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Technische Voraussetzungen für die Anwendung der direkten digitalen Regelung
und die Synthese von Regelalgorithmen

Von A. Schöne, Leverkusen-Schlebusch

2303 - 2Î307

1. Einführung

Unter direkter digitaler Regelung versteht man die Regelung

von Produktionsanlagen oder Prozessen mit Hilfe eines

Digitalrechners. Konventionelle analoge Regler werden bei

der direkten digitalen Regelung überhaupt nicht oder nur in

beschränktem Umfange für Ersatzregelungen benützt. Die

Anwendung der direkten digitalen Regelung ist in den meisten

Fällen nur dann sinnvoll, wenn die Regelung für eine grössere
Anzahl voneinander abhängiger oder unabhängiger Regelkreise

durchgeführt wird. Die Benennung direkte digitale
Regelung ist die wörtliche Übersetzung der anglo-amerika-
nischen Benennung «direct digital control», die vor allem in

der Abkürzung DDC in Fachkreisen häufig benützt wird.
Der schematische Aufbau von Regelsystemen mit

Digitalrechnern ist schon an verschiedenen Stellen beschrieben worden.

Beispielsweise bringt Leonhard eine Darstellung mit
sorgfältiger Wiedergabe der mathematisch-regelungstechnischen

Formulierungen für die Funktionen des Digitalrechners [l]1).
Über die Erfahrungen bei der praktischen Anwendung gibt es

gleichfalls eine Reihe von Veröffentlichungen. Am interessantesten

als Beschreibung der ersten Anfänge der Entwicklung
zur direkten digitalen Regelung ist wohl der Bericht von
Thompson über die Digitalrechnerregelung einer alten
Sodafabrik der ICI in Winnington [2].

Als Einführung für die folgenden Darlegungen genügt eine

kurze Beschreibung der Funktionen eines Digitalrechners bei

der Rechnerregelung auf Grund des in Fig. 1 wiedergegebenen
Schemas. Die Analogwerte der Eingangsgrössen des

Prozessrechensystems, d. h. im vorliegenden Fall also der Regeigrössen,

werden von einem Eingabesammler nacheinander
abgetastet. Jeder abgetastete Wert wird von einem nachgeschalteten

Analog-Digital-Umsetzer (ADU) in einen digitalen Wert
umgesetzt und steht im Ausgangsregister des Analog-Digital-

') Siehe Literatur am Schluss des Aufsatzes.
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Umsetzers bis zum Abruf durch die Zentraleinheit an. Solange
die Analog-Digital-Umsetzung andauert, darf kein neuer

Analogeingang abgefragt werden. Die zeitliche Folge der

Eingabe von Analogwerten hängt demnach wesentlich von der

erreichbaren Abfragefrequenz im Eingabesammler und der

Umsetzzeit im ADU ab.

Die Zentraleinheit enthält vor allem Rechenwerk, Leitwerk
und die Zentralspeicher. Durch Organisationsprogramme, die

im Hauptspeicher der Zentraleinheit gespeichert sind, werden

die verschiedenen Funktionen des Gesamtsystems in der
richtigen zeitlichen Reihenfolge und — bei gleichzeitigen
Ereignissen— im zweckmässigen Vorrang ausgelöst. Für die direkte
digitale Regelung sind ausserdem Regelprogramme notwendig,
die die Funktion der analogen Regler in konventionellen
Regelsystemen ersetzen. Hierzu wird bei der Behandlung der

Regelalgorithmen noch einiges zu sagen sein.

Für die Ausgabe der Stellsignale gibt es vielfältige technische

Lösungen. Teilweise wird die Ausgabe der vollen Werte der

Stellgrössen, teilweise die Ausgabe der Stellgrössenänderungen

bevorzugt. Von der grösseren Anzahl der Hersteller wird offenbar

die Ausgabe von Stellgrössenänderungen für zuverlässiger

gehalten, da dabei falsche Berechnungen des Rechners, mit
denen vor allem unmittelbar vor einem vollständigen Rechnerausfall

gerechnet werden muss, sich nur wenig auf den gesamten

Wert der Stellgrösse auswirken. Beide Ausgabeverfahren
benötigen je Stellgrösse ein Halteglied, um den Wert der

Stellgrössen zwischen zwei aufeinanderfolgenden Zeitpunkten der

Ausgabe der Werte neuer Stellgrössen oder Stellgrössenänderungen

konstant zu halten. Bei beiden Verfahren der Stellwertausgabe

kann auch die Digital-Analog-Umsetzung entweder

zentral vor dem Ausgabeverteiler oder dezentral einzeln für
jede Stellgrösse erfolgen.

Eine hohe Zuverlässigkeit der verwendeten Prozessrechenanlagen

ist eine notwendige Voraussetzung für eine erfolg-
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Fig. 2
Vergleich der Instrumentierung bei Rechnerregelung mit der bei konventioneller analoger Einfachregelung bzw. bei Kaskadenregelung

(Signalflusslinien für die Hilfsregelgrösse gestrichelt)

reiche Rechnerregelung. Die bekanntgewordenen Beispiele
scheinen jedoch zu zeigen, dass die Zuverlässigkeit der heute

verfügbaren Prozessrechner für derartige Zwecke in den meisten

Fällen ausreicht. In besonders kritischen Fällen werden

Doppel-Prozessrechnersysteme angewandt [3], jedoch sind
dabei sehr hohe Kosten aufzuwenden, wenn tatsächlich alle

für die Funktion des Gesamtsystems wichtigen Bauteile, wozu
auch die Umschalteinrichtungen gehören, doppelt ausgelegt
werden.

2. Vergleich der Gerätetechnik in analogen
und Rechnerregelsystemen

In manchen Veröffentlichungen wurden für die Einführung
der direkten digitalen Regelung Rentabilitätsgründe geltend
gemacht und dargelegt, dass die Kosten für Rechnerregelsysteme

schliesslich niedriger als für analoge Regelungssysteme
seien, wenn nur die Anzahl der Regelkreise genügend gross ist

(break even point). Im folgenden soll ausgeführt werden,
worauf es dabei tatsächlich ankommt. In Fig. 2 wird die

Instrumentierung eines einfachen Regelkreises und einer
Kaskadenregelung (Regelung mit Hilfsregelgrösse) bei Rechnerregelung

mit der entsprechenden konventionellen pneumati¬

schen Instrumentierung verglichen. Gemeinsam sind den zu
vergleichenden Systemen die Messumformer und die
Stellglieder. Der Rechner benötigt dabei jedoch elektrische
Eingangssignale. Bei verschiedenen Arten von Regeigrössen

(Druck, Durchfluss) wird für die elektrischen Messumformer
mehr aufzuwenden sein als beim pneumatischen System. Bei

Regeigrössen, die durch Thermospannungen oder veränderliche

Widerstände erfasst werden, wird man andererseits bei

Einsatz eines Prozessrechensystems auf die Messumformer

vollständig verzichten können.
Zur Ausgabe von Stellsignalen kann man beispielsweise je

Stellglied eine Adress-Decodiereinrichtung, einen digitalen
Speicher und eine Steuerung für einen nachgeschalteten
Schrittmotor verwenden. Dieser Schrittmotor ist Bestandteil
eines Impulsdruckumsetzers, der die Eingangsimpulse für
den Schrittmotor in ein pneumatisches Stellsignal umsetzt.
Dieses Stellsignal wird konstant gehalten, wenn der Schrittmotor

keine Impulse vom Rechner empfängt, d. h. also auch

dann, wenn der Rechner ausgefallen ist. Mit Hilfe der

Schrittmotorsteuerung und des Impulsdruckumsetzers kann man
das Stellglied auch von Hand verstellen, indem mit Hilfe eines

besonderen Gerätes durch Tastendruck Impulse zum Öffnen
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oder Schliessen des Stellgliedes (Ventils) ausgelöst werden. Das

hiermit erläuterte DDC-Ausgabesystem, zu dem übrigens
auch noch verschiedene Variationen angeführt werden könnten,

ist geringfügig aufwendiger als andere, die einen zentralen

Ausgabeverteiler benützen und vor allem nicht
Stellsignaländerungen, sondern jedesmal den tatsächlichen Wert des

Stellsignals ausgeben. Das hier dargestellte Ausgabesystem hat
jedoch den Vorteil grösserer Betriebssicherheit, da beim anderen

Ausgabesystem die Funktion aller Regelkreise vom
störungsfreien Arbeiten eines zentralen Ausgabeverteilers
abhängt, während hier jeder Ausgabekanal unabhängig von allen
anderen Ausgabekanälen ist.

Bei der derzeitigen Marktlage muss der Anwender für die

Decodiereinrichtung mit Digitalspeicher und den
Impulsdruckumsetzer zusammen etwa doppelt so hohe Kosten als

für einen pneumatischen Einheitsregler aufwenden. Beim

Kostenvergleich müssen für jeden einzelnen Regelkreis bei

Rechnerregelung noch die anteiligen Kosten von
Eingabesammler, Analog-Digital-Umsetzer und Zentraleinheit
berücksichtigt werden. In Systemen, die nur einfache Regelkreise
enthalten, kann es also einen «break even point» überhaupt
nicht geben. Der Unterschied in den aufzuwendenden Kosten
zwischen rechnergeregelten und konventionell geregelten

Systemen wird umso grösser, je grösser die Anzahl der Regelkreise

ist.

Günstiger wird der Kostenvergleich für rechnergeregelte
Systeme, wenn Kaskadenregelungen verglichen werden. Dann
ist immerhin der Aufwand für die beiden DDC-Ausgabebau-
teile je Stellglied vergleichbar mit den Kosten der beiden
analogen Regler. Auch hier gibt es jedoch noch keinen «break
even point». Erst wenn bei der analogen Instrumentierung
zusätzlich analoge Rechenelemente, Grenzsignalgeber und
ähnliche Geräte benützt werden müssen, kann unter den

derzeitigen Kostenverhältnissen schliesslich ein rechnergeregeltes
System auch billiger als das konventionell ausgerüstete sein.

Der Vergleich der Kosten von elektrisch instrumentierten
konventionellen Regelsystemen und Rechnerregelsystemen
fällt etwas günstiger für die Rechnerlösung aus als der
Vergleich mit pneumatisch instrumentierten Regelsystemen.
Ausserdem kann der Verzicht auf analoge Schreiber in
rechnergeregelten Systemen, bei denen ja Informationen in digitaler
Form zur Verfügung stehen, den Kostenvergleich ebenfalls

günstig zugunsten der Rechnerverwendung beeinflussen.
Zusammenfassend betrachtet kann jedoch nur eine weitere erhebliche

Kostenreduzierung bei Prozessrechenanlagen, vor allem
bei deren DDC-Ausgabewerk, die Verwendung der direkten
digitalen Regelung auch für einfachere Aufgaben wirtschaftlich
lohnend machen.

Im Zusammenhang mit grösseren Aufgabenstellungen und
der Integration verschiedener Aufgaben kann freilich auch

unter den heutigen Kostenverhältnissen die direkte digitale
Regelung der konventionellen analogen vorzuziehen sein. Die
DDC-Ausgabevorrichtung benötigt man auch dann, wenn der
Rechner nur Sollwerte vorgibt. Berechnet der Prozessrechner
also auch optimale Sollwerte oder soll er Sollwerte nach einer
festen Zeitabhängigkeit oder auf Grund bestimmter
Prozessbedingungen verändern, so werden die analogen Regler bei

direkter digitaler Regelung echt eingespart. Man braucht dann

nur noch zu berücksichtigen, welcher Mehraufwand an

Speicherkapazität im Rechner und an Rechenzeit für die Regelung
erforderlich ist. In verwickelten Regelsystemen, gegebenenfalls

mit notwendigen Entkopplungen, und bei Regelstrecken, die
mit analogen Reglern wegen der verschiedenen Grenzen in
deren Einstellbarkeit und sonstigem Verhalten nicht stabil zu
regeln sind, kann aus rein regeltechnischen Gründen die
Verwendung von Rechnerregelungen notwendig sein. Die
regelungstechnischen Fragen hinsichtlich Vergleich von analoger
und Digitalrechnerregelung werden in den folgenden
Abschnitten behandelt.

Die beschriebenen DDC-Ausgabevorrichtungen bieten —
wie erläutert — auch eine einfache Möglichkeit des «back up»
bei Rechnerausfall, da alle Stellglieder ihre letzten Stellungen
beibehalten und von Hand verstellt werden können, was bei
verfahrenstechnischen Regelstrecken für beschränkte Zeit
meistens ausreicht. Es gibt anspruchsvollere und zuverlässige
Verfahren der Ersatzregelung, die man aus Kostengründen
jedoch nach Möglichkeit vermeiden bzw. nur bei besonders

schwierig zu regelnden Strecken anwenden sollte.

3. Regelalgorithmen für die Rechnerregelung

Bei fast allen Prozessrechensystemen für die direkte digitale
Regelung benützte man bisher — soweit das der Literatur
entnommen werden kann — numerische Approximationen für die
idealisierten Algorithmen der üblichen analogen Regler [4].
Ein idealisierter analoger Proportionalregler gehorcht beispielsweise

der Beziehung

y Ki (w — x) (1)

wobei y die Stellgrösse, w die Führungsgrösse, x die Regel-
grösse und Ki die Verstärkung des Reglers sind. Die
Regelabweichung w — x soll abgekürzt mit e bezeichnet werden:

w — x e

Bei Rechnerregelung werden nur Regelabweichungen e

verwertet, die in den Abtastzeitpunkten :

t v 7a v 1, 2,...
gewonnen werden. Ist die letzte Regelabweichung en im
Abtastzeitpunkt t it 7a bestimmt worden, so lautet die numerische

Approximation zu Gl. (1):

yn Ki Cn (2)

Diese Beziehung wird benützt, wenn über das DDC-Aus-
gabewerk die tatsächlichen Werte der Stellgrössen ausgegeben

werden. Werden stattdessen Stellgrössenänderungen
ausgegeben, so tritt an die Stelle der Gl. (2) der Algorithmus:

yn — yn-1 Ay>n Kl (<?n — Cn l) (3)

Die für den inkrementellen Integralalgorithmus viel
benützte numerische Approximation lautet:

A_Vn — Kz Cn (4)

Darin ist jedoch die weitere Approximation

"2"
(Cn "F Cn 1) Cn

enthalten. Schliesslich wird für den inkrementellen PID-Algorithmus

der Ausdruck verwendet:

Ayn Kl (cn — <?n-l) + Kl en + Kz (<?n — 2 Cn-1 + Cn-2) (5)

Beim Algorithmus (5) werden also jeweils die in den drei
letzten Abtastzeitpunkten t (n — 2) 7a, (n — 1) 7a und n Ta
ermittelten Regelabweichungen benützt.

Bull. SEV 60(1969)14, S.Juli (A 415) 637



Dadurch, dass dem Digitalrechner nur die Werte der
Regelabweichungen in den Abtastzeitpunkten zur Verfügung stehen,

ergibt sich ein geringfügig schlechteres Verhalten der
Rechnerregelung, wenn man mit ihr die idealisierte analoge Regelung
bei gleicher Einstellung der Regel parameter vergleicht [5],

Wegen verschiedener Abweichungen analoger Regler von dem
idealisierten Verhalten hat die Rechnerregelung jedoch gegenüber

der analogen Regelung auch dann einige Vorzüge, wenn
als Regelalgorithmen lediglich die oben angeführten numerischen

Approximationen benutzt werden. Zu diesen Vorzügen
gehört u. a. die freizügigere Einstellbarkeit der Regelparameter
[4]. Verhältnismässig einfach durchzuführende Erweiterungen
der Regelalgorithmen ergeben eine weitere Verbesserung des

Regelverhaltens. Mann kann nämlich die Form der Regelalgorithmen

in Abhängigkeit vom Betrag oder dem Vorzeichen der

Regelabweichung en unterschiedlich wählen [6].

Von verschiedenen Autoren sind andererseits Regelalgorithmen

vorgeschlagen worden, die im Gegensatz zur eben
behandelten Klasse von Regelalgorithmen von vornherein so

ausgelegt werden, dass der Regelvorgang nur endliche Zeit
dauert (dead beat response). Neuere Vorschläge mit dieser

Zielsetzung stammen von Leonhard [1] und Föllinger [7], Eine
notwendige Voraussetzung für die Anwendung dieser Verfahren

ist, dass die Struktur und die Zeitkonstanten der
Regelstrecke genau bekannt sind. Diese Voraussetzung ist in der
Praxis im allgemeinen schwer zu erfüllen. Ausserdem gelten
die bisher veröffentlichten Syntheseverfahren nur für lineare
Regelstrecken.

Wegen der Bedeutung, die diese Verfahren vor allem durch
die verschiedenen Arbeiten von Föllinger in der wissenschaftlichen

Diskussion der letzten Zeit erlangt haben und für die

Realisierung in Prozessrechensystemen noch bekommen könnten,

sollen in diesem Abschnitt einige Erläuterungen zu den

Verfahren selbst gegeben und in den anschliessenden
Abschnitten einige Beispiele angeführt werden.

Leonhard geht von einer verallgemeinerten Form der oben

angeführten linearen Regelalgorithmen aus:

yn + a1 yn-1 ' Ü2yn-2 "h bo en bi £n-l I" 02 en-2 + (6)

Der Gl. (6) ist die Impulsübertragungsfunktion F& des

Digitalrechners äquivalent :

FUs) y*(i)
~E%sj

bp + bi e~TAs -p -f bm g~mTAs

1 + ai e~TAs + + ak e~kTAs
(7)

xq 1 ;
dx
dt t=qTA

d2x
d/2~ t=qTA

d1 ix
dt1-1 t=qlA

y(t) 2 cr(t — vTa)

Lautet die Sprungantwort der Regelstrecke u{t), so erhält man
in einem linearen System auf Grund der Gl. (9) den folgenden
Wert der Regelgrösse im Zeitpunkt t =.ç 7a:

Xq 2 Afv u [(q — v) 7a] (10)

Aus den Randbedingungen (8) und Gl. (10) erhält man l
Gleichungen für die / Unbekannten Ayo, Ayi,..., Api-i, indem

man die ersten / — 1 Ableitungen der Regelgrösse x im
Zeitpunkt t q Ta berechnet und Null setzt. Ayi wird aus:

l

2 Ayv 1

v=0

bestimmt. Auf diese Weise kann man die Stellgrössen im
Zeitintervall 0 ^ t ^ çTa ITa ermitteln und damit auch die

Regelgrösse in den Abtastzeitpunkten t 0, 7a, /7a aus:

c(r Ta) 2 " K" _ ß) Ta] [y (p. Ta) -

n=o
y[(A-im]) (11)

berechnen. Die Impulsübertragungsfunktion des Digitalrechners,

die zu dem gewünschten Verhalten, d. h. zu einer im
Zeitpunkt t I Ta beendeten Sprungantwort des geschlossenen
Kreises führt, erhält man schliesslich durch Einsetzen der für
Ay und x berechneten Werte in :

FUs)
Y*(s)
£*(s)

Fl
Ta

'2tAy(vTA)e -vTas

2 [1 — X (v TA)] e-riAS

(12)

Untersucht wird der Verlauf der Regelgrösse bei sprung-
förmiger Änderung der Führungsgrösse im Zeitpunkt t 0.

Zu einem bestimmten Zeitpunkt / q Ta soll ein neuer stationärer

Zustand erreicht sein. Als Randbedingungen werden

angesetzt :

Ein Vergleich mit Gl. (7) ergibt die Koeffizienten eines

Regelalgorithmus mit der Gestalt entsprechend Gl. (6).
Das Verfahren von Föllinger stimmt in der Zielsetzung mit

der Methode von Leonhard überein. Jedoch benützt Föllinger
eine andere mathematische Prozedur als Leonhard. Es werden
wieder Regelstrecken mit rationalen Übertragungsfunktionen,
zusätzlich aber auch noch Totzeitglieder betrachtet. Die
Gleichungen der Regelstrecken werden jedoch als System
linearer Differentialgleichungen erster Ordnung und
Differenzengleichungen für die Totzeitglieder angesetzt. Es gibt demnach

so viele Differentialgleichungen erster Ordnung, wie der
rationale Teil der Übertragungsfunktion des Systems Pole

besitzt, wenn angenommen wird, dass nur einfache Pole
vorkommen. Für ein System mit p Eingangsgrössen j^,,) und

m Ausgangsgrössen Xk erhält man:

0 (8)

£i — 2i si "[ 2 ^ 1 v T(v) i — lj •••> l

Xk(Ü 2 7kp fp U — 77p) k=\,...,m
p=i

(13)

wenn / die Ordnung der Regelstrecke ist, da durch diese

Ordnung die Anzahl 1 — 1 der stetigen Differentialquotienten der

Regelgrösse im Zeitpunkt t q Ta vorgegeben ist.
Die Stellgrösse wird als Treppenfunktion angesetzt:

(9)

mit dem Einheitssprung a(t), also a(t) 0 für t < 0 und

a(t) 1 für t > 0, wobei vorausgesetzt wird, dass [>]t-o 0.

Die Grössen Ii sind also Zwischengrössen, die wegen der

speziellen Form des verwendeten Ansatzes eingeführt werden
müssen. Die Ii, nv und r/kp sind Parameter, die durch das statische

und dynamische Verhalten der Regelstrecke gegeben sind.
Es wird vorausgesetzt, dass die Ii im Beharrungszustand Null
werden. Das liefert nach der Integration Beziehungen zur
Bestimmung der Stellgrössenänderungen, in die auch die
Anfangswerte fio eingehen. Die genannte Bedingung entspricht
der Leonhardschen Bedingung (8) und liefert für das gleiche
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System die gleiche Anzahl von Bedingungsgleichungen, nämlich

für jeden einfachen Pol der Übertragungsfunktion genau
eine.

4. Einfache Regelalgorithmen für Digitalrechner im
Vergleich zu den Algorithmen nach Föllinger und Leonhard

Sowohl das Verfahren nach Leonhard wie auch das Verfahren

nach Föllinger liefern Vorschriften für die zeitliche Folge
der Einstellungen der Eingangsgrösse y bzw. der Eingangs-
grössen der Regelstrecke. Diese Folgen werden so gewählt,
dass eine im Zeitpunkt t — 0 vorhandene Abweichung —1 der

Regelgrösse x vom Sollwert 1 in endlicher Zeit ausgeregelt
wird (Leonhard) bzw. Anfangswerte fio der Ii, die Abweichungen

der Xk(t) von vorgegebenen Festwerten wu zur Folge
haben, in endlicher Zeit in solche Werte der fi übergeführt werden,

denen Werte Xk (l Ta) Wk zugeordnet sind (Föllinger)2).
Leonhard zeigt darüber hinaus, dass solche endliche Folgen
von Stellgrössenänderungen durch geeignete Regelalgorithmen
realisiert werden können, deren zugehörige diskrete
Übertragungsfunktionen (Impulsübertragungsfunktionen) die
Gestalt von Gl. (12) haben.

In Tabelle I wird eine Übersicht zu den bei der üblichen
Rechnerregelung und den oben beschriebenen Verfahren der

Übersicht zu den bei unterschiedlichen Rechner-Regelverfahren
benutzten Grössen

Tabelle I

Verwendete
Regelabweichungen und andere
verwendete Grössen

Berechnete Stell-
grössen(änderungen)
bei einem
Rechnungsgang

G
4)
S

JG

<-» 'S
S jj

Ausgabe

der

Stellgrösse

P-Regelung
I-Regelung
PI-Regelung
PID-Regelung

en
en>en—l,£n—2»£n—3> •••

£n,£n-lj£n-2s£n-3j •••

^n»^n-l,^n—2?^n-3» •••

yn
yn
yn
yn

S «d M

v 05
£ E

IIo E2

05 :3

Ausgabe

der

1

Stellgrössen-

änderung

P-Regelung
I-Regelung
PI-Regelung
PID-Regelung

en, en-1
en
en, en-i
en, en-i, en-2

Ayn
A.Vn
Aya
Ayn

Synthese nach Föllinger1) iiO — £iw
(/ 1,2,...,/)

Ayn,Ayn+i,...Ayn+i

Synthese nach Leonhard2) en, en-i, en-i,
yn-i, yn-2,...

yn

J) £;w-Werte der {j, die im Beharrungszustand zu den
vorgegebenen Festwerten der Regeigrössen gehören. Angaben

nur für eine Eingangsgrösse (Stellgrösse).
2) Digitalrechner mit nachgeschaltetem Integrator.

Steuerung 3) nach Föllinger und Leonhard verwendeten Variablen

gegeben. Die in der Tabelle I benützten Bezeichnungen sind
zusätzlich in Fig. 3 veranschaulicht. Tabelle I zeigt vor allem
mit den Angaben für die Synthese nach Leonhard, dass die auf
Grund der Bedingung endlicher Ausregelzeit berechneten

Steuerungen mit verwickeiteren Regelalgorithmen für die

-) Die von Föllinger angegebenen Formeln gelten vor allem für den
Fall Wk 0.

3) Die Algorithmen für endliche Einstellzeit enthalten genau
genommen Regelungs- und Steuerungsschritte. Die Anfangswerte der
Regelabweichungen werden durch Vergleich der Regeigrössen mit den
Führungsgrössen bestimmt. Darauf folgt eine bestimmte Anzahl von
Stellschritten, die mit Hilfe dieser Anfangswerte durch Vorhersage des
zeitlichen Verlaufs der Regeigrössen festgelegt wurden. Jedoch besteht
— zumindest beim Föllinger-Algorithmus — während dieser Verstellschritte

keine Rückkopplung der Regeigrössen zu den Eingangsgrössen
der Regelstrecken.

Endliche Ausregelzeit L,'l TA

für eine Regelstrecke der Ordnung 1

Fig. 3

Zeitlicher Verlauf der Regelgrösse x und Regelabweichungen en, in den
Abtastzeitpunkten

t Zeit; w Sollwert; x Regelgrösse; en Regelabweichung im Abtastzeit¬
punkt / nTa< Fy Abtastintervall

rückgekoppelte Regelung identisch sind. Bei der Synthese nach
Leonhard gehen dabei nicht nur die Regelabweichungen in
früheren Abtastzeitpunkten, sondern auch die früher berechneten

Werte der Stellgrössen in den Regelalgorithmus ein.

Während also bei der Synthese nach Föllinger aus den

Regelabweichungen, bezogen auf <Ji, in einem Abtastzeitpunkt
die Stellgrössenänderungen für die folgenden / Abtastintervalle
bestimmt werden, wird nach den erweiterten Ergebnissen von
Leonhard während eines Ausregelvorganges endlicher Zeitdauer
in jedem der Abtastzeitpunkte während des Ausregelvorganges
die Stellgrösse für das folgende Abtastintervall erst berechnet.

Die Verfahren müssen jedoch auf Grund ihrer Ableitung gleichwertig

sein. Die gleichartige Wirkung des Algorithmus mit
Rückkopplung und der Steuerung hängt wohl auch damit

zusammen, dass der jeweilige Regelkreis mit dem Digitalrechner
ein spezielles Abtastsystem darstellt.

5. Beispiele für Regelsysteme mit endlicher Ausregelzeit

Stetig wirkende Regler liefern keine Einstellung der
Regeigrössen auf die vorgegebenen Sollwerte in endlicher Einstellzeit,

sondern erst nach der Zeit t -> + oo. Wie oben schon

grundsätzlich angedeutet, lassen sich in Abtastsystemen
endliche Einstellzeiten jedoch sowohl mit speziellen Steuerungen
wie auch mit gleichwertigen Algorithmen mit Rückkopplung
der Regelgrösse realisieren. Es wird zunächst der einfachste

Fall einer Regelstrecke erster Ordnung betrachtet:

Tix + x — y (14)

Das Syntheseverfahren nach Föllinger ergibt für die einstellbare

Eingangsgrösse y(t) folgenden Verlauf:

_ - (x - w)t-0 (x — w)t-0 T -sTÜ) gTv/T| „ |
CT(Ü + cTaT| _ [ a Ü Üa) (15)

wenn im Zeitpunkt / 0 eine Regelabweichung (x — w)t=o

vorliegt, die ausgeregelt werden soll. o(t) stellt die
Sprungfunktion dar: Es ist o(t) 0 für t < 0 und o(t) I für t ff 0.

Genau die gleiche Wirkung erzielt aber auch ein mit einem

Digitalrechner verwirklichter Proportionalalgorithmus, wenn
die Stellgrösse zwischen den Abtastzeitpunkten konstant
gehalten wird. Man muss zu diesem Zweck nur die Verstärkung
passend wählen, d. h. im vorliegenden Fall für Kr in Gl. (1)

setzen :

eTA/Ti — 1
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Stetige-P-Regelung

Stetige Regelung
' Abtast-p- Regelung

t-

f 2 ry,
?2 + rj. )>

I 2 12
(16)

ex sr- il r2
Fi - Tz Ti - Tz

S2

Mit Hilfe der Föllinger-Synthese ergibt sich für die endliche
Einstellzeit folgender Verlauf der Stellgrösse :

y(t) Ayo ff(t) + A^i a (r — Ta) + A^2 a (t — 2 7a)

mit

Ayo —1—\Hl — HZ \ Hl — 1 //2 1 /

A^i ;

Hi~ Hz \ Hl

1 / /tl + 1

Hl — Hz
(120^4^10^+1) (17)
\ Hz 1 /ZI — 1 /

A}>2
1 £io

Hl— HZ \/Zi — 1 Hz t)
Fig. 4

Zeitlicher Verlauf der Stellgrösse und Regelgrösse bei einer Regelstrecke
erster Ordnung

Optimale Abtastregelung (kleinstmögliche Ausregelzeit durch Synthese
nach Föllinger oder geeignete Wahl des Regelparameters) und stetige

Proportional-Regelung
t Zeit; x Regelgrösse; y Stellgrösse; 7*A Abtastintervall

Auch zur Wahl dieses günstigsten Wertes der Verstärkung
ist die genaue Kenntnis des Zeitverhaltens der Regelstrecke
erforderlich.

Fig. 4 zeigt den zeitlichen Verlauf von Stellgrösse und Regelgrösse

für eine solche günstigste Abtastregelung und im
Vergleich dazu den Verlauf dieser Grössen bei einer stetigen
Proportionalregelung. Dabei wurden der grösste Betrag der
Stellgrösse bei Abtastregelung und stetiger Regelung gleich
gewählt. Während bei der stetigen Regelung wegen des

Zusammenhanges zwischen Stellgrösse und Regelgrösse beide
theoretisch erst für t -> -f oo gegen Null gehen, wird bei der

zeitoptimalen Abtastregelung die Stellgrösse in dem Augenblick

Null gesetzt, in dem die Regelabweichung Null geworden
ist. Die beiden Änderungen der Stellgrösse in den Zeitpunkten
t 0 und t Ta werden bei der Föllinger-Synthese im voraus
(d. h. im Zeitpunkt t — 0), bei der rückgekoppelten
Abtastregelung jedoch in den jeweiligen Abtastzeitpunkten t 0

und 1 Ta berechnet. Wie das folgende Beispiel noch
deutlicher zeigt, bedeutet die Wahl der Anfangsbedingungen bei

der Föllinger-Synthese jedoch auch eine Rückkopplung, so
dass man in beiden Fällen von einer Regelung sprechen kann.

Bei Regelstrecken höherer Ordnung kann man die
Abtastregelung nach der Föllinger-Synthese als eine Folge von
Proportionalregelschritten auffassen, wobei freilich die
Verstärkung der Regelwirkung sich von Abtastintervall zu
Abtastintervall ändert. Das erklärt auch, dass bei der Regelstrecke
erster Ordnung die Regelung nach Föllinger und die P-Rege-
lung völlig gleich ablaufen, da in diesem Sonderfall bei der

P-Regelung eben nur die Verstärkung für ein Abtastintervall
bestimmt werden muss.

Am Beispiel einer Regelstrecke zweiter Ordnung soll der

Vergleich von Regelung nach Föllinger und Abtastregelung mit
den üblichen Regelalgorithmen fortgeführt werden. Die Zu-
standsdifferentialgleichungen der Regelstrecke lauten jetzt:

; I
£

1

fi —,r ii + t y11 Ji

wobei hi eTA/Ti und hz eTVTa.

An den Gin. (17) zeigt sich nun ein besonderes Merkmal der

Föllinger-Synthese. Im Zeitpunkt t 0 sind soviele Anfangswerte

iio zu bestimmen, wie der der Ordnung der Regelstrecke

entsprechen, im Fall der Regelstrecke zweiter Ordnung also

die Anfangswerte £io und 420. Diese hängen mit dem Anfangswert

xo der Regelgrösse a und ihrer Ableitung xo im Zeitpunkt
1 0 wie folgt zusammen :

Î10 *0 + 72 xo

£20 xo + 7i uro

(18)

Bei einer Regelstrecke zweiter Ordnung muss also im
Abtastzeitpunkt ausser dem abgetasteten Wert xo der

Regelabweichung auch ihre zeitliche Änderung xo vorliegen. Um
also die Föllinger-Synthese realisieren zu können, muss man
zunächst mindestens die gleiche Anzahl von Abtastwerten der

Regelgrösse innerhalb genügend kurzer Zeit, aber getrennt
vom Signalrauschen, zur Verfügung haben, wie der Ordnung
der Regelstrecke entspricht. Das Problem der Bestimmung der

Anfangswerte unter den Erschwerungen, die die tatsächlichen

Prozeßsignale verursachen, dürfte zum Angelpunkt der

Syntheseverfahren für die Regelung mit endlicher Einstellzeit
werden.

Es interessiert schliesslich auch, wie eine

Proportionalintegral-Abtastregelung im Vergleich zum Föllinger-Algo-
rithmus wirkt. Geht man vom Algorithmus:

Ayn Ki (en — <?n-i) + Kz en (19)

aus [vgl. Gl. (5)] und soll x(t 2TA) =0 werden und ausserdem

die Stellgrösse für t ITa Null sein, so erhält man:

Aya —TaxoKi — Kz xo

Ayi Ki (xo — xi) — Kz xi

Ayz Ki xi

Ayo + Ayi + Ayz 0

(20)

wobei gesetzt wurde

xo :

Xo — X-l
Ta

was je nach der Grösse von 7a in gewisser Näherung gültig ist.

Unter den angegebenen Voraussetzungen erhält man nach

Eliminieren von Ayo, Ayi und A >>2 für Ki oder Kz ein Polynom
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Abtastregelung nach Föllinger-Synthese

PI-Abtastregelung

Abtastregelung nach Föllinger-
Synthese

PI-Abtastregelung

Fig. 5

Zeitlicher Verlauf der Stellgrösse und Regelgrösse bei einer Regelstrecke
zweiter Ordnung

Optimale Abtastregelung auf Grund der Föllinger-Synthese und Ab¬
tastregelung mit PI-Algorithmus

dritten Grades, wobei man die Anfangs- und Endbedingungen
für den Verlauf der Regelgrösse in jedem Abtastzeitpunkt
anpassen muss.

* 7i
Unter den Voraussetzungen xo 0 und y- — Ti Ta

wurde für eine Regelstrecke zweiter Ordnung ein Beispiel für
die Regelung nach Föllinger und die beschriebene PI-Regelung
numerisch berechnet (Fig. 5). Bei der Abtastregelung nach

Föllinger ergibt sich die gewünschte endliche Ausregelzeit
1 2 Ta- Bei der PI-Abtastregelung ist zwar im Zeitpunkt
t — 2 Ta die Regelgrösse Null, nicht jedoch deren Ableitung
nach der Zeit, so dass sich ein deutliches Überschwingen der

Regelgrösse ergibt. Mit dem PI-Algorithmus kann demnach

bei der Regelstrecke zweiter Ordnung keine endliche Ausregelzeit

realisiert werden, sicher also auch nicht bei Regelstrecken
höherer Ordnungen. Ein Algorithmus mit endlicher Ausregelzeit

müsste nach früheren Ausführungen [vgl. Gin. (6) bis (12)]
die formale Gestalt haben :

Vn + ai yn-i bo en + bi en-i + 02 en-2 (21)

Dieser Ansatz ist allgemeiner als Gl. (19) (vgl. Beispiel für
eine Regelstrecke zweiter Ordnung unter Literaturhinweis [1]).

6. Schlussbemerkungen

Häufig wird aus informationstheoretischer Sicht die Frage
gestellt, ob nicht wegen des bei Rechnerregelung notwendigen
Abtastens und des damit verbundenen Informationsverlustes
diese Regelung grundsätzlich schlechter sein müsse als stetige

Regelungen. Schon das einfache Beispiel nach Fig. 4 zeigt, dass

diese Art der Argumentation die Eigenschaften eines

Rechnerregelsystems nicht richtig wiedergibt. Dass sich bei der
Rechnerregelung der im Zeitpunkt t 0 berechnete und eingestellte
Wert der Stellgrösse nicht wie bei der stetigen Regelung mit
kleiner werdender Regelabweichung verkleinert, kann sich zum
Vorteil der Rechnerregelung auswirken, für die die vorhan¬

dene Information ausreicht. In dem erläuterten Beispiel der

Regelstrecke erster Ordnung ist im Abtastzeitpunkt t 7a
die Regelabweichung Null. Da bei der Rechnerregelung praktisch

sprunghafte Änderungen der Stellgrösse realisiert werden,
ist bei einer Regelstrecke erster Ordnung ein Knick im Verlauf
der Regelgrösse und damit die plötzliche Beendigung des

Regelvorganges möglich.
Die Ausführungen der vorangehenden Abschnitte über die

Synthese von Regelalgorithmen kann man dahingehend
zusammenfassen, dass Regelalgorithmen für endliche Ausregelzeiten

in der Form nach Leonhard direkter anwendbar sind als

in der Form nach Föllinger. Bei dieser ist nämlich nicht
definiert, wie bei der praktischen Anwendung die Anfangsbedingungen

aus den Abtastwerten der Regelgrösse zu bestimmen
sind. Die numerischen Approximationen der üblichen
analogen Regelalgorithmen mit konstanten Werten der

Regelparameter ermöglichen nur bei Regelstrecken erster Ordnung
eine endliche Ausregelzeit (von genau einem Abtastintervall).

Dass die Synthese von Regelalgorithmen für endliche
Ausregelzeiten die genaue Kenntnis des dynamischen Verhaltens
der Regelstrecke zur Voraussetzung hat, dürfte in Fachkreisen

hinlänglich bekannt sein. Keine Beachtung wurde hingegen

bislang der Aufgabe geschenkt, aus den in der Regel verrauschten

Prozeßsignalen die Werte der Regeigrössen und gegebenenfalls

deren zeitlichen Ableitungen so genau zu bestimmen, dass

die Synthese von Algorithmen für endliche Ausregelzeiten

überhaupt Sinn hat. Man kann umgekehrt dieses Problem
auch so formulieren, dass man einen Algorithmus sucht, der
eine endliche Ausregelzeit ergibt, wenn gleichzeitig aus einem

verrauschten Prozeßsignal durch einen Filteralgorithmus die

Regelgrösse herausgefiltert wird. Schliesslich wäre auch eine

Untersuchung interessant, die zeigen würde, wie sich beispielsweise

der Leonhard-Algorithmus bei der Ausregelung von
häufigen Störungen auswirkt, wobei also eine neue Störung
auftritt, noch ehe die vorangegangene ausgeregelt ist.

Für die Realisierung nahezu beliebiger Regelalgorithmen
durch digitale Prozessrechensysteme gibt es kaum technische
Grenzen. Wie eingangs dargelegt wurde, sind die dabei
auftretenden Probleme hauptsächlich technisch-wirtschaftlicher
Art. Vor allem die Eingabe und die Ausgabe von Prozeßsignalen

verursachen grossen Aufwand. Hier sind Fortschritte
notwendig, im Zuge der raschen Entwicklung der Elektronik aber
auch zu erwarten.
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