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Berechnung elektromagnetischer Ausgleichsvorgiinge in elektrischen Netzen mit Digitalrechnern
Von H. Dommel, Portland (USA)

50 -0

Elektromagnetische Ausgleichsvorginge in elektrischen Net-
zen lassen sich heute wirtschaftlich mit Digitalrechnern untersu-
chen, vorausgesetzt, dass ein allgemein verwendbares Rechen-
programm verfiighar ist. Im folgenden wird ein Verfahren be-
schrieben, das einem solchen Rechenprogramm zugrunde liegt.
Das Netz darf neben linearen, ein- oder mehrphasigen Elementen
auch Schalter enthalten, sowie eine beschriinkte Anzahl von nicht-
linearen Induktivititen und nichtlinearen Widerstinden oder
Uberspannungsableitern. Die Approximation von Differential-
quotienten durch zentrale Differenzenquotienten fiir Induktiviti-
ten und Kapazititen in Verbindung mit der Methode der Charak-
teristiken fiir Leitungen (Bergeron-Verfahren) fiihrt auf Differen-
zengleichungen, die den Ubergang der Zustandsvariablen (state
variables) iiber einen Zeitschritt mit einer fiir die Praxis ausrei-
chenden Genauigkeit beschreiben. Diese algebraischen Ubergangs-
Differenzengleichungen lassen sich anschaulich durch rein-ohm-
sche Ersatzschaltungen mit eingepriigten Stromquellen wieder-
geben. Der fiir ein Rechenprogramm geeignete Algorithmus wird
anhand dieser Ersatzschaltungen beschrieben.

1. Einleitung

Transiente Vorgidnge spielen bei der Untersuchung elek-
trischer Netzwerke eine wichtige Rolle. Sie treten sowohl in
Problemen der Energietechnik als auch der Nachrichtentechnik
auf. Von Wanderwellenvorgiangen spricht man dann, wenn die
Leitungsbeldge homogen verteilt sind und dadurch eine Wellen-
ausbreitung entsteht. In konzentrierten Elementen R, L und C
findet im strengen Sinne keine Wellenausbreitung statt, da kein
echtes Laufzeitverhalten besteht. In grosseren Netzen, ins-
besondere in den stark vermaschten Netzen der Energie-
technik, sind die Zusammenhiinge ohne besondere Hilfsmittel
nicht mehr iiberschaubar. Die Kenntnis der transienten Vor-
ginge ist jedoch von grosser praktischer Bedeutung, wie beim
Abstandskurzschluss, bei Schaltiiberspannungen infolge von
Schalthandlungen, beim Schutz von Anlagen gegen Gewitter-
iiberspannungen u. a.

Bei der Entwicklung des Rechenverfahrens wurde davon
ausgegangen, dass eine programmgesteuerte elektronische
Rechenanlage — kurz Digitalrechner genannt — zur Verfiigung
steht. Obwohl die Ausfiithrungen grundsitzlich auch fiir Rech-
nungen von Hand gelten, erlangen sie ihre volle Bedeutung
jedoch erst beim Einsatz eines Digitalrechners. Der Fortschritt
im Bau von Digitalrechnern hat es ermdglicht, heute auch um-
fangreiche transiente Probleme rasch und wirtschaftlich zu
untersuchen. Das digitale Rechenverfahren tritt damit neben
das analoge Losungsverfahren mit Hilfe sog. Schwingungs-
modelle. Dabei ist von Vorteil, dass Digitalrechner als Univer-
salrechengeridte immer hiufiger in Firmen zur Verfiligung
stehen. Ausserdem entfallen beim digitalen Rechenverfahren
gewisse Schwierigkeiten, die bei der analogen Nachbildung auf-
treten, wie begrenzter Frequenzbereich oder Beschrinkung in
der Nachbildung gekoppelter Kreise (Beispiel : nicht verdrillte
Drehstromleitung). Der grosste Vorteil des digitalen Rechen-
verfahrens liegt darin, dass nach dem einmaligen Erstellen
eines Rechenprogramms jeder beliebige Fall ohne viel Vor-
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A lheure actuelle, des phénomeénes de compensation électro-
magnétiques survenant dans des réseaux électriques peuvent étre
examinés d’'une maniére économique a l'aide de calculateurs digi-
taux, a condition de disposer d’'un programme de calcul suscep-
tible d’une application universelle. On décrit par la suite un
procédé, constituant la base d'un tel programme de calcul. En plus
des éléments linaires, mono- ou polyphasés, le réseau peut égale-
ment comporter des commutateurs, ainsi qu'un nombre limité
d'inductivités et de résistances non linéaires ou de parafoudres.
L’approximation des quotients différentiels par des quotients
différentiels centraux pour inductivités et capacités, en liaison avec
la méthode des caractéristiques des lignes (procédé Bergeron),
aboutit aux équations différentielles décrivant pas a pas le trans-
fert des variables d’état (state variables) avec une précision suffi-
sante pour la pratique courante. Ces équations différentielles de
transfert peuvent étre reproduites d’'une maniére trés représenta-
tive par des circuits équivalents avec des sources de courant in-
corporées. L’algorithme approprié a un tel programme de calcul
est décrit a l'aide de ces circuits équivalents.

bereitungszeit untersucht werden kann; nur die speziellen
Daten sind auf Lochkarten oder Lochstreifen fiir die Eingabe
zu libertragen.

Die maximal verarbeitbare Grosse des Netzes hidngt von der
jeweiligen Rechenanlage ab. Ein auf diesem Rechenverfahren
basierendes Programm fiir eine Rechenanlage mit 32000 Kern-
speicherzellen erlaubt beispielsweise die Losung von Netzen
bis zu 500 Knotenpunkten und etwa 1000 Zweigen. Der
Arbeitsaufwand, der in die Entwicklung eines solchen Pro-
gramms geht, kann daran ermessen werden, dass das in der
Formelsprache Fortran IV geschriebene Programm aus {iber
4000 Fortran-Anweisungen besteht. Die Rechengenauigkeit
hingt im wesentlichen von der Schrittweite Ar ab; die Rechen-
zeit wird nicht nur von der Rechengeschwindigkeit der Anlagen
sondern sowohl von der Schrittweite als auch von der Netz-
grosse und nicht zuletzt von der Giite des Programms bestimmt.

Das beschriebene Rechenverfahren eignet sich zur Berech-
nung transienter Vorgiange in einphasigen und in mehrphasigen
Netzen, solange das Netzwerk im wesentlichen aus konzen-
trierten Elementen R, L und C und verlustlosen ein- und mehr-
phasigen Leitungen besteht. Leitungsverluste lassen sich nihe-
rungsweise beriicksichtigen. Das Rechenverfahren basiert auf
der schrittweisen Integration der Differentialgleichungen fiir
Induktivititen und Kapazititen mit Hilfe der Trapezregel und
auf der Methode der Charakteristiken fiir Leitungen. Letztere
ist vor allem von Bergeron zu einer wirksamen Methode aus-
gebaut worden [1]1). Schalter mit wechselnden Schalterstel-
lungen, Uberspannungsableiter oder andere nichtlineare
Widerstinde und nichtlineare Induktivititen lassen sich ein-
fach einbeziehen.

Da die Matrizenschreibweise eine komprimierte und leicht
uberschaubare Darstellung umfangreicher Gleichungssysteme
ermoglicht, wird davon weitgehend Gebrauch gemacht. Ausser-

1) Siehe Literatur am Schluss des Aufsatzes.
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Fig. 1
Netzknotenpunkt
1...5 Knotenpunkte; C Kaparzitit; iy Knotenpunktstrom; iy g, i1.g usw.
Zweigstrom von I nach 2, I nach 3 usw.; L Induktivitat; R Widerstand

dem ist der Matrizenkalkiil ein unerléssliches Hilfsmittel in der
Systemtheorie geworden. Der Verfasser ist der gleichen
Meinung wie Frame [2], dass «jedes Problem, das mit der
Methode der Laplace-Transformation gelost werden kann,
sich ebenso leicht oder leichter mit Hilfe von Matrixfunktionen
16sen ldasst». Eine solche Matrixfunktion, die den Ubergang
des Netzzustandes vom Zeitpunkt z—A¢ zum néchsten Zeit-
punkt ¢ beschreibt, wird im folgenden entwickelt.

2. Transiente Vorginge in einphasigen Netzen

Das Rechenverfahren sei zunichst fiir den Fall einphasiger
Netze beschrieben. Es ist zur Losung jedes beliebigen Netzes
geeignet, das im wesentlichen aus Zweigen der folgenden vier
Typen zusammengesetzt ist:

a) Widerstand R

b) Induktivitiat L

¢) Kapazitit C

d) verlustlose Leitung (homogen verteilte Leitungsbeldge L’ und
c)

(konzentrierte Elemente)

und wie spéter gezeigt wird, auch:

e) Schalter, B
f) nichtlineare Widerstinde oder Uberspannungsableiter und
g) nichtlineare Induktivititen

enthalten darf. Ein aus einem Netz herausgegriffener Knoten-
punkt nach Fig. 1 diene zur Erlduterung des Verfahrens; an
diesem Knotenpunkt liegen alle vier Grundtypen von Zweigen
an. Es sei angenommen, dass die Momentanwerte der Span-
nungen und Strome in Zeitintervallen Az bis zum Zeitpunkt
t— At bereits berechnet sind und gerade die Werte im Zeitpunkt ¢
berechnet werden sollen. Der Zeitschritt A¢ sei konstant. Eine
solche in Schritten At¢ fortschreitende Berechnung 16st den
kontinuierlichen Verlauf der transienten Vorgidnge in eine
Folge von « Momentaufnahmen» in diskreten Zeitpunkten auf.
Diese Diskretisierung des Problems ist bei Verwendung eines
Digitalrechners unvermeidbar. Sie fiihrt zu sog. Diskretisie-
rungsfehlern, z. B. beim Ersetzen des Differentialquotienten
di/d¢ durch den Differenzenquotienten Ai/Ar. Diskretisierungs-
fehler und die durch endliche Stellenzahl entstehenden Run-
dungsfehler konnen sich von Schritt zu Schritt ungtinstig fort-
pflanzen. Die im folgenden verwendete Trapezregel wurde nicht
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zuletzt deshalb gewihlt, weil dabei die Fehlerfortpflanzung
sehr gering ist [3].

Das Betriebsverhalten des gesamten Netzes kann entweder
durch ein System von Maschengleichungen oder durch ein
System von Knotenpunktgleichungen beschrieben werden.
Hier sollen Knotenpunktgleichungen verwendet werden. Zu
jedem Zeitpunkt ¢ muss die Summe der Strome, die vom
Knotenpunkt 1 durch die anliegenden Zweige wegfliessen,
gleich sein dem eventuell von aussen eingespeisten Strom i1,
also

iy + i+ i+ i =i 6]

Aus Gl. (1) ergibt sich die Knotenpunktgleichung fiir den
Knotenpunkt 1, indem man die einzelnen Zweigstrome als
Funktionen der Knotenpunktspannungen ausdriickt2). Diese
Funktionen seien fiir die verschiedenen Zweige im folgenden
abgeleitet.

2.1 Zweiggleichung fiir verlustlose Leitung

Die Losung der allgemeinen Leitungsgleichungen mit
Beriicksichtigung aller Leitungsbelige ist sehr schwierig. Uram
und Miller beschreiben ein Rechenverfahren [4], mit dem das
Verhalten einer einzelnen, mehrphasigen Leitung mit Wider-
stands-, Induktivitits- und Kapazititsbelag untersucht werden
kann. Sobald man jede beliebige Zahl von Leitungen und kon-
zentrierten Elementen in jeder beliebigen Zusammenschaltung
zulassen und nicht nur eine einzelne Leitung untersuchen will,
muss man gewisse Vernachlissigungen in den Leitungs-
gleichungen machen. Deshalb seien die Leitungsverluste
(Widerstands- und Ableitungsbelag) vernachlissigt. Sie kon-
nen jedoch ndherungsweise durch konzentrierte Elemente
beriicksichtigt werden [5]. Auch die durch die Erdriickleitung
verursachte Frequenzabhéngigkeit in der Nullkomponente von
Freileitungen ldsst sich in das Verfahren nachtriglich ein-
bauen. Fiir die verlustlose Leitung gilt:

du , 01

~ax- L @)
Qi ,ou

xS @)

mit x Entfernung auf der Leitung von einem beliebig ge-
wihlten Anfangspunkt,

u = u(x, t) Momentanwert der Spannung gegen Erde in
der Entfernung x zur Zeit ¢,

i = i(x,t) Momentanwert des Stromes in der Leitung in
der Entfernung x zur Zeit ¢,

L” Induktivitidtsbelag,
C’ Kapazititsbelag.

Durch Elimination einer der beiden Variablen in Gl. (2a)
und (2b) erhélt man:

2y ;0 2
e L% Ga)
2] .o, 020
s L C%p 30

?) Knotenpunktspannung ist die zwischen dem Knotenpunkt und
einem Bezugspunkt (meist Erdpotential) gemessene Spannung. Den
Bezugspunkt zihlt man nicht zu den Knotenpunkten.
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Die zuerst von d’Alembert angegebene allgemeine Losung
lautet:

i=F(x—vt)+f(x+vi) (4a)

u=ZyF(x—vt)—Zyf(x+0v1) (4b)

wobei F (x —v ) und f(x + v t) irgendwelche Funktionen der
Variablen x — vt und x v ¢ sind. Die Funktion F(x — v¢) kann
als eine Welle aufgefasst werden, die mit der Geschwindigkeit v
in positiver Richtung, und die Funktion f(x -+ vt) als eine Welle,
die in umgekehrter Richtung liuft. Die beiden neuen Parameter
in Gl. (4) sind:

der Wellenwiderstand Zw = % (5a)
und die Wellengeschwindigkeit v = T’IT’IF (5b)

Multipliziert man GI. (4a) mit Zw und addiert sie zu
GIl. (4b) bzw. subtrahiert sie davon, dann erhélt man:

U+Zwi=2ZyF(x—uvt) (6)
Uu—Zwi=—2Zyf(x+vt) 7

Man beachte, dass in GI. (6) der Ausdruck u + Zw i stets
konstant wird, wenn x — v 7 konstant ist,und in Gl. (7) u —Z i,
wenn x + v ¢ konstant ist. Die Funktionen x — vt = const und
x + vt = const nennt man die Charakteristiken der Differen-
tialgleichungen (2).

Gl. (6) lasst sich in folgender Weise interpretieren: Ein ge-
dachter Beobachter bewege sich auf der Leitung in positiver
Richtung mit der Wellengeschwindigkeit v fort. Fiir ihn ist
dann der Ausdruck x — v f und folglich auch u + Zy i langs der
Leitung konstant. Die Laufzeit 7 sei diejenige Zeit, die eine
Welle vom einen Ende der Leitung zum anderen Ende braucht,

T:%:W’ ok ®)

(I Leitungsliange). Dann muss der Ausdruck u -+ Z i auf der
Leitung 2—1 in Fig. 1, den der Beobachter zu Beginn seiner
gedachten Fortbewegung auf der Leitung in Knotenpunkt 2
zur Zeit t—7 vorfindet, noch gleich sein mit dem, den er bei
Ankunft im Knotenpunkt 1 zur Zeit ¢ antrifft:

W0+ Zu il P =l + Zu [— i, ©)

(Strom positiv angenommen von 2 nach 1.) Aus Gl. (9) folgt
sofort die gesuchte Zweiggleichung fiir den Strom 71-2:

g 1 _
1 e - (V) 4 const{ P (10a)
o
ity 2| constyy” constyty | 1 QY
A
)
U(z‘l { 1 ] llu‘m
= =
— e —— —— —— — — — —— — — — )

Fig.2
Ersatzschaltbild fiir verlustlose Leitung

1, 2 Leitungsenden; G Leitwert; i Stromquelle; igt_)l Strom am Lei-

tungsende 2; u»‘® Spannung am Leitungsende 2; const g‘_‘l’) Wert der
Ersatzstromquelle am Leitungsende 2

540 (A 344)

mit einem konstanten Glied consti—o, dessen Wert aus der
«Vergangenheit» zur Zeit r—1 bekannt ist:

const{'"P = — [%W uat—" ig:f)] (10b)

GI. (10) ist eine exakte Losung fiir die verlustlose Leitung
am Leitungsende 1. Bergeron baute darauf seine graphische
Methode zur Untersuchung von Wanderwellenvorgédngen auf
[1]. Frey und Althammer entwickelten daraus ein Rechen-
programm fiir den Digitalrechner [6]; sie erwadhnen, dass die
mathematische Seite dieses Verfahrens bereits R. Riemann
bekannt war.

Fig. 2 zeigt ein Ersatzschaltbild, das die Verhiltnisse an den
Leitungsenden richtig wiedergibt und genau der GI. (10) ent-
spricht. Das Ersatzschaltbild ist fiir die Betrachtung des Netzes
als Graph (Streckenkomplex) wichtig3); es besteht aus Ohm-
schen Leitwerten G = 1/Zy von jedem Leitungsende gegen
Erde. Die Leitungsenden sind nur indirekt iiber Quellen ein-
geprigten Stromes verbunden, deren Werte bekannt sind und
sich aus der Vergangenheit des jeweils gegeniiberliegenden
Leitungsendes ergeben.

Eine unendlich lange Leitung oder eine Leitung, die so lang
ist, dass wihrend des untersuchten Zeitraums die Reflexion
vom anderen Ende noch nicht zuriickgekommen ist und zur
Zeit ¢+ < 0 strom- und spannungslos war, wird durch einen
Widerstand gegen Erde von der Grosse des Wellenwider-
stands nachgebildet. Das ergibt sich unmittelbar aus dem
Ersatzschaltbild in Fig. 2, wenn die Quelle eingepriagten
Stromes null gesetzt wird. Sind die Anfangsbedingungen nicht
null, sondern stationdre Wechselstromvorgédnge, dann miissen
zu den Widerstdnden noch sinusférmige Stromquellen parallel
geschaltet werden, deren Werte sich aus Gl. (10b) ergeben.

2.2 Zweiggleichung fiir Induktivitdit
Fiir die Induktivitit L des Zweiges 1—3 in Fig. 1 gilt:

dii-s
d¢

U1 —uz =L (11a)

womit sich der Strom 71—3 zur Zeit ¢ durch Integration ergibt:
1 t

(0 H(t—At)
I Zy=1]_3 +T f (u1 — uz) dt
(t—AD

(11b)

Da der Spannungsfall w1 —us nur in diskreten Punkten mit
einer Schrittweite Ar definiert ist, muss sein Verlauf fiir die
Integration zwischen r—Ar und ¢ interpoliert werden. Bei Ver-
wendung linearer Interpolation folgt dann aus GI. (11b):

- a-an |, AT @—Av  a-Ap | ®© L ©
o3 =113 ’*ﬁ[‘ﬁ — Uy +uy *”3] 12)

Das ist die Anwendung der bekannten Trapezregel fiir die
Integration von GIl. (11b). Dem Diskretisierungsfehler ent-
spricht die in Fig. 3 schraffierte Flache zwischen der Kurve und
der Sehne. Er ist von der Ordnung (A7)3 je Schritt, d. h. bei
geniigend kleinem Wert Az kann man davon ausgehen, dass bei
Halbierung der Schrittweite der Diskretisierungsfehler nur noch
1/8 des vorherigen ist. Die Anwendung der Trapezregel auf
Gl. (11b) ist identisch mit der Ersetzung des Differential-

%) Mit graphentheoretischen Uberlegungen ist es moglich, den Lo-

sungsprozess bei Netzberechnungen topologisch so zu steuern, dass der
Rechenaufwand erheblich reduziert wird (sieche Abschnitt 3).
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[ Trapez=
¢
Jyttrde
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%
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¢t ——
Fig. 3
Trapezregel

t Zeit; y(t) Funktion der Zeit

quotienten in Gl. (11a) durch einen zentralen Differenzen-
quotienten und linearer Interpolation fiir die Spannung,

— ugt"m)] + [u(lt) —u
2 o At

[uit—Al) gm)] ; I(Il l(lt_ Av)
=1L

Aus GI. (12) folgt die gesuchte Zweiggleichung fiir i1-3:

0y = 2p [ - (13a)

(l) (t—AD
i 3=%57 3L ] + const 3

Auch hier ist das konstante Glied aus den Werten der Ver-
gangenheit bekannt:

At =
(@A) _ ja—AD [u(l Ay _

(t—AD
const; 3 =1i; 3 - 3L iy ]

[13b]

Ein Ersatzschaltbild, das Gl. (13) entspricht, zeigt Fig. 4.

Es besteht aus einem Ohmschen Leitwert G = ] zwischen

oL
Knotenpunkt 1 und 3 mit einer parallel liegenden Quelle ein-
geprigten Stroms, dessen Wert durch die Vergangenheit be-
stimmt ist.

2.3 Zweiggleichung fiir Kapazitdt
Fur die Kapazitiat C des Zweiges 1—4 in Fig. 1 gilt:

(O] ()

o =AY
Uy Uy = Uy

ug—to L Vol f i_4dz  (14)

t—At
Fiihrt man auch hier wieder die Integration nach der
Trapezregel durch, dann ergibt sich:

o _,0_,

(t—At)
uy —uy 1

WG ZACt’ [(z) +I-(lt:ft):| (15)

Dabei wird lineare Interpolation fiir den Strom / ange-
nommen. Fiir den Diskretisierungsfehler gilt das Gleiche wie

i =const (1' gt)

(t)
i 3 '3
i -
At
€= 3L
Fig. 4

Ersatzschaltbild fiir Induktivitiit

1, 3 Knotenpunkte; i1(t—)3 Zweigstrom von I nach 3

Bull. SEV 60(1969)12, 7. Juni

t}lLdie Induktivitat. Aus GI. (15) folgt die gesuchte Zweig-
gleichung fur 71-a:

; 2C _
P T3 [u‘,') uf,”] + const{—20 (16a)
mit dem konstanten Glied:
const=20 = _ ZA(; [u(l"m) N ugtht)] 98 (16b)

Fig. 5 zeigt das zugehorige Ersatzschaltbild, das in seinem
Aufbau mit dem fiir die Induktivitit libereinstimmt. Zu einem

Ohmschen Leitwert G = %zwischen den Knotenpunkten 1

und 4 liegt eine Quelle eingeprigten Stromes mit bekanntem
Wert parallel.
2.4 Knotenpunktgleichungen

Setzt man Gl. (10), (13) und (16) sowie
i g 112 [u‘l" u(S‘)]

in GI. (1) ein, so ist die Knotenpunktgleichung fiir Knoten-
punkt 1:

1A 2C 171 0 At o 2C O
[zw t3L T A R]”l 2L Ar (%)
B 113“?)—’(11) [Const(l D | const$=A0 | const?" A:)]

Fiir ein beliebiges Netz mit # Knotenpunkten erhilt man
entsprechend ein System von n linearen Gleichungen, in
Matrixschreibweise4):

Yo u® —iw— k (18)
. (t-Ab)
i=const Ty
(t) s (b

F 3w 4 4 '4-n
—— —~———

G:zi

¢
Fig.5

Ersatzschaltbild fiir Kapazitiit
1, 4 Knotenpunkte; 15‘_)4 Zweigstrom von I nach 4
mit Y  (reelle) Knotenpunktleitwertmatrix;
u(t) Spaltenvektor der » Knotenpunktspannungen zur
Zeit t;
i(t) Spaltenvektor der n eingespeisten Knotenpunkt-
strome zur Zeit ¢;
k  konstanter Spaltenvektor, dessen Komponenten sich
aus den «Vergangenheits-Ausdriicken» consti—x zu-
sammensetzen.

Man beachte, dass die Knotenpunktleitwertmatrix Y kon-
stant ist, solange die Schrittweite unverindert bleibt. Sie ist
symmetrisch und reell. Der Aufbau der Matrix erfolgt nach
den gleichen Regeln wie fiir die Knotenpunktadmittanzmatrix
bei Netzberechnungen im stationdren Zustand [7], also:

Yii = Summe der Leitwerte aller Ersatzschaltbild-
Zweige, die im Knotenpunkt / anliegen,
Yix = Yxi = negative Summe der Leitwerte aller Ersatzschalt-
bild-Zweige, die Knotenpunkt 7 mit Knotenpunkt
k verbinden.

%) Matrizen und Vektoren sind durch fettgedruckte Buchstaben ge-
kennzeichnet.
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Verlustlose Leitungen gehen nach Fig. 2 somit nur in die
Diagonalelemente ein. Der Aufbaualgorithmus lisst sich for-
mal durch Verwendung von Inzidenzmatrizen ableiten. Aus
Griinden der Anschaulichkeit wurde die Entstehung des
Gleichungssystems (18) jedoch nicht streng formal, sondern
anhand des konkreten Beispiels von Fig. | gezeigt.

In Gl. (18) werden im allgemeinen ein Teil der Spannungen
gegeben und ein Teil unbekannt sein. Die Matrizen und
Vektoren seien entsprechend in eine Teilmenge A4 der Knoten-
punkte mit unbekannten Spannungen und in eine Teilmenge B
der Knotenpunkte mit gegebenen Spannungen unterteilt.
Dann lisst sich Gl. (18) in folgender Form schreiben:

Yo YAB "fi) iﬁ) k,
Yga Yap “g) ig) ky
Daraus erhilt man den unbekannten Vektor u% durch
Losung des Gleichungssystems:

(19)

o _ ;0 ®
Yiausd =il —ky— Yypuy

Der Losungsprozess ist also nichts weiter als die Losung
eines Systems linearer Gleichungen in jedem Zeitschritt. Die
Koeffizientenmatrix Yaa ist fiir gleichbleibende Schrittweite
konstant. Die rechten Seiten des Gleichungssystems (19)
miissen fiir jeden Schritt aus den eingespeisten Stromen ia(t),
aus den gegebenen Spannungen us(t) und aus der Vergangen-
heit des Netzzustandes ka neu berechnet werden.

3. Praktische Durchfithrung der Rechnung

GI. (19) 16st man am zweckmassigsten durch einmalige
Dreieckszerlegung (Gauss-Elimination) der Matrix Yaa, und
Anwendung des Dreieckszerlegungsprozesses auf die rechten
Seiten mit anschliessendem Riickwirtseinsetzen (im Englischen
«backsubstitution») zum Berechnen von ua(t) in jedem Zeit-
schritt. Fig. 6 zeigt schematisch diesen Rechenprozess. Bekannt-
lich sind in grosseren Netzen nur wenige Elemente in der
Matrix Yaa von null verschieden. Diese diinne Besetzung mit
Nichtnullen Idsst sich ausniitzen, indem man nur die von null
verschiedenen Elemente der dreieckszerlegten Matrix Y, in
komprimierter Form speichert. Die Einsparungen an Speicher-
platz und Rechenzeit sind erheblich; sie konnen durch eine
gesteuerte Reihenfolge der Eliminationen (topologische Steue-
rung) optimiert werden [8...11]. Als Beispiel seien die in [10]

T
L]
LY
® e
- bl
(2) (1)

Fig. 6
Losung linearer Gleichungen bei sich indernden rechten Seiten
einmalig: Dreieckszerlegung b 60
in jedem Schritt: (/) Dreieckszerlegung auf rechte Seite anwenden,
(2) riickwirtiges Einsetzen.

542 (A 346)

fiir das Problem der Stabilitit angegebenen Zahlen auf das
Problem transienter Vorgidnge tibertragen:

Zahl der Knotenpunkte . . . . 267
Zahl der Zweige mit konzentrlerten Elementen (verlustlose
Leitungen tragen nur zu den Diagonalelementen bei;
ihre Zahl ist deshalb fiir den Vergleich an der dreiecks-
zerlegten Matrix unerheblich) . . . . . . 423
Zahl der von null verschiedenen Elemente oberhalb der
Diagonale nach der Dreieckzerlegung bei optimal ge-

steuerter Reihenfolge der Eliminationen. . . . . 1015
Zahl der von Null verschiedenen Elemente oberhalb der
Diagonale bei voller Dreieckmatrix. . . . . . . . . 35511

Speichert man die dreieckzerlegte Matrix in der in [11] an-
gegebenen Form, dann werden 2564 Speicherplitze benotigt.
Das sind nur 7,2 % des Speicherplatzbedarfs einer vollen
Dreieckmatrix; die Einsparung ist also beachtlich.

Fiir den Fall, dass die Knotenpunkte nur iiber verlustlose
Leitungen verbunden sind und konzentrierte Elemente nur
von Knotenpunkten zur Erde oder zu Knotenpunkten mit ge-
gebener Spannung liegen, wird Yaa eine Diagonalmatrix.
Folglich konnten in diesem speziellen Fall die Gleichungen
unabhingig Knotenpunkt fiir Knotenpunkt gelost werden;
viele Programme basieren auf dieser Beschrinkung. Bei der
erwdhnten Ausniitzung der diinnen Besetzung ist diese Ver-
einfachung jedoch automatisch enthalten, ohne andererseits
die Allgemeinheit des Netzaufbaus einschrinken zu miissen.

Die Berechnung der rechten Seiten in GI. (19) fiir jeden
Schritt ist im wesentlichen ein organisatorisches Problem. Die
Momentanwerte der gegebenen, eingespeisten Knotenpunkt-
strome werden in den Vektor ia(t), die der gegebenen Knoten-
punktspannungen in den Vektor us(t) eingesetzt. Man kann
diese Werte Punkt fiir Punkt bei beliebigem Kurvenverlauf
einlesen oder auch aus festgelegten Funktionen (Sinuskurve,
Rechteckwelle usw.) in jedem Zeitschritt berechnen. In manchen
Fallen werden die den transienten Vorgang erzeugenden Er-
regungen nur Spannungsimpulse sein (dann ist ia = 0) oder
auch nur Stromimpulse (dann gehoren alle Knotenpunkte der
Teilmenge A an). Die Erregung kann auch ganz fehlen, wie bei
der Entladung eines Stossgenerators (dann gehoren alle
Knotenpunkte der Teilmenge 4 an und ia = 0). Niheres iiber
den Aufbau des Vektors ka aus den Werten der Vergangenheit
findet sich in Anhang 1.

4. Erweiterung des Rechenverfahrens auf
mehrphasige Netze

Das Rechenverfahren lédsst sich auf mehrphasige Schaltungen
erweitern, indem man skalare Grossen durch Matrixgrossen
ersetzt. Diese Verallgemeinerung gilt ohne weiteres fiir konzen-
trierte Elemente. Fiir mehrphasige, verlustlose Leitungen ist es
notwendig, die gekoppelten Phasengrossen in entkoppelte
Modalgrossen zu transformieren.

4.1 Konzentrierte Elemente mit Kopplung

Zur Erlduterung diene Fig. 7 mit drei gekoppelten Zweigen.
Die Widerstinde der Zweige seien in einer Matrix R und die
Induktivititen in einer Matrix L zusammengefasst; die
Diagonalelemente Ri; -+ jw Li; sind die Eigenimpedanzen und
die nichtdiagonalen Elemente Rix 4 jo Lix sind die Kopplungs-
impedanzen. Fig. 7 konnte beispielsweise die Lingsimpedanzen
einer Drehstromleitung darstellen; in diesem Falle wire bei
Beriicksichtigung der Erdriickleitung bekanntlich auch Rix von
null verschieden. Wird die Serienschaltung der Widerstinde
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Fig. 7
Gekoppelte Impedanzzweige
1, 2 Anfang und Ende der gekoppelten Zweigzruppe; /A4, 1B, 1C Kno-
tenpunkte am Anfang; 24, 2B, 2C Knotenpunkte am Ende; G Leit-
wertmatrix

und Induktivititen zu einer Zweiggruppe zusammengefasst,
dann ergibt sich aus der Integration nach der Trapezregel:

i‘l')_z =G (u(lt) = ug)) + const(lt:ft) (20a)
mit dem konstanten Glied const;_s, das sich im allerersten
Schritt aus

const(I‘:ZA" = i [(u(lt—At) _ u(zzam)) - (R - K27 L) igc:zm)]
(20b)
und in allen weiteren Schritten aus der rekursiven Formel

const(lt:zm) —H [(u(1t~At) - u(zt—Ax)) +

—2At)

4 8 const(lt_2 1—2410

] — const {7 (20c)
berechnet. Die Form von Gl. (20c) wurde so gewihlt, dass alle
Matrizen symmetrisch sind, was Speicherplatz-Einsparungen
ermoglicht,

S—R+ 2L

At
G = 8-
H=2(51— SRS

Der Unterschied von m gekoppelten Zweigen zu einem ein-
phasigen Zweig besteht darin, dass beim Aufbau der Matrix
Y aa in GI1. (19) nicht ein skalarer Wert, sondern eine Matrix G
vom Grad m additiv hinzutritt, wie es schematisch in Fig. 7
angedeutet ist. Ausserdem geht in jedem Schritt ein Vektor
const i anstelle eines skalaren Wertes in den Vektor ka ein.

Sollen die 3 Zweige der Fig. 7 einen Abschnitt einer Dreh-
stromleitung darstellen, dann liegen an den Enden 1 und 2 noch
Kapazititen zwischen den Knotenpunkten und gegen Erde und
bilden so einen IT-Mehrpol (Verallgemeinerung des I1-Vier-
pols). Diese Kapazititen sind dann einfache, ungekoppelte
Zweige, weshalb keine neuen Formeln notwendig sind ; organi-
satorisch ist es jedoch besser, auch die Kapazitdten zu einer
Matrix C zusammenzufassen (Diagonalelement Ci; = Summe
aller im Knotenpunkt 7 anliegenden Kapazititen, nicht-
diagonales Element Cix = negativer Wert der Kapazitit
zwischen Knotenpunkt i/ und k).

4.2 Verlustlose Mehrphasenleitung

Die Wanderwellenvorgidnge in den m Phasen einer verlust-
losen Mehrphasenleitung beeinflussen sich gegenseitig; sie
sind gekoppelt. Die Losung wird wesentlich vereinfacht, wenn
man die m Phasengrdssen in m sog. Modalgrossen derart
transformiert, dass dabei die m Differentialgleichungen der
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Modalgréssen unabhiingig voneinander werden. Die physi-
kalisch existente m-phasige Leitung wird also in m unabhén-
gige einphasige Leitungen im kiinstlich geschaffenen modalen
Bereich transformiert. Jeder Leitung im modalen Bereich ist
eine modale Laufzeit und ein modaler Wellenwiderstand zu-
geordnet. In Fig. 8 ist dieser Gedankengang fiir eine drei-
phasige Leitung skizziert. Der Ubergang von Modalgrossen zu
Phasengrossen und umgekehrt geschieht mit Hilfe von Linear-
transformationen. Im Falle vollkommen verdrillter Drehstrom-
leitungen sind die « f O-Komponenten solche Modalgrossen;
sie sind hier symmetrischen Komponenten vorzuziehen, da die
Transformationsmatrizen der a B O-Komponenten reell sind
und damit das gesamte Problem im Bereich der reellen Zahlen
bleibt. Fiir den hiufig angenommenen Fall, dass alle Diagonal-
elemente der Induktivititsmatrix, also alle Eigeninduktivi-
taten, untereinander gleich sind und alle nichtdiagonalen
Elemente (Kopplungsinduktivititen) untereinander gleich
sind (analoge Annahme fiir die Kapazititen), gibt Karrenbauer
[12] eine einfach aufgebaute, reelle Transformationsmatrix an,
die fiir beliebige Phasenzahl gilt und deshalb fuir zweipolige
HGU-Leitungen ebenso verwendet werden kann wie fiir ein
vollkommen verdrillt angenommenes Doppeldrehstromsystem.

Die Formeln werden in Anhang 2 abgeleitet, wobei sich
zeigt, dass auch hier der Stromvektor #1 -2 der Strome von der
Menge 1 der Knotenpunkte zur Menge 2 wieder eine lineare
Funktion der Knotenpunktspannungen ist, fiir das Beispiel
von Fig. 8:

» (1) = ()
ll—zpl\asu o G u Iphase

21

|
+ comnst f=2yhage

Beim Aufbau der Matrix Yaa in Gl. (19) tritt die Wellen-
admittanzmatrix G anstelle einer skalaren Grosse additiv
hinzu; ebenso geht ein Vektor comsti—k...c anstelle einer
skalaren Grosse in den Vektor ka ein. Die Vergangenheit des
Leitungszustandes muss im modalen Bereich mit den modalen
Parametern consti—x an jedem Leitungsende registriert werden;
daraus kann dann comst k. in jedem Schritt berechnet
werden.

5. Genauigkeit des Rechenverfahrens

Um fiir das Problem transienter Vorginge das mathema-
tische Modell der Gl. (19) zu erhalten, mussten nur fiir Induk-
tivititen und Kapazititen gewisse Niherungen gemacht wer-
den. Verlustlose Leitungen und Widerstinde wurden exakt
behandelt, obgleich bei Durchfithrung der Rechnung Diskre-
tisierungsfehler entstehen, wenn die Laufzeit kein ganzzahliges
Vielfaches der Schrittweite ist, da dann interpoliert werden
muss, um das Glied const{""” berechnen zu konnen. Mathe-
matisch gesehen ist das Verfahren eine schrittweise Integration
der gewohnlichen Differentialgleichungen fiir Induktivititen

1 1a 2a 2

1 A Ouu O 0 e 2 A
E%> 1b 2b

1B Ol 4= o 4=p -0 2B
1c 2c

{C O \‘ atam O 2C

v — L—V—I

Phasen modal Phasen

Fig. 8
Verlustlose Mehrphasenleitung
g Ubergang mittels Lineartransformationen
Weitere Bezeichnungen siehe Fig. 7
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und Kapazititen nach der Trapezregel; der Diskretisierungs-
fehler ist dabei von der Ordnung (A¢)3. Es ist wichtig zu wissen,
dass Integrationen mit der Trapezregel numerisch stabil sind
und einen glittenden Effekt haben, d. h. die Fehler werden
gewissermassen «ausgebiigelt». Innerhalb der Gruppe der
verschiedenen Differenzenverfahren wiirde der hier einge-
schlagene Weg die einfache Interpolation nach Adams sein [13],
wobei die Werte jedoch nicht durch Iteration, sondern direkt
aus der Losung eines Systems linearer Gleichungen gefunden
werden.

Die nidherungsweise Integration nach der Trapezregel ist
nach Erfahrungen des Verfassers fiir die Belange der Praxis
vollkommen ausreichend, ganz besonders natiirlich in Netzen
mit nur wenigen konzentrierten Elementen. Die Nédherung ist
bekanntlich gleichbedeutend mit linearer Interpolation im
punktweise errechneten Kurvenverlauf. Der Abstand dieser
Punkte sollte ohnehin so klein gewihlt werden, dass man sich
die Punkte durch Geradenstiicke verbunden denken kann. Die
Forderung nach akzeptablem Kurvenverlauf garantiert also
gleichzeitig ausreichende Genauigkeit fiir die Trapezregel.

Ein System linearer Differentialgleichungen koénnte auch
geschlossen gelost werden (durch Elimination algebraischer
Gleichungen liesse sich das Problem transienter Vorginge auf
ein solches Differentialgleichungssystem reduzieren). Das
homogene System

dx

dp = Ax
hat bekanntlich die Losung x (1) = eAAtx (r — A7) mit der
Ubergangsmatrix eAAt (im Englischen «transition matrix»),
die iiber die Eigenwerte und Eigenvektoren der Matrix
A gefunden wird [14]. Obwohl man mit der QR-Trans-
formation nach Francis [15] liber eine wirksame Methode zur
Eigenwertberechnung verfiigt, ist der Rechenaufwand doch
betrichtlich. Ausserdem geht bei Beniitzung der Ubergangs-
matrix die diinne Besetzung mit Nichtnullen verloren, weshalb
die geschlossene Losung fiir grosse Netze, wie sie insbesondere
in der Energietechnik vorliegen, nicht realisierbar ist. Die An-
wendung der Trapezregel liefert iibrigens implizite eine Appro-
ximation der Ubergangsmatrix durch eine rationale Matrix-
funktion:

N R

(I Einheitsmatrix)

Durch Hinzunahme von Gliedern zweiter und hoherer
Ordnung im Zihler- und Nennerpolynom liesse sich die
Genauigkeit der Approximation wesentlich steigern [16].

Vergleiche mit dem Runge-Kutta-Verfahren sprechen bei
realistischen Genauigkeitsforderungen der Praxis ebenfalls fuir
die Trapezregel [17].

6. Nachbildung von Schaltern

In dem zu untersuchenden Netz konnen Schalter sein, deren
Stellung sich im Laufe des transienten Vorgangs dndert. Sie
werden als ideal angenommen (R = 0 in geschlossener Stel-
lung, R = oo in gedffneter Stellung). Beliebige Zweige diirfen
jedoch parallel oder in Reihe zum Schalter liegen, um be-
stimmte physikalische Eigenschaften des Schalters nachzu-
bilden; sie werden dann formal wie andere Zweige behandelt
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und sind deshalb fiir die Rechnung nicht ein Teil des Schalters.
Der ideale Schalter kann entweder einen Pol eines Leistungs-
schalters oder eine Funkenstrecke reprisentieren. Im ersten
Fall wird das Schliessen durch ein Zeitkriterium (geschlossen,
sobald ¢ > £,4) und das Offnen durch Zeit- und Stromkriterien
(offen nach ¢ = taus, sobald Schalterstrom betragsméssig
< Abreillstrom) gesteuert. Das Schliessen von Funkenstrecken
wird durch ein Spannungskriterium (geschlossen, sobald
Schalterspannung betragsmissig > Uberschlagsspannung)
und das Offnen durch ein Stromkriterium gesteuert. Mit dem
idealen Schalter als Funkenstrecke kann z. B. das Uberschlags-
verhalten eines Isolators simuliert werden, wobei man die
Uberschlagspannung als Funktion der Steilheit des Span-
nungsanstiegs vorgibt.

Enthilt das Netz hochstens einen Schalter, der zwischen
den Knotenpunkten / und k liegen moge, dann ldsst sich sein
Verhalten durch zusitzliche Knotenpunktstrome ii = —ik
simulieren. Dazu wird die Matrix Yaa so aufgebaut, als wire
der Schalter offen. Dann wird ein Vektor z ein fiir allemal er-
mittelt als Differenz der i-ten und k-ten Spalte der Kehrmatrix
Y,,. Diesen Vektor z erhilt man am einfachsten durch
Losung von GI. (19) mit den rechten Seiten gleich null, aus-
genommen /-te Komponente gleich 41 und k-te Komponente
gleich —1. Wenn der Schalter geoffnet ist, erhdlt man die
Spannungen ua (aur) direkt aus GI. (19). Ist der Schalter ge-
schlossen, dann verwendet man die fiir den gedffneten Schalter
berechneten Resultate, um zunichst den Schalterstrom zu be-
rechnen:

__ Yi(aur) 7 Uk (auf) (22)
Zi— Zk

ii=

Die Resultate fiir den geschlossenen Zustand ergeben sich
damit durch Superposition:

(23)

UA (zu) = WA (auf) + % * Tis

Gl. (22) und (23) gelten nur, wenn die Knotenpunkte / und &k
beide zur Teilmenge mit unbekannten Spannungen gehoren.
Andernfalls sind in den Formeln gewisse Modifikationen
notig.

Enthilt das Netz mehr als einen Schalter, dann ist es am
besten, die tatsichlichen Schalterstellungen in der Matrix Yaa
zu beriicksichtigen und sie zu dndern, sobald ein Wechsel statt-
findet. Es ist jedoch nicht notwendig, bei jedem Wechsel die in
der Rechenzeit aufwendige Dreieckszerlegung vollstindig neu
durchzufiihren [5].

7. Nichtlineare Elemente

Von den nichtlinearen Elementen seien nichtlineare Wider-
stinde und nichtlineare Induktivititen behandelt. Der Uber-
spannungsableiter ist ein nichtlinearer Widerstand, der bis
zum Erreichen der Ansprechspannung den Wert co hat und
danach durch eine «, i-Kennlinie (in Form eines Polygonzugs
oder einer Funktion) charakterisiert wird. Die Ansprech-
spannung kann als konstanter Wert oder als Funktion des
Spannungsanstiegs vorgegeben werden.

Ein einziges nichtlineares Element, das zwischen den
Knotenpunkten 7 und k liegen moge, simuliert man zweck-
massig durch zusitzliche Knotenpunktstrome i = iund ix = —7
(i = Strom im nichtlinearen Element von k nach 7). Analog wie
bei der Nachbildung eines einzelnen Schalters sei ein fiir
allemal die Differenz der i-ten und k-ten Spalte der Kehrmatrix
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YA_A1 als Vektor z vorherberechnet. Die jeweiligen Schalter-
stellungen miissen dabei in der Matrix ¥ aa beriicksichtigt sein,
d. h. bei jedem Schalterwechsel ist z neu zu berechnen. Unter
Vernachlassigung des nichtlinearen Elementes erhédlt man dann
zunichst in bekannter Weise z£a (1inear) aus der Lésung von
Gl. (19). Die endgiiltige Losung ergibt sich durch Super-
position:

WA = UA (linear) T zi (24)

Dazu muss vorher der Strom i im nichtlinearen Element,
dessen Spannung 1 = ux — u; ist, berechnet werden; er ergibt
sich durch Losung der beiden Gleichungen:

U = Ux (linear) — Ui (linear) + (zx — zi) i (Netzkennlinie) (25)

und

u=f (i) (nichtlineare Kennlinie) (26)

als Schnittpunkt der beiden Kennlinien (Fig. 9). Damit ist der
Fall des nichtlinearen Widerstandes und des Uberspannungs-
ableiters gelost.

Der Losungsweg gilt auch fiir nichtlineare Induktivititen,
wenn es gelingt, die y, i-Kennlinie (¥ = Flussverkettung) in
eine u, i-Kennlinie liberzufithren. Das erreicht man wiederum
mit Hilfe der Trapezregel, die aus

t
z//(t):fu“)dt + yl)
die Formel 0
(//(t) = —Az—t u® 4+ ct—An

liefert. Damit kann die w-Ordinate in der Kennlinie v = f (i)
durch einen koordinatenverschobenen «-Malstab ersetzt
werden, was dann wiederum auf 2 Gleichungen von der Form
(25) und (26) fiihrt. Der Wert ¢ ist urspriinglich
ol0) — 2 w(©) 4+ 4
At

und danach
ct—AD) = ¢ (=240 | 2 t—AD

Diese Superpositionsmethode ist anwendbar, solange das
Netz nur ein einziges nichtlineares Element enthilt. Sie ldsst
sich aber auch bei mehreren nichtlinearen Elementen anwenden,
wenn zwischen ihnen verlustlose Leitungen liegen, d. h. wenn
die nichtlinearen Elemente durch Laufzeiten zeitlich vonein-
ander getrennt sind und dadurch ein nichtlineares Element die
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Vorginge an den anderen nichtlinearen Elementen nicht sofort,
sondern mit einer Zeitverzogerung, merkt. Diese Einschrin-
kung trifft in der Praxis meist zu; wenn nicht, so kann man sie
durch Einfiigen kurzer Leitungsstiicke mit der Laufzeit Ar
erreichen. Fiir jedes nichtlineare Element existiert dann ein
unabhéingiges Gleichungspaar (25) und (26). Durch geschach-
telte Speicherung der zugehorigen z-Vektoren kann die Super-
position fiir alle nichtlinearen Elemente in einem Zug aus-
gefiihrt werden [5].

8. Beispiel
Eine am Ende offene Drehstromleitung soll zweistufig tiber
Dampfungswiderstdnde zugeschaltet werden (Fig. 10). Die
Leitung wurde einmal durch eine Kette von 18 Mehrpolen

Daten der Drehstromanlage Tabelle I

Leitungsdaten: Drehstromleitung (verdrillt), / = 288 km
Beldge fir 3000 Hz verwendet
(dominante Frequenz)

| Mitsystem

0,03 Q/km
18,3 Q/km
0,012 pF/km

| Nullsystem

6,8 Q/km
48,1 O/km
0,0066 pF/km

R
oL’
Pol

Schalterdaten: Schliesszeiten der Kontakte
Phase ’ I ‘ I

R 0
S 4 ms
T 4 ms

10 ms
14 ms
14 ms

Generatorspannungen:
ur, = — sinwt f =60 Hz
Spannungen in
per unit

ug = — sin(wr — 1209)
ur = — sin (et — 2400)

(konzentrierte Elemente) und zum anderen als verlustlose
Dreiphasenleitung mit ndherungsweiser Beriicksichtigung der
Verluste durch konzentrierte Widerstinde an drei Stellen [5]
nachgebildet. Fig. 11 zeigt fiir die zweite Art der Nachbildung
den von einem Zeichengerit automatisch angefertigten Kurven-
verlauf. Die gestrichelten Linien sind die Ergebnisse bei Nach-
bildung der Leitung mit Mehrpolketten; sie wurden zum Ver-
gleich nachtriaglich von Hand eingezeichnet. Die verwendeten
Daten sind in Tabelle I zusammengestellt.

I I
r———_——f
l |
' “E:_- o= QR
el os
|
N -
| B 4
| |
e —— A 1
Ry =400 2
Ri:] S d
i Fig. 10

Zuschalten einer leerlaufenden Leitung
R, S, T Phasen am Leitungsende; R; Innenwiderstand; Ry Ddmpfungs-
widerstand
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Fig. 11

Kurvenverlauf
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regungen.

Anhang 1
Speicherung der Vergangenheit des Netzzustandes

Die Vergangenheit des Netzzustandes geht in die rechten Seiten
der Gl. (19) durch die Ausdriicke constij—x ein, aus denen sich der
Vektor ka zusammensetzt. Beim Aufbau dieses Vektors setzt man
zunéchst alle Komponenten gleich null und addiert dann Zweig fiir
Zweig den Ausdruck consti—x zur k-ten Komponente und subtrahiert
ihn von der i-ten Komponente.

Im allerersten Zeitschritt mit # = A missen die Ausdriicke
const;—x nach GI. (10b), (13b) und (16b) errechnet werden. Deshalb
ist es notwendig, die Anfangswerte der Spannungen und Stréme zur
Zeit ¢t = 0 bei Induktivititen und Kapazititen und zurick bis zu
t = (At—r7) bei verlustlosen Leitungen zu kennen. Dass bei der
verlustlosen Leitung die Anfangswerte auch vor # = 0 fiir weiter
zuriickliegende Zeitpunkte bekannt sein miissen, rithrt daher, dass
nur die Zustinde an den Leitungsenden verfolgt werden. Wiirden
die Anfangsbedingungen fiir alle Orte ldngs der Leitung vorliegen,
dann wiirden die Werte zum Zeitpunkt # = 0 genligen.

Fir alle nach dem 1. Schritt folgenden Schritte ist es einfacher,
die Ausdriicke consti—x bei Induktivititen und Kapazititen aus
Rekursionsformeln auf dem laufenden zu halten. Fir Elemente
zwischen den Knotenpunkten / und k& gilt:

Induktivitét: consti(‘:km) = const?__km‘) +2x 7
Kapazitit: constf‘:km) = — const?___kzm) —2x (28)

. -— — WV
mit x = Gix [u(t A "i([ At,]

1
%[tj bzw. Gix = %A—C;)
Diese Formeln folgen aus Gl. (13b) bzw. (16b) durch Einsetzen der
Strome geméss GI1. (13a) bzw. (16a).

Fur Leitungen miissen die Ausdriicke const;i—x und constk—; bis
zur Zeit t—7 zurlick in einer Liste gespeichert werden. Da man aus
GI. (19) nur die Spannungen erhdlt, ist eine Nebenrechnung notig,
um in jedem Zeitschritt constj—x und constx—i zu berechnen. Hierzu
verwendet man am besten die Rekursionsformel:

(Gik =

2 _
constf‘lk = — [Z_w u](:) - const(ktff)] (29)

die sich aus GIl. (10a) und (10b) ableitet und bei Speicherung von
2/Zw nur eine Multiplikation und eine Addition erfordert. Falls 7
kein ganzzahliges Vielfaches von Ar ist, kann man lineare Inter-
polation beim Aufsuchen der Vergangenheitswerte verwenden. Ist
t < At, dann beniitzt man den Wert zur Zeit r—At, was gleich-
bedeutend mit Erhéhung der Laufzeit auf den Wert Az ist. Die Listen
zur Speicherung der Leitungsvergangenheit werden durch Ver-
schieben nach jedem Schritt auf dem laufenden gehalten, wobei die
Werte des am weitesten zuriickliegenden Schrittes fallengelassen und
die neuesten Werte eingetragen werden. Im Digitalrechner werden
die Listen in Wirklichkeit nicht verschoben, sondern die Anfangs-
adressen werden um «1 modulo (Listenldnge)» erhoht (Simulierung
einer schleifenformigen, geschlossenen Liste [18]).

Die Anzahl der Knotenpunkte ldsst sich verringern, wenn man die
Serieschaltung einer Induktivitdt und eines Widerstandes als einen
einzigen Zweig auffasst. Anstelle von Gl. (13) erhdlt man dann:

i®, = G [uf° — uP] + const{7 A0 (30a)
1
mit G = 2L
= T
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wobei consti—x im ersten Schritt aus:

(t—AD (t—AD t—AD (t—At
const, " =G [ui — Uy ] +hi ) ) -(30b)

und in allen weiteren Schritten aus der Rekursionsformel:

constgl_”km) =G+ h)- [ui(t_m) — uf(‘*m)] + h- const(it__]?‘m
(30c)
2L
it h = ——
mi G ( Az R)

zu berechnen ist.

Ahnlich lisst sich eine verlustlose Leitung mit konzentrierten
Widerstdnden R/2 an beiden Leitungsenden zur ndherungsweisen
Beriicksichtigung der Stromwirmeverluste behandeln. GI. (10) ist
dann zu ersetzen durch:

i%‘lk =G u?) + const?_._kt) (31a)
mit const! P — — [Gul! ™ + nil"P (31b)
1 R
. _ P R
wobei G Zo P R2 und G (Zw 2 )

Ahnliche Formeln erhilt man, wenn man R/4 an beiden Enden
und R/2 in der Mitte der Leitung einfiigt [5].

Anhang 2
Verlustlose Mehrphasenleitung
Das Verhalten einer Leitung mit m Phasen oder m Leitern wird

durch zwei Systeme von jeweils m partiellen Differentialgleichungen
beschrieben:

o R Uphase 0 iphase

dx =L W (32a)
O iphase - 0 uphase
— 3w € D¢ (325)

Der Index «phase» deutet an, dass es sich um Phasengrossen
handelt. Durch Elimination einer der Vektorvariablen erhilt man:

0% wphase ’ 02 Uphase
BT i v (338)
0 ipnase , 7+, O%ipnase
BT R v (330)

Wenn es moglich ist, die Gleichungssysteme (33a) und (33b) zu
entkoppeln — das heisst die Matrizen L’ C’ bzw. C’ L’ in Diagonal-
form zu bringen — vereinfacht sich das Problem auf die Losung von
m unabhéngigen einphasigen Gleichungen. Eine solche Diagonalisie-
rung erreicht man durch Einfiihrung neuer «modaler» Variablen mit
Hilfe einer Lineartransformation [19]; fur die Spannungen gilt:

Uphase — M umoaar
und
(34

Umodal = M1 Uphase

M ist die Modalmatrix zur Matrix L’ C’. Die Spalten von M sind
die Eigenvektoren von L’ C’, die man gewohnlich normalisiert. Fiir
die Strome ist die Transformation:

iphase = Nimodal
und

imodal = N ipnase 395

Dabei ist IV die Modalmatrix zu C’L’. Die Matrizenprodukte
L’ C’und C’ L’ haben zwar gleiche Eigenwerte (C’' L’ &= L’ C’, da das
Matrizenprodukt nicht kommutativ ist); ihre Modalmatrizen sind
jedoch verschieden mit folgender Abhéngigkeit:
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1
N= Cy C'M (36)

In GI. (36) ist IV nicht normalisiert. Co’ ist ein belicbiger Mass-
stabsfaktor mit derselben Dimension wie C’, der lediglich dafiir sorgt,
dass IV dimensionslos wird. Dadurch behalten die Gréssen im Modal-
bereich die gleichen Dimensionen wie im Bereich der Phasengrossen,
was zum leichteren Verstandnis beitrdgt. Liesse man Cy’ weg, dann
wire beispielsweise der modale Wellenwiderstand der Kehrwert der
modalen Wellengeschwindigkeit, was zwar zu keinen Schwierig-
keiten in der Rechnung fiihren wiirde, aber doch verwirren kann.
Mit den Lineartransformationen (34) und (35) gehen die Systeme
(32a) bis (33b) im Bereich der Phasengrossen tiber in die Gleichungs-
systeme im modalen Bereich:

- O umodal 1 dimodal

T o g

— imousy i'b“‘;““ — Gy mots e (37b)
szu;;;qaz o, fmufl (383)
B howlgh, gn;ozdal - 4 "Dmt‘;‘”‘ (38b)

A ist eine Diagonalmatrix ; ihre Diagonalelemente sind die Eigenwerte
Ap der Matrix L’ C’. I ist die Einheitsmatrix. Jede der m unabhingi-
gen Leitungsgleichungen im Modalbereich kann nun wie fiir eine
einphasige verlustlose Leitung gelost werden. Die notwendigen Para-
meter ergeben sich aus der Analogie zwischen GI. (37a) bis (38b)
und Gl. (2), (3) und (5) fiir die Leitung # = 1, ...m des modalen
Bereichs:

modale Wellengeschwindigkeit v, — li
i
modale Laufzeit 7= —
n
modaler Wellenwiderstand  Z, = -l—,
Up CO

Fir eine Drehstromleitung nach Fig. 8 ergeben sich die modalen
Strome von 1 nach 2 zu:
w1

(t—7a)
la—2a = Za Uy, + ConStla—Za

w 1 o (t—b)
llb—2p = 7 M1 T CONSL, oy

(t—1¢)

o _ 1 o
= uy. + consty 50

Ho—
lc—2c T

Transformiert man die Modalgréssen in Phasengrossen zuriick,
so wird:

il('l2phase =G u(llshase -+ con9t1—2phase (39)
mit
G =Co N(A12y 1 M1 (40a)
und
consti—2,a50 = IV const" W (40b)
i 1—2modal

Die Matrix G geht zu Beginn der Rechnung in die Matrix Yaa
der GI. (19) ein und const;—2,,,. trigt in jedem Schritt zum Vektor
k4 der rechten Seiten bei. Man beachte, dass die modale Laufzeit 7,
im allgemeinen fir die 72 modalen Leitungen verschieden ist. Das
bedeutet, dass man beim Aufsuchen der Vergangenheit in den Listen
fir jeden Modus verschieden weit zuriickgehen muss. Die Listen
consti—x und constx—i sind Modalgrossen.

Die Transformation in Modalgrossen bietet ausserdem die Mog-
lichkeit, die mit der Erdriickleitung verbundene Welle — das ist die
modale Welle mit der geringsten Wellengeschwindigkeit — in Teil-
wellen verschiedener Laufzeiten zu zerlegen [19] oder die Frequenz-
abhingigkeit ihrer Parameter mit sog. Gewichtsfunktionen (im
Englischen «weighting functions») genau zu beriicksichtigen [20],
um bessere Ubereinstimmung mit Messwerten zu erhalten.
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Commission Electrotechnique Internationale (CEI)
Sitzungen des SC 15C, Spécifications, vom 24. bis 28. Februar 1969 in Mailand

An der Tagung des SC 15C vom 24. bis 28. Februar 1969 in
Mailand, welche im Anschluss an die Sitzungen vom September
1968 in London (s. Bull. SEV 60(1969)2, S.56) durchgefiihrt
wurde, konnten in 3 ganztigigen und 2 halbtdgigen Sitzungen
unter dem Vorsitz von W. H. Devenish (England) die in Lon-
don unerledigt gebliebenen Traktanden behandelt werden. Die
Schweiz war durch einen Delegierten vertreten,

Dokument 15C(Secretariat)2] und 214, Specifications for
insulating varnishes containing solvents, Part 2: Test methods.
Die Priifmethoden wurden sachlich wie auch redaktionell be-
reinigt, wobei mehrere umstrittene Priifmethoden (Verlauf, Deck-
fahigkeit, Lackeindring- und -aufnahmevermodgen, Oberflachen-
hidrte, Haftfestigkeit nach Gitterschnittmethode, Oberfldchenleit-
fahigkeit) fallengelassen wurden. Priifkdrper mit Glasgewebe
als Lacktriger wurden iiberall ersetzt durch solche mit Metall-
trager (Bleche aus Eisen, Kupfer oder Aluminium), Fiir die Prii-
fung der Lacktrocknung in dicker Schicht wurde ein deutscher
Vorschlag gutgeheissen. Die Einwirkung von Lacken auf lack-
isolierte Drihte soll nach dem in Publikation 251 der CEI, Priif-
methoden fiir Wicklungsdrihte, enthaltenen Verfahren bestimmt
werden, An der Priifung der dielektrischen FEigenschaften
(tg 6 und &) wird festgehalten, doch bleiben die Methoden dafiir
vorldufig noch offen. Das Dokument wird mit den beschlossenen
Anderungen zur Stellungnahme unter der 6-Monate-Regel unter-
breitet.

Dokumente 15C(Secretariat)l4, 15 und 16, Specifications for
varnished fabrics, Part. 1: Definitions and general requirements,
Part 2: Methods of test, Part 3 — sheet 1: Specifications for oleo-
resinous varnished cotton cloth. Bei der Bezeichnung der Lack-
gewebe wird von einem Index fiir die thermische Bestandigkeit
(als Erginzung zur Angabe von Lacktyp und Tridgermaterial)
Abstand genommen, da es vorldufig noch nicht moglich ist, einen
derartigen Temperaturindex objektiv zu definieren. Die Priif-
methoden wurden durch Vereinheitlichung und Zusammenlegung
dhnlicher Verfahren noch vereinfacht und in eine iibersichtlichere
Form gebracht. Fiir die Lieferspezifikationen des Lackgewebetyps
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Ollack/Baumwollgewebe konnten auf Grund der verschiedenen
eingereichten Vorschlige konkrete Anforderungen fiir die Zug-
festigkeit, die Bruchdehnung und die maximal zuldssige Durch-
schlagspannung festgelegt werden. Die Werte fiir die Einreiss-
festigkeit blieben noch offen, wihrenddem die Anforderungen
hinsichtlich Hydrolysebestdndigkeit, Einwirkung und Isolierol auf
Lackgewebe und von Lackgewebe auf Isolierdl, die Kantenein-
reissfestigkeit und die Dehnbarkeit der Vereinbarung zwischen
Hersteller und Abnehmer vorbehalten bleiben. Die drei Doku-
mente iiber Lackgewebe wurden dem Bureau Central zur Ver-
teilung unter der 6-Monate-Regel unterbreitet. Die Behandlung
weiterer Teilspezifikationen (z.B. Typ Alkydharz/Polyester-
gewebe, Dokument [15C(Secretariat)l7, etc.) wurde auf die
nichste Tagung des SC 15C verlegt.

Dokument /5C(Secretariat)25, Specifications for pressure sen-
sitive adhesive tapes for electrical purposes, Part 2: Methods of
test. Der Aufbau des Dokumentes wurde den anderen Priif-
methode-Dokumenten angepasst. Aus der starren Haltung der
Herstellervertreter der verschiedenen Lénder, die sich hartnickig
fiir ihre nationalen oder Verbandsvorschriften (z. B. ASTM-
Vorschriften oder die AFERA-Vorschriften des Europiischen
Verbandes der Selbstklebebander-Hersteller) einsetzten, ergaben
sich teilweise etwas unbefriedigende Kompromisse, die auch be-
stehenden CEI-Festlegungen oder -Vorschligen auf verwandten
Gebieten wenig Rechnung tragen. Da wenig Hoffnung besteht,
in absehbarer Zeit zu wesentlichen Verbesserungen zu gelangen,
soll auch dieses Dokument zur Verteilung unter der 6-Monate-
Regel unterbreitet werden. Von verschiedenen Technischen Ko-
mitees der CEI werden dringend Spezifikationen fiir gewisse
Typen von Selbstklebebdndern verlangt. Fiir diese sollen bis zur
néachsten Tagung mehrere Entwiirfe fiir Typenspezifikationen aus-
gearbeitet werden.

Die nachste Tagung des SC 15C soll im Rahmen der Réunion
Générale der CEI vom Mai 1969 in Washington durchgefiihrt
werden, und eine weitere Tagung zum Abschluss der laufenden
Arbeiten wird vorgesehen fiir November 1970, K. Michel
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