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Berechnung elektromagnetischer Ausgleichsvorgänge in elektrischen Netzen mit Digitalrechnern
Von H. Dommel, Portland (USA)

50 - CoO

Elektromagnetische Ausgleichsvorgänge in elektrischen Netzen

lassen sich heute wirtschaftlich mit Digitalrechnern untersuchen,

vorausgesetzt, dass ein allgemein verwendbares
Rechenprogramm verfügbar ist. Im folgenden wird ein Verfahren
beschrieben, das einem solchen Rechenprogramm zugrunde liegt.
Das Netz darf neben linearen, ein- oder mehrphasigen Elementen
auch Schalter enthalten, sowie eine beschränkte Anzahl von
nichtlinearen Induktivitäten und nichtlinearen Widerständen oder
Überspannungsableitern. Die Approximation von Differentialquotienten

durch zentrale Differenzenquotienten für Induktivitäten
und Kapazitäten in Verbindung mit der Methode der

Charakteristiken für Leitungen (Bergeron-Verfahren) führt auf
Differenzengleichungen, die den Übergang der Zustandsvariablen (state
variables) über einen Zeitschritt mit einer für die Praxis
ausreichenden Genauigkeit beschreiben. Diese algebraischen Übergangs-
Differenzengleichungen lassen sich anschaulich durch rein-ohm-
sche Ersatzschaltungen mit eingeprägten Stromquellen wiedergeben.

Der für ein Rechenprogramm geeignete Algorithmus wird
anhand dieser Ersatzschaltungen beschrieben.

621.3.018.782.3:621.316.1

A l'heure actuelle, des phénomènes de compensation
électromagnétiques survenant dans des réseaux électriques peuvent être
examinés d'une manière économique à l'aide de calculateurs
digitaux, à condition de disposer d'un programme de calcul susceptible

d'une application universelle. On décrit par la suite un
procédé, constituant la base d'un tel programme de calcul. En plus
des éléments linaires, mono- ou polyphasés, le réseau peut également

comporter des commutateurs, ainsi qu'un nombre limité
d'inductivités et de résistances non linéaires ou de parafoudres.
L'approximation des quotients différentiels par des quotients
différentiels centraux pour inductivités et capacités, en liaison avec
la méthode des caractéristiques des lignes (procédé Bergeron),
aboutit aux équations différentielles décrivant pas à pas le transfert

des variables d'état (state variables) avec une précision suffisante

pour la pratique courante. Ces équations différentielles de
transfert peuvent être reproduites d'une manière très représentative

par des circuits équivalents avec des sources de courant
incorporées. L'algorithme approprié à un tel programme de calcul
est décrit à l'aide de ces circuits équivalents.

1. Einleitung
Transiente Vorgänge spielen bei der Untersuchung

elektrischer Netzwerke eine wichtige Rolle. Sie treten sowohl in
Problemen der Energietechnik als auch der Nachrichtentechnik
auf. Von Wanderwellenvorgängen spricht man dann, wenn die
Leitungsbeläge homogen verteilt sind und dadurch eine
Wellenausbreitung entsteht. In konzentrierten Elementen R, L und C
findet im strengen Sinne keine Wellenausbreitung statt, da kein
echtes Laufzeitverhalten besteht. In grösseren Netzen,
insbesondere in den stark vermaschten Netzen der Energietechnik,

sind die Zusammenhänge ohne besondere Hilfsmittel
nicht mehr überschaubar. Die Kenntnis der transienten
Vorgänge ist jedoch von grosser praktischer Bedeutung, wie beim
Abstandskurzschluss, bei Schaltüberspannungen infolge von
Schalthandlungen, beim Schutz von Anlagen gegen
Gewitterüberspannungen u. a.

Bei der Entwicklung des Rechenverfahrens wurde davon

ausgegangen, dass eine programmgesteuerte elektronische
Rechenanlage — kurz Digitalrechner genannt — zur Verfügung
steht. Obwohl die Ausführungen grundsätzlich auch für
Rechnungen von Hand gelten, erlangen sie ihre volle Bedeutung
jedoch erst beim Einsatz eines Digitalrechners. Der Fortschritt
im Bau von Digitalrechnern hat es ermöglicht, heute auch
umfangreiche transiente Probleme rasch und wirtschaftlich zu
untersuchen. Das digitale Rechenverfahren tritt damit neben
das analoge Lösungsverfahren mit Hilfe sog. Schwingungsmodelle.

Dabei ist von Vorteil, dass Digitalrechner als
Universalrechengeräte immer häufiger in Firmen zur Verfügung
stehen. Ausserdem entfallen beim digitalen Rechenverfahren
gewisse Schwierigkeiten, die bei der analogen Nachbildung
auftreten, wie begrenzter Frequenzbereich oder Beschränkung in
der Nachbildung gekoppelter Kreise (Beispiel: nicht verdrillte
Drehstromleitung). Der grösste Vorteil des digitalen
Rechenverfahrens liegt darin, dass nach dem einmaligen Erstellen
eines Rechenprogramms jeder beliebige Fall ohne viel Vor¬

bereitungszeit untersucht werden kann; nur die speziellen
Daten sind auf Lochkarten oder Lochstreifen für die Eingabe
zu übertragen.

Die maximal verarbeitbare Grösse des Netzes hängt von der

jeweiligen Rechenanlage ab. Ein auf diesem Rechenverfahren
basierendes Programm für eine Rechenanlage mit 32000
Kernspeicherzellen erlaubt beispielsweise die Lösung von Netzen
bis zu 500 Knotenpunkten und etwa 1000 Zweigen. Der
Arbeitsaufwand, der in die Entwicklung eines solchen

Programms geht, kann daran ermessen werden, dass das in der

Formelsprache Fortran IV geschriebene Programm aus über
4000 Fortran-Anweisungen besteht. Die Rechengenauigkeit
hängt im wesentlichen von der Schrittweite At ab; die Rechenzeit

wird nicht nur von der Rechengeschwindigkeit der Anlagen
sondern sowohl von der Schrittweite als auch von der Netz-
grösse und nicht zuletzt von der Güte des Programms bestimmt.

Das beschriebene Rechenverfahren eignet sich zur Berechnung

transienter Vorgänge in einphasigen und in mehrphasigen
Netzen, solange das Netzwerk im wesentlichen aus konzentrierten

Elementen R, L und C und verlustlosen ein- und
mehrphasigen Leitungen besteht. Leitungsverluste lassen sich

näherungsweise berücksichtigen. Das Rechenverfahren basiert auf
der schrittweisen Integration der Differentialgleichungen für
Induktivitäten und Kapazitäten mit Hilfe der Trapezregel und
auf der Methode der Charakteristiken für Leitungen. Letztere
ist vor allem von Bergeron zu einer wirksamen Methode
ausgebaut worden [l]1). Schalter mit wechselnden Schalterstellungen,

Überspannungsabieiter oder andere nichtlineare
Widerstände und nichtlineare Induktivitäten lassen sich
einfach einbeziehen.

Da die Matrizenschreibweise eine komprimierte und leicht
überschaubare Darstellung umfangreicher Gleichungssysteme
ermöglicht, wird davon weitgehend Gebrauch gemacht. Ausser-

0 Siehe Literatur am Schluss des Aufsatzes.
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verlustlose Leitung
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zuletzt deshalb gewählt, weil dabei die Fehlerfortpflanzung
sehr gering ist [3].

Das Betriebsverhalten des gesamten Netzes kann entweder
durch ein System von Maschengleichungen oder durch ein
System von Knotenpunktgleichungen beschrieben werden.
Hier sollen Knotenpunktgleichungen verwendet werden. Zu
jedem Zeitpunkt t muss die Summe der Ströme, die vom
Knotenpunkt 1 durch die anliegenden Zweige wegfliessen,
gleich sein dem eventuell von aussen eingespeisten Strom i\,
also

CD;(t) At) ;(t)

Fig. 1

Netzknotenpunkt
1...5 Knotenpunkte; C Kapazität; q Knotenpunktstrom; ij_2, q_3 usw.
Zweigstrom von 1 nach 2, 1 nach 3 usw.; L Induktivität; R Widerstand

dem ist der Matrizenkalkül ein unerlässliches Hilfsmittel in der

Systemtheorie geworden. Der Verfasser ist der gleichen
Meinung wie Frame [2], dass «jedes Problem, das mit der

Methode der Laplace-Transformation gelöst werden kann,
sich ebenso leicht oder leichter mit Hilfe von Matrixfunktionen
lösen lässt». Eine solche Matrixfunktion, die den Übergang
des Netzzustandes vom Zeitpunkt t—At zum nächsten
Zeitpunkt t beschreibt, wird im folgenden entwickelt.

2. Transiente Vorgänge in einphasigen Netzen

Das Rechenverfahren sei zunächst für den Fall einphasiger
Netze beschrieben. Es ist zur Lösung jedes beliebigen Netzes

geeignet, das im wesentlichen aus Zweigen der folgenden vier

Typen zusammengesetzt ist :

a) Widerstand R j
b) Induktivität L !• (konzentrierte Elemente)
c) Kapazität C 1

d) verlustlose Leitung (homogen verteilte Leitungsbeläge L' und
CO

und wie später gezeigt wird, auch :

e) Schalter,
f) nichtlineare Widerstände oder Überspannungsabieiter und
g) nichtlineare Induktivitäten

enthalten darf. Ein aus einem Netz herausgegriffener Knotenpunkt

nach Fig. 1 diene zur Erläuterung des Verfahrens; an
diesem Knotenpunkt liegen alle vier Grundtypen von Zweigen

an. Es sei angenommen, dass die Momentanwerte der

Spannungen und Ströme in Zeitintervallen At bis zum Zeitpunkt
t—At bereits berechnet sind und gerade die Werte im Zeitpunkt t
berechnet werden sollen. Der Zeitschritt At sei konstant. Eine
solche in Schritten At fortschreitende Berechnung löst den

kontinuierlichen Verlauf der transienten Vorgänge in eine

Folge von «Momentaufnahmen» in diskreten Zeitpunkten auf.

Diese Diskretisierung des Problems ist bei Verwendung eines

Digitalrechners unvermeidbar. Sie führt zu sog. Diskretisie-
rungsfehlern, z. B. beim Ersetzen des Differentialquotienten
di/dt durch den Differenzenquotienten Ai/At. Diskretisierungs-
fehler und die durch endliche Stellenzahl entstehenden

Rundungsfehler können sich von Schritt zu Schritt ungünstig
fortpflanzen. Die im folgenden verwendete Trapezregel wurde nicht

Aus Gl. (1) ergibt sich die Knotenpunktgleichung für den

Knotenpunkt 1, indem man die einzelnen Zweigströme als

Funktionen der Knotenpunktspannungen ausdrückt2). Diese
Funktionen seien für die verschiedenen Zweige im folgenden
abgeleitet.

2.1 Zweiggleichimg für verlustlose Leitung
Die Lösung der allgemeinen Leitungsgleichungen mit

Berücksichtigung aller Leitungsbeläge ist sehr schwierig. Uram
und Miller beschreiben ein Rechenverfahren [4], mit dem das

Verhalten einer einzelnen, mehrphasigen Leitung mit
Widerstands-, Induktivitäts- und Kapazitätsbelag untersucht werden
kann. Sobald man jede beliebige Zahl von Leitungen und
konzentrierten Elementen in jeder beliebigen Zusammenschaltung
zulassen und nicht nur eine einzelne Leitung untersuchen will,
muss man gewisse Vernachlässigungen in den
Leitungsgleichungen machen. Deshalb seien die Leitungsverluste
(Widerstands- und Ableitungsbelag) vernachlässigt. Sie können

jedoch näherungsweise durch konzentrierte Elemente
berücksichtigt werden [5]. Auch die durch die Erdrückleitung
verursachte Frequenzabhängigkeit in der Nullkomponente von
Freileitungen lässt sich in das Verfahren nachträglich
einbauen. Für die verlustlose Leitung gilt;

<> w _
i> /

TT TT

Ü.
ö x

C /
<> u
TT

(2a)

(2b)

mit x Entfernung auf der Leitung von einem beliebig ge¬

wählten Anfangspunkt,

u u (x, t) Momentanwert der Spannung gegen Erde in
der Entfernung x zur Zeit t,

i i (jc, t) Momentanwert des Stromes in der Leitung in
der Entfernung x zur Zeit t,

L' Induktivitätsbelag,

C' Kapazitätsbelag.

Durch Elimination einer der beiden Variablen in Gl. (2a)
und (2b) erhält man:

h2«
_ f / r, ~i)2u

TT2" TT2"

ô2 i
ö x2 L'C a2/

TT2"

(3a)

(3b)

2) Knotenpunktspannung ist die zwischen dem Knotenpunkt und
einem Bezugspunkt (meist Erdpotential) gemessene Spannung. Den
Bezugspunkt zählt man nicht zu den Knotenpunkten.
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Die zuerst von d'Alembert angegebene allgemeine Lösung
lautet :

/ F (x — v t) + f (x + v t) (4a)

u ZK F (x — v t) — Zw f {x + v t) (4b)

wobei F {x — v t) und f (x + v t) irgendwelche Funktionen der

Variablen x — vt und x — v t sind. Die Funktion F(x — v t) kann
als eine Welle aufgefasst werden, die mit der Geschwindigkeit v

in positiver Richtung, und die Funktion f {x + vt) als eine Welle,
die in umgekehrter Richtung läuft. Die beiden neuen Parameter
in Gl. (4) sind:

der Wellenwiderstand Zw j/ f, (5a)

und die Wellengeschwindigkeit v
CT

Multipliziert man Gl. (4a) mit Zw und addiert sie zu
Gl. (4b) bzw. subtrahiert sie davon, dann erhält man:

u + Zw i 2 Zw F {x — vt) (6)

h — Zw i — 2 Zw f (x + v t) (7)

Man beachte, dass in Gl. (6) der Ausdruck u +ZW i stets
konstant wird, wenn x — vt konstant ist, und in Gl. (7) u — Zw i,

wenn x + v t konstant ist. Die Funktionen x — vt const und
x + v t const nennt man die Charakteristiken der
Differentialgleichungen (2).

Gl. (6) lässt sich in folgender Weise interpretieren : Ein
gedachter Beobachter bewege sich auf der Leitung in positiver
Richtung mit der Wellengeschwindigkeit v fort. Für ihn ist
dann der Ausdruck x — vt und folglich auch u +ZW i längs der

Leitung konstant. Die Laufzeit t sei diejenige Zeit, die eine

Welle vom einen Ende der Leitung zum anderen Ende braucht,

x — / ]/L' C (8)
v

(1 Leitungslänge). Dann muss der Ausdruck u 4- Zw i auf der

Leitung 2—1 in Fig. 1, den der Beobachter zu Beginn seiner

gedachten Fortbewegung auf der Leitung in Knotenpunkt 2

zur Zeit t— x vorfindet, noch gleich sein mit dem, den er bei

Ankunft im Knotenpunkt 1 zur Zeit t antrifft :

4'-t) + Zw uf + Zw [- (9)

(Strom positiv angenommen von 2 nach 1.) Aus Gl. (9) folgt
sofort die gesuchte Zweiggleichung für den Strom /1-2 :

2
-f— »i(t) + constj'r^ (10a)
Zj w

iz-\ 2 I const".?' const"?' | 1 /"'2

LI IJ
Fig. 2

Ersatzschaltbild für verlustlose Leitung

I, 2 Leitungsenden; G Leitwert; i Stromquelle; Strom am

Leitungsende 2; ito"1 Spannung am Leitungsende 2; const Wert der

Ersatzstromquelle am Leitungsende 2

mit einem konstanten Glied consti-2, dessen Wert aus der

«Vergangenheit» zur Zeit t—x bekannt ist:

constfrj* — (10b)

Gl. (10) ist eine exakte Lösung für die verlustlose Leitung
am Leitungsende 1. Bergeron baute darauf seine graphische
Methode zur Untersuchung von Wanderwellenvorgängen auf
[1]. Frey und Althammer entwickelten daraus ein

Rechenprogramm für den Digitalrechner [6]; sie erwähnen, dass die

mathematische Seite dieses Verfahrens bereits R. Riemann

bekannt war.

Fig. 2 zeigt ein Ersatzschaltbild, das die Verhältnisse an den

Leitungsenden richtig wiedergibt und genau der Gl. (10)
entspricht. Das Ersatzschaltbild ist für die Betrachtung des Netzes

als Graph (Streckenkomplex) wichtig3); es besteht aus Ohm-
schen Leitwerten G 1/ZW von jedem Leitungsende gegen
Erde. Die Leitungsenden sind nur indirekt über Quellen
eingeprägten Stromes verbunden, deren Werte bekannt sind und
sich aus der Vergangenheit des jeweils gegenüberliegenden

Leitungsendes ergeben.

Eine unendlich lange Leitung oder eine Leitung, die so lang
ist, dass während des untersuchten Zeitraums die Reflexion

vom anderen Ende noch nicht zurückgekommen ist und zur
Zeit t 0 ström- und spannungslos war, wird durch einen

Widerstand gegen Erde von der Grösse des Wellenwiderstands

nachgebildet. Das ergibt sich unmittelbar aus dem

Ersatzschaltbild in Fig. 2, wenn die Quelle eingeprägten
Stromes null gesetzt wird. Sind die Anfangsbedingungen nicht
null, sondern stationäre Wechselstromvorgänge, dann müssen

zu den Widerständen noch sinusförmige Stromquellen parallel
geschaltet werden, deren Werte sich aus Gl. (10b) ergeben.

2.2 Zweiggleichung für Induktivität

Für die Induktivität L des Zweiges 1 — 3 in Fig. 1 gilt:

r di 1—3 1

m — uz L—— (IIa)

womit sich der Strom /1-3 zur Zeit t durch Integration ergibt:

i[-3 iil*° + 4- / (ui—u3)dt (IIb)
(t-At)

Da der Spannungsfall ui—113 nur in diskreten Punkten mit
einer Schrittweite At definiert ist, muss sein Verlauf für die

Integration zwischen t—At und t interpoliert werden. Bei
Verwendung linearer Interpolation folgt dann aus Gl. (IIb):

e3=/«z3ao+[«rAt) - »rAt) - < - ««] 02)

Das ist die Anwendung der bekannten Trapezregel für die

Integration von Gl. (IIb). Dem Diskretisierungsfehler
entspricht die in Fig. 3 schraffierte Fläche zwischen der Kurve und
der Sehne. Er ist von der Ordnung (Ar)3 je Schritt, d. h. bei

genügend kleinem Wert Ar kann man davon ausgehen, dass bei

Halbierung der Schrittweite der Diskretisierungsfehler nur noch

1/8 des vorherigen ist. Die Anwendung der Trapezregel auf
Gl. (IIb) ist identisch mit der Ersetzung des Differential-

3) Mit graphentheoretischen Überlegungen ist es möglich, den Lö-
sungsprozess bei Netzberechnungen topologisch so zu steuern, dass der
Rechenaufwand erheblich reduziert wird (siehe Abschnitt 3).

540 (A 344) Bull. ASE 60(1969)12, 7 juin



Diskretisierungsfehler

[„«-AO __ „«-AO] + [„«>-„«>]
^

/^3-f?--At)
3

2 Ar

Aus Gl. (12) folgt die gesuchte Zweiggleichung für ii-s:

[»?-«?] const (t-At)

const(,' _
At) Ar

~2L

t-At

,«> «i° u(rAo «rAo + Ar

I S const (t-At)
1 -3

Ersatzschaltbild für Induktivität

1, 3 Knotenpunkte; /®3 Zweigstrom von 1 nach 3

für die Induktivität. Aus Gl. (15) folgt die gesuchte Zweig-
gleichung für /1 —4 :

to _
2 C

'1-4- A

mit dem konstanten Glied:

£[.?-*] const (16a)

const (t-At) 2C
A 7 [»ï(t-At) At —At) (t At)

'1-4 (16b)

Fig. 5 zeigt das zugehörige Ersatzschaltbild, das in seinem

Aufbau mit dem für die Induktivität übereinstimmt. Zu einem
2 C

Ohmschen Leitwert G
Ar zwischen den Knotenpunkten 1

t-At t

Fig. 3

Trapezregel
t Zeit; y(t) Funktion der Zeit

quotienten in Gl. (IIa) durch einen zentralen Differenzenquotienten

und linearer Interpolation für die Spannung,

(13a)

[„«-AO _ „«—AO] [| 3b]

[4-4 + 4-4*°] (15)

und 4 liegt eine Quelle eingeprägten Stromes mit bekanntem
Wert parallel.

2.4 Knotenpunktgleichungen

Setzt man Gl. (10), (13) und (16) sowie

•«)
'1-5 i [<»-«?»]

in Gl. (1) ein, so ist die Knotenpunktgleichung für Knotenpunkt

1 :

Arr l At 2C
L Zw 2 L

'
À t 4° 2 L 4° 2C «)

Ar A

Auch hier ist das konstante Glied aus den Werten der

Vergangenheit bekannt:

«4 - (17>

- Jç- u5° r'j0 — [const'/zf + const "zf0 + const "r^0]

Für ein beliebiges Netz mit n Knotenpunkten erhält man
entsprechend ein System von // linearen Gleichungen, in
Matrixschreibweise4):

Y u<t> i«> — k (18)

/ const

Ein Ersatzschaltbild, das Gl. (13) entspricht, zeigt Fig. 4.

Es besteht aus einem Ohmschen Leitwert G zwischen

Knotenpunkt I und 3 mit einer parallel liegenden Quelle
eingeprägten Stroms, dessen Wert durch die Vergangenheit
bestimmt ist.

2.3 Zweiggleichung für Kapazität

Für die Kapazität C des Zweiges 1—4 in Fig. 1 gilt:
t

-Ao _Ll y M 4 11 y LI 4 C

Fig. 5

Ersatzschaltbild für Kapazität

1, 4 Knotenpunkte; ;(t) Zweigstrom von 1 nach 4

u? - «<° ««-AO - „«-AO + -L f /14 dr (14)

Führt man auch hier wieder die Integration nach der

Trapezregel durch, dann ergibt sich:

Dabei wird lineare Interpolation für den Strom i
angenommen. Für den Diskretisierungsfehler gilt das Gleiche wie

mit Y (reelle) Knotenpunktleitwertmatrix;
w(t) Spaltenvektor der n Knotenpunktspannungen zur

Zeit t;
i<" Spaltenvektor der n eingespeisten Knotenpunkt¬

ströme zur Zeit t;
k konstanter Spaltenvektor, dessen Komponenten sich

aus den «Vergangenheits-Ausdrücken» consti-k
zusammensetzen.

Man beachte, dass die Knotenpunktleitwertmatrix Y
konstant ist, solange die Schrittweite unverändert bleibt. Sie ist

symmetrisch und reell. Der Aufbau der Matrix erfolgt nach
den gleichen Regeln wie für die Knotenpunktadmittanzmatrix
bei Netzberechnungen im stationären Zustand [7], also:

Fü Summe der Leitwerte aller Ersatzschaltbild-
Zweige, die im Knotenpunkt i anliegen,

Tik yki negative Summe der Leitwerte aller Ersatzschalt¬

bild-Zweige, die Knotenpunkt i mit Knotenpunkt
k verbinden.

4) Matrizen und Vektoren sind durch fettgedruckte Buchstaben
gekennzeichnet.
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Verlustlose Leitungen gehen nach Fig. 2 somit nur in die

Diagonalelemente ein. Der Auf baualgorithmus lässt sich formal

durch Verwendung von Inzidenzmatrizen ableiten. Aus
Gründen der Anschaulichkeit wurde die Entstehung des

Gleichungssystems (18) jedoch nicht streng formal, sondern
anhand des konkreten Beispiels von Fig. 1 gezeigt.

In Gl. (18) werden im allgemeinen ein Teil der Spannungen
gegeben und ein Teil unbekannt sein. Die Matrizen und
Vektoren seien entsprechend in eine Teilmenge A der Knotenpunkte

mit unbekannten Spannungen und in eine Teilmenge B
der Knotenpunkte mit gegebenen Spannungen unterteilt.
Dann lässt sich Gl. (18) in folgender Form schreiben:

Y Y1 AA 1 AB

Y Y
_

BA BB

Daraus erhält man den unbekannten Vektor u\A durch

Lösung des Gleichungssystems:

Yaa u® i® - fcA - Yab U® (19)

Der Lösungsprozess ist also nichts weiter als die Lösung
eines Systems linearer Gleichungen in jedem Zeitschritt. Die
Koeffizientenmatrix Yaa ist für gleichbleibende Schrittweite
konstant. Die rechten Seiten des Gleichungssystems (19)
müssen für jeden Schritt aus den eingespeisten Strömen iA(t),
aus den gegebenen Spannungen mb(4) und aus der Vergangenheit

des Netzzustandes k\ neu berechnet werden.

3. Praktische Durchführung der Rechnung

Gl. (19) löst man am zweckmässigsten durch einmalige
Dreieckszerlegung (Gauss-Elimination) der Matrix Yaa, und

Anwendung des Dreieckszerlegungsprozesses auf die rechten
Seiten mit anschliessendem Rückwärtseinsetzen (im Englischen
«backsubstitution») zum Berechnen von ua1" in jedem
Zeitschritt. Fig. 6 zeigt schematisch diesen Rechenprozess. Bekanntlich

sind in grösseren Netzen nur wenige Elemente in der

Matrix Yaa von null verschieden. Diese dünne Besetzung mit
Nichtnullen lässt sich ausnützen, indem man nur die von null
verschiedenen Elemente der dreieckszerlegten Matrix YAA in

komprimierter Form speichert. Die Einsparungen an Speicherplatz

und Rechenzeit sind erheblich; sie können durch eine

gesteuerte Reihenfolge der Eliminationen (topologische Steuerung)

optimiert werden [8...11]. Als Beispiel seien die in [10]

(2) (1)

Fig. 6
Lösung linearer Gleichungen bei sich ändernden rechten Seiten

einmalig: Dreieckszerlegung YAA
in jedem Schritt: (7) Dreieckszerlegung auf rechte Seite anwenden,

(2) rückwärtiges Einsetzen.

für das Problem der Stabilität angegebenen Zahlen auf das

Problem transienter Vorgänge übertragen:

Zahl der Knotenpunkte 267
Zahl der Zweige mit konzentrierten Elementen (verlustlose

Leitungen tragen nur zu den Diagonalelementen bei;
ihre Zahl ist deshalb für den Vergleich an der
dreieckszerlegten Matrix unerheblich) 423

Zahl der von null verschiedenen Elemente oberhalb der
Diagonale nach der Dreieckzerlegung bei optimal
gesteuerter Reihenfolge der Eliminationen 1015

Zahl der von Null verschiedenen Elemente oberhalb der
Diagonale bei voller Dreieckmatrix 35 511

Speichert man die dreieckzerlegte Matrix in der in [11]
angegebenen Form, dann werden 2564 Speicherplätze benötigt.
Das sind nur 7,2 % des Speicherplatzbedarfs einer vollen
Dreieckmatrix; die Einsparung ist also beachtlich.

Für den Fall, dass die Knotenpunkte nur über verlustlose
Leitungen verbunden sind und konzentrierte Elemente nur
von Knotenpunkten zur Erde oder zu Knotenpunkten mit
gegebener Spannung liegen, wird Yaa eine Diagonalmatrix.
Folglich könnten in diesem speziellen Fall die Gleichungen
unabhängig Knotenpunkt für Knotenpunkt gelöst werden;
viele Programme basieren auf dieser Beschränkung. Bei der
erwähnten Ausnützung der dünnen Besetzung ist diese

Vereinfachung jedoch automatisch enthalten, ohne andererseits
die Allgemeinheit des Netzaufbaus einschränken zu müssen.

Die Berechnung der rechten Seiten in Gl. (19) für jeden
Schritt ist im wesentlichen ein organisatorisches Problem. Die
Momentanwerte der gegebenen, eingespeisten Knotenpunktströme

werden in den Vektor tA(t), die der gegebenen
Knotenpunktspannungen in den Vektor mb(1) eingesetzt. Man kann
diese Werte Punkt für Punkt bei beliebigem Kurvenverlauf
einlesen oder auch aus festgelegten Funktionen (Sinuskurve,
Rechteckwelle usw.) in jedem Zeitschritt berechnen. In manchen
Fällen werden die den transienten Vorgang erzeugenden
Erregungen nur Spannungsimpulse sein (dann ist ia 0) oder
auch nur Stromimpulse (dann gehören alle Knotenpunkte der

Teilmenge A an). Die Erregung kann auch ganz fehlen, wie bei
der Entladung eines Stossgenerators (dann gehören alle
Knotenpunkte der Teilmenge A an und ix 0). Näheres über
den Aufbau des Vektors k\ aus den Werten der Vergangenheit
findet sich in Anhang 1.

4. Erweiterung des Rechenverfahrens auf
mehrphasige Netze

Das Rechenverfahren lässt sich aufmehrphasige Schaltungen
erweitern, indem man skalare Grössen durch Matrixgrössen
ersetzt. Diese Verallgemeinerung gilt ohne weiteres für konzentrierte

Elemente. Für mehrphasige, verlustlose Leitungen ist es

notwendig, die gekoppelten Phasengrössen in entkoppelte
Modalgrössen zu transformieren.

4.1 Konzentrierte Elemente mit Kopplung

Zur Erläuterung diene Fig. 7 mit drei gekoppelten Zweigen.
Die Widerstände der Zweige seien in einer Matrix R und die

Induktivitäten in einer Matrix L zusammengefasst; die

Diagonalelemente Rn + j m La sind die Eigenimpedanzen und
die nichtdiagonalen Elemente R,k + j taiik sind die
Kopplungsimpedanzen. Fig. 7 könnte beispielsweise die Längsimpedanzen
einer Drehstromleitung darstellen; in diesem Falle wäre bei

Berücksichtigung der Erdrückleitung bekanntlich auch von
null verschieden. Wird die Serienschaltung der Widerstände

(t) •CO

A lA
(t) •CO
B JB
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i B o-cr>^nnrs^-«» 2B

1 c o—cTD-rnnnr-0 2c

+G

+G

Fig. 7

Gekoppelte Impedanzzweige

I, 2 Anfang und Ende der gekoppelten Zweiggruppe; IA, 1B, IC
Knotenpunkte am Anfang; 2A, 2B, 2C Knotenpunkte am Ende; G Leit¬

wertmatrix

und Induktivitäten zu einer Zweiggruppe zusammengefasst,
dann ergibt sich aus der Integration nach der Trapezregel:

i®_2 G (iz® — a®) + const« -At)
2 (20a)

mit dem konstanten Glied consti_2, das sich im allerersten

Schritt aus

const«-*» G [(u«"A» - ««-*») - (R - lt L) i«r2A»]

(20b)
und in allen weiteren Schritten aus der rekursiven Formel

const (t-At) <H[{u«Ct-At) (t—At) +

+ S const jl_2At)l — const0-2A0
2 (20c)

s=R+tL
G S~1

H =2 (S-1 S-1 RS-1)

Modalgrössen unabhängig voneinander werden. Die
physikalisch existente m-phasige Leitung wird also in m unabhängige

einphasige Leitungen im künstlich geschaffenen modalen

Bereich transformiert. Jeder Leitung im modalen Bereich ist

eine modale Laufzeit und ein modaler Wellenwiderstand
zugeordnet. In Fig. 8 ist dieser Gedankengang für eine

dreiphasige Leitung skizziert. Der Übergang von Modalgrössen zu

Phasengrössen und umgekehrt geschieht mit Hilfe von
Lineartransformationen. Im Falle vollkommen verdrillter Drehstromleitungen

sind die a ß O-Komponenten solche Modalgrössen;
sie sind hier symmetrischen Komponenten vorzuziehen, da die

Transformationsmatrizen der a ß O-Komponenten reell sind

und damit das gesamte Problem im Bereich der reellen Zahlen
bleibt. Für den häufig angenommenen Fall, dass alle Diagonalelemente

der Induktivitätsmatrix, also alle Eigeninduktivitäten,

untereinander gleich sind und alle nichtdiagonalen
Elemente (Kopplungsinduktivitäten) untereinander gleich
sind (analoge Annahme für die Kapazitäten), gibt Karrenbauer

[12] eine einfach aufgebaute, reelle Transformationsmatrix an,
die für beliebige Phasenzahl gilt und deshalb für zweipolige
HGÜ-Leitungen ebenso verwendet werden kann wie für ein

vollkommen verdrillt angenommenes Doppeldrehstromsystem.

Die Formeln werden in Anhang 2 abgeleitet, wobei sich

zeigt, dass auch hier der Stromvektor /1-2 der Ströme von der

Menge 1 der Knotenpunkte zur Menge 2 wieder eine lineare

Funktion der Knotenpunktspannungen ist, für das Beispiel

von Fig. 8:

;(0
1 2phase

t(°
1 phase

const 1 2phase (21)

berechnet. Die Form von Gl. (20c) wurde so gewählt, dass alle

Matrizen symmetrisch sind, was Speicherplatz-Einsparungen
ermöglicht,

2

Der Unterschied von m gekoppelten Zweigen zu einem

einphasigen Zweig besteht darin, dass beim Aufbau der Matrix
Yaa in Gl. (19) nicht ein skalarer Wert, sondern eine Matrix G

vom Grad m additiv hinzutritt, wie es schematisch in Fig. 7

angedeutet ist. Ausserdem geht in jedem Schritt ein Vektor
const i-ic anstelle eines skalaren Wertes in den Vektor kA ein.

Sollen die 3 Zweige der Fig. 7 einen Abschnitt einer
Drehstromleitung darstellen, dann liegen an den Enden 1 und 2 noch

Kapazitäten zwischen den Knotenpunkten und gegen Erde und
bilden so einen n-Mehrpol (Verallgemeinerung des Il-Vier-
pols). Diese Kapazitäten sind dann einfache, ungekoppelte
Zweige, weshalb keine neuen Formeln notwendig sind;
organisatorisch ist es jedoch besser, auch die Kapazitäten zu einer
Matrix C zusammenzufassen (Diagonalelement Ca Summe

aller im Knotenpunkt i anliegenden Kapazitäten,
nichtdiagonales Element Cik negativer Wert der Kapazität
zwischen Knotenpunkt i und k).

4.2 Verlustlose Mehrphasenleitung

Die Wanderwellenvorgänge in den m Phasen einer verlustlosen

Mehrphasenleitung beeinflussen sich gegenseitig; sie

sind gekoppelt. Die Lösung wird wesentlich vereinfacht, wenn
man die m Phasengrössen in m sog. Modalgrössen derart
transformiert, dass dabei die m Differentialgleichungen der

Beim Aufbau der Matrix Faa in Gl. (19) tritt die Wellen-

admittanzmatrix G anstelle einer skalaren Grösse additiv
hinzu; ebenso geht ein Vektor consti-kphaSe anstelle einer

skalaren Grösse in den Vektor k,\ ein. Die Vergangenheit des

Leitungszustandes muss im modalen Bereich mit den modalen

Parametern consti-k an jedem Leitungsende registriert werden ;

daraus kann dann const,-kphase in jedem Schritt berechnet

werden.

5. Genauigkeit des Rechenverfahrens

Um für das Problem transienter Vorgänge das mathematische

Modell der Gl. (19) zu erhalten, mussten nur für
Induktivitäten und Kapazitäten gewisse Näherungen gemacht werden.

Verlustlose Leitungen und Widerstände wurden exakt

behandelt, obgleich bei Durchführung der Rechnung Diskre-
tisierungsfehler entstehen, wenn die Laufzeit kein ganzzahliges
Vielfaches der Schrittweite ist, da dann interpoliert werden

muss, um das Glied const «J^» berechnen zu können.
Mathematisch gesehen ist das Verfahren eine schrittweise Integration
der gewöhnlichen Differentialgleichungen für Induktivitäten

1A<

1 B <

IC °—
V—V-'
Phasen

1a 2a

1b 2b

1c 2c

1 /
V

modal

Fig. 8

Verlustlose Mehrphasenleitung

>2A

1 2B

Übergang mittels Lineartransformationen

Weitere Bezeichnungen siehe Fig. 7
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und Kapazitäten nach der Trapezregel; der Diskretisierungs-
fehler ist dabei von der Ordnung (At)3. Es ist wichtig zu wissen,
dass Integrationen mit der Trapezregel numerisch stabil sind
und einen glättenden Effekt haben, d. h. die Fehler werden

gewissermassen «ausgebügelt». Innerhalb der Gruppe der
verschiedenen Differenzenverfahren würde der hier
eingeschlagene Weg die einfache Interpolation nach Adams sein [13],
wobei die Werte jedoch nicht durch Iteration, sondern direkt
aus der Lösung eines Systems linearer Gleichungen gefunden
werden.

Die näherungsweise Integration nach der Trapezregel ist
nach Erfahrungen des Verfassers für die Belange der Praxis
vollkommen ausreichend, ganz besonders natürlich in Netzen
mit nur wenigen konzentrierten Elementen. Die Näherung ist
bekanntlich gleichbedeutend mit linearer Interpolation im

punktweise errechneten Kurvenverlauf. Der Abstand dieser

Punkte sollte ohnehin so klein gewählt werden, dass man sich

die Punkte durch Geradenstücke verbunden denken kann. Die

Forderung nach akzeptablem Kurvenverlauf garantiert also

gleichzeitig ausreichende Genauigkeit für die Trapezregel.
Ein System linearer Differentialgleichungen könnte auch

geschlossen gelöst werden (durch Elimination algebraischer
Gleichungen liesse sich das Problem transienter Vorgänge auf
ein solches Differentialgleichungssystem reduzieren). Das

homogene System

hat bekanntlich die Lösung x (/) eAAt x (t — A /) mit der

Übergangsmatrix eAAt (im Englischen «transition matrix»),
die über die Eigenwerte und Eigenvektoren der Matrix
A gefunden wird [14]. Obwohl man mit der QR-Trans-
formation nach Francis [15] über eine wirksame Methode zur
Eigenwertberechnung verfügt, ist der Rechenaufwand doch
beträchtlich. Ausserdem geht bei Benützung der Übergangsmatrix

die dünne Besetzung mit Nichtnullen verloren, weshalb
die geschlossene Lösung für grosse Netze, wie sie insbesondere

in der Energietechnik vorliegen, nicht realisierbar ist. Die
Anwendung der Trapezregel liefert übrigens implizite eine
Approximation der Übergangsmatrix durch eine rationale
Matrixfunktion :

(I Einheitsmatrix)

und sind deshalb für die Rechnung nicht ein Teil des Schalters.

Der ideale Schalter kann entweder einen Pol eines Leistungsschalters

oder eine Funkenstrecke repräsentieren. Im ersten
Fall wird das Schliessen durch ein Zeitkriterium (geschlossen,
sobald t tzu) und das Öffnen durch Zeit- und Stromkriterien
(offen nach t 2; taut, sobald Schalterstrom betragsmässig

ü Abreißstrom) gesteuert. Das Schliessen von Funkenstrecken
wird durch ein Spannungskriterium (geschlossen, sobald

Schalterspannung betragsmässig > Überschlagsspannung)
und das Öffnen durch ein Stromkriterium gesteuert. Mit dem

idealen Schalter als Funkenstrecke kann z. B. das Überschlagsverhalten

eines Isolators simuliert werden, wobei man die
Überschlagspannung als Funktion der Steilheit des

Spannungsanstiegs vorgibt.
Enthält das Netz höchstens einen Schalter, der zwischen

den Knotenpunkten i und k liegen möge, dann lässt sich sein

Verhalten durch zusätzliche Knotenpunktströme ii —ik
simulieren. Dazu wird die Matrix Yaa so aufgebaut, als wäre
der Schalter offen. Dann wird ein Vektor z ein für allemal
ermittelt als Differenz der /-ten und k-ten Spalte der Kehrmatrix
FAA. Diesen Vektor z erhält man am einfachsten durch

Lösung von Gl. (19) mit den rechten Seiten gleich null,
ausgenommen /-te Komponente gleich +1 und A-te Komponente
gleich —1. Wenn der Schalter geöffnet ist, erhält man die

Spannungen «A(auf) direkt aus Gl. (19). Ist der Schalter
geschlossen, dann verwendet man die für den geöffneten Schalter
berechneten Resultate, um zunächst den Schalterstrom zu
berechnen :

Wi(auf)jj~ Wk(auf) (22)
Zi — Zk

Die Resultate für den geschlossenen Zustand ergeben sich

damit durch Superposition:

Wa(zu) Ua (auf T" * • Ii (23)

Gl. (22) und (23) gelten nur, wenn die Knotenpunkte /und k
beide zur Teilmenge mit unbekannten Spannungen gehören.
Andernfalls sind in den Formeln gewisse Modifikationen
nötig.

Enthält das Netz mehr als einen Schalter, dann ist es am
besten, die tatsächlichen Schalterstellungen in der Matrix Yaa
zu berücksichtigen und sie zu ändern, sobald ein Wechsel
stattfindet. Es ist jedoch nicht notwendig, bei jedem Wechsel die in
der Rechenzeit aufwendige Dreieckszerlegung vollständig neu
durchzuführen [5].

Durch Hinzunahme von Gliedern zweiter und höherer

Ordnung im Zähler- und Nennerpolynom liesse sich die

Genauigkeit der Approximation wesentlich steigern [16].

Vergleiche mit dem Runge-Kutta-Verfahren sprechen bei

realistischen Genauigkeitsforderungen der Praxis ebenfalls für
die Trapezregel [17].

6. Nachbildung von Schaltern

In dem zu untersuchenden Netz können Schalter sein, deren

Stellung sich im Laufe des transienten Vorgangs ändert. Sie

werden als ideal angenommen (R 0 in geschlossener
Stellung, R oo in geöffneter Stellung). Beliebige Zweige dürfen

jedoch parallel oder in Reihe zum Schalter liegen, um
bestimmte physikalische Eigenschaften des Schalters nachzubilden;

sie werden dann formal wie andere Zweige behandelt

7. Nichtlineare Elemente

Von den nichtlinearen Elementen seien nichtlineare Widerstände

und nichtlineare Induktivitäten behandelt. Der Über-

spannungsableiter ist ein nichtlinearer Widerstand, der bis

zum Erreichen der Ansprechspannung den Wert oo hat und
danach durch eine //, /-Kennlinie (in Form eines Polygonzugs
oder einer Funktion) charakterisiert wird. Die Ansprechspannung

kann als konstanter Wert oder als Funktion des

Spannungsanstiegs vorgegeben werden.

Ein einziges nichtlineares Element, das zwischen den

Knotenpunkten / und k liegen möge, simuliert man zweckmässig

durch zusätzliche Knotenpunktströmeii / und/t — i
(/ Strom im nichtlinearen Element von k nach /). Analog wie

bei der Nachbildung eines einzelnen Schalters sei ein für
allemal die Differenz der /-ten und A-ten Spalte der Kehrmatrix
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nicht -
lineare
Kennlinie

Fig. 9
Bestimmung des Stromes im nichtlinearen Element

i Strom; u Spannung

Y-a als Vektor z vorherberechnet. Die jeweiligen Schalter-
Stellungen müssen dabei in der Matrix Ya \ berücksichtigt sein,
d. h. bei jedem Schalterwechsel ist z neu zu berechnen. Unter
Vernachlässigung des nichtlinearen Elementes erhält man dann
zunächst in bekannter Weise «a (linear) aus der Lösung von
Gl. (19). Die endgültige Lösung ergibt sich durch
Superposition :

Ma — MA (linear) 1 Z i (24)

Dazu muss vorher der Strom / im nichtlinearen Element,
dessen Spannung u iik — ui ist, berechnet werden; er ergibt
sich durch Lösung der beiden Gleichungen :

Ii Uk (linear) — u\ (linear) 4" (zt — z0 / (Netzkennlinie) (25)

und

u f (/) (nichtlineare Kennlinie) (26)

als Schnittpunkt der beiden Kennlinien (Fig. 9). Damit ist der

Fall des nichtlinearen Widerstandes und des Überspannungs-
ableiters gelöst.

Der Lösungsweg gilt auch für nichtlineare Induktivitäten,
wenn es gelingt, die y/, /-Kennlinie 0// Flussverkettung) in
eine u, /-Kennlinie überzuführen. Das erreicht man wiederum
mit Hilfe der Trapezregel, die aus

V
die Formel

¥

(D J uwàt
0

A t

(0)

(t)

V

U(l) '

C'(L -Al)

liefert. Damit kann die (//-Ordinate in der Kennlinie y/ f (/)
durch einen koordinatenverschobenen «-Maßstab ersetzt

werden, was dann wiederum auf 2 Gleichungen von der Form
(25) und (26) führt. Der Wert c ist ursprünglich

c(0) — y/(0)At
AO)

und danach
C(t-At) c(t-2At) _|_ 2 //(t—At)

Diese Superpositionsmethode ist anwendbar, solange das

Netz nur ein einziges nichtlineares Element enthält. Sie lässt
sich aber auch bei mehreren nichtlinearen Elementen anwenden,
wenn zwischen ihnen verlustlose Leitungen liegen, d. h. wenn
die nichtlinearen Elemente durch Laufzeiten zeitlich voneinander

getrennt sind und dadurch ein nichtlineares Element die

Vorgänge an den anderen nichtlinearen Elementen nicht sofort,
sondern mit einer Zeitverzögerung, merkt. Diese Einschränkung

trifft in der Praxis meist zu; wenn nicht, so kann man sie

durch Einfügen kurzer Leitungsstücke mit der Laufzeit At
erreichen. Für jedes nichtlineare Element existiert dann ein

unabhängiges Gleichungspaar (25) und (26). Durch geschachtelte

Speicherung der zugehörigen z-Vektoren kann die
Superposition für alle nichtlinearen Elemente in einem Zug
ausgeführt werden [5],

8. Beispiel

Eine am Ende offene Drehstromleitung soll zweistufig über
Dämpfungswiderstände zugeschaltet werden (Fig. 10). Die
Leitung wurde einmal durch eine Kette von 18 Mehrpolen

Daten der Drehstromanlage Tabelle I

Leitungsdaten: Drehstromleitung (verdrillt), / 288 km
Beläge für 3000 Hz verwendet
(dominante Frequenz)

Mitsystem Nullsystem

R' 0,03 Q/km 6,8 n/km
coL' 18,3 D/km 48,1 n/km

C' 0,012 pF/km 0,0066 pF/km

Schalterdaten: Schliesszeiten der Kontakte

Phase I II
R 0 10 ms
S 4 ms 14 ms
T 4 ms 14 ms

Generatorspannungen :

itu — sin cor
us — sin (cot -

«t — sin (cot
120°)
240°)

/ 60 Hz
Spannungen in
per unit

(konzentrierte Elemente) und zum anderen als verlustlose
Dreiphasenleitung mit näherungsweiser Berücksichtigung der
Verluste durch konzentrierte Widerstände an drei Stellen [5]

nachgebildet. Fig. 11 zeigt für die zweite Art der Nachbildung
den von einem Zeichengerät automatisch angefertigten Kurvenverlauf.

Die gestrichelten Linien sind die Ergebnisse bei
Nachbildung der Leitung mit Mehrpolketten; sie wurden zum
Vergleich nachträglich von Hand eingezeichnet. Die verwendeten
Daten sind in Tabelle I zusammengestellt.

I
r~

11

-f-O^Olö +°- -0 R

-o s

-or

Fig. 10
Zuschalten einer leerlaufenden Leitung

R, S, T Phasen am Leitungsende; Ri Innenwiderstand; Dämpfungs¬
widerstand
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Anhang 1

Speicherung der Vergangenheit des Netzzustandes

Die Vergangenheit des Netzzustandes geht in die rechten Seiten
der Gl. (19) durch die Ausdrücke const,- k ein, aus denen sich der
Vektor k.\ zusammensetzt. Beim Aufbau dieses Vektors setzt man
zunächst alle Komponenten gleich null und addiert dann Zweig für
Zweig den Ausdruck consti- k zur /c-tcn Komponente und subtrahiert
ihn von der /-ten Komponente.

Im allerersten Zeitschritt mit t At müssen die Ausdrücke
consti-k nach Gl. (10b), (13b) und (16b) errechnet werden. Deshalb
ist es notwendig, die Anfangswerte der Spannungen und Ströme zur
Zeit / 0 bei Induktivitäten und Kapazitäten und zurück bis zu
t (At—r) bei verlustlosen Leitungen zu kennen. Dass bei der
verlustlosen Leitung die Anfangswerte auch vor / 0 für weiter
zurückliegende Zeitpunkte bekannt sein müssen, rührt daher, dass

nur die Zustände an den Leitungsenden verfolgt werden. Würden
die Anfangsbedingungen für alle Orte längs der Leitung vorliegen,
dann würden die Werte zum Zeitpunkt t 0 genügen.

Für alle nach dem 1. Schritt folgenden Schritte ist es einfacher,
die Ausdrücke const; k bei Induktivitäten und Kapazitäten aus
Rekursionsformeln auf dem laufenden zu halten. Für Elemente
zwischen den Knotenpunkten i und k gilt:

Induktivität: constfrkAt) constfrk2At) + 2x (27)

Kapazität : const?_7kA0 — const?Jk2At) — Ix (28)

Diese Formeln folgen aus Gl. (13b) bzw. (16b) durch Einsetzen der
Ströme gemäss Gl. (13a) bzw. (16a).

Für Leitungen müssen die Ausdrücke consti-k und constk-i bis

zur Zeit t—T zurück in einer Liste gespeichert werden. Da man aus
Gl. (19) nur die Spannungen erhält, ist eine Nebenrechnung nötig,
um in jedem Zeitschritt constj-k und constk-i zu berechnen. Hierzu
verwendet man am besten die Rekursionsformel :

die sich aus Gl. (10a) und (10b) ableitet und bei Speicherung von
2/Zw nur eine Multiplikation und eine Addition erfordert. Falls t
kein ganzzahliges Vielfaches von At ist, kann man lineare
Interpolation beim Aufsuchen der Vergangenheitswerte verwenden. Ist

t < At, dann benützt man den Wert zur Zeit t—At, was
gleichbedeutend mit Erhöhung der Laufzeit auf den Wert At ist. Die Listen
zur Speicherung der Leitungsvergangenheit werden durch
Verschieben nach jedem Schritt auf dem laufenden gehalten, wobei die
Werte des am weitesten zurückliegenden Schrittes fallengelassen und
die neuesten Werte eingetragen werden. Im Digitalrechner werden
die Listen in Wirklichkeit nicht verschoben, sondern die Anfangsadressen

werden um«l modulo (Listenlänge)» erhöht (Simulierung
einer schleifenförmigen, geschlossenen Liste [18]).

Die Anzahl der Knotenpunkte lässt sich verringern, wenn man die
Serieschaltung einer Induktivität und eines Widerstandes als einen
einzigen Zweig auffasst. Anstelle von Gl. (13) erhält man dann:

mit x Gik [« jt—A0 — «kt_At)]

const®
k [z~u* + constk-iT>] (29)

/®k=G[«®-«®] + constf-A0 (30a)

1

mit G 2 L
+ P
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wobei consti_k im ersten Schritt aus:

const.(t-At)
i-k G[u\(t—At) „Ct-AO]+/„«-AO

und in allen weiteren Schritten aus der Rekursionsformel:

constf_~A0 G(1 + h) [«[t_A,)

*)

„(t-At)]+h- constfrk2A,)

mit h G {- L
\ At

zu berechnen ist.

„(t) »Ct — T)

mit

wobei

const!

G

(t—T)

R/2

G «;i-

-[Gu«-* + hi«I?]

und h G ^Zw —j

h «phase t) iphase
t) a: S t

h iphase t) «phase
t) X bt

(32a)

(32b)

Der Index «phase» deutet an, dass es sich um Phasengrössen
handelt. Durch Elimination einer der Vektorvariablen erhält man:

b2 «phase r ' Wphase

5x2 - c Dt2

b2 iphase q,
t)2 iphase

Sa2 b/2

(33a)

(33b)

Wenn es möglich ist, die Gleichungssysteme (33a) und (33b) zu
entkoppeln — das heisst die Matrizen L' C bzw. C'L' in Diagonalform

zu bringen — vereinfacht sich das Problem auf die Lösung von
m unabhängigen einphasigen Gleichungen. Eine solche Diagonalisie-
rung erreicht man durch Einführung neuer «modaler» Variablen mit
Hilfe einer Lineartransformation [19]; für die Spannungen gilt:

und
«phase — M «modal

«modal — M 1
«phase (34)

M ist die Modalmatrix zur Matrix L' C'. Die Spalten von M sind
die Eigenvektoren von L' C", die man gewöhnlich normalisiert. Für
die Ströme ist die Transformation:

und
iphase — fV imodal

imodal N ^ iphase (35)

Dabei ist N die Modalmatrix zu C'L'. Die Matrizenprodukte
L'C' und C'L' haben zwar gleiche Eigenwerte (C'L' =1= L' C', da das

Matrizenprodukt nicht kommutativ ist); ihre Modalmatrizen sind
jedoch verschieden mit folgender Abhängigkeit:

N--
C0'

C'M (36)

(30b)

(30c)

Ähnlich lässt sich eine verlustlose Leitung mit konzentrierten
Widerständen R/2 an beiden Leitungsenden zur näherungsweisen
Berücksichtigung der Stromwärmeverluste behandeln. Gl. (10) ist
dann zu ersetzen durch:

(31a)

(31b)

In Gl. (36) ist N nicht normalisiert. Co' ist ein beliebiger
Massstabsfaktor mit derselben Dimension wie C', der lediglich dafür sorgt,
dass IVdimensionslos wird. Dadurch behalten die Grössen im Modalbereich

die gleichen Dimensionen wie im Bereich der Phasengrössen,
was zum leichteren Verständnis beiträgt. Liesse man Co' weg, dann
wäre beispielsweise der modale Wellenwiderstand der Kehrwert der
modalen Wellengeschwindigkeit, was zwar zu keinen Schwierigkeiten

in der Rechnung führen würde, aber doch verwirren kann.
Mit den Lineartransformationen (34) und (35) gehen die Systeme
(32a) bis (33b) im Bereich der Phasengrössen über in die Gleichungssysteme

im modalen Bereich :

(37a)

(37b)

(38a)

(38b)

b «modal 1

C0'A
b imodal

i) X it
4 imodal

Co'/
b «modal

ö X bt
il2 «modal

X2
A

b2 «modal
bt2

<12 imodal
ö X2

A
b2 imodal

bt2

Ähnliche Formeln erhält man, wenn man R/4 an beiden Enden
und R/2 in der Mitte der Leitung einfügt [5],

Anhang 2

Verlustlose Mehrphasenleitung

Das Verhalten einer Leitung mit m Phasen oder m Leitern wird
durch zwei Systeme von jeweils m partiellen Differentialgleichungen
beschrieben :

A ist eine Diagonalmatrix; ihre Diagonalelemente sind die Eigenwerte
2p der Matrix L'C'. I ist die Einheitsmatrix. Jede der m unabhängigen

Leitungsgleichungen im Modalbereich kann nun wie für eine
einphasige verlustlose Leitung gelöst werden. Die notwendigen
Parameter ergeben sich aus der Analogie zwischen Gl. (37a) bis (38b)
und Gl. (2), (3) und (5) für die Leitung n 1, ...m des modalen
Bereichs :

modale Wellengeschwindigkeit t>p ;

modale Laufzeit

modaler Wellenwiderstand Zp
Pp Co

Für eine Drehstromleitung nach Fig. 8 ergeben sich die modalen
Ströme von 1 nach 2 zu :

la —2a

1

Za
«(t)"la + const^p

:«)
lb—2b

1

Zp
um"lb + constat

;(t)
lc—2c

1

Zc
«(t)"lc + COnStlc-2c

Transformiert man die Modalgrössen in Phasengrössen zurück,
so wird:

'l(-2phase ^ "iphase constl-2phase (39)

G Co' N(A 1/2)"1 M"1 (40a)
mit

und

COn8tl-2phase JV const'' Jp'
1 2modal

(40b)

Die Matrix G geht zu Beginn der Rechnung in die Matrix YAA
der Gl. (19) ein und consti_2phas0 trägt in jedem Schritt zum Vektor
kA der rechten Seiten bei. Man beachte, dass die modale Laufzeit tp
im allgemeinen für die m modalen Leitungen verschieden ist. Das
bedeutet, dass man beim Aufsuchen der Vergangenheit in den Listen
für jeden Modus verschieden weit zurückgehen muss. Die Listen
consti-k und constk-i sind Modalgrössen.

Die Transformation in Modalgrössen bietet ausserdem die
Möglichkeit, die mit der Erdrückleitung verbundene Welle — das ist die
modale Welle mit der geringsten Wellengeschwindigkeit •— in
Teilwellen verschiedener Laufzeiten zu zerlegen [19] oder die
Frequenzabhängigkeit ihrer Parameter mit sog. Gewichtsfunktionen (im
Englischen «weighting functions») genau zu berücksichtigen [20],
um bessere Übereinstimmung mit Messwerten zu erhalten.
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Commission Electrotechnique Internationale (CEI)
Sitzungen des SC 15C, Spécifications, vom 24. bis 28. Februar 1969 in Mailand

An der Tagung des SC 15C vom 24. bis 28. Februar 1969 in
Mailand, welche im Anschluss an die Sitzungen vom September
1968 in London (s. Bull. SEV 60(1969)2, S. 56) durchgeführt
wurde, konnten in 3 ganztägigen und 2 halbtägigen Sitzungen
unter dem Vorsitz von W. H. Devenish (England) die in London

unerledigt gebliebenen Traktanden behandelt werden. Die
Schweiz war durch einen Delegierten vertreten.

Dokument 15C(Secretariat)21 und 21A, Specifications for
insulating varnishes containing solvents, Part 2: Test methods.
Die Prüfmethoden wurden sachlich wie auch redaktionell
bereinigt, wobei mehrere umstrittene Prüfmethoden (Verlauf,
Deckfähigkeit, Lackeindring- und -aufnahmevermögen, Oberflächenhärte,

Haftfestigkeit nach Gitterschnittmethode, Oberflächenleitfähigkeit)

fallengelassen wurden. Prüfkörper mit Glasgewebe
als Lackträger wurden überall ersetzt durch solche mit Metallträger

(Bleche aus Eisen, Kupfer oder Aluminium). Für die
Prüfung der Lacktrocknung in dicker Schicht wurde ein deutscher
Vorschlag gutgeheissen. Die Einwirkung von Lacken auf
lackisolierte Drähte soll nach dem in Publikation 251 der CEI,
Prüfmethoden für Wicklungsdrähte, enthaltenen Verfahren bestimmt
werden. An der Prüfung der dielektrischen Eigenschaften
(tg S und e) wird festgehalten, doch bleiben die Methoden dafür
vorläufig noch offen. Das Dokument wird mit den beschlossenen
Änderungen zur Stellungnahme unter der 6-Monate-Regel
unterbreitet.

Dokumente 15C(Secretariat)14, 15 und 16, Specifications for
varnished fabrics, Part. 1: Definitions and general requirements,
Part 2: Methods of test, Part 3 - sheet 1: Specifications for oleo-
resinous varnished cotton cloth. Bei der Bezeichnung der
Lackgewebe wird von einem Index für die thermische Beständigkeit
(als Ergänzung zur Angabe von Lacktyp und Trägermaterial)
Abstand genommen, da es vorläufig noch nicht möglich ist, einen
derartigen Temperaturindex objektiv zu definieren. Die
Prüfmethoden wurden durch Vereinheitlichung und Zusammenlegung
ähnlicher Verfahren noch vereinfacht und in eine übersichtlichere
Form gebracht. Für die Lieferspezifikationen des Lackgewebetyps

Öllack/Baumwollgewebe konnten auf Grund der verschiedenen
eingereichten Vorschläge konkrete Anforderungen für die
Zugfestigkeit, die Bruchdehnung und die maximal zulässige
Durchschlagspannung festgelegt werden. Die Werte für die
Einreissfestigkeit blieben noch offen, währenddem die Anforderungen
hinsichtlich Hydrolysebeständigkeit, Einwirkung und Isolieröl auf
Lackgewebe und von Lackgewebe auf Isolieröl, die Kantenein-
reissfestigkeit und die Dehnbarkeit der Vereinbarung zwischen
Hersteller und Abnehmer vorbehalten bleiben. Die drei Dokumente

über Lackgewebe wurden dem Bureau Central zur
Verteilung unter der 6-Monate-Regel unterbreitet. Die Behandlung
weiterer Teilspezifikationen (z. B. Typ Alkydharz/Polyester-
gewebe, Dokument 15C(Secretariat)l7, etc.) wurde auf die
nächste Tagung des SC 15C verlegt.

Dokument 15C(Secretariat)25, Specifications for pressure
sensitive adhesive tapes for electrical purposes, Part 2: Methods of
test. Der Aufbau des Dokumentes wurde den anderen
Prüfmethode-Dokumenten angepasst. Aus der starren Haltung der
Herstellervertreter der verschiedenen Länder, die sich hartnäckig
für ihre nationalen oder Verbandsvorschriften (z. B. ASTM-
Vorschriften oder die AFERA-Vorschriften des Europäischen
Verbandes der Selbstklebebänder-Hersteller) einsetzten, ergaben
sich teilweise etwas unbefriedigende Kompromisse, die auch
bestehenden CEI-Festlegungen oder -Vorschlägen auf verwandten
Gebieten wenig Rechnung tragen. Da wenig Hoffnung besteht,
in absehbarer Zeit zu wesentlichen Verbesserungen zu gelangen,
soll auch dieses Dokument zur Verteilung unter der 6-Monate-
Regel unterbreitet werden. Von verschiedenen Technischen
Komitees der CEI werden dringend Spezifikationen für gewisse
Typen von Selbstklebebändern verlangt. Für diese sollen bis zur
nächsten Tagung mehrere Entwürfe für Typenspezifikationen
ausgearbeitet werden.

Die nächste Tagung des SC 15C soll im Rahmen der Réunion
Générale der CEI vom Mai 1969 in Washington durchgeführt
werden, und eine weitere Tagung zum Abschluss der laufenden
Arbeiten wird vorgesehen für November 1970. K.Michel
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