Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 60 (1969)

Heft: 14

Artikel: Hochleistungsübertragung über grosse Entfernungen mit Mikrowellen

Autor: Paul, H.

DOI: https://doi.org/10.5169/seals-916162

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Hochleistungsübertragung über grosse Entfernungen mit Mikrowellen 1)

Von *H. Paul*, Baden

621.391.6.029.63 : 621.372.8

1. Einleitung

Der Verbrauch von elektrischer Energie ist auf der ganzen Erde ständig im Steigen, wobei der Zuwachs seit 50 Jahren fast konstant 7% pro Jahr ist, was einer Verdoppelung des Verbrauchs pro 10 Jahre entspricht. Hatte man anfänglich nur die in der Nähe der Verbrauchszentren liegenden Energieträger ausgenützt und damit nur ganz kleine Übertragungsdistanzen benötigt, so musste man im Laufe der Zeit auf die entfernteren Quellen zurückgreifen und damit wachsende Leitungslängen in Kauf nehmen. In näherer Zukunft wird es möglich sein, dass für die Versorgung einer Millionen-Stadt Leistungen von mehreren Gigawatt über 1000 km transportiert werden müssen. Bei klassischer Wechselstrom-Höchstspannungsübertragung kommt man so zu Übertragungsspannungen, welche über die 750-kV-Grenze hinausgehen, und wegen der dann auftretenden technischen Schwierigkeiten sucht man nun nach neuen Wegen. Als solche sind vorgeschlagen:

1. Hochspannungsgleichstromübertragung mit $U=\pm 400~\mathrm{kV}$ gegen Erde (HGÜ).

2. Supraleitende Kabel mit Stromstärken von 100 kA und Stromdichten von 20 kA/cm² bei U=40 kV (SLÜ).

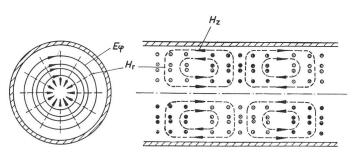
3. Mikrowellenleitungen mit überdimensionierten Rundhohlleitern und H₀₁-Wellen bei 3 bis 10 GHz (MWÜ).

Allen drei Vorschlägen ist gemeinsam, dass sie neue Wege gehen, eine neue Technik und ein neues technisches Denken verlangen. Sie haben nach unserem heutigen Wissen und Können jeder nach seiner Art Lichtseiten — aber auch Schattenseiten. Letztere dort, wo die notwendige neue Technik entweder noch nicht da ist oder erst in den Kinderschuhen steckt.

Im Folgenden soll die Möglichkeit der Übertragung grösster Leistungen über grosse Distanzen mit Mikrowellenleitungen gezeigt werden. Um jedoch eine Vergleichsmöglichkeit mit einem anderen Vorschlag zu bieten, sei auch das supraleitende Kabel in den Kreis der Betrachtungen hineingezogen [1; 2; 3; 30; 32; 33; 34]²).

2. Der Rundhohlleiter als Übertragungsleitung

2.1 Wellentypen, Dämpfung und übertragbare Leistung


Die Eignung des runden Hohlleiters als Übertragungsleitung beruht auf der bekannten Tatsache, dass bei H_{01} -Wellen

die Dämpfung mit zunehmender Frequenz und steigendem Rohrhalbmesser a monoton abfällt.

Die H_{01} -Wellen sind gekennzeichnet durch das alleinige Auftreten der φ -Komponente des E-Feldes und der z- und r-Komponente des H-Feldes wie es Fig. 1 zeigt.

Die Grenzwellenlänge ist

$$\lambda_{\rm gr} = \frac{2 \pi a}{3,83} = 1,64 a \tag{1}$$

 ${\bf Fig.~1} \\ {\bf Das~Feldlinienbild~der}~ {\cal H}_{01} \hbox{-Welle~im~Rundhohlleiter} \\$

— Elektrische Feldstärke *E*— magnetische Feldstärke *H*

$$egin{aligned} H_{
m z} &= H_0 \cdot J_0 \left(j_{01}' rac{r}{a}
ight) \ H_{
m r} &= H_0 rac{\lambda_{
m gr}}{\varLambda} \cdot J_0' \left(j_{01}' rac{r}{a}
ight) \ H_{
m \phi} &= 0 \ E_{
m z} &= 0 \qquad Z_{
m F_H} = rac{\varLambda}{{\lambda_0}} Z_0 \quad j_{01}' = 3{,}83 \ E_{
m r} &= 0 \ E_{
m \phi} &= H_0 \ Z_0 \cdot rac{\lambda_{
m gr}}{{\lambda_0}} \cdot J_0' \left(j_{01}' rac{r}{a}
ight) = H_{
m r} Z_{
m F_H} \end{aligned}$$

 j_{01}' Erste Nullstelle der Besselfunktion J'(x); r Abstand von der Achse des Hohlleiters; a Halbmesser des Rundhohlleiters; E_r Radialkomponente der elektrischen Feldstärke; E_z Achsialkomponente der elektrischen Feldstärke; E_{Φ} Azimuthalkomponente der elektrischen Feldstärke; H_r Radialkomponente der magnetischen Feldstärke; H_r Achsialkomponente der magnetischen Feldstärke; H_r Maximalwert von H_r für r=0; H_r Azimuthalkomponente der magnetischen Feldstärke; H_r Besselfunktion nullter Ordnung; H_r Ableitung der Besselfunktion nullter Ordnung; H_r Feldwellenwiderstand des Hohlleiters für die H-Welle; H_r Wellenwiderstand des freien Raumes; H_r Grenzwellenlänge des Hohlleiters; H_r Vakuum-Wellenlänge; H_r Hohlleiter-Wellenlänge

¹) Vortrag, gehalten am 11. Dezember 1968 im Rahmen der Physikalischen Kolloquien der Universität Bern und des IEEE.

²⁾ Siehe Literatur am Schluss des Aufsatzes.

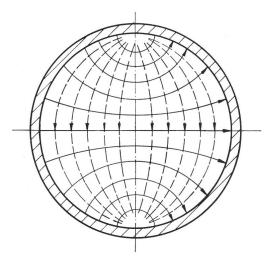


Fig. 2 Die H_{11} -Welle im Rundhohlleiter

$$\begin{split} H_{\rm z} &= H_1 \cdot J_1 \left(j_{11}' \cdot \frac{r}{a} \right) \cos \varphi \\ H_{\rm r} &= H_1 \cdot \frac{\lambda_{\rm gr}}{A} \cdot J_1' \left(j_{11}' \frac{r}{a} \right) \cos \varphi \\ H_{\rm \phi} &= H_1 \cdot \frac{\lambda_{\rm gr}}{A} \cdot \frac{a}{j_{11}' r} \cdot J_1 \left(j_{11}' \cdot \frac{r}{a} \right) \sin \varphi \\ E_{\rm z} &= 0 \qquad Z_{\rm F_H} &= Z_0 \frac{A}{\lambda_0} \qquad j_{11}' = 1,84 \\ E_{\rm r} &= H_1 Z_0 \cdot \frac{\lambda_{\rm gr}}{\lambda_0} \cdot \frac{a}{j_{11}'} \cdot \frac{1}{r} \cdot J_1 \left(j_{11}' \frac{r}{a} \right) \sin \varphi = H_{\rm \phi} Z_{\rm F} \\ E_{\rm \phi} &= H_1 Z_0 \cdot \frac{\lambda_{\rm gr}}{\lambda_0} \cdot J_1' \left(j_{11}' \cdot \frac{r}{a} \right) \cos \varphi = H_{\rm r} Z_{\rm F} \end{split}$$

 j_{11}' Erste Nullstelle der Ableitung der Besselfunktion $J_1'(x)$; H_1 Maximalwert von H_z für r=a und $\varphi=0$; J_1 Besselfunktion erster Ordnung; J_1' Ableitung der Besselfunktion erster Ordnung; φ Polarwinkel des Zylinderkoordinatensystems im Hohlleiter

Weitere Bezeichnungen siehe Fig. 1

die Hohlleiterwellenlänge

$$A = \frac{\lambda_0}{\sqrt{1 - \left(\frac{\lambda_0}{\lambda_{\rm gr}}\right)^2}} \tag{2}$$

Der nächst höhere H-Wellentyp ist die H_{11} -Welle, mit

$$\lambda_{\rm gr} = 3.4 a$$

den Fig. 2 zeigt. Er ist gekennzeichnet durch das Verschwinden von E_z allein, die übrigen Feldkomponenten sind in Fig. 2 angegeben. Da die Grenzwellenlänge der H_{11} -Welle grösser ist als die der H_{01} -Welle, ist die Existenz der H_{11} - neben der H_{01} -Welle immer möglich. Beide Wellentypen unterscheiden sich aber ganz grundsätzlich durch das völlige Fehlen der z-Komponente des Wandstromes bei H_{01} -Wellen im Gegensatz zu der durch H_{φ} gegebenen Längsstromkomponente I_z bei den H_{11} -Wellen.

Als dritter wichtiger Wellentyp sei noch die E_{11} -Welle gezeigt (Fig. 3), bei welcher $H_{\rm z}$ stets Null ist. Sie ist also eine transversal-magnetische oder TM-Welle. Da $j_{11}=j_{01}{}'=3,83$ ist, hat die E_{11} -Welle die gleiche Grenzwellenlänge $\lambda_{\rm gr~E11}=1,64$ a wie die H_{01} -Welle und damit auch die gleiche Phasengeschwindigkeit

$$v_{\rm ph} = c \frac{\Lambda}{\lambda_0}$$

Dagegen sind die beiden Feldwellenwiderstände Z_{F} verschieden

$$Z_{\mathrm{F_H}} = Z_0 rac{arLambda}{\lambda_0} > Z_0$$

$$Z_{ ext{F}_{ ext{E}}} = Z_0 rac{\lambda_0}{4} < Z_0$$

Die besondere Eignung des Rundhohlleiters mit der H_{01} -Welle als Übertragungsleitung ergibt sich aus dem Dämpfungsverhalten in Abhängigkeit von der Frequenz f und dem Rohrhalbmesser a. Dieses erhält man aus:

 $\alpha = \frac{1}{2} \cdot \frac{P_{\rm v}}{P_{\rm tr}}$

mit

$$P_{
m v}=rac{1}{2}\,R_{
m f}\int\limits_{0}^{2\pi}\left|H_{
m z}^2
ight|_{
m r=a}a\,d\,arphi$$
 $R_{
m f}=\sqrt{rac{\pi\,\mu f}{\kappa}}$

und

$$P_{
m tr} = rac{1}{2} \int \limits_0^{2\pi} \int \limits_0^{
m a} H_{
m r} \, E_{arphi} \, r \, \mathrm{d} \, r \cdot \mathrm{d} \, arphi$$

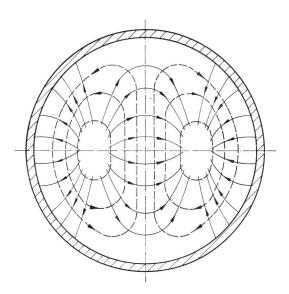


Fig. 3 Die Feldlinien der E_{11} -Welle im runden Hohlleiter

$$\begin{split} E_{\rm z} &= E_1 \, J_1 \left(j_{11} \, \frac{r}{a} \right) \cos \varphi \\ E_{\rm r} &= E_1 \, \frac{\lambda_{\rm gr}}{A} \, J_1' \left(j_{11} \, \frac{r}{a} \right) \cos \varphi \\ E_{\rm \phi} &= E_1 \cdot \frac{\lambda_{\rm gr}}{A} \cdot \frac{a}{j_{11}} \cdot \frac{1}{r} \, J_1 \left(j_{11} \, \frac{r}{a} \right) \sin \varphi \\ H_{\rm z} &= 0 \qquad Z_{\rm FE} &= Z_0 \, \frac{\lambda_0}{A} \qquad j_{11} = 3,83 \\ H_{\rm r} &= \frac{E_1}{Z_0} \cdot \frac{\lambda_{\rm gr}}{\lambda_0} \cdot \frac{a}{j_{11}} \cdot \frac{1}{r} \cdot J_1 \left(j_{11} \cdot \frac{r}{a} \right) \sin \varphi = \frac{E_{\rm \phi}}{Z_{\rm F}} \\ H_{\rm \phi} &= \frac{E_1}{Z_0} \cdot \frac{\lambda_{\rm gr}}{\lambda_0} \, J_1' \left(j_{11} \cdot \frac{r}{a} \right) \cos \varphi = \frac{E_{\rm r}}{Z_{\rm F}} \end{split}$$

 E_1 Maximalwert von E_z für r=0,48 a und $\varphi=0$; J_1' Ableitung der ersten Besselfunktion; $Z_{\rm FE}$ Feldwellenwiderstand des Hohlleiters für die E-Welle

Weitere Bezeichnungen siehe Fig. 1 und 2

Fig. 4

Dämpfung und max. Leistung $P_{\rm tr}$ in Abhängigkeit vom Halbmesser a des Rundhohlleiters

α Dämpfung der H₀₁-Welle in dB/km

zu

$$\alpha_{\rm H_{01}} = \frac{R_{\rm f}}{a\,Z_0} \cdot \frac{\lambda_0\,\varLambda}{\lambda_{\rm gr}^2} \qquad N/m \qquad (3)$$

Wenn $a \gg \lambda_0$ ist, wird:

$$1 \approx \lambda$$

und somit

$$\alpha_{\rm H_{01}} \rightarrow \frac{R_{\rm f}}{a Z_0} \left(\frac{\lambda_0}{\lambda_{\rm gr}}\right)^2 N/m$$

bzw. mit

$$\lambda_{
m gr} = 1{,}64~a~{
m und}~\kappa = 5{,}8\cdot 10^7$$
 S/m für Cu

$$\alpha_{\rm H_{01}} \approx \frac{20, 2 \cdot 10^7}{a^3 \sqrt{f^3}} \qquad \text{dB/m} \qquad (4)$$

Mit zunehmender Betriebsfrequenz f oder wachsendem Rohrhalbmesser a wird die Dämpfung immer kleiner.

Dieses erstaunliche Verhalten tritt nur bei H_{0n} -Wellen auf, da nur bei diesen die z-Komponente des Wandstromes immer verschwindet.

Dagegen ist für die H_{11} -Wellen bei $a/\lambda_0 \gg 1$

$$\alpha_{\rm H_{11}} \to 25,2 \cdot 10^{-10} \frac{\sqrt{f}}{a}$$
 dB/m

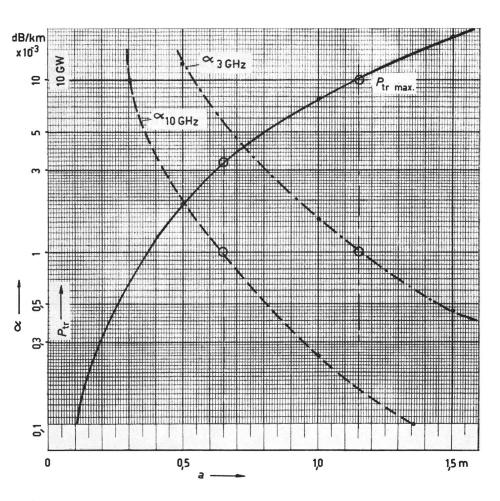
und bei E_{11} -Wellen:

$$\alpha_{\rm E_{11}} \to 60,2 \cdot 10^{-10} \, \frac{\sqrt{f}}{a}$$
 dB/m

Wegen dieses Dämpfungsverhaltens ist die H_{01} -Welle im Rundhohlleiter grundsätzlich für die Fernübertragung von elektrischer Energie geeignet. Es ist aber noch die Leistungskapazität zu untersuchen.

Diese ergibt sich aus der höchstzulässigen elektrischen Feldstärke $E_{\phi max}$ im Querschnitt. Diese tritt auf für:

$$h r_{\rm m} = j'_{01} = 1,84$$


$$r_{\rm m} = 0.48 \ a$$

Lässt man an dieser Stelle einen Höchstwert von $E_{\varphi \max} = 2 \cdot 10^6 \text{ V/m zu}$, so wird

$$P_{\rm tr\,m\,ax} = 8\,a^2 \qquad \qquad \text{GW} \qquad (5)$$

In Fig. 4 ist die maximale übertragbare Leistung $P_{\rm tr}$ und die Dämpfung α pro km Leitungslänge für die Übertragungsfrequenzen f=3 GHz, $\lambda_0=10$ cm und f=10 GHz, $\lambda_0=3$ cm in Abhängigkeit vom Rohrhalbmesser a dargestellt.

Will man also eine Leistung von 4 GW über 1000 km mit gleichen Verlusten wie auf einer 50-Hz-Höchstspannungsleitung übertragen nämlich mit $\alpha \approx 1$ dB/1000 km, so muss man bei f=3 GHz einen Rohrhalbmesser von a=1,15 m nehmen; man könnte dabei auch bis maximal 10,6 GW gehen. Bei $P_{\rm tr}=4$ GW wird $E_{\rm \phi m\, ax}=1,23\cdot 10^6$ V/m.

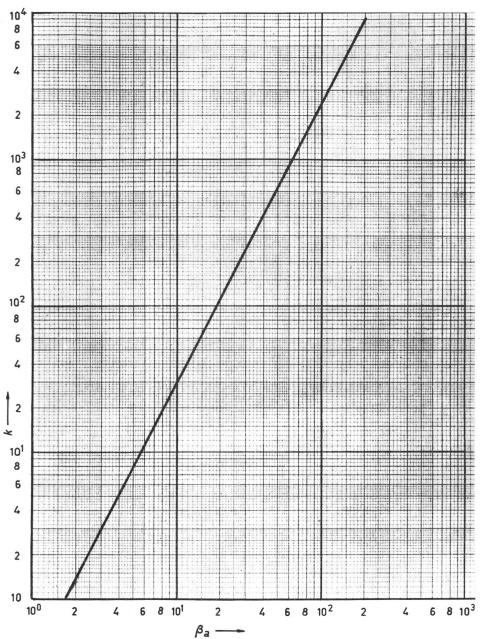
Für f = 10 GHz wäre ein Rohr von a = 0,65 m zu nehmen, jedoch wäre dann die maximale Leistung nur noch 3,4 GW.

2.2 Wellentypumwandlungen und deren Verhinderung

Die ausserordentlich kleine Leitungsdämpfung erkauft man sich mit dem extrem grossen a/λ_0 -Verhältnis, wodurch natürlich auch für höhere Wellentypen eine Existenzmöglichkeit besteht. Bei sehr grossem a/λ_0 wird die Zahl der Wellentypen enorm gross, wie das Fig. 5 zeigt. Für das angegebene $a/\lambda_0=115/10=11,5$ ist z. B. k=1400 und für den Betrieb bei 10 GHz wird sogar $k\approx 4600$ [4].

Glücklicherweise treten die meisten dieser Wellen nicht auf, da bei einem Rohr mit reinem Kreisquerschnitt ihre Anregung kaum möglich ist.

Treten aber Geometriestörungen wie Krümmung der Zylinderachse oder elliptische Deformation auf, so sind diese meist von niederem Grade und es werden daher auch nur Wellentypen niederer Ordnung angeregt, H_{02} , H_{03} , H_{11} , H_{12} , E_{11} .


Betrachtet man die Ausbreitung verschiedener Wellentypen im Hohlleiter nach Gesichtspunkten der Leitungstheorie, so muss man die Phasengeschwindigkeit $v_{\rm ph}$ und den Feldwellenwiderstand $Z_{\rm F}$ und deren Zusammenhang mit den Dimensionen a/λ_0 mit heranziehen. Nun ist ja:

$$v_{\rm ph} = c \frac{\Lambda}{\lambda_0}, \quad Z_{\rm F_H} = Z_0 \frac{\Lambda}{\lambda_0}, \quad Z_{\rm F_E} = Z_0 \frac{\lambda_0}{\Lambda}$$
 (6)

und

$$\varLambda = \frac{\lambda_0}{\sqrt{1 - \left(\frac{j_{\min} \lambda_0}{2 \pi a}\right)^2}}$$

wobei in j_{mn} der Wellentyp steckt. Man kann also für die H_{01} -Welle den Hohlleiter als eine Leitung L_{01} mit dem Wellen-

widerstand $Z_{\rm F\,01}$ ansehen, auf welcher die H_{01} -Welle mit der Phasengeschwindigkeit $v_{\rm H\,01}$ läuft [5]. Wird nun durch irgendeine Geometriestörung ein anderer Wellentyp angeregt, so kann man annehmen, dass diese Störwelle z. B. $E_{\rm m,n}$ durch einen an der Stelle der Störung sitzenden Kopplungstransformator κ auf eine zu L_{01} parallel laufende Leitung $L_{\rm m,n}$ geleitet wird, wo sie mit der Phasengeschwindigkeit $v_{\rm m,n}$ weiterläuft (Fig. 6). Sie wird längs dieser Leitung gemäss der Dämpfung $\alpha_{\rm m,n}$ auch abgeschwächt. (Tritt nach Durchlaufen einer bestimmten Leitungslänge wieder eine Störung κ auf, welche eine Rückumwandlung in die H_{01} -Welle erzeugt, so kann nun vom zweiten Störungspunkt ab wieder eine einzige H_{01} -Welle auf der Leitung L_{01} weiterlaufen.)

Man kann nun für diese beiden gekoppelten Wellen E_1 und E_2 zwei Differentialgleichungen aufstellen:

$$\frac{d E_{1}}{d z} + \gamma_{1} E_{1} - j \kappa E_{2} = 0$$

$$\frac{d E_{2}}{d z} + \gamma_{2} E_{2} - j \kappa E_{1} = 0$$
(7)

Fig. 5

Anzahl k der möglichen Wellentypen in Abhängigkeit von $\beta_a = \frac{2\pi_a}{\lambda_a}$

k Anzahl aller Nullstellen der Besselfunktionen $J_{\mathrm{m, n}}(x)$ zwischen x=0 und $x=\beta_a;\ \beta_a$ auf die Vakuum-Wellenlänge λ_0 bezogener relativer Halbmesser des Rundhohlleiters

deren Lösungen E_1 , E_2 bzw. — bei Beachtung der Randbedingungen — die Zusatzdämpfung $\Delta\alpha$ infolge Aus-(und evtl. Ein-)kopplung der Störwelle ergeben:

$$\Delta \alpha_{\kappa} = \frac{\kappa^2}{\Delta \beta^2} (\alpha_2 - \alpha_{01})$$
 N/m (8)

 α_2 ist die Dämpfung der $E_{\rm m,\,n}$ -Welle, α_{01} die Dämpfung der H_{01} -Welle in der ungestörten Leitung, $\Delta\beta=\beta_2$ — β_{01} ist der Phasenkonstantenunterschied in beiden Leitungen [6; 7].

Diese Zusatzbedämpfung der H_{01} -Welle ist für die Nachrichtenübertragung im Hohlkabel ohne Bedeutung, dagegen ist die Bedämpfung der unerwünschten Störwelle $E_{m,n}$ nur allzu erwünscht, denn bei einer etwaigen Rückumwandlung ergeben sich infolge der verschiedenen Phasengeschwindigkeiten der beiden Wellen völlig falsche Modulationsverhältnisse, also Signalverzerrungen. Es ist daher für die Nachrichtenübermittlung absolut nötig, die Störwelle, wenn sie schon unvermeidlich ist, baldigst totzudämpfen.

Ganz anders liegen die Verhältnisse bei der Leistungsübertragung. Hier

kommt es nur auf die Vermeidung von Zusatzdämpfungen an, da jedes Zehntel Dezibel viel Geld kostet. Hat eine Geometriestörung zum Entstehen einer anderen Welle geführt, sollte man in diesem Falle sogar sehen, ob man sie nicht wieder rückgewinnen könnte [8].

Allen so entstehenden «Stör»-Wellentypen ist gemeinsam, dass sie eine z-Komponente des Wandstrombelages haben, welche bei der H_{01} -Welle nicht existiert. Macht man also die Leitfähigkeit des Hohlleitermantels in z-Richtung sehr klein und lässt sie in φ -Richtung sehr gross, so werden alle Wellentypen mit H_{φ} -Komponenten stark unterdrückt. Anstelle des homogenen Kupferzylinders als Hohlkabelmantel nimmt man somit lauter voneinander isolierte Cu-Ringe und kommt so zum «Scheibenmantel-Hohlleiter» (Fig. 7). Für Zwecke der Nachrichtenübermittlung bei $\lambda_0 = 8,6...5$ mm sind solche Leiter als «Wendelhohlleiter» heute bereits käuflich zu erhalten [11; 12; 13].

Die Umwandlung von der H_{01} -Welle in die E_{11} -Welle ist natürlich besonders leicht möglich aber sehr unerwünscht, weil beide Wellentypen gleiche Phasengeschwindigkeit haben

 $(j'_{01} = j_{11} = 3,83)$. Man kann aber leicht eine Trennung beider Typen mit einem dielektrischen Wandbelag erreichen [14; 7].

Die elektrischen Feldlinien der E_{11} -Welle enden zum grossen Teil senkrecht auf der metallischen Hülle, während die der H_{01} -Welle weitab vom Aussenmantel verlaufen. Eine dielektrische Schicht auf der Innenseite des Mantels wird also die H_{01} -Welle kaum beeinflussen, die E_{11} -Welle dagegen stark. Zugleich werden auch alle anderen Wellentypen vom $\varepsilon_{\rm r}$ des dielektrischen Belages bezüglich der Hohlleiterwellenlänge Λ bzw. der Phasengeschwindigkeit $v_{\rm ph}$ betroffen. Bezeichnet man die relative Schichtdicke bezogen auf den Rohrhalbmesser a mit δ und ist die Dielektrizitätskonstante der Schicht $\varepsilon_{\rm r}=\varepsilon'-{\rm j}~\varepsilon''$, so ist für

$$H_{0\mathrm{n}}$$
-Wellen: $\frac{\Delta \beta}{\beta_{0\mathrm{n}}} pprox \frac{j_{0\mathrm{n}}^{\prime 2}}{3} \left(\varepsilon' - 1 \right) \delta^3$

$$H_{
m mn}$$
-Wellen: $rac{\Delta\,eta}{eta_{
m mn}} pprox rac{m^2}{j_{
m mn}^{\prime 2} - m^2} \cdot rac{arepsilon^\prime - 1}{arepsilon^\prime}\,\delta$

$$E_{
m mn}$$
-Wellen: $rac{\Delta\,eta}{eta_{
m mn}} pprox rac{arepsilon'-1}{arepsilon'}\,\delta$

Für kleine Schichtdicken δ ist also der Einfluss von ε' auf die Phasenkonstante

$$\frac{2\pi}{\Lambda\varepsilon} = \frac{2\pi}{\Lambda}(1+\Delta\beta)$$

wegen der dritten Potenz von δ sehr klein (δ liegt in der Grössenordnung 10^{-2}) bei den H_{0n} -Wellen.

Für die anderen Wellentypen wird die Phasengeschwindigkeit $v_{\rm ph}$ bzw. die Hohlleiterwellenlänge \varLambda durch den dielektrischen Belag verkleinert, so dass insbesondere eine Trennung der E_{11} -Welle von der H_{01} -Welle erfolgt.

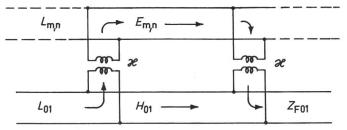


Fig. 6

Das Leitungsersatzbild für die Berechnung der Zusatzdämpfung

durch unerwünschte Wellentypen

 $E_{
m m,n}$ unerwünschte Störwelle; $L_{
m m,n}$ gedachte Leitung für die Störwelle; L_{01} Leitung für die H_{01} -Welle; $Z_{
m F01}$ Wellenwiderstand der Leitung L_{01} ; κ Kopplungsfaktor für die Störwelle $E_{
m m,n}$

2.3 Dämpfungserhöhung durch den dielektrischen Belag Mit Änderung $\Delta\beta$ der Phasenkonstante ist natürlich auch eine Dämpfung verbunden, wenn $\varepsilon_{\rm r}=\varepsilon'-j\,\varepsilon''$ komplex ist. Diese dielektrische Zusatzdämpfung ist für grosse a/λ_0 :

bei
$$H_{0n}$$
-Wellen: $\frac{\alpha_{\varepsilon}}{\beta_{0n}} \approx \frac{j_{0n}^{\prime 2}}{3} \varepsilon'' \delta^3$ (9)

bei
$$H_{\rm m,\,n}$$
-Wellen: $\frac{\alpha_{\rm E}}{\beta_{\rm m,\,n}} \approx \frac{m^2}{j_{\rm mn}'^2 - m^2} \cdot \frac{\varepsilon''}{\varepsilon'^2} \delta$ (10)

und bei *E*-Wellen:
$$\frac{\alpha_{\varepsilon}}{\beta_{\rm mn}} \approx \frac{\varepsilon''}{\varepsilon'^2} \delta$$
 (11)

Auch hier ist der Einfluss einer dünnen dielektrischen Schicht wegen der dritten Potenz von δ bei H_{0n} -Wellen klein gegenüber den anderen Wellentypen.

Das Einbringen des dielektrischen Wandbelages hat auch eine Erhöhung der Wandverluste der H_{01} -Welle zur Folge,

Berechnete Werte von κ bzw. σ

Tabelle I

Ursache der Störung	Geometrie der Störung	Störende Komponente	Störwellentyp	Kopplungsfaktor
Verlegungs- toleranzen	Beabsichtigt: Bogen		E_{11}	$\sigma = \frac{\beta_0 a}{\sqrt{2} \cdot j_{01}' \cdot R}$
		Krümmungs- radius R	H_{11} $\sigma=rac{0.036a\cdot\sqrt{eta_{01}eta_{11}}}{R}$	
1	Unbeabsichtigt: Durchhang		H_{12}	$\sigma = 0.1 \frac{a}{R} \sqrt{\beta_{01} \cdot \beta_{12}}$
Rohr- toleranzen	Elliptische Deformation	Exzentrizität e	H_{21}	$\sigma = rac{j_{01}'j_{21}'^2}{\sqrt{j_{01}'^2-4}} \cdot rac{rac{e}{a^2}}{\sqrt{eta_{01}eta_{21}}}$
	Durchmesser- sprünge	$\delta_{ m a}$	H_{02}	$\kappa = rac{2j_{01}'j_{02}'\delta_{\mathrm{a}}}{(j_{01}'^{2}-j_{02}'^{2})a}$
Flansch- toleranzen	Knicke	_	E_{11}	$\kappa = rac{eta_0 a oldsymbol{\Phi}}{\sqrt{2} \cdot j_{01}'}$
		Φ	$H_{11} \ (H_{12})$	$\kappa = \frac{2\sqrt{2} \cdot j_{01}' j_{11}' \beta_{01} a \Phi}{(j_{01}'^2 - j_{11}'^2)}$
	Versetzte Achsen	d	$H_{11} \ (H_{12})$	$\kappa = rac{\sqrt{2} \cdot j_{01}' j_{11}' d}{(j_{01}'^2 - j_{11}'^2) a}$

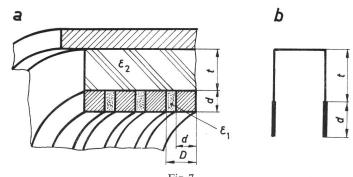


Fig. 7
Wendelhohlleiter mit Abschirmung (a) und Leitungstransformator für Kurzschlußleitung und Ersatzschaltung (b)

d Breite und Höhe der Cu-Ringe der Hohlleiterwandung; t Dicke des Dielektrikums ε_2 ; D Länge eines achsialen Abschnittes der Hohlleiterwandung; ε_1 Dielektrizitätskonstante des Isolators zwischen den Cu-Ringen; ε_2 Dielektrizitätskonstante des verlustbehafteten Dielektrikums zwischen Hohlleiter-Aussenwand und Abschirmung

denn der Rohrdurchmesser wird durch $\sqrt{\epsilon_r}$ scheinbar verkleinert, also $\alpha_{\rm H_{01}}$ um $\Delta\alpha_{\rm M}$ vergrössert. Es ist:

$$\frac{\Delta \alpha_{\rm M}}{\alpha_{\rm H_{01}}} = (\varepsilon' - 1)j_{01}'^2 \left(\frac{\lambda_{\rm gr}}{\lambda_0}\right)^2 \delta^2 \tag{12}$$

wobei $\delta \ll 1$ vorausgesetzt ist.

Da bei der Leistungsübertragung stets $\lambda_{gr} \gg \lambda_0$ ist, kann $\Delta\alpha_M$ einen beträchtlichen Einfluss auf die Gesamtdämpfung erhalten. Wenn für den geraden, völlig ungestörten Hohlleiter

die Dämpfung α_0 ist, so wird diese durch $\alpha_{\rm E}$ und $\Delta\alpha_{\rm M}$ um einen Betrag erhöht, welcher für $\alpha_{\rm E}$ von δ^3 und für $\Delta\alpha_{\rm M}$ von δ^2 abhängt.

In den nachfolgenden Beispielen ist $\alpha_\epsilon+\Delta\alpha_M=0,2$ α_0 gesetzt und danach die Grösse von δ für den geraden Leiter ausgerechnet worden.

2.4 Kopplungskoeffizienten der Störwellen

Bei den verschiedenen möglichen Störungen kann man unterscheiden zwischen punktförmigen Störungen, welche in z-Richtung eine gegen die Wellenlänge kleine Ausdehnung haben, und verteilten Störungen, deren Längenausdehnung gross gegen die Wellenlänge ist. Für die ersteren gilt der Kopplungskoeffizient κ pro Störstelle und für die letzteren rechnet man mit den Kopplungskoeffizienten σ pro Längeneinheit. Man kann weiterhin unterscheiden zwischen Verlegungstoleranzen, Rohrtoleranzen und Flanschtoleranzen. Nach diesen Gesichtspunkten sind in Tabelle I die von verschiedenen Autoren [7; 8; 9; 10] berechneten Werte κ bzw. σ zusammengestellt. (Für die H12-Welle bei den Flanschtoleranzen ist nur j_{11}^\prime durch j_{12}^\prime zu ersetzen.)

Fig. 8
Energiebilanz der Schweiz im Jahre 1951

Roh-Energieträger: A Wasserkraft; B Öl; C Kohle; D Holz; E Wasserkraftwerke; F Wärmekraftwerke; G Gaswerke:

Zwischen-Energieträger: e Elektrizität; g Gas; t Teer und Teerprodukte;

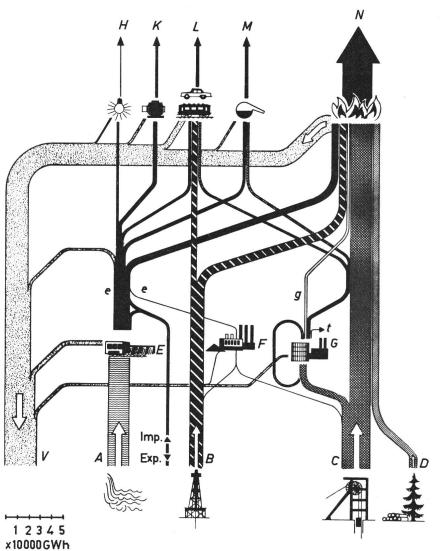
Energie-Verbraucher: H Licht; K stationäre Antriebe; L Traktion; M Chemie; N Wärme; V Verlustenergie

2.5 Statistisch verteilte Störungen

Während man für die bei der Verlegung notwendigen Bogen von vornherein konkrete Angaben machen kann, sind die anderen möglichen Störungen als Montage- oder Fabrikationsfehler zu werten, welche nicht gesetzmässig auftreten, sondern statistisch verteilt sind. *Unger* [15] und *Larsen* [16] haben sich mit der Frage der regellosen Störungen und ihrem Einfluss auf die Signalübertragung im Hohlleiter eingehender beschäftigt. Nimmt man für die Verteilung eine exponentielle Autokorrelationsfunktion mit dem «Leistungs»-Spektrum:

$$\Phi(\Delta\beta) = \overline{\delta^2} \frac{2R}{1 + R^2 \cdot \Delta\beta^2}$$
 (13)

an, worin R die Korrelationsreichweite und δ die Störkomponente ist, so hat man den grössten Einfluss der Störung, wenn $\Delta\beta=1/R$ ist. Dann wird:


$$\Phi\left(\Delta\beta\right) = \frac{\overline{\delta^2}}{\Delta\beta}$$

und Gl. (8) ist dann zu ändern in:

$$\Delta \alpha_{\rm K} = \frac{\kappa^2}{\Delta \beta} (\alpha_2 - \alpha_1)$$
 N/pro Störstelle (8a)

Damit wird der ungünstigste Wert von $\Delta \alpha_K$ erreicht.

Neben beabsichtigten einseitigen Krümmungen mit definiertem R und L muss man auch mit Auftreten von unbeab-

									abene 1
Art der Störung	Wellentyp j _{mn}	Kopplungsfaktor σ bzw. κ	$\Delta \beta$ rad/m	Schwebungs-länge λ_{Δ} m	Zusatzdämpfung a_z pro Störung	L bzw.	$a_{\sigma} = a_{z} L$ $a_{\kappa} = a_{z} n$ Np	Σa_{σ} Σa_{κ} Np	$a_{ m tot}$
	$E_{11} \\ j_{11} = 3,83$	$\frac{\beta_0 a}{\sqrt{2} \cdot j'_{01} R} = 1,68 \cdot 10^{-2}$	0,366	17,15	0,117 · 10 ⁻⁶ Np/m	750	0,003 42	$\Sigma a_{f \sigma} = 0,00922$	
	$H_{11} \\ j'_{11} = 1,84$	$\frac{0,036 a \sqrt{\beta_{01} \beta_{11}}}{R} = 0,326 \cdot 10^{-2}$	0,0532	118,2	0,0877 · 10 ⁻⁶ Np/m	500 + 11 250 m	0,002 56		
	$ \begin{array}{c} H_{12} \\ j'_{12} = 5,33 \end{array} $	$\frac{0.1 a \sqrt{\beta_{01} \beta_{12}}}{R} = 0.908 \cdot 10^{-2}$	0,0653	96,3	0,0388 · 10 ⁻⁶ Np/m	L = 17 = 29	0,001 14		$a_{\rm tot} = 1,0988 \text{ dB}$ $A_{\rm K} = 1,285$ $\eta = 0.78 = 78 \%$
Elliptische Deformation $e = 10^{-3}$	$H_{21} \\ j'_{21} = 3,05$	$\frac{j'_{01}j'_{21}^{2}\frac{e}{a}}{\sqrt{j'_{01}^{2}-4}\cdot\sqrt{\beta_{01}\beta_{12}}}=0,0183\cdot10^{-3}$	0,0252	249,0	0,0021 · 10 ⁻⁶ Np/m	10 ⁶ m	0,0021		
Knicke an den Flanschstellen $\Phi=8\cdot 10^{-4}$ rad $\delta_\epsilon=6\cdot 10^{-3}$	$E_{11} \\ j'_{11} = 3,83$	$\frac{\beta_0 a \Phi}{\sqrt{2} \cdot j'_{01}} = 1{,}205 \cdot 10^{-2}$	0,220	28,5	0,0295 · 10 ⁻⁶ Np	$n = 3 \cdot 10^4$	0,000 888	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$H_{11} \\ j_{11} = 1,84$	$\frac{2\sqrt{2} \cdot j'_{01} \cdot j'_{11} \cdot \beta_{01} a \Phi}{(j'_{01}^2 - j'_{11}^2)^2} = 1,025 \cdot 10^{-2}$	0,0532	118,2	0,0323 · 10 ⁻⁶ Np		0,000 969		
	$H_{12} \\ j'_{12} = 5,33$	$\frac{2\sqrt{2}j'_{01}j'_{12}\beta_{01}a\Phi}{(j'_{01}^2-j'_{12}^2)^2}=2,00\cdot 10^{-2}$	0,0653	96,3	0,009 95 · 10 ⁻⁶ Np		0,000 298 5		
Acnsen d	$H_{11} \\ j'_{11} = 1,84$	$\frac{\sqrt{2} \cdot j_{01}' j_{11}' d}{(j_{01}'^2 - j_{11}'^2) a} = 0,0885 \cdot 10^{-2}$	0,0532	118,2	0,000 28 · 10 ⁻⁶ Np		0,000 008 34		
	$H_{12} \\ j'_{12} = 5,33$	$\frac{\sqrt{2}j_{01}'j_{12}'d}{j_{01}'^2-j_{12}'^2)a}=0,210\cdot 10^{-2}$	0,0653	96,3	0,000 111 · 10 ⁻⁶ Np	n=3.	0,000 003 33		
Durchmesser- sprünge $\delta_{\rm a}/a=10^{-3}$		$\frac{2j'_{01}j'_{02}\delta_{a}}{(j'_{01}^{2}-j'_{02}^{2})a}=0,156\cdot 10^{-2}$	0,1625	38,7	0,000 002 · 10 ⁻⁶ Np	$n = 10^5$	0,000 000 2		

sichtigten Krümmungen nach beiden Seiten hin rechnen, welche man vielleicht besser als Wellungen («serpentine bends») bezeichnet. Sie treten besonders als «Durchhang» der Leitung in Erscheinung, wenn diese nur punktförmig gegen den Untergrund abgestützt wird. Unger [7; 18] und Larsen [17] haben nun gezeigt, dass der in diesem Falle von z abhängige Kopplungsfaktor $\kappa(z) = \kappa_0 \cdot \kappa(z)$ im Gleichungssystem (7) zu speziellen Lösungen führen kann, wenn $\kappa(z)$ periodischen Charakter hat, also einem Sinusgesetz folgt. Ist also die Wellungsperiode K, so ist:

$$\kappa(z) = \left(\frac{2\pi}{K}\right)^2 \sin\left(\frac{2\pi}{K}Z\right)$$

Das Amplitudenverhältnis der beiden gekoppelten Wellen E_1 und E_2 wird dann:

$$\frac{E_2}{E_1} = \kappa_0 \left(\frac{2\pi}{K}\right)^2 \frac{\Delta\beta}{\left(\frac{2\pi}{K}\right)^2 - \left(\Delta\beta\right)^2} \left(e^{\Delta\beta Z_0} - 1\right)$$

Es ist nun klar, dass $\Delta\beta \to 2\,\pi/K$ ein starkes Anwachsen der Störwellenamplitude zur Folge hat, was unbedingt zu vermeiden ist. Die Wellungsperiode K ist dann gleich der Schwebungslänge λ_Δ zwischen Nutzwelle H_{01} und Störwelle m, n, welche sich ergibt aus:

$$\lambda_{\Delta} = \frac{2 \,\pi}{\Delta \,B} \tag{14}$$

Bei den beiden unter Abschnitt 4.3 berechneten Beispielen sind die Schwebungslängen λ_{Δ} aufgeführt, um zu zeigen, dass es sich empfiehlt, bei der Verlegung der Leitung sowohl hinsichtlich der Sockelabstände als auch hinsichtlich der Länge der Rohrabschnitte auf diese Werte Rücksicht zu nehmen. Man sollte also alle Periodizitäten vermeiden. Besonders beachte man, dass für die E_{11} -Welle in den Bogen λ_{Δ} in der Grössenordnung der Rohrlängen liegen kann.

2.6 Dämpfungsbilanz einer Übertragungsstrecke von 1000 km Länge

Da man nach dem Vorhergesagten befürchten könnte, dass die Wellentypen-Umwandlungen durch die verschiedenen Störungen zu erheblichen Dämpfungserhöhungen führen könnten, sind im folgenden zwei Ausführungsmöglichkeiten für eine 1000 km lange Strecke durchgerechnet worden, denen folgende Annahmen zugrunde gelegt wurden:

- a) Streckenlänge 1000 km.
- b) Im Zuge der Strecke liegen 25 Bogen mit 45° Richtungsänderung und 25 Bogen mit 30° Änderung. Der Krümmungsradius wurde für alle Bögen mit R=900 m festgelegt.
- c) Die Leitung ist zusammengesetzt aus 100000 Einzelrohren von 8...12 m Länge.
- d) Bei 30 % aller Flansche liegen Montagefehler vor, und zwar Knicke in den Flanschen mit Winkeln von $\Phi=8\cdot 10^{-4}$ rad, Durchmessersprüngen von $\delta_a/a=10^{-3}$ und Achsmitten-Versetzungen von $d/a=10^{-3}$.

								1a	belle III
Art der Störung	Wellentyp j _{mn}	Kopplungsfaktor σ bzw. κ	$\Delta \beta$ rad/m	Schwebungs- länge $^{\lambda}\Delta$ m	Zusatzdämpfung $a_{ m Z}$ pro Störung	L bzw. n	$a_{\mathbf{o}} = a_{\mathbf{z}} L$ $a_{\mathbf{K}} = a_{\mathbf{z}} n$ Np	$\Sigma a_{\sigma} \ \Sigma a_{\kappa}$	$a_{ m tot}$
Bogen $R = 9 \cdot 10^2 \mathrm{m}$ $\delta_{\varepsilon} = 7 \cdot 10^{-3}$	$E_{11} \\ j_{11} = 3,85$	$\frac{\beta_0 a}{\sqrt{2} \cdot j'_{01} R} = 2.8 \cdot 10^{-2}$	0,855	7,35	0,178 · 10 ⁻⁶ Np/m	1 750 =	0,005 21		
	H_{11} $j_{11} = 1,84$	$\frac{0,036 a \sqrt{\beta_{01} \beta_{11}}}{R} = 0,545 \cdot 10^{-2}$	0,0635	99,0	0,528 · 10 ⁻⁶ Np/m	500 + 250 m	0,013 43	$\Sigma a_{\sigma} =$	
	$H_{12} \\ j_{12}' = 5,33$	$0.1 \frac{a}{R} \sqrt{\beta_{01} \cdot \beta_{12}} = 1.52 \cdot 10^{-2}$	0,0775	81,0	0,238 · 10 ⁻⁶ Np/m	11 11		0,028 88 Np	A = 1,42 70,4 %
Elliptische Deformation $e = 10^{-3}$	$H_{21} \\ j_{21}' = 3,05$	$\frac{j'_{01}j'_{21}^{2}\frac{e}{a}}{\sqrt{j'_{01}^{2}-4}\cdot\sqrt{\beta_{01}\beta_{21}}}=0,011\cdot10^{-2}$	0,0302	208,0	0,001 25 · 10 ⁻⁶ Np/m	10 ⁶ m			
an den Flansch- stellen $\Phi = 8 \cdot 10^{-4}$ rad	$E_{11} \\ j_{11} = 3,83$	$\frac{\beta_0 a \Phi}{\sqrt{2} \cdot j_{01}'} = 2,01 \cdot 10^{-2}$	0,244	25,7	0,206 · 10 ⁻⁶ Np	3 · 104	0,006 18		$a_{ m tot} = 1,519 { m dB} \ \eta = 0,704 =$
	H_{11} $j'_{11} = 1,84$	$\frac{2\sqrt{2}j'_{01}j'_{11}\cdot\beta_{01}a\Phi}{(j'_{01}^2-j'_{11}^2)^2}=1,71\cdot10^{-2}$	0,0635	99,0	0,245 · 10 ⁻⁶ Np	3 · 104	0,007 35		
	$H_{12} \\ j_{12}' = 5,33$	$\frac{2\sqrt{2} \cdot j_{01}' j_{12} \cdot \beta_{01} a \Phi}{(j_{01}'^2 - j_{02}^2)} = 3,33 \cdot 10^{-2}$	0,0775	81,0	0,575 · 10 ⁻⁶ Np	3 · 104	0,0173		
d 10.2	H_{11} $j'_{11} = 1,84$	$\frac{\sqrt{2} \cdot j_{01}' j_{11}' d}{(j_{01}'^2 - j_{11}'^2) a} = 0,0885 \cdot 10^{-2}$	0,0635	99,0	0,000 66 · 10 ⁻⁶ Np	3 · 104	0,000 02		
	$H_{12} \\ j_{12}' = 5,33$	$\frac{\sqrt{2} \cdot j_{01}' j_{12}' d}{(j_{01}'^2 - j_{12}'^2) a} = 0,210 \cdot 10^{-2}$	0,0775	81,0	0,004 60 · 10 ⁻⁶ Np	3 · 104	0,000 14		
$egin{aligned} ext{Durchmesser-} \ ext{sprünge} \ \delta_{ ext{a}}/a = 10^{-3} \end{aligned}$	$H_{02} \ j_{02}' = 7,02$	$\frac{2 \cdot j_{01}' \cdot j_{02}' \delta_{a}}{(j_{01}'^{2} - j_{02}'^{2}) a} = 0,156 \cdot 10^{-2}$	0,1955	32,1	≈ 0	10 ⁵	0		

e) Jedes Rohrstück habe ausserdem eine elliptische Verformung

von
$$e = \frac{D_{\text{max}} - D_{\text{min}}}{D_{\text{max}} + D_{\text{min}}} = 10^{-3}.$$

f) Betriebsfrequenz: f = 3 GHz mit a = 1,3 m und f = 10 GHz mit a = 0,65 m

Für die beiden angegebenen Rohrhalbmesser erhält man dann nach Gl. (4):

$$\alpha_{\text{Hol 3 GHz}} = 0.0812 \cdot 10^{-6} \text{ N/m } (\triangleq 0.7 \text{ dB/1000 km})$$

$$\alpha_{\rm H_{01}\,10\,GH\,z} = 0.085\cdot 10^{-6}\ N/m\ (\triangleq 0.74\ dB/1000\ km)$$

für die unbeschichteten geraden Rohre. Diese Werte liegen natürlich tiefer als der Vergleichswert von $\alpha=10^{-6}$ dB/m $\triangleq 0.115 \cdot 10^{-6}$ N/m um Reserven zu haben für die Zusatzverluste durch die dielektrische Schicht.

Setzt man nun $\alpha_{\rm E}+\Delta\alpha_{\rm M}=(0,115-0,085)~10^{-6},$ so ergibt sich nach Gl. (9) und (12) die zulässige relative Schichtdicke $\delta_{\rm E}=6\cdot 10^{-3}$ für 3 GHz und $\delta_{\rm E}=2\cdot 10^{-3}$ für 10 GHz. Das entspricht den Schichtdicken $\alpha_{\rm E}=7,8$ mm bzw. 1,3 mm.

Dieser Belag ist aber für eine wirksame Beeinflussung der E_{11} -Welle in den Bogen noch nicht ausreichend. Nach [7] ist die optimale Schichtdicke:

$$\delta_{ ext{opt}} = rac{0.84}{j_{01}'} \cdot \sqrt{rac{arepsilon'^2}{(arepsilon'-1)^3}} \cdot \sqrt{rac{a}{R}}$$

wenn R der Krümmungsradius ist. Das ergibt für R = 900 m:

$$\delta_{\epsilon {
m Kr}} = 10 \cdot 10^{-3} \; {
m für} \; \; 3 \; {
m GHz}$$
 $d_{\epsilon} = 13 \; {
m mm}$ $\delta_{\epsilon {
m Kr}} = \; 7 \cdot 10^{-3} \; {
m für} \; 10 \; {
m GHz}$ $d_{\epsilon} = 4{,}55 \; {
m mm}$

In den Tabellen II und III sind nun die wichtigsten Zahlenwerte als Ergebnis der Einzelrechnungen zusammengestellt. Es wurden höhere Wellentypen als m=2 und n=2 nicht in die Rechnung einbezogen, weil für sie die Kopplungsfaktoren sehr klein werden. (Z. B. ist für die H_{13} -Welle bei Knicken κ_{13}^2 bereits nur noch etwa 1 % von κ_{12}^2 und nur noch 0,25 % von κ_{11}^2 .)

Als Endergebnis erhält man eine totale Dämpfung für die 1000 km lange Leitung bei 3 GHz Betriebsfrequenz von 1,1 dB bzw. einen Übertragungswirkungsgrad von 78 %.

Bei 10 GHz sind die Umwandlungsverluste höher, nämlich 0,52 dB, so dass die Gesamtdämpfung hier 1,52 dB wird, was einem Übertragungswirkungsgrad von 70,4 % entspricht. Diese höheren Verluste kann man mit einem Rohrhalbmesser von 0,80 m statt 0,65 m leicht ausgleichen.

Selbstverständlich kann man den Übertragungswirkungsgrad η , wenn nötig, durch grösseren Rohrhalbmesser leicht erhöhen. Für $\eta \approx 0.90$ müsste a=0.4 dB sein und dem entspricht bei f=10 GHz ein Rohrdurchmesser von 1,70 m, also a=0.85 m.

Bei allen Rechnungen ist von einer etwaigen Rückumwandlung der Störwellen in die H_{01} -Welle keine Notiz genommen. Hier kann aber durch den Einbau geeigneter Rückumwandlungsglieder im Zuge der geraden Leitungsstücke noch manches gewonnen werden.

3. Ein Energieversorgungssystem mit Mikrowellenleitung

Ein Energieversorgungssystem besteht im allgemeinen aus dem Energieträger (Kohle, Wasser, Öl, Kernbrennstoff), dem Energiewandler, der Transportleitung, dem Rückwandler und dem Verbraucher.

Die mengenmässige Aufteilung der Energieerzeugung in der Schweiz durch die vier Träger und des Energiekonsums in den vier Verbraucherklassen (Wärme, Antrieb, Chemie und Licht) für das Jahr 1951 zeigt Fig. 8 [37]. Die Kernenergie wurde damals noch nicht in den Kreis der Betrachtungen gezogen. Danach werden 80,8 % der Nutzenergie in Wärme verwandelt, etwa 12 % werden für Antriebe gebraucht, die chemische Industrie bezieht etwa 5,2 % und der Rest von 2 % dient für Beleuchtungszwecke [31]. Für das Jahr 2000 ist eine ähnliche Aufteilung des Verbrauches zu erwarten [35]. Bei den Rohenergieträgern waren im Jahre 1951 noch Kohle, Wasser und Öl zu nahezu gleichen Teilen beteiligt, doch im Jahre 1965 haben das Erdöl und seine Produkte mit 67 % den weitaus grössten Anteil, gefolgt vom Wasser mit 18 % und Kohle und Holz mit 15%. Eine weitere Verschiebung zugunsten des Erdöls ist zunächst noch zu erwarten, doch unterliegt es keinem Zweifel [35], dass die Verwendung des Öls wieder zurückgehen wird, wenn andere Energiearten, z. B. die Kernenergie, für Antriebszwecke ebenso wirtschaftlich verwendet werden können.

Da die Rohenergieträger im allgemeinen von den Verbraucherzentren weit entfernt sind, erhebt sich die Frage, ob es wirtschaftlicher ist die Rohenergie zu transportieren oder die Nutzenergie. Rechnet man die Transportkosten und die Gestehungskosten aus, so kann man im Sinne der Nachrichtentechnik eine «Streckendämpfung» auch für Kohle, Öl und Erdgas ermitteln. Unter Zugrundelegung der von *Falomo* auf der Weltkraftkonferenz 1960 angegebenen Zahlen [36] kommt man dann zu folgenden Werten:

Kohle: $\alpha = 1,63 \cdot 10^{-3} \, \mathrm{dB/km}$ Erdöl: $\alpha \approx 1,4 \cdot 10^{-3} \, \mathrm{dB/km}$ Erdgas: $\alpha = 0,65 \cdot 10^{-3} \, \mathrm{dB/km}$ Elektr. Strom: $\alpha = 1,145 \cdot 10^{-3} \, \mathrm{dB/km}$

Das Ergebnis ist recht interessant, zeigt es doch, dass der Transport von Erdgas bei weitem das günstigste ist, dass aber der Transport der elektrischen Energie immer noch billiger zu sein scheint als der Transport von Erdöl oder Kohle.

Nach diesen Vorbemerkungen lässt sich für ein Energieversorgungssystem mit einer Mikrowellenleitung beispielsweise das in Fig. 9 dargestellte Schema aufstellen:

Aus dem Energieträger liefert der Wandler eine Mikrowellenleistung von 4 GW, welche über den Hohlleiter über eine Distanz von 1000 km transportiert wird. Da ja etwa 80 % der ankommenden Energie sowieso in Form von Wärme verwertet wird, ist es zweckmässig diese Wärme als Dampf eines Fernheizwerkes in der Stadt zu verteilen. Die Boiler dieses Fernheizwerkes werden also direkt mit der ankommenden Mikrowellenenergie gespeist, wobei die eingestrahlte Leistung das Wasser aufheizt und in Dampf verwandelt, was bekanntlich mit sehr hohem Wirkungsgrad erfolgen kann. Dieser Dampf liefert die benötigte Wärme für eine Millionenstadt.

Für alle Antriebe mit grossen Leistungen und die chemische Industrie liefern entsprechende Gleichrichter den benötigten Gleichstrom (siehe auch Abschnitt 6.4 und 6.5). Die ganze Stadt könnte mit einem Mikrowellenrohrleitungssystem bis in die einzelnen Haushaltungen hinein mit Höchstfrequenz versorgt werden, wobei an geeigneten Verteilerpunkten im städtischen Netz der Übergang von der H_{01} -Welle mit dem grossen Querschnitt auf H_{11} -Wellen mit kleinen Rohrdurchmessern (4...6 cm) erfolgen kann. Die Mikrowellenenergie kann im Mikrowellenherd sofort zum Kochen verwendet werden, für kleine Antriebe (Staubsauger, Küchenmaschinen, Kühlschränke, Radio usw.) sind in den «Steckdosen» HF-Kleingleichrichter eingebaut. Das Licht wird aus dem Mikrowellenfeld mit Gasentladungslampen direkt erzeugt.

4. Das supraleitende Energiekabel

Diesem Versorgungssystem sei nun der recht beachtenswerte Vorschlag eines supraleitenden Kabels gegenübergestellt [32; 33: 34].

4.1 Aufbau des Kabels

Legt man ein solches Kabel für einen Strom von 100 kA und 40 kV aus, so könnte man bei einer Stromdichte von 100 kA/cm² mit einem effektiven Leiterquerschnitt von 1 cm² auskommen, vorausgesetzt, dass der ganze Querschnitt supraleitend ist. Da das aber keineswegs der Fall ist, sei die Annahme gemacht, dass nur 20 % des Querschnitts wirklich supraleitend ist. Dann muss das Kabel einen Querschnitt von 5 cm² haben. Das magnetische Feld an der Oberfläche wird damit 13,3 kG und die scheinbare Stromdichte J=20 kA/cm². Den Auf bau des Kabels zeigt Fig. 10. Hin- und Rückleitung liegen in

einem gemeinsamen Rohr von 12 cm \varnothing , welches mit flüssigem Helium bzw. Heliumgas auf $\approx 4.2\,^{0}\text{K}$ gehalten wird. Diese Hülle umgibt eine Vakuumschutzhülle von 14 cm Aussendurchmesser. Diese befindet sich in einer weiteren Vakuumzone, welche durch flüssigen Stickstoff auf 77 ^{0}K gekühlt wird. Das Ganze liegt

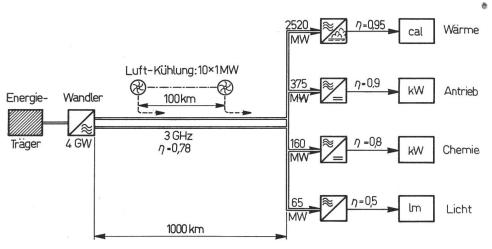
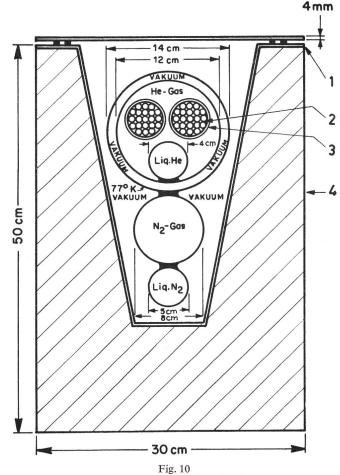



Fig. 9
Energieversorgungssystem mit MikrowellenÜbertragung

η Wirkungsgrad der Mikrowellen-Übertragung

Aufbau eines Supraleitungskabels

1 metallene Auskleidung; 2 supraleitendes Kabel; 3 Kunststoffisolation;
4 Beton

in einer metallisch vakuumdicht ausgekleideten Betonröhre für die Verlegung im Erdboden. Hin- und Rückleitung können aus Niostan- (Nb $_3$ Sn) litzen von 0,15 mm — gegenseitig isoliert — aufgebaut werden (ca. 28000 Litzen pro Leiter!). Das so aufgebaute Kabel hat fast keine Stromwärmeverluste, wenn es mit Gleichstrom betrieben wird. (Bei Wechselstrombetrieb mit 50 Hz wären die Wirbelstromverluste $P_{\rm W}=4\cdot 10^{-9}~I^2~f=2~{\rm kW/cm},$ also undiskutabel hoch.)

4.2 Die Wärmebilanz

Um das Kabel auf 4,2 °K zu halten, ist eine Wärmebilanz aufzustellen. Man hat zwischen dem Betonmantel (300 °K) und der Stickstoffleitung Supporte vorzusehen, welche das Leitungsinnere (Helium + Stickstoffleitungen + Kabelseelen) gegen die Aussenwand abstützen. Durch diese Stützen fliesst eine Wärmeleistung von:

$$P = \lambda \frac{q}{l} (T_2 - T_1)$$
 W

Die Stützen sollen einen Querschnitt von q=4 cm² und eine Länge von l=8 cm haben; für das Nylonmaterial sei $\lambda=10^{-4}$ W/cm· 0 K eingesetzt. Es sei pro Meter eine Stütze vorhanden. Da $T_2=300$ 0 K und $T_1=77$ 0 K ist, wird

$$P_{\rm S}^{(1)} = 10 \, \text{mW/m}$$

Für die Abstützung der Stickstoffleitung gegen die Heliumleitung sind ebenfalls Nylonstützen vorgesehen mit $q=1~\rm cm^2$, $l=2~\rm cm$. Das ergibt einen Wärmefluss von:

$$P_{\rm S}^{(2)}=4~{
m mW/m}$$

Die Wärmestrahlung vom Betonrohr durch das Vakuum zur Stickstoffleitung ist:

$$P^* = \frac{1}{2} \, \varepsilon \, \sigma (T_2{}^4 - T_1{}^4)$$
 W/cm²

Mit $\varepsilon = 0.05$ und $\sigma = 5.75 \cdot 10^{-12} \,\mathrm{W/cm^2 \cdot 0K^4}$

wird $P^* = 1,16 \cdot 10^{-3}$ W/cm²

Bei 14 cm Durchmesser des Vakuumschutzrohres erhält man dann:

$$P_{\rm m}^{(1)} = 5 {\rm W/m}$$

Vom Stickstoffmantel zum Heliummantel findet man in gleicher Weise:

$$P_{\rm m}^{(2)} = 20 \, {\rm mW/m}$$

Nun sind noch die unvermeidlichen Wirbelstromverluste im Niostan-Leiter zu berechnen. Sie entstehen durch die ständigen Stromschwankungen durch Zu- und Abschalten der Einzelverbraucher einerseits und durch das erstmalige Hochfahren des Stromes von Null auf Vollast nach Abschaltungen.

Für die durch schwankenden Bedarf hervorgerufenen Stromschwankungen ΔI sei angenommen, dass jede Millisekunde eine Zu- oder Abschaltung von $\Delta I = 0.02 I = 2 \cdot 10^3 \, \mathrm{A}$ vorkomme. Dann sind die Wirbelstromverluste:

$$P_{\rm W} = 4 \cdot 10^{-10} \, \frac{(\Delta I)^3 f}{I_{\rm c} \, R}$$
 W/cm

Die kritische Stromstärke Ie ist:

$$I_{\rm e} = 2 \, \pi \, R \, \frac{B_{\rm e}}{\mu} = 1.5 \cdot 10^6 \, {\rm A}$$

wenn für Niostan $B_{\mathrm{c}} = 2 \cdot 10^5~\mathrm{G}$ eingesetzt wird. Dann erhält man

$$P_{\rm W} = 0.07 \, {\rm W/m}$$

(Für das Hochfahren des Stromes von Null auf I A ist die Energie pro cm Leitungslänge:

$$W_{\rm E} = 0.5 \cdot 10^{-9} I^2$$
 Ws/cm

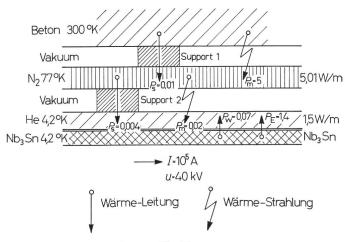


Fig. 11 Energiebilanz des Supraleitungskabels

u Betriebsspannung zwischen Hin- und Rückleitung; $P_{\rm E}$ Wärmeleistung, welche nur beim Hochfahren des Stromes vom Leiter zum Helium fliesst; $P_{\rm m}$ Wärmestrahlung durch die Vakuum-Isolierung; $P_{\rm s}$ Wärmeleistung, welche durch die Isolierstützen fliesst; $P_{\rm w}$ Wärmeleistung, welche infolge der Leistungsschwankungen vom Leiter zum Helium fliesst; I Strom im Niostan-Leiter

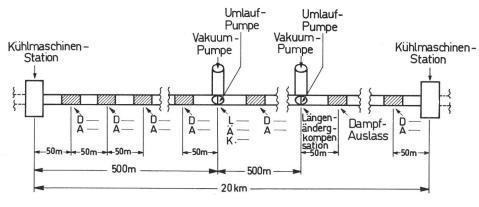


Fig. 12

20-km-Abschnitt des Supraleitungskabels

A, D Dampfauslass; Ä, L, K Längenänderungskompensation

ist bis jetzt das Amplitron in der Entwicklung am weitesten fortgeschritten. Die Röhre QR 1224 von Raytheon liefert 400 kW (Dauerstrichleistung) bei 3 GHz; sie ist zurzeit die stärkste S-Band-Röhre auf dem Markt. Da sie aber für Nachrichtenzwecke (Radar) entwickelt wurde, stellt sie keineswegs

eine Grenze dar. Verwendet man höhere Anodenspannungen (100 statt 20 kV) und höhere Magnetfelder, so ist nach Angaben von Raytheon für das Jahr 1970 bereits die Überschreitung der 10-MW-Grenze zu erwarten [38; 39].

5.2 Hochleistungsklystrons

Auch diese Röhren sind bisher nur für Nachrichtenzwecke gebaut worden, wobei hohe Verstärkung, Linearität, möglichst grosse Bandbreite und grosser Durchstimmbereich gefordert werden, während der Wirkungsgrad bisher eine zweitrangige Rolle spielte. Nun sind aber in den letzten Jahren ganz wesentliche Fortschritte gemacht worden durch die Einführung von Hohlraumresonatoren mit mehreren Schlitzen nach dem Vorschlag von *Chodorow* und *Wessel-Berg*. Damit ist bei Varian bereits ein 1-MW-Klystron gebaut worden für 8 GHz. Wenn man das für den Röhrenbau gültige Gesetz, wonach für jeden Röhrentyp (Triode, Magnetron, Klystron usw.)

$$Pf^2 = \text{konst.}$$

(P Leistung, f Frequenz)

ist, anwendet, so ist für das S-Band eine Leistung von 7 MW bereits erreichbar. Zwei Fragen sind aber in dieser Entwicklung noch nicht durchgearbeitet:

- a) Die Spannungen zwischen den Elektroden liegen noch weit unter der Grenzspannung, wo Feldemission einsetzt, so dass hier noch etwa der Faktor 6...10 für die Leistung zu gewinnen ist.
- b) Die bisher verwendeten Elektronenstrahlen sind Vollstrahlen, welche man nicht beliebig dick machen kann, da sich der Strom dann nicht mehr fokussieren lässt. Mit dem Übergang auf Hohlstrahlen fällt diese Schwierigkeit fort, und man kann noch einmal einen Faktor 10 gewinnen, also Perveanzen von 50 μ A/V^{3/2}, womit eine Grenzleistung von etwa 500 MW in einer einzigen Röhre erreicht würde [19; 20; 38; 39].

was im angegebenen Beispiel $W_{\rm E}=500~{\rm Ws/m}$ ergibt. Für eine Hochfahrzeit von 1 h muss man dann mit $P_{\rm E}=1,4~{\rm W/m}$ rechnen. Diese Kühlleistung wird zwar nur selten gebraucht, aber sie muss unter allen Zuständen bereitgestellt werden.)

Dem Helium werden also 0,094 W/m und dem Stickstoff 5,01 W/m zugeführt (Fig. 11). Bezogen auf die Aussentemperatur von 300 °C muss dann für den Stickstoffkreis die Kühlmaschinenleistung:

$$P_{\rm KN} = \frac{T_2 - T_1}{T_1} \cdot \frac{P_1}{\eta} = 29 \text{ MW}$$

sein.

Für den Heliumkreis erhält man dagegen mit $\eta = 0.2$:

$$P_{\rm KHe} = 35 \; \rm MW$$

Die gesamte Kühlleistung ist somit mindestens mit 65 MW für 1000 km Kabellänge einzusetzen.

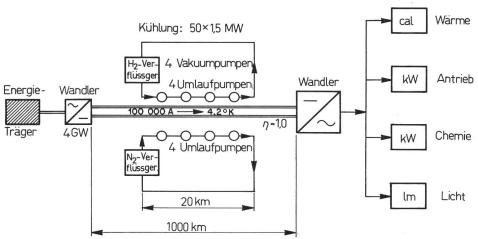
4.3 Das Energieversorgungssystem

Teilt man die Gesamtstrecke in 50 Abschnitte von 20 km Länge ein (Fig. 12), so hat man per Kühlabschnitt eine Leistung von ca. 1,5 MW bereitzustellen. Zur Aufrechterhaltung des Vakuums sind von den Verfassern in [32] in jeder Teilstrecke je 4 Vakuumpumpen und je 4 Umlaufpumpen in Abständen von 500 m vorgesehen, um die Stickstoff- und Helium-Kreisläufe aufrecht zu erhalten.

Man kommt dann zu dem in Fig. 13 gezeigten Schema für das ganze Energieversorgungssystem.

5. Mikrowellengeneratoren für extrem hohe Leistungen

Auf der Kraftwerk-Seite der Übertragungsstrecke ist es nötig, die von den Generatoren erzeugte elektrische Leistung (z. B. Gleichstrom von 10...100 kV)


in Mikrowellenleistung umzuwandeln. Die dafür zur Verfügung stehenden Röhren sind entweder vom Magnetron- oder vom Klystron-Typ.

5.1 Magnetrons und Amplitrons

Bei den Magnetrons, welche aus physikalischen Gründen— wie F. Lüdi gezeigt hat — mit sehr hohen Wirkungsgraden ($\eta > 70...90 \%$) arbeiten,

Fig. 13 Energieversorgungssystem mit Supraleitungskabel

η Übertragungswirkungsgrad des Kabels

Es ist klar, dass hier noch viel Entwicklungsarbeit geleistet werden muss, da ja bisher die Röhren nur für Nachrichtenzwecke Verwendung finden sollten, wo Durchstimmbarkeit, Linearität und Bandbreite neben der Leistung wichtige Entwicklungsgesichtspunkte sind.

6. Rückumwandlung der Mikrowellenenergie

6.1 Direkte Umwandlung der Mikrowellenenergie Die direkte Umwandlung der Mikrowellenenergie in Wärme und Licht wurde schon kurz gestreift (siehe Abschnitt 3).

6.2 Thermoelektrische und thermionische Wandler

Wenn die angelieferte Energie für den Betrieb von Motoren benötigt wird, ist die Umwandlung in Gleichstrom mit Hilfe von thermoelektrischen oder thermionischen Wandlern eine Möglichkeit, welche bei kleinen Leistungen bis $\approx 1~\rm kW$ z. B. in Haushaltungen, kleinen Fabriken usw. durchaus denkbar ist, wenngleich die bisher erzielten Wirkungsgrade von ca. 45 % noch unbefriedigend sind. Da aber zurzeit sehr umfangreiche Arbeiten an diesen Wandlern für Zwecke der Weltraumtechnik durchgeführt werden [SNAP (21)], kann man erst in einigen Jahren entscheiden, ob sie für die oben genannten Zwecke wirklich geeignet sind.

6.3 Halbleiter-Gleichrichter und Röhrendioden

Die Umformung von Mikrowellenenergie in Gleichstrom mit Hilfe von Halbleiter-Gleichrichtern ist für sehr kleine Leistungen seit sehr langer Zeit bekannt. Das grosse Problem ist immer noch die Gleichrichtung von Leistungen, welche grösser sind als einige Watt, da dann bei den stets verwendeten Spitzenkontakten eine Zerstörung der Übergangsstelle Metall-Halbleiter erfolgt [22]. Hochleistungsgleichrichter, wie sie in der Starkstromtechnik verwendet werden, sind für diese hohen Frequenzen nicht brauchbar.

6.4 Sekundärelektronen-Resonanz-Gleichrichter

Neben den soeben besprochenen Halbleiter- und Hochvakuumdioden sei der auf der Sekundärelektronen-Resonanz aufgebaute Röhrengleichrichter noch besonders erwähnt, da er für mittlere Leistungen eine sehr interessante Lösung ist. Wenn man zwischen zwei Elektroden 1 und 2, welche den Abstand d haben, ein HF-Wechselfeld

$$E = E_0 \sin(\omega t)$$

anlegt, und es befindet sich ein aus einer der Elektroden ausgetretenes Elektron im Raum zwischen beiden Elektroden, so wird es zu der im Augenblick positiven Elektrode 2 hinlaufen. Wenn diese nun Sekundärelektronen emittieren kann (Emissionsfaktor $\delta > 1$), so fliegen die aus 2 austretenden Sekundärelektronen in der folgenden Halbperiode zur Elektrode 1 hin, lösen in Elektrode 1 wieder neue Sekundärelektronen aus, für welche nunmehr Elektrode 2 positiv ist, und sie können wiederum von 1 nach 2 fliegen. Der Sekundärelektronenaustritt schaukelt sich auf und ihre Dichte ist in einer Art «Resonanz». Dieser Vorgang wird in der angloamerikanischen Literatur als «Multipactor-Effect» bezeichnet. Wenn man nun nach Fig. 14 z. B. in einem Hohlraumresonator die beiden Elektroden durchlöchert, so dass ein Teil der ankommenden Elektronen auf die dahinter angebrachten Kollektorelektroden auftrifft, so kann man dort den Gleichstrom abnehmen [23; 24; 25].

An diesen Gleichrichtern werden sehr umfangreiche Forschungs- und Entwicklungsarbeiten unternommen, da sie

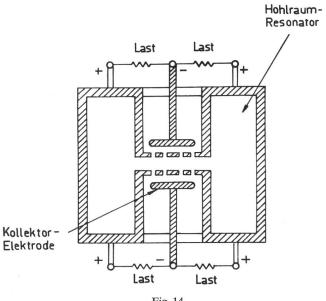


Fig. 14

Der Multipactor-Gleichrichter

wegen des hohen Wirkungsgrades ($\eta > 90 \%$!) und der grossen Leistungskapazität (10...50 kW) recht vielversprechend sind.

Um die Laufzeit der Elektronen zwischen den beiden Sekundäremissionskathoden zu erhöhen, kann man ein achsiales Magnet anlegen.

6.5 Phasenfokussierte Elektronenströmungen als HF-Gleichrichter

Will man sehr grosse HF-Leistungen (> 10 kW) in Gleichstrom rückwandeln, so muss man dazu Elektronenströmungen verwenden, welche aus dem zugeführten HF-Feld Leistung aufnehmen und sie an eine Kollektorelektrode wieder abgeben. Dazu eignen sich prinzipiell alle Röhren, welche nach dem Magnetron-, Klystron- oder Wanderfeldprinzip aufgebaut sind. Diese «umgekehrten» Röhren können für ähnliche Leistungsbereiche Verwendung finden wie die unter Abschnitt 5.1 und 5.2 genannten [26; 27; 28].

Es darf jedoch nicht übersehen werden, dass diese Gleichrichter wegen der relativ schwachen Elektronenströmung hohe Gleichspannungen liefern. Beispielsweise liefert ein von der Universität Utah entwickelter Gleichrichter mit einer Transversalwellen-Röhre (Adler-Röhre) bei 400 kW Leistung mit 2,5 A Strahlstrom eine Gleichspannung von 160 kV. Mit diesen phasenfokussierten Elektronenströmungen als Gleichrichter für grosse Leistungen kommt man dann am Verbraucherende der Übertragungsleitung doch wieder zu ähnlichen Spannungsbereichen, wie sie bei der HGÜ verwendet werden.

7. Leistungsregelung zwischen Generator und Verbraucher

Selbsterregte Mikrowellengeneratoren haben die Eigenschaft, sich bezüglich ihres Arbeitspunktes der angebotenen Last anzupassen, wobei sich Wirkungsgrad und Frequenz den Lastverhältnissen entsprechend einstellen [29]. Da die komplexe Last der Verbraucherseite über die 10⁷ Wellenlängen lange Leitung mit nur 1 dB Dämpfung auf der Generatorseite mit ganz aussergewöhnlichen Schwankungen hinsichtlich Betrag und Phase erscheint, müssten besondere Vorkehrungen auf beiden Seiten der Leitung getroffen werden, um den stabilen Betrieb der Generatoren sicherzustellen.

Sind die Generatoren aber fremderregt (Klystron, Amplitron), so liefern sie gemäss der Einstellung des gleichstromseitigen Arbeitspunktes auf grössten Wirkungsgrad eine konstante Leistung ins Netz. Lastschwankungen haben hier keine Rückwirkung auf den Generator. Der Verbraucher muss sich also nach der angelieferten Leistung richten. Das bedeutet, dass für alle im Augenblick nicht benötigte Leistung ein grosses Reservoir (Speicherwerk, Fernheizwerk) vorhanden sein muss. Dieser gleiche Gesichtspunkt gilt auch für die Einzelverbraucher in dem unter 3. skizzierten Mikrowellenverteilungsnetz.

Eine Rückmeldung der abgenommenen Leistung an die Generatorseite wird daneben auch noch nötig sein, um einzelne Röhreneinheiten nach Bedarf zu- oder abzuschalten. Dafür kann der gleiche Rundhohlleiter mit der H_{11} -Welle bei 120 MHz genommen werden, denn diese hat über die ganze Strecke nur eine Grunddämpfung von 47 dB, was für Nachrichtenübertragung ein durchaus annehmbarer Wert ist.

8. Zusammenfassung

Eine Übertragung sehr grosser elektrischer Leistungen über grosse Distanzen mittels Mikrowellen ist zumindest technisch betrachtet kein Ding der Unmöglichkeit. Dies vor allem, wenn man in Betracht zieht, dass die hiezu notwendigen Energiewandler-Prinzipien bis heute erst in der Nachrichtentechnik Anwendung gefunden haben und noch gar nicht für den Einsatz auf dem Gebiet der Leistungsübertragung gezüchtet worden sind. Anderseits ist die Verkoppelung mit der Übertragung über grosse Distanzen nur eine der möglichen Annahmen. So sehr wie bei der hochgespannten Gleichstromübertragung nicht allein die Überbrückung grosser Distanzen im Vordergrund des Interesses steht, könnten für eine Verwendung von Mikrowellen als Energieträger auch andere Argumente gefunden werden.

Es steht ausser Zweifel, dass im heutigen Zeitpunkt das supraleitende Kabel näher vor der Verwirklichung steht, wobei ebenfalls ein Einsatz über sehr grosse Distanzen das geringere Interesse beansprucht. Jedenfalls kann es immer nützlich sein, Brücken zu schlagen zwischen verschiedenen Disziplinen und in Form von Überschlagsrechnungen, welche sich immerhin der physikalischen Gesetze bedienen, neue Wege und Möglichkeiten aufzuzeigen.

- [1] $T.\,Kuegler;$ Mikrowellen zur Energieübertragung. E und M 83(1966)7, S. 405...410.
- [2] E. C. Okress a, o.: Microwave power engineering. IEEE Spectrum 1(1964)10, p. 76...100.
- [1964]10, p. /o...100.
 [3] W. L. Weeks, J. I. Smith and J. R. Eaton: Is a microwave power system feasible. Power Engineering –(1965)11, p. 41...43.
 [4] C. L. Beattie: Tables of first 700 zeros of Bessel functions J₁(x) and J₁(x). Bell Syst. techn. J. 37(1958)3, p. 689...697.
- [5] H. Buchholz: Gekoppelte Strahlungsfelder im kreiszylindrischen Hohlleiter. Annalen der Physik 5/39(1941)2, S. 81...128.
 [6] S. E. Miller: Coupled wave theory and waveguide applications. Bell Syst. techn. J. 33(1954)3, p. 661...719.

- [7] H. G. Unger: Circular electric wave transmission in a dielectric-coated waveguide. Bell. Syst. techn. J. 36(1957)5, p. 1253...1278.
 [8] R. Hamer: Long-distance waveguide transmission. Electronic Engng. 33(1961)398, p. 218...225 + No. 399, p. 279...283.
 [9] S. P. Morgan: Theory of curved circular waveguide containing an inhomogeneous dielectric. Bell. Syst. techn. J. 36(1957)5, p. 1209...1251.
 [10] S. Engelsi: Mode conversion in the transmission of a TENEWave
- [10] S. liguchi: Mode conversion in the transmission of a TE₀₁-Wave through a slight tilt and a slight offset of waveguide. Onde électr. special supplement 1(1957), p. 150...157.
- [11] H. G. Unger: Helix waveguide, theory and application. Bell. Syst. techn. J. 37(1958)6, p. 1599...1647).
- [12] G. Comte: Franchissement de coudes à l'aide de guides d'ondes heli-coïdaux transmettant le mode TE₀₁. Câbles et Transmissions 20(1966)3, o. 177...187.
- [13] G. Comte: Guides d'ondes circulaires anisotropes et [13] G. Comie: Guides d'ondes circulaires anisotropes et guides d'ondes circulaires helicoïdaux pour la transmission du mode TE₀₁. Onde électr. 44(1964)442, p. 36...46.
 [14] H. Buchholz: Der Hohlleiter von kreisförmigem Querschnitt mit geschichtetem dielektrischem Einsatz. Annalen der Physik 5/43(1943)5, 2013.
- S. 313...368.
- [15] H. G. Unger: Regellose Störungen in Wellenleitern. AEÜ 15(1961)9, S. 393...401.
- [16] H. Larsen: Die Übertragungseigenschaften von Hon-Hohlleitungen mit statistisch verteilten Unregelmässigkeiten. Frequenz 14(1960)4, S. 135...
- [17] H. Larsen: Beitrag zur Theorie des dielektrisch belasteten Hohlleiters für Weitverkehr. NTF 19(1960), S. 110...116.
 [18] H. G. Unger: Circular electric wave transmission through serpentine bends. Bell Syst. techn. J. 36(1957)5, p. 1279...1291.
- [19] F. Paschke: Zukünftige Entwicklung der Elektronenröhre. Siemens Z. 39(1965)10, S. 1161...1167.
 [20] M. Chodorow: Multimegawatt broadband microwave tubes and related
- studies. Rome Air Development Center RADC=TR 64-58, 357, 465,
- [21] H. Winkenbach, U. Heidtmann und R. Krapf: Bestrahlungsversuch an einem mit Urandioxyd gefüllten Molybdänemitter. BBC-Nachrichten 48(1966)3, S. 182...186.
- [22] R. H. George and E. M. Sabbagh: An efficient means of converting microwave energy to DC using semiconductor diodes. IEEE inter-national Convention Record 11(1963)3, p. 132...141.
- J. Hatch: The secondary electron resonance mechanism of low pressure high-frequency gas breakdown. J. applied Physics 25(1954)4, p. 417...423.
- [24] J. Hatch: Electron bunching in the multipacting mechanism of high-frequency discharge. J. applied Physics 32(1961)6, p. 1086...1092.
- [25] F. Paschke: Note on the mechanism of multipactor effect. J. applied Physics 32(1961)4, p. 747...749.
 [26] D. C. Watson, K. I. Talbot and C. C. Johnson: A cyclotron-wave microwave power converter. Proc. IEEE 53(1965)11, p. 1797...1798.
 [27] V. Dubravec: Wellentheorie des Cuccia-Kopplers. AEÜ 18(1964)10, \$\frac{5}{25} \frac{502}{25} \frac{502}{25}\$
- [27] V. Dubravec: S. 585...593.
- [28] R. Adler, G. Hrbek and G. Wade: The quadrupole amplifier, a low-noise parametric device. Proc. IRE 47(1959)10, p. 1713...1723.
 [29] H. Paul: Die Leistungsabgabe des selbsterregten Mikrowellengenerators an eine komplexe Last. Elektron. Rdsch. 10(1956)2, S. 29...33.
- [30] A. von Weiss: Energieversorgung durch Mikrowellen-Energie-Übertragung. ETZ-A 88(1967)21, S. 521...527.
- [31] N. B. Ames: A study comparing electric power supply in Europe and the USA. Thesis No. 2637, Swiss Federal Institute of Technology, the USA. T Zürich 1956.
- [32] R. L. Garwin and J. Matisoo: Superconducting lines for the transmission of large amounts of electrical power over great distances. Proc. IEEE 55(1967)4, p. 538...548.
 [33] P. Klaudy: Elektrische Energieversorgungs- und Übertragungseinrichtungen mit tiefstgekühlten Leitern. E und M 82(1965)6, S. 275...281.
 [34] V. I. P. Wilkingen: Prospect of employing conductors at low temporary prospect of employing conductors at low temporary prospect of employing conductors at low temporary prospect of employing conductors.

- tungen mit tietstgekuniten Lenein. E und M o2(1703)0, S. 213...23...

 [34] K. J. R. Wilkinson: Prospect of employing conductors at low temperature in power cables and in power transformers. Proc. IEE 113(1966)9, p. 1509...1521.

 [35] E. Choisy: L'écnergie de demain. In Spectrum 2000. Festschrift zum 60. Geburtstag von Max Schmidheiny, Heerbrugg, 3. April 1968. Heerbrugg, Rheintaler Druckerei und Verlag AG, 1968, S. 19...27.
- 101 Stages, Richitaler Ditektrei und Verlag AO, 1968, S. 19...27.
 [36] G. Falomo: L'économie du transport à grande distance du combustible et de la transmission de l'électricité. Conférence mondiale de l'énergie, session partielle Madrid 5...9 juin 1960. Comptes rendus, Vol. 5, p. 3007...3026.
- [37] R. Leresche: Elektrizitätswirtschaft. In: Das Fischer Lexikon Bd. 32. Technik 3. Frankfurt/Main, Fischer Bücherei, 1963, S. 68...80.
 [38] H. Steyskal: New power amplifiers for microwaves according to the magnetron principle. Elteknik 6(1963)3, p. 39...46.
- [39] *H. Steyskal*: Kommertiella microvagskällor under tiden 1965...1975. FOA 3 Rapport A 667, September 1966.

Adresse des Autors:

Dr. H. Paul, Wissenschaftlicher Mitarbeiter der AG Brown, Boveri & Cie., 5401 Baden