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Technische Voraussetzungen fiir die Anwendung der direkten digitalen Regelung
und die Synthese von Regelalgorithmen

Von A. Schione, Leverkusen-Schlebusch
2903 - 290%F

1. Einfiihrung

Unter direkter digitaler Regelung versteht man die Rege-
lung von Produktionsanlagen oder Prozessen mit Hilfe eines
Digitalrechners. Konventionelle analoge Regler werden bei
der direkten digitalen Regelung tiberhaupt nicht oder nur in
beschrinktem Umfange fiir Ersatzregelungen beniitzt. Die
Anwendung der direkten digitalen Regelung ist in den meisten
Fillen nur dann sinnvoll, wenn die Regelung fiir eine grossere
Anzahl voneinander abhidngiger oder unabhédngiger Regel-
kreise durchgefiihrt wird. Die Benennung direkte digitale
Regelung ist die wortliche Ubersetzung der anglo-amerika-
nischen Benennung «direct digital control», die vor allem in
der Abkiirzung DDC in Fachkreisen haufig beniitzt wird.

Der schematische Aufbau von Regelsystemen mit Digital-
rechnern ist schon an verschiedenen Stellen beschrieben wor-
den. Beispielsweise bringt Leonhard eine Darstellung mit sorg-
faltiger Wiedergabe der mathematisch-regelungstechnischen
Formulierungen fiir die Funktionen des Digitalrechners [1]%).
Uber die Erfahrungen bei der praktischen Anwendung gibt es
gleichfalls eine Reihe von Veroffentlichungen. Am interessan-
testen als Beschreibung der ersten Anfinge der Entwicklung
zur direkten digitalen Regelung ist wohl der Bericht von
Thompson iiber die Digitalrechnerregelung einer alten Soda-
fabrik der ICI in Winnington [2].

Als Einfiihrung fiir die folgenden Darlegungen geniigt eine
kurze Beschreibung der Funktionen eines Digitalrechners bei
der Rechnerregelung auf Grund des in Fig. 1 wiedergegebenen
Schemas. Die Analogwerte der Eingangsgrossen des Prozess-
rechensystems, d. h. im vorliegenden Fall also der Regelgros-
sen, werden von einem Eingabesammler nacheinander abge-
tastet. Jeder abgetastete Wert wird von einem nachgeschalteten
Analog-Digital-Umsetzer (ADU) in einen digitalen Wert um-
gesetzt und steht im Ausgangsregister des Analog-Digital-

1) Siehe Literatur am Schluss des Aufsatzes.

Digitale Daten

62-503.5-193.4
Umsetzers bis zum Abruf durch die Zentraleinheit an. Solange

die Analog-Digital-Umsetzung andauert, darf kein neuer
Analogeingang abgefragt werden. Die zeitliche Folge der
Eingabe von Analogwerten hingt demnach wesentlich von der
erreichbaren Abfragefrequenz im Eingabesammler und der
Umsetzzeit im ADU ab.

Die Zentraleinheit enthélt vor allem Rechenwerk, Leitwerk
und die Zentralspeicher. Durch Organisationsprogramme, die
im Hauptspeicher der Zentraleinheit gespeichert sind, werden
die verschiedenen Funktionen des Gesamtsystems in der rich-
tigen zeitlichen Reihenfolge und — bei gleichzeitigen Ereig-
nissen — im zweckméssigen Vorrang ausgelost. Fiir die direkte
digitale Regelung sind ausserdem Regelprogramme notwendig,
die die Funktion der analogen Regler in konventionellen
Regelsystemen ersetzen. Hierzu wird bei der Behandlung der
Regelalgorithmen noch einiges zu sagen sein.

Fiir die Ausgabe der Stellsignale gibt es vielfiltige technische
Losungen. Teilweise wird die Ausgabe der vollen Werte der
Stellgrossen, teilweise die Ausgabe der Stellgrossendnderungen
bevorzugt. Von der grosseren Anzahl der Hersteller wird offen-
bar die Ausgabe von Stellgrosseninderungen fiir zuverldssiger
gehalten, da dabei falsche Berechnungen des Rechners, mit
denen vor allem unmittelbar vor einem vollstindigen Rechner-
ausfall gerechnet werden muss, sich nur wenig auf den gesam-
ten Wert der Stellgrosse auswirken. Beide Ausgabeverfahren
bendtigen je Stellgrosse ein Halteglied, um den Wert der Stell-
grossen zwischen zwei aufeinanderfolgenden Zeitpunkten der
Ausgabe der Werte neuer Stellgrossen oder Stellgrossendnde-
rungen konstant zu halten. Bei beiden Verfahren der Stellwert-
ausgabe kann auch die Digital-Analog-Umsetzung entweder
zentral vor dem Ausgabeverteiler oder dezentral einzeln fiir
jede Stellgrosse erfolgen.

Eine hohe Zuverlissigkeit der verwendeten Prozessrechen-
anlagen ist eine notwendige Voraussetzung fiir eine erfolg-
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oder Analogwerte
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Schema eines Prozessrechensystems fiir die direkte digitale Regelung
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(Signalflusslinien fiir die Hilfsregelgrosse gestrichelt)

reiche Rechnerregelung. Die bekanntgewordenen Beispiele
scheinen jedoch zu zeigen, dass die Zuverldssigkeit der heute
verfiigbaren Prozessrechner fiir derartige Zwecke in den mei-
sten Fillen ausreicht. In besonders kritischen Féllen werden
Doppel-Prozessrechnersysteme angewandt [3], jedoch sind
dabei sehr hohe Kosten aufzuwenden, wenn tatsichlich alle
fiir die Funktion des Gesamtsystems wichtigen Bauteile, wozu
auch die Umschalteinrichtungen gehoren, doppelt ausgelegt
werden.

2. Vergleich der Geratetechnik in analogen
und Rechnerregelsystemen

In manchen Veroffentlichungen wurden fiir die Einfiihrung
der direkten digitalen Regelung Rentabilitdtsgriinde geltend
gemacht und dargelegt, dass die Kosten fiir Rechnerregel-
systeme schliesslich niedriger als fiir analoge Regelungssysteme
seien, wenn nur die Anzahl der Regelkreise geniigend gross ist
(break even point). Im folgenden soll ausgefiihrt werden,
worauf es dabei tatsichlich ankommt. In Fig. 2 wird die In-
strumentierung eines einfachen Regelkreises und einer Kas-
kadenregelung (Regelung mit Hilfsregelgrosse) bei Rechner-
regelung mit der entsprechenden konventionellen pneumati-
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schen Instrumentierung verglichen. Gemeinsam sind den zu
vergleichenden Systemen die Messumformer und die Stell-
glieder. Der Rechner benotigt dabei jedoch elektrische Ein-
gangssignale. Bei verschiedenen Arten von Regelgrossen
(Druck, Durchfluss) wird fiir die elektrischen Messumformer
mehr aufzuwenden sein als beim pneumatischen System. Bei
Regelgrossen, die durch Thermospannungen oder verinder-
liche Widerstande erfasst werden, wird man andererseits bei
Einsatz eines Prozessrechensystems auf die Messumformer
vollstindig verzichten konnen.

Zur Ausgabe von Stellsignalen kann man beispielsweise je
Stellglied eine Adress-Decodiereinrichtung, einen digitalen
Speicher und eine Steuerung fiir einen nachgeschalteten
Schrittmotor verwenden. Dieser Schrittmotor ist Bestandteil
eines Impulsdruckumsetzers, der die Eingangsimpulse fiir
den Schrittmotor in ein pneumatisches Stellsignal umsetzt.
Dieses Stellsignal wird konstant gehalten, wenn der Schritt-
motor keine Impulse vom Rechner empfingt, d. h. also auch
dann, wenn der Rechner ausgefallen ist. Mit Hilfe der Schritt-
motorsteuerung und des Impulsdruckumsetzers kann man
das Stellglied auch von Hand verstellen, indem mit Hilfe eines
besonderen Gerites durch Tastendruck Impulse zum Offnen
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oder Schliessen des Stellgliedes (Ventils) ausgelost werden. Das
hiermit erlauterte DDC-Ausgabesystem, zu dem {ibrigens
auch noch verschiedene Variationen angefiihrt werden konn-
ten, ist geringfiigig aufwendiger als andere, die einen zentralen
Ausgabeverteiler beniitzen und vor allem nicht Stellsignal-
dnderungen, sondern jedesmal den tatsdchlichen Wert des
Stellsignals ausgeben. Das hier dargestellte Ausgabesystem hat
jedoch den Vorteil grosserer Betriebssicherheit, da beim ande-
ren Ausgabesystem die Funktion aller Regelkreise vom sto-
rungsfreien Arbeiten eines zentralen Ausgabeverteilers ab-
hingt, wihrend hier jeder Ausgabekanal unabhingig von allen
anderen Ausgabekanilen ist.

Bei der derzeitigen Marktlage muss der Anwender fiir die
Decodiereinrichtung mit Digitalspeicher und den Impuls-
druckumsetzer zusammen etwa doppelt so hohe Kosten als
fiir einen pneumatischen Einheitsregler aufwenden. Beim
Kostenvergleich miissen fiir jeden einzelnen Regelkreis bei
Rechnerregelung noch die anteiligen Kosten von Eingabe-
sammler, Analog-Digital-Umsetzer und Zentraleinheit be-
riicksichtigt werden. In Systemen, die nur einfache Regelkreise
enthalten, kann es also einen «break even point» iiberhaupt
nicht geben. Der Unterschied in den aufzuwendenden Kosten
zwischen rechnergeregelten und konventionell geregelten
Systemen wird umso grosser, je grosser die Anzahl der Regel-
kreise ist.

Giinstiger wird der Kostenvergleich fiir rechnergeregelte
Systeme, wenn Kaskadenregelungen verglichen werden. Dann
ist immerhin der Aufwand fiir die beiden DDC-Ausgabebau-
teile je Stellglied vergleichbar mit den Kosten der beiden ana-
logen Regler. Auch hier gibt es jedoch noch keinen «break
even point». Erst wenn bei der analogen Instrumentierung
zusitzlich analoge Rechenelemente, Grenzsignalgeber und
dhnliche Gerite beniitzt werden miissen, kann unter den der-
zeitigen Kostenverhiltnissen schliesslich ein rechnergeregeltes
System auch billiger als das konventionell ausgeriistete sein.

Der Vergleich der Kosten von elektrisch instrumentierten
konventionellen Regelsystemen und Rechnerregelsystemen
fallt etwas giinstiger fiir die Rechnerlosung aus als der Ver-
gleich mit pneumatisch instrumentierten Regelsystemen.
Ausserdem kann der Verzicht auf analoge Schreiber in rechner-
geregelten Systemen, bei denen ja Informationen in digitaler
Form zur Verfiigung stehen, den Kostenvergleich ebenfalls
glnstig zugunsten der Rechnerverwendung beeinflussen. Zu-
sammenfassend betrachtet kann jedoch nur eine weitere erheb-
liche Kostenreduzierung bei Prozessrechenanlagen, vor allem
bei deren DDC-Ausgabewerk, die Verwendung der direkten
digitalen Regelung auch fiir einfachere Aufgaben wirtschaftlich
lohnend machen.

Im Zusammenhang mit grosseren Aufgabenstellungen und
der Integration verschiedener Aufgaben kann freilich auch
unter den heutigen Kostenverhiltnissen die direkte digitale
Regelung der konventionellen analogen vorzuziehen sein. Die
DDC-Ausgabevorrichtung benétigt man auch dann, wenn der
Rechner nur Sollwerte vorgibt. Berechnet der Prozessrechner
also auch optimale Sollwerte oder soll er Sollwerte nach einer
festen Zeitabhdngigkeit oder auf Grund bestimmter Prozess-
bedingungen verdndern, so werden die analogen Regler bei
direkter digitaler Regelung echt eingespart. Man braucht dann
nur noch zu beriicksichtigen, welcher Mehraufwand an Spei-
cherkapazitdt im Rechner und an Rechenzeit fiir die Regelung
erforderlich ist. In verwickelten Regelsystemen, gegebenenfalls
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mit notwendigen Entkopplungen, und bei Regelstrecken, die
mit analogen Reglern wegen der verschiedenen Grenzen in
deren Einstellbarkeit und sonstigem Verhalten nicht stabil zu
regeln sind, kann aus rein regeltechnischen Griinden die Ver-
wendung von Rechnerregelungen notwendig sein. Die rege-
lungstechnischen Fragen hinsichtlich Vergleich von analoger
und Digitalrechnerregelung werden in den folgenden Ab-
schnitten behandelt.

Die beschriebenen DDC-Ausgabevorrichtungen bieten —
wie erldautert — auch eine einfache Moglichkeit des «back up»
bei Rechnerausfall, da alle Stellglieder ihre letzten Stellungen
beibehalten und von Hand verstellt werden konnen, was bei
verfahrenstechnischen Regelstrecken fiir beschrinkte Zeit
meistens ausreicht. Es gibt anspruchsvollere und zuverlissige
Verfahren der Ersatzregelung, die man aus Kostengriinden
jedoch nach Moglichkeit vermeiden bzw. nur bei besonders
schwierig zu regelnden Strecken anwenden sollte.

3. Regelalgorithmen fiir die Rechnerregelung

Bei fast allen Prozessrechensystemen fiir die direkte digitale
Regelung beniitzte man bisher — soweit das der Literatur ent-
nommen werden kann — numerische Approximationen fiir die
idealisierten Algorithmen der iiblichen analogen Regler [4].
Ein idealisierter analoger Proportionalregler gehorcht beispiels-
weise der Beziehung

y=KWw-—x) (1

wobei y die Stellgrosse, w die Fiihrungsgrosse, x die Regel-
grosse und Ki die Verstirkung des Reglers sind. Die Regel-
abweichung w — x soll abgekiirzt mit e bezeichnet werden:

W—Xx=¢€

Bei Rechnerregelung werden nur Regelabweichungen e ver-

wertet, die in den Abtastzeitpunkten:
t=vTa v=1,2,...

gewonnen werden. Ist die letzte Regelabweichung en im Ab-
tastzeitpunkt f = n Ta bestimmt worden, so lautet die nume-
rische Approximation zu Gl. (1):

yn=Kien (2)

Diese Beziehung wird beniitzt, wenn iiber das DDC-Aus-
gabewerk die tatsdchlichen Werte der Stellgrossen ausgegeben
werden. Werden stattdessen Stellgrossendnderungen ausge-
geben, so tritt an die Stelle der Gl. (2) der Algorithmus:

¥Yn — Yn-1= A,Vn = Ki (en = en—l) (3)

Die fiir den inkrementellen Integralalgorithmus viel be-
niitzte numerische Approximation lautet:

Ayn= Kz en )
Darin ist jedoch die weitere Approximation
1 .
'2’ (L’n + én-1) & en

enthalten. Schliesslich wird fiir den inkrementellen PID-Algo-
rithmus der Ausdruck verwendet:

Ayn = K1 (en — l’n—l) + Kaen + Ks (C’n —2en-1+ (3n—2) (5)

Beim Algorithmus (5) werden also jeweils die in den drei
letzten Abtastzeitpunkten £ = (7 — 2) Ta, (n — 1) Ta und nTa
ermittelten Regelabweichungen beniitzt.

(A 415) 637



Dadurch, dass dem Digitalrechner nur die Werte der Regel-
abweichungen in den Abtastzeitpunkten zur Verfiigung stehen,
ergibt sich ein geringfiigig schlechteres Verhalten der Rechner-
regelung, wenn man mit ihr die idealisierte analoge Regelung
bei gleicher Einstellung der Regelparameter vergleicht [5].
Wegen verschiedener Abweichungen analoger Regler von dem
idealisierten Verhalten hat die Rechnerregelung jedoch gegen-
tiber der analogen Regelung auch dann einige Vorziige, wenn
als Regelalgorithmen lediglich die oben angefiihrten numeri-
schen Approximationen benutzt werden. Zu diesen Vorziigen
gehort u. a. die freiziigigere Einstellbarkeit der Regelparameter
[4]. Verhiltnismassig einfach durchzufiihrende Erweiterungen
der Regelalgorithmen ergeben eine weitere Verbesserung des
Regelverhaltens. Mann kann namlich die Form der Regelalgo-
rithmen in Abhingigkeit vom Betrag oder dem Vorzeichen der
Regelabweichung en unterschiedlich wéhlen [6].

Von verschiedenen Autoren sind andererseits Regelalgo-
rithmen vorgeschlagen worden, die im Gegensatz zur eben
behandelten Klasse von Regelalgorithmen von vornherein so
ausgelegt werden, dass der Regelvorgang nur endliche Zeit
dauert (dead beat response). Neuere Vorschlige mit dieser
Zielsetzung stammen von Leonhard [1] und Follinger [7]. Eine
notwendige Voraussetzung fiir die Anwendung dieser Verfah-
ren ist, dass die Struktur und die Zeitkonstanten der Regel-
strecke genau bekannt sind. Diese Voraussetzung ist in der
Praxis im allgemeinen schwer zu erfiillen. Ausserdem gelten
die bisher veroffentlichten Syntheseverfahren nur fiir lineare
Regelstrecken.

Wegen der Bedeutung, die diese Verfahren vor allem durch
die verschiedenen Arbeiten von Féllinger in der wissenschaft-
lichen Diskussion der letzten Zeit erlangt haben und fiir die
Realisierung in Prozessrechensystemen noch bekommen konn-
ten, sollen in diesem Abschnitt einige Erlduterungen zu den
Verfahren selbst gegeben und in den anschliessenden Ab-
schnitten einige Beispiele angefiihrt werden.

Leonhard geht von einer verallgemeinerten Form der oben
angefiihrten linearen Regelalgorithmen aus:

yntaiyni1-tazynas+...=boen+ bren1+baenz+ ... (6)

Der GI. (6) ist die Impulsiibertragungsfunktion Fj des
Digitalrechners dquivalent:

Y*(s)  bo+ bieTas 4 ...+ bm e mTas

%00) — L
Fii(s) = E*(s) 1+ aieTas+ ..+ agekTas

O]

Untersucht wird der Verlauf der Regelgrosse bei sprung-
formiger Anderung der Fithrungsgrosse im Zeitpunkt 7 = 0.
Zu einem bestimmten Zeitpunkt 1 = ¢ T'a soll ein neuer statio-
narer Zustand erreicht sein. Als Randbedingungen werden
angesetzt:

dx
dr

_ dx
t=qra  dz2

Codrty
" del-1 t=qTa

X(lzl; —_— =i
=LA

=0 (8

wenn / die Ordnung der Regelstrecke ist, da durch diese Ord-
nung die Anzahl /—1 der stetigen Differentialquotienten der
Regelgrosse im Zeitpunkt 1 = g T'a vorgegeben ist.

Die Stellgrosse wird als Treppenfunktion angesetzt:

1
&) =D Ayy-a(t —vTa) )

v=0

mit dem Einheitssprung o(¢), also o(¢) = 0 fiir + < 0 und
o(t) =1 fiir r > 0, wobei vorausgesetzt wird, dass [y]i<o = O.

638 (A 416)

Lautet die Sprungantwort der Regelstrecke u(z), so erhédlt man
in einem linearen System auf Grund der Gl. (9) den folgenden
Wert der Regelgrosse im Zeitpunkt ¢ = g Ta:

Ayyul(qg —v) Tal
0

(10)

Xq=

v

Aus den Randbedingungen (8) und Gl. (10) erhélt man /

Gleichungen fiir die / Unbekannten A yo, Ay1, ..., Ayi-1, indem

man die ersten / —1 Ableitungen der Regelgrosse x im Zeit-
punkt ¢ = g Ta berechnet und Null setzt. Ay: wird aus:

1
z Ay,=1
v=0

bestimmt. Auf diese Weise kann man die Stellgréssen im Zeit-
intervall 0 < ¢ < g Ta = [ Ta ermitteln und damit auch die
Regelgrosse in den Abtastzeitpunkten ¢ = 0, Ta, ... [ Ta aus:

v

x(Ta)= > ul(v — ) Tally(uTa) —y L — 1) Tal) (1)

n=0

berechnen. Die Impulsiibertragungsfunktion des Digitalrech-
ners, die zu dem gewiinschten Verhalten, d. h. zu einer im
Zeitpunkt 1 = [ Ta beendeten Sprungantwort des geschlossenen
Kreises fiihrt, erhilt man schliesslich durch Einsetzen der fiir
Ay und x berechneten Werte in:

1
*(s) 2 Ay T es
Y*(s T1 v=0
FRO = prgy = Ty i

(12)
[1 —x(vTa)] e vTas
0

v=

Ein Vergleich mit Gl. (7) ergibt die Koeffizienten eines
Regelalgorithmus mit der Gestalt entsprechend Gl. (6).

Das Verfahren von Follinger stimmt in der Zielsetzung mit
der Methode von Leonhard iiberein. Jedoch beniitzt Follinger
eine andere mathematische Prozedur als Leonhard. Es werden
wieder Regelstrecken mit rationalen Ubertragungsfunktionen,
zusitzlich aber auch noch Totzeitglieder betrachtet. Die
Gleichungen der Regelstrecken werden jedoch als System
linearer Differentialgleichungen erster Ordnung und Differen-
zengleichungen fiir die Totzeitglieder angesetzt. Es gibt dem-
nach so viele Differentialgleichungen erster Ordnung, wie der
rationale Teil der Ubertragungsfunktion des Systems Pole
besitzt, wenn angenommen wird, dass nur einfache Pole vor-
kommen. Fiir ein System mit p Eingangsgrossen y(, und
m Ausgangsgrossen xx erhidlt man:

P
E=L&+Y rivym
v=1
(13)

n
xx(t) = ZCIkp &p (t — Tip) k=1,..,m
p=1

Die Grossen & sind also Zwischengrossen, die wegen der
speziellen Form des verwendeten Ansatzes eingefiihrt werden
miissen. Die i, riy und gkp sind Parameter, die durch das stati-
sche und dynamische Verhalten der Regelstrecke gegeben sind.
Es wird vorausgesetzt, dass die & im Beharrungszustand Null
werden. Das liefert nach der Integration Beziehungen zur Be-
stimmung der Stellgrossendnderungen, in die auch die An-
fangswerte &io eingehen. Die genannte Bedingung entspricht
der Leonhardschen Bedingung (8) und liefert fiir das gleiche
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System die gleiche Anzahl von Bedingungsgleichungen, nim-
lich fiir jeden einfachen Pol der Ubertragungsfunktion genau
eine.

4. Einfache Regelalgorithmen fiir Digitalrechner im
Vergleich zu den Algorithmen nach Follinger und Leonhard

Sowohl das Verfahren nach Leonhard wie auch das Verfah-
ren nach Follinger liefern Vorschriften fiir die zeitliche Folge
der Einstellungen der Eingangsgrosse y bzw. der Eingangs-
grossen y(y) der Regelstrecke. Diese Folgen werden so gewihlt,
dass eine im Zeitpunkt # = 0 vorhandene Abweichung —1 der
Regelgrosse x vom Sollwert 1 in endlicher Zeit ausgeregelt
wird (Leornhard) bzw. Anfangswerte &io der &, die Abweichun-
gen der xi(f) von vorgegebenen Festwerten wyx zur Folge
haben, in endlicher Zeit in solche Werte der &; iibergefiihrt wer-
den, denen Werte xx (/ Ta) = wk zugeordnet sind (Follinger)?).
Leonhard zeigt dariiber hinaus, dass solche endliche Folgen
von Stellgrossendnderungen durch geeignete Regelalgorithmen
realisiert werden konnen, deren zugehorige diskrete Uber-
tragungsfunktionen (Impulsiibertragungsfunktionen) die Ge-
stalt von Gl. (12) haben.

In Tabelle I wird eine Ubersicht zu den bei der {iblichen
Rechnerregelung und den oben beschriebenen Verfahren der

Ubersicht zu den bei unterschiedlichen Rechner-Regelverfahren
benutzten Grissen

Tabelle I
Berechnete Stell-
Verwendete Regelab- grossen(dnderungen)
weichungen und andere | bei einem
verwendete Grossen Rechnungsgang
B
=| 9 g | P-Regelung |en Yn
o
E §§ I-Regelung €n,en—1,n-2,61-3, ...| Yn
0 %,o%ﬂ PI-Regelung |en,en-1,en-2,6n-3,...| ¥n
88| <5 | PID-Regelung| en,en—1,en—2,n-3,...| ¥n
g T
23|y &
RS 3 P-Regelung | en, en1 Ayn
5 Eg _§:§ g| I-Regelung | en Ayn
§§ egn%“g PI-Regelung |en, en—1 Ayn
& 5|%& 5| PID-Regelung| en, en-1, en—2 Ayn
Synthese nach Follingert)| £io — Eiw Ayn,Ayni1,...Ayn
i=12..,10
Synthesenach Leonhard?)| ey, en-1, ..., €n—1, Yn
¥n-1, Yn-2, ...

1) &;w-Werte der &;, die im Beharrungszustand zu den vor-
gegebenen Festwerten w). der Regelgrossen x) gehoren. Anga-
ben nur fiir eine Eingangsgrosse (Stellgrosse).

?) Digitalrechner mit nachgeschaltetem Integrator.

Steuerung ) nach Follinger und Leonhard verwendeten Variab-
len gegeben. Die in der Tabelle I beniitzten Bezeichnungen sind
zusatzlich in Fig. 3 veranschaulicht. Tabelle I zeigt vor allem
mit den Angaben fiir die Synthese nach Leorhard, dass die auf
Grund der Bedingung endlicher Ausregelzeit berechneten
Steuerungen mit verwickelteren Regelalgorithmen fiir die

?) Die von Follinger angegebenen Formeln gelten vor allem fiir den
Fall w), = 0.

%) Die Algorithmen fiir endliche Einstellzeit enthalten genau ge-
nommen Regelungs- und Steuerungsschritte. Die Anfangswerte der
Regelabweichungen werden durch Vergleich der Regelgrossen mit den
Fihrungsgrossen bestimmt. Darauf folgt eine bestimmte Anzahl von
Stellschritten, die mit Hilfe dieser Anfangswerte durch Vorhersage des
zeitlichen Verlaufs der Regelgrossen festgelegt wurden. Jedoch besteht
— zumindest beim Follinger-Algorithmus — wahrend dieser Verstell-
schritte keine Riickkopplung der Regelgrossen zu den Eingangsgrossen
der Regelstrecken.
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Endliche Ausregelzeit A,=( T,
fur eine Regelstrecke der Ordnung {

———

w ot
1 €n-2 €n-1 €n
X(n-im -V snT.  (n+1)1, (n+) 1,
b 4
f —_—
Fig.3
Zeitlicher Verlauf der Regelgrosse x und Regelabweichungen € oee in den
Abtastzeitpunkten

t Zeit; w Sollwert; x Regelgrosse; e, Regelabweichung im Abtastzeit-
punkt ¢t = nT \; Ty Abtastintervall

riickgekoppelte Regelung identisch sind. Bei der Synthese nach
Leonhard gehen dabei nicht nur die Regelabweichungen in
fritheren Abtastzeitpunkten, sondern auch die frither berech-
neten Werte der Stellgrossen in den Regelalgorithmus ein.

Wihrend also bei der Synthese nach Follinger aus den
Regelabweichungen, bezogen auf ¢&;, in einem Abtastzeitpunkt
die Stellgrossendnderungen fiir die folgenden / Abtastintervalle
bestimmt werden, wird nach den erweiterten Ergebnissen von
Leonhard wihrend eines Ausregelvorganges endlicher Zeitdauer
in jedem der Abtastzeitpunkte wiahrend des Ausregelvorganges
die Stellgrosse fiir das folgende Abtastintervall erst berechnet.
Die Verfahren miissen jedoch auf Grund ihrer Ableitung gleich-
wertig sein. Die gleichartige Wirkung des Algorithmus mit
Riickkopplung und der Steuerung hingt wohl auch damit zu-
sammen, dass der jeweilige Regelkreis mit dem Digitalrechner
ein spezielles Abtastsystem darstellt.

5. Beispiele fiir Regelsysteme mit endlicher Ausregelzeit

Stetig wirkende Regler liefern keine Einstellung der Regel-
grossen auf die vorgegebenen Sollwerte in endlicher Einstell-
zeit, sondern erst nach der Zeit + — + oo, Wie oben schon
grundsitzlich angedeutet, lassen sich in Abtastsystemen end-
liche Einstellzeiten jedoch sowohl mit speziellen Steuerungen
wie auch mit gleichwertigen Algorithmen mit Riickkopplung
der Regelgrosse realisieren. Es wird zundchst der einfachste
Fall einer Regelstrecke erster Ordnung betrachtet:

Tix+x=y (14)

Das Syntheseverfahren nach Follinger ergibt fiir die einstell-
bare Eingangsgrosse y(r) folgenden Verlauf:

s L Rt V(L)
wenn im Zeitpunkt 7 = 0 eine Regelabweichung (x — w)i—o
vorliegt, die ausgeregelt werden soll. a(¢) stellt die Sprung-
funktion dar: Esist (¢#) = 0fiir # < OQund o (#) = 1 fiir t = 0.
Genau die gleiche Wirkung erzielt aber auch ein mit einem
Digitalrechner verwirklichter Proportionalalgorithmus, wenn
die Stellgrosse zwischen den Abtastzeitpunkten konstant ge-
halten wird. Man muss zu diesem Zweck nur die Verstirkung
passend wihlen, d. h. im vorliegenden Fall fiir K1 in GI. (1)

setzen:
1
K= agm =1
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Stetige-P-Regelung

Stetige Regelung
Abtast- P-Regelung
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Fig. 4
Zeitlicher Verlauf der Stellgrosse und Regelgrosse bei einer Regelstrecke
erster Ordnung
Optimale Abtastregelung (kleinstmogliche Ausregelzeit durch Synthese
nach Follinger oder geeignete Wahl des Regelparameters) und stetige
Proportional-Regelung
t Zeit; x Regelgrosse; y Stellgrosse; T, Abtastintervall

Auch zur Wabhl dieses giinstigsten Wertes der Verstirkung
ist die genaue Kenntnis des Zeitverhaltens der Regelstrecke
erforderlich.

Fig. 4 zeigt den zeitlichen Verlauf von Stellgrosse und Regel-
grosse fiir eine solche giinstigste Abtastregelung und im Ver-
gleich dazu den Verlauf dieser Grossen bei einer stetigen Pro-
portionalregelung. Dabei wurden der grosste Betrag der Stell-
grosse bei Abtastregelung und stetiger Regelung gleich ge-
wihlt. Wihrend bei der stetigen Regelung wegen des Zusam-
menhanges zwischen Stellgrosse und Regelgrosse beide
theoretisch erst fiir # — - oo gegen Null gehen, wird bei der
zeitoptimalen Abtastregelung die Stellgrosse in dem Augen-
blick Null gesetzt, in dem die Regelabweichung Null geworden
ist. Die beiden Anderungen der Stellgrésse in den Zeitpunkten
t = 0und ¢ = Ta werden bei der Follinger-Synthese im voraus
(d. h. im Zeitpunkt ¢z = 0), bei der riickgekoppelten Abtast-
regelung jedoch in den jeweiligen Abtastzeitpunkten # = 0
und 7 = T berechnet. Wie das folgende Beispiel noch deut-
licher zeigt, bedeutet die Wahl der Anfangsbedingungen bei
der Follinger-Synthese jedoch auch eine Riickkopplung, so
dass man in beiden Fillen von einer Regelung sprechen kann.

Bei Regelstrecken hoherer Ordnung kann man die Abtast-
regelung nach der Follinger-Synthese als eine Folge von
Proportionalregelschritten auffassen, wobei freilich die Ver-
stirkung der Regelwirkung sich von Abtastintervall zu Abtast-
intervall dndert. Das erkldart auch, dass bei der Regelstrecke
erster Ordnung die Regelung nach Féllinger und die P-Rege-
lung vollig gleich ablaufen, da in diesem Sonderfall bei der
P-Regelung eben nur die Verstirkung fiir ein Abtastintervall
bestimmt werden muss.

Am Beispiel einer Regelstrecke zweiter Ordnung soll der
Vergleich von Regelung nach Follinger und Abtastregelung mit
den iiblichen Regelalgorithmen fortgefiihrt werden. Die Zu-
standsdifferentialgleichungen der Regelstrecke lauten jetzt:

Uree
-
I

£ 1
- ’T; S1 "’ "TTy

(16)

640 (A 418)

Mit Hilfe der Follinger-Synthese ergibt sich fiir die endliche
Einstellzeit folgender Verlauf der Stellgrosse:

W)=Ayoa(t) +Ayro(t —Ta) + Ay20(t —2Th)

mit
e 13
. (/t2510 _,ll1~>2())
T e =1 w1
_ m+1 ﬂ2+1)
Ayl_m—,uz (Ezo =1 &10 =t an
_ 1 ( 10 a0 )
Ayz_ﬂl-—,uz m—1 n2—1

wobei u1 = eTa/T; und pus = eTa/Tz,

An den Gln. (17) zeigt sich nun ein besonderes Merkmal der
Follinger-Synthese. Im Zeitpunkt # = 0 sind soviele Anfangs-
werte &io zu bestimmen, wie der der Ordnung der Regelstrecke
entsprechen, im Fall der Regelstrecke zweiter Ordnung also
die Anfangswerte &10 und £20. Diese hingen mit dem Anfangs-
wert xo der Regelgrosse x und ihrer Ableitung xo im Zeitpunkt
t = 0 wie folgt zusammen:

£10 = xo0 -+ T2 xo0

(18

E20 = x0 + T1x0

Bei einer Regelstrecke zweiter Ordnung muss also im Ab-
tastzeitpunkt ausser dem abgetasteten Wert xo der Regel-
abweichung auch ihre zeitliche Anderung X0 vorliegen. Um
also die Follinger-Synthese realisieren zu kdnnen, muss man
zunichst mindestens die gleiche Anzahl von Abtastwerten der
Regelgrosse innerhalb geniigend kurzer Zeit, aber getrennt
vom Signalrauschen, zur Verfiigung haben, wie der Ordnung
der Regelstrecke entspricht. Das Problem der Bestimmung der
Anfangswerte unter den Erschwerungen, die die tatsdchlichen
ProzeBsignale verursachen, durfte zum Angelpunkt der
Syntheseverfahren fiir die Regelung mit endlicher Einstellzeit
werden.

Es interessiert schliesslich auch, wie eine Proportional-
Integral-Abtastregelung im Vergleich zum Follinger-Algo-
rithmus wirkt. Geht man vom Algorithmus:

Ayn= K1 (en—€n41)+ Kz en (19)
aus [vgl. Gl. (5)] und soll x (¢ =2T4a) = 0 werden und ausser-
dem die Stellgrésse fiir £ = 274 Null sein, so erhilt man:

Ayo= — Ta x0 K1 — Kz xo
Ayr = K1 (xo — x1) — Ko x1
(20)
Ays = Ky x1
Ayo+ Ayi + Ay2 =0
wobei gesetzt wurde
° X0 — X1
X0 = ————TA

was je nach der Grosse von Ta in gewisser Nédherung giiltig ist.
Unter den angegebenen Voraussetzungen erhdlt man nach
Eliminieren von A yo, Ay1 und Ay fiir K1 oder K2 ein Polynom
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Fig. 5
Zeitlicher Verlauf der Stellgrosse und Regelgrosse bei einer Regelstrecke
zweiter Ordnung
Optimale Abtastregelung auf Grund der Follinger-Synthese und Ab-
tastregelung mit PI-Algorithmus

dritten Grades, wobei man die Anfangs- und Endbedingungen
fir den Verlauf der Regelgrosse in jedem Abtastzeitpunkt
anpassen muss.

Unter den Voraussetzungen xo =0 und % =T = Ta

wurde fiir eine Regelstrecke zweiter Ordnung ein Beispiel fiir
die Regelung nach Féllinger und die beschriebene PI-Regelung
numerisch berechnet (Fig. 5). Bei der Abtastregelung nach
Féllinger ergibt sich die gewiinschte endliche Ausregelzeit
t = 2 Ta. Bei der PI-Abtastregelung ist zwar im Zeitpunkt
t = 2 Ta die Regelgrosse Null, nicht jedoch deren Ableitung
nach der Zeit, so dass sich ein deutliches Uberschwingen der
Regelgrosse ergibt. Mit dem PI-Algorithmus kann demnach
bei der Regelstrecke zweiter Ordnung keine endliche Ausregel-
zeit realisiert werden, sicher also auch nicht bei Regelstrecken
hoherer Ordnungen. Ein Algorithmus mit endlicher Ausregel-
zeit miisste nach fritheren Ausfiihrungen [vgl. Gln. (6) bis (12)]
die formale Gestalt haben:

@n

Yn+aiyn-1=boen+ bren-1 -+ baen-2

Dieser Ansatz ist allgemeiner als Gl. (19) (vgl. Beispiel fiir
eine Regelstrecke zweiter Ordnung unter Literaturhinweis [1]).

6. Schlusshemerkungen

Hiufig wird aus informationstheoretischer Sicht die Frage
gestellt, ob nicht wegen des bei Rechnerregelung notwendigen
Abtastens und des damit verbundenen Informationsverlustes
diese Regelung grundsitzlich schlechter sein miisse als stetige
Regelungen. Schon das einfache Beispiel nach Fig. 4 zeigt, dass
diese Art der Argumentation die Eigenschaften eines Rechner-
regelsystems nicht richtig wiedergibt. Dass sich bei der Rech-
nerregelung der im Zeitpunkt 7 = 0 berechnete und eingestellte
Wert der Stellgrosse nicht wie bei der stetigen Regelung mit
kleiner werdender Regelabweichung verkleinert, kann sich zum
Vorteil der Rechnerregelung auswirken, fiir die die vorhan-
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dene Information ausreicht. In dem erldauterten Beispiel der
Regelstrecke erster Ordnung ist im Abtastzeitpunkt ¢ = Ta
die Regelabweichung Null. Da bei der Rechnerregelung prak-
tisch sprunghafte Anderungen der Stellgrosse realisiert werden,
ist bei einer Regelstrecke erster Ordnung ein Knick im Verlauf
der Regelgrosse und damit die pldtzliche Beendigung des
Regelvorganges moglich.

Die Ausfithrungen der vorangehenden Abschnitte tiber die
Synthese von Regelalgorithmen kann man dahingehend zu-
sammenfassen, dass Regelalgorithmen fiir endliche Ausregel-
zeiten in der Form nach Leonhard direkter anwendbar sind als
in der Form nach Follinger. Bei dieser ist nimlich nicht defi-
niert, wie bei der praktischen Anwendung die Anfangsbedin-
gungen aus den Abtastwerten der Regelgrosse zu bestimmen
sind. Die numerischen Approximationen der tiblichen ana-
logen Regelalgorithmen mit konstanten Werten der Regel-
parameter ermoglichen nur bei Regelstrecken erster Ordnung
eine endliche Ausregelzeit (von genau einem Abtastintervall).

Dass die Synthese von Regelalgorithmen fiir endliche Aus-
regelzeiten die genaue Kenntnis des dynamischen Verhaltens
der Regelstrecke zur Voraussetzung hat, diirfte in Fachkreisen
hinlidnglich bekannt sein. Keine Beachtung wurde hingegen
bislang der Aufgabe geschenkt, aus den in der Regel verrausch-
ten ProzeBsignalen die Werte der Regelgrossen und gegebenen-
falls deren zeitlichen Ableitungen so genau zu bestimmen, dass
die Synthese von Algorithmen fiir endliche Ausregelzeiten
iiberhaupt Sinn hat. Man kann umgekehrt dieses Problem
auch so formulieren, dass man einen Algorithmus sucht, der
eine endliche Ausregelzeit ergibt, wenn gleichzeitig aus einem
verrauschten ProzeB3signal durch einen Filteralgorithmus die
Regelgrosse herausgefiltert wird. Schliesslich wire auch eine
Untersuchung interessant, die zeigen wiirde, wie sich beispiels-
weise der Leonhard-Algorithmus bei der Ausregelung von
hdufigen Storungen auswirkt, wobei also eine neue Storung
auftritt, noch ehe die vorangegangene ausgeregelt ist.

Fiur die Realisierung nahezu beliebiger Regelalgorithmen
durch digitale Prozessrechensysteme gibt es kaum technische
Grenzen. Wie eingangs dargelegt wurde, sind die dabei auf-
tretenden Probleme hauptsichlich technisch-wirtschaftlicher
Art. Vor allem die Eingabe und die Ausgabe von ProzeBsigna-
len verursachen grossen Aufwand. Hier sind Fortschritte not-
wendig, im Zuge der raschen Entwicklung der Elektronik aber
auch zu erwarten.

Literatur

[1] W. Leonhard: Zur Anwendung von Digitalrechnern als Abtastregler.
Arch. Elektrotechn. 51(1966)2, S. 75...91.

[2] A.Thompson: Operating experience with digital control. In: Digital
computer applications to process control. Proceedings of the first inter-
national conference held september 21...23 in Stockholm sponsored by
the IFAC/IFIP. New York, Plenum Press, 1965, p. 55...88.

[3] O. Winkler: Erfahrungen mit Prozessrechner. Chemie-Ingenieur-Technik
40(1968)14, S. 683...689.

[4a] A. Schone: Zum technischen Stand der direkten digitalen Regelung.
Regelungstechnik 15(1967)7, S. 297...303.

[4b] A. Schone: Prozessrechensysteme der Verfahrensindustrie. Miinchen,
Carl Hanser Verlag, 1969.

[5]1 K.W. Goff: Dynamics in direct digital control. II: A systematic ap-
proach to DDC-design. ISA Journal 13(1966)12, p. 44...54.

[6] J.B. Cox a.o.: A practical spectrum of DDC chemical-process control
algorithms. ISA Journal 13(1966)10, p. 65...72.

[7] O. Féllinger: Synthese von Mehrfachregelungen mit endlicher Einstell-
zeit. Ein Vorschlag fiir den Einsatz der direkten digitalen Regelung
(DDC). Regelungstechnik 16(1968)10, S. 449...454.

Adresse des Autors:

]b)r.-Ihng. A. Schone, Albertus Magnus-Strasse 19, D-5090 Leverkusen-Schle-
usch.

(A 419) 641



	Technische Voraussetzungen für die Anwendung der direkten digitalen Regelung und die Synthese von Regelalgorithmen

