades einen ebenfalls entsprechend Wert auf: die implizierten Kosten der eventuellen Ausfallsleistung übertrifft pro kW die entsprechenden Werte der Länder mit hydraulischer Energieversorgung (47 000 bFr.)

4.6.2 Diese Ergebnisse führen schliesslich zur Frage, ob diese nach den Erwartungen der Ausfallszeiten berechneten implizierten kWh-Kosten nicht besser gruppenweise zusammengestellt werden könnten. Für Frankreich (0,83 fFr./kWh) und Spanien (18 Ptas/kWh) fand man annähernd die gleiche Grössenordnung, doch sind die entsprechenden Werte für

Belgien (117,5 bFr./kWh) und besonders für England und Wales (1,94 \pounds /kWh) bedeutend höher ¹⁷).

Aus diesen Angaben ist ersichtlich, dass die eine wie die andere Formulierung kein genaues Bild der recht komplexen Situationen der untersuchten Systeme bietet. Die Produzenten bemühen sich ausserdem, das energiemässige Ausmass und die Bedeutung ihrer Ausfälle zu reduzieren, wobei diese Bestrebungen nur schwierig durch einen einzigen Index dargestellt werden können.

In der Streuung der Ergebnisse spiegeln sich vielleicht auch die Auswirkungen der unterschiedlichen wirtschaftlichen Strukturen der verschiedenen Länder.

4.6.4 Trotz den bereits erwähnten Ungenauigkeiten scheint das gewählte konventionelle Modell zur Ermittlung der Grössenordnung der implizierten Kosten der Produktionssicherheit auch für andere Länder anwendbar zu sein. Diese relativ leicht zu erfassenden Kosten bieten ein spezielles Interesse, sofern in jedem Land ihr Verhältnis zu den berechneten Sicherheitskosten der Übertragungsnetze ermittelt wird. Dies ist ja wie man weiss das Ziel der Tarifierungskommission; das vorliegende Dokument, ein Bericht der Arbeitsgruppe der Dienstleistungsqualität (Erzeugung), bildet eine erste Etappe in dieser Richtung.

Im Laufe einer weiteren Etappe beabsichtigt die Arbeitsgruppe, den Fragebogen zuhanden sämtlicher Länder der UNIPEDE auszuarbeiten. Die Ausdehnung dieser Untersuchung auf weitere Länder lässt die Ähnlichkeiten und Differenzen der verschiedenen Produktionssysteme besser hervortreten und gestattet gleichzeitig, die Bedeutung und den komplexen Charakter des Begriffs der Sicherheitskosten hervorzuheben.

¹⁷) In diesem Zusammenhang verweisen wir noch auf die offiziellen Wechselkurse:

	\$	bFr.	Ptas	fFr.	£
1 amerik. Dollar (\$) 10 belg. Franken (bFr.) 10 spanische Pesetas 1 franz. Franken (fFr.) 1 Pfund Sterling (£)	1 0,2 0,16 0,2 2,79	50 10 8,36 10,20 139,79	59,75 11,95 10 12,19 167,07	0,82 1	0.7.2 0.1.5 0.1.2 0.1.5 1

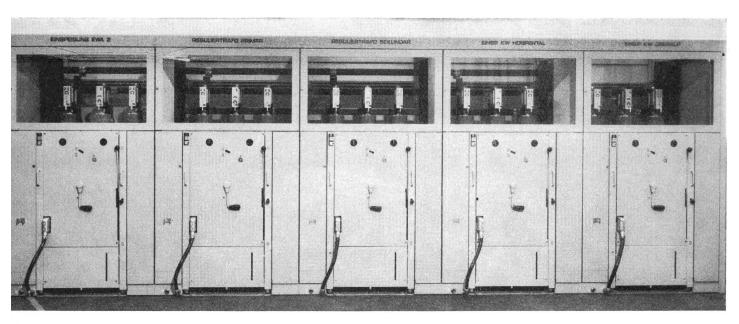
Adresse des Autors:

Marcel Boiteux, Direktor der Generaldirektion der Electricité de France, Paris.

Verbandsmitteilungen

50 Jahre Comptoir Suisse in Lausanne Der Stand der Ofel

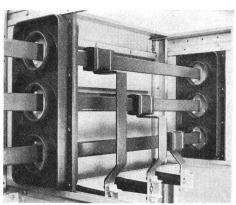
Das Comptoir Suisse in Lausanne feiert heuer sein fünzigjähriges Bestehen. Die Leitung dieser Veranstaltung hatte den Ausstellern die Idee nahegelegt, dieses Jubiläums in der Gestaltung der diesjährigen Stände zu gedenken, indem z. B. Ausstellungsgut aus der Gründungszeit neben heutigen Produkten zur Schau gestellt werden sollte. Dadurch hätte sich zwangsweise ein Bild über 50 Jahre Entwicklung ergeben. Dieser Gedanke wurde neben andern auch von den Firmen BBC/MFO in die Tat umgesetzt.


Die Ofel (Office d'Electricité de la Suisse Romande), die welsche Schwesterorganisation der Elwi, hat ihren diesjährigen Stand ganz auf das Jubiläum ausgerichtet und für jedes Jahr seit 1919 das hauptsächlichste Weltereignis in Zusammenhang gebracht mit Ereignissen der westschweizerischen Elektrizitätswirtschaft. Das Ganze ergab eine eindrückliche «Höhenstrasse», die durch Ausstellungsgegenstände der betreffenden Epoche noch verdeutlicht wurde.

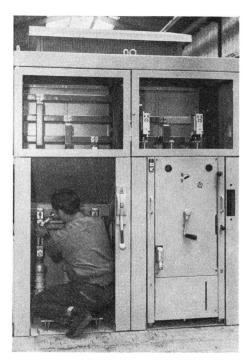
So war es denn nicht zu verwundern, dass der Ofel für ihren Stand von der Ausstellungsleitung und einer Jury der erste Preis in der Abteilung Industrie zugesprochen wurde. Auch der VSE, der am Empfang der Ofel vom 15. September durch zwei ehemalige Präsidenten, die Herren Savoie und Rosenthaler, und durch den Berichterstatter vertreten war, schliesst sich diesen Glückwünschen an die Adresse der Herren Dubochet, Präsident, Gaberell, Direktor und Bataillard, Graphiker der Ofel, an.

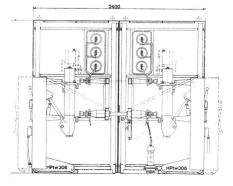
Redaktion der «Seiten des VSE»: Sekretariat des Verbandes Schweizerischer Elektrizitätswerke, Bahnhofplatz 3, Zürich 1; Postadresse: Postfach 8023 Zürich; Telephon (051) 27 51 91; Postcheckkonto 80-4355; Telegrammadresse: Electrunion Zürich. Redaktor: A. Ebener, Ingenieur.

Sonderabdrucke dieser Seiten können beim Sekretariat des VSE einzeln und im Abonnement bezogen werden.


Die Bewährungsprobe ür fabrikfertige Hochspannungsanlagen...

... hat unsere neueste Bausteinreihe folgreich bestanden. Zusammen it den bekannten und bewährten & S-Hochspannungsapparaten haben ir jeden Baustein zu einer kompakten inheit entwickelt und nach hweizerischen und internationalen orschriften geprüft.


Die Reihe der Normalzellen mit ner Breite von 900 mm für 12 kV- und 200 mm für 24 kV-Schaltanlagen ird jetzt auch durch eine spezielle chmalzelle von 750 mm Breite veckmässig ergänzt. Sie eignet sich für eide Spannungsreihen und hat die nheitliche Zellenhöhe von 2145 mm. hne besonderen Aufwand ist es öglich, Doppelsammelschienensteme nach der Methode der Zweistungsschalter auszuführen.


Die Kupfersammelschiene ist mit Epoxidharz isoliert und wird durch eine dreipolige Durchführungsplatte aus Giessharz gestützt. Flammsichere Isolation verhindert das Wandern eventuell auftretender Lichtbögen.

Druckentlastung nach oben, doppelte Blechwände oder Picalplatten zwischen den Zellen erhöhen die Sicherheit der Baureihe. Die Bedienungsfront ist komplett abgedeckt und bietet wirksamen Schutz des Personals. Eine zufällige Berührung der unter Spannung stehenden Teile ist somit ausgeschlossen. Klemmenständer, die in der ganzen Höhe von vorne zugänglich sind, gewährleisten gefahrloses Arbeiten. Eine Einschubplatte unter der Sammelschiene dient bei Kabelarbeiten dem erhöhten Schutz.

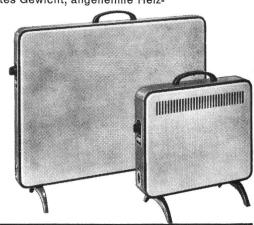
Nennströme von 800 bis 3000 A ermöglichen einen vielseitigen Einsatz, und die auf Kurzschlussfestigkeit geprüften Zellen bieten bis zu einer Leistung von 1000 MVA höchste SicherJeder Baustein ist vollständig in sich geschlossen und wird von uns vor dem Versand fixfertig montiert und geprüft. Detaillierte Unterlagen liegen bei uns jederzeit für Sie bereit.

Siewerden nie in der Klemme sitzen, wenn Sie Ihre Klemmenprobleme einer Firma anvertrauen, die davon lebt, Klemmen zu machen!

Phönix macht nur Klemmen — nichts anderes als Klemmen. Schon seit Jahrzehnten. Deshalb sind Phönix-Klemmen ein Spitzenprodukt, auf das Sie sich verlassen können.

Durchgangsklemmen, Schaltklemmen, Sicherungsklemmen, Hochspannungsklemmen, Trennklemmen, Lötklemmen, Steckerklemmen, Bolzenanschlussklemmen, Bandklemmen, Durchführungsklemmen usw. usw...
Noch mehr sagt Ihnen unser Katalog. Verlangen Sie ihn noch heute.

SAUBER + GISIN AG 8034 Zürich Höschgasse 45 Tel. 051 34 80 80


SAUBER-GISIN

Accum

Heizwände und Camerad-Oefen

mit praktischem Traggriff und zweifarbiger Lackierung. Zeitlose Formen, in alle Räume passend, leichtes Gewicht, angenehme Heizwirkung

Accum AG Gossau ZH

Für uns sind Zentralheizung, Deckenheizung etc. normale Wärmequellen. Weil sie, fest montiert, immer von derselben Stelle die Zimmertemperatur verändern. Was passiert aber, wenn Sie vielleicht nur Ihre Beine erwärmen wollen? Wenn Sie die Wärme in einen anderen Raum mitnehmen wollen?

Dann brauchen Sie einen, wie wir es nennen, individuellen Wärmespender. Einen SOLIS-Radial-Heizlüfter!

Für den Fall, dass Sie dieses Qualitätsprodukt noch nicht kennen, bitte telefonieren Sie uns — wir senden Ihnen gerne detaillierte Angaben.

Apparatefabriken AG, 8042 Zürich (Tel. 051 26 16 16)

64.28