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Grundlagen und mögliche Anwendungen der Sequenztechnik
Von H. Harmuth, Leopoldshafen

Das System der Sinus- und Cosinusfunktionen ist in der
Nachrichtentechnik stets ausgezeichnet gewesen. Immer wenn der
Begriff Frequenz benützt wird, bezieht man sich auf diese Funktionen.

Daher beruht die allgemein verwendete Theorie der
Nachrichtentechnik auf Sinus- und Cosinusfunktionen. In neuerer Zeit
sind andere vollständige Systeme von orthogonalen Funktionen
für theoretische Untersuchungen und Gerätebau benützt worden.
Es lässt sich zeigen, dass Theorien der Nachrichtentechnik auf
diesen Funktionen aufgebaut werden können, die der auf Sinus-
und Cosinusfunktionen beruhenden Theorie gleichwertig sind. Die
meisten dieser Theorien sind nur von akademischem Interesse.
Eine Ausnahme bildet das wenig bekannte System der Walsh-
Funktionen. Es führt zu Schaltungen von Filtern und Multiplex-
geräten, die ausserordentlich gut für die Realisierung in
Halbleitertechnologie geeignet sind. Noch in der theoretischen Phase
befinden sich Anwendungen zum Erkennen einfacher geometrischer

Formen durch Walsh-Wellen-Radar und zur extrem genauen
Peilung von Raumsonden.

621.372.54

L'application des fonctions sinusoïdales et cosinusoïdales en
matière de télécommunications a toujours été excellente. Toutes
les fois que l'on utilise la notion de fréquence, on se réfère à ces
fonctions. La théorie généralement appliquée à la technique des
télécommunications se base de ce fait sur les fonctions sinusoïdales
et cosinusoïdales. Au cours de ces temps derniers on a utilisé pour
les recherches théoriques et la construction d'appareils des
systèmes complets de fonctions orthogonales. On peut prouver que
les théories de la technique des télécommunications peuvent également

être basées sur ces fonctions, qui sont du reste équivalentes
aux théories basées sur les fonctions sinusoïdales et cosinusoïdales.
La plupart de ces théories ne présentent qu'un intérêt académique,
à l'exception toutefois du système peu connu des fonctions de
Walsh. Ce dernier conduit à des couplages de filtres et d'appareils
multiplex fort appropriés aux réalisations effectuées dans la
technique des semi-conducteurs. Des applications destinées à indenti-
fier des formes géométriques simples par le radar à ondes de
Walsh et à la goniométrie extrêmement précise des sondes
spatiales n'ont pas encore dépassé le stade théorique.

1. Einführung
Der für die Nachrichtentechnik grundlegende Begriff

Frequenz ist als der Parameter / in den Funktionen sin 2jt ft und
cos 2rc ft definiert. Der den Begriff Frequenz verwendende
Teil der Nachrichtentechnik ist daher auf dem System der
Sinus- und Kosinusfunktionen aufgebaut; im folgenden sei

dieser Teil mit Frequenztechnik bezeichnet. Es fragt sich, ob
es noch andere Funktionensysteme gibt, auf die man ähnlich
umfangreiche Theorien aufbauen kann und die zu praktisch
brauchbaren Geräten führen. Da Sinus und Cosinus ein
System orthogonaler Funktionen bilden, liegt es nahe, andere

Systeme orthogonaler Funktionen zu untersuchenJ). Fig. 1

zeigt drei solche Systeme mit der normierten Zeit 6 t/T als

Variable: Sinus-Kosinusfunktionen, Walsh-Funktionen und

1) Zwei Funktionen f(t',0) und ffk,6) heissen zueinander ortho-
y2

gonal im Intervall — Vi sî 9 < Vi, wenn das Integral f î(i,0)f(k,0)<i0
-Vi

für i 4= k verschwindet. Sie heissen orthogonal und normiert, oder
orthonormiert, wenn das Integral für i k den Wert 1 hat.

2-Z0*t - nis/r
Vollständige Systeme

Sinus-und Cosinusfunktionen Walsh-Funktionen
waKO, S)

Unvollständige Systeme
Rechteckimpulse

fi"
k-2

k= 3

k=k

k=5

k- 6

k-1

Rechteckimpulse. Die Rechteckimpulse sind repräsentativ für
eine Reihe von Impulsformen, die zur Nachrichtenübertragung
mit Zeitteilung benützt werden.

Rechteckimpulse bilden ein unvollständiges System, Sinus-
Cosinus- und Walsh-Funktionen dagegen vollständige
Systeme. Der Unterschied liegt anschaulich darin, dass sich in

Fig. 1 weitere Sinus-Cosinus- und Walsh-Funktionen für
f 5, 6, im Intervall — Vi S 0 < !/2 zeichnen lassen, während

es keinen weiteren Rechteckimpuls gibt, der zu den
gezeichneten 8 orthogonal ist. Praktisch zeigt sich der Unterschied

dadurch, dass es umfangreiche Theorien über Filter,
Antennen, Hohlleiter usw. für Sinus-Cosinusfunktionen gibt,
aber nicht für Rechteckimpulse, obwohl Rechteckimpulse viel

länger in der Nachrichtentechnik verwendet werden.
Neu in Fig. 1 sind die Walsh-Funktionen [1...7]2). Sie nehmen

nur die Werte +1 und —1 an. Es ist plausibel, dass dies
eine nützliche Eigenschaft ist, wenn man Schaltungen aus
binären digitalen Schaltelementen aufbauen will. Die Funktionen
cal fi,6) sind so wie die Cosinusfunktionen |/2 cos 2it iO sym¬

metrisch, die Funktionen sal fi,9) und /2 sin 2k id
sind schiefsymmetrisch. Es lässt sich zeigen, dass

über diese äusseren Anzeichen hinaus eine enge
Verwandtschaft zwischen Sinus-Cosinusfunktionen und
Walsh-Funktionen besteht.

Der Parameter i in I'lTsin 2n id und |/2 cos 2k id

gibt die Zahl der Schwingungen im Intervall
— ]/2 Ha 0 < V2 an, ist also die normierte Frequenz
i fT. Statt als «Schwingungen pro Zeiteinheit»
kann man i auch als «halbe Zahl der Zeichenwech-
sel pro Zeiteinheit» interpretieren. Im Falle der Si-

2) Siehe Literatur am Schluss des Aufsatzes.

-W-
-1/2 0 9— 1/2

— /2cos 2/3T 0, /2sin 2/Jf 0

•1/2

—caU/.ÖJ,-
0 0-

—sali/, 9)
1/2 -1/2 0 0—1/2

2/2wal(O,80-A78-'9/16)

Fig. 1

Orthonormierte Systeme von Funktionen
i normierte Frequenz oder Sequenz; k Laufzahl der Recht¬

eckimpulse; 8 normierte Zeit
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nusfunktionen wird der Zeichenwechsel an der linken Grenze
9 — ]/2 gezählt, der an der rechten Grenze 0 + V2 aber

nicht.

Auch im Falle der Walsh-Funktionen gibt i die halbe Zahl
der Zeichenwechsel im Intervall — V2 ^ & < V2 an. Im Gegensatz

zu den Sinus-Cosinusfuktionen haben die aufeinanderfolgenden

Zeichenwechsel einer Funktion nicht gleiche Abstände.
Für Walsh-Funktionen mit nicht ganzzahligen Werten von i
gibt i die «halbe mittlere Zahl der Zeichenwechsel pro Zeiteinheit».

i heisst die normierte «Sequenz» und </> — i/T ist die
nicht normierte Sequenz. Die Masseinheit der Sequenz ist das

zps3) : '/2 (mittlere Zahl der Zeichenwechsel pro Sekunde)
Sequenz in zps. Die allgemeine Form der Sinusfunktion U sin

(2k ft +«) enthält als Parameter die Amplitude U, die

Frequenz / und den Phasenwinkel oc. Die allgemeine Form einer
Walsh-Funktion i/sal (</>T, t/T + to/T) enthält als Parameter
die Amplitude U, die Sequenz </>, die Verzögerung to und die
Zeitbasis T. Die normierte Verzögerung to/T entspricht dem

Phasenwinkel. Die Zeitbasis T ist ein zusätzlicher Parameter.
Durch ihn kommen ein guter Teil der Unterschiede in den

Anwendungen zwischen Sinus-Cosinus- und Walsh-Funktionen

zustande.

Die Walsh-Funktionen sind bisher die einzigen bekannt

gewordenen Funktionen, die für die Nachrichtentechnik ähnlich

günstige Eigenschaften haben wie die Sinus-Cosinusfunk-
tionen. Der Grund, warum sie gerade jetzt interessant werden,
ist die Entwicklung der Halbleiter-Bauelemente. Beispielsweise

waren früher Spulen, Kondensatoren und Widerstände
die wünschenswertesten Bauelemente für Filter. Für diese

linearen, zeitlich konstanten Elemente hat die auf
Sinus-Cosinusfunktionen aufgebaute Frequenztechnik unbezweifelbare
Vorteile. Die Filter der auf Walsh-Funktionen aufgebauten
«Sequenztechnik» sind linear und zeitlich periodisch
veränderlich. Sie enthalten Kondensatoren, Widerstände,
Operationsverstärker und Schalter. Sie können leicht mikrominiaturisiert

werden und erfordern weder Abstimmung noch
Temperaturkompensation. Diese Vorteile waren bedeutungslos,
ehe es Operationsverstärker und Schalter in Halbleiterausführung

zu niedrigen Preisen gab.

2. Theoretische Grundlagen 4)

Tabelle I gibt Eigenschaften von Sinus-Cosinusfunktionen,
Walsh-Funktionen, Rechteckimpulsen und von auf ihnen
beruhenden Verfahren. Als mathematische Theorie gibt es eine
der Fourier-Analysis analoge Walsh-Fourier-Analysis. Für
Rechteckimpulse gibt es keine entsprechende Theorie; das ist
eine Folge der Unvollständigkeit des Systems der Rechteckimpulse.

Den Sinus- und Cosinustransformierten einer Funktion

F(0):

Eigenschaften von Systemen orthogonaler Funktionen und von auf
ihnen beruhenden Anwendungen

Tabelle I

as' (ß) f F{9) )/2 sin 2k ß9 d9, af (ß)

-f F(9) 1/2 cos 2n ß9 d9

Sinus-Cosinusfunktionen Walsh-
Funktionen Rechteckimpulse

Parameter Amplitude Amplitude Amplitude
Frequenz Sequenz —
Phasenwinkel Verzögerung Verzögerung
— Zeitbasis Zeitbasis
MatheFourier- Walsh- —.

matische Analysis Fourier-
Theorie Analysis

Sequenz—
spektren spektrum spektrum

Filter linear, linear, linear.
zeitlich zeitlich zeitlich
konstant periodisch variabel

variabel
Beschreibung FrequenzSequenzgang Dämpfung als

gang von von DämpFunktion

Dämpfung fung und der Zeit
und
Verzögesendrehung rung

Multiplex SequenzZeitteilung

teilung teilung
Modulation Amplituden-, Amplituden-, Amplituden-,

Frequenz-, Zeitbasis-, Breite-,
Phasen-, Zeitlage-, Lage-,

Kodemodulation

dulation dulation
abstrahlbar sin 2k i9, sal (i,0), —

cos 2n iO cal (iß)

as(ß) fF(9) sal (ß, 9) Ad, ac(ß) f F(9) cal (ji, 9) d0 (1)
OO — OO

OO

F(9) / [«s (ß) sal (ß, 9) + «c (ß) cal (ß, 9)} d6 (2)

ß </>T, 9 t_

T

Fig. 2 zeigt als Beispiel einen Rechteck- sowie Sinus- und
Cosinusimpulse, die ausserhalb des Intervalles — Vif/kO <Vi
identisch Null sind. Fig. 3 zeigt ihre Transformierte as(ß) und
«<:(//). Man beachte, dass as(ß) für eine symmetrische Funktion
F(9) verschwindet und ac(ß) für eine schiefsymmetrische Funktion

F(9). Die 5 Funktionen von Fig. 2 haben daher entweder
die Transformierte ac(ß) oder ae(ß).

Fig. 4 zeigt weitere Beispiele von Funktionen F(9), ihre
Walsh-Fourier-Transformierten a,-(ß) und as(ß) sowie ihre Se-

entsprechen die Transformierten as(ß) und ac(ß) der Walsh-
Fourier-Analysis :

3) zps wurde in Anlehnung an die alte englische Einheit cps für die
Frequenz gewählt.

") Im deutschen Sprachgebiet wird die Theorie der Walsh-Funktionen
hauptsächlich am Mathematischen Institut der Universität

Innsbruck gepflegt [5...7].

waKO,8)

\f2sin 2718

V2cos 2718

V2sin 4718

l2cos 4718

8

Fig. 2
Sinus- und Cosinusimpulse

6 normierte Zeit
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Fig. 4
Beispiele von Zeitfunktionen, ihren Walsh-Fourier-Transformierten

a .{/. und ihren Sequenz-Leistungsdichte-Spektren ac2(/i) + as2(/0
j_i normierte Frequenz

Diese Träger - mit Ausnahme der Gleichspannung wal(O,0) -
können von Antennen abgestrahlt werden. Der Strahlungswiderstand

eines Hertzschen Dipols ist beispielsweise für
Sinus- und Walsh-Träger annähernd gleich, wenn die Frequenz
des Sinusträgers gleich der Sequenz des Walsh-Trägers ist.

Bei der Amplitudenmodulation von Sinusträgern und
Walsh-Trägern tritt ein wesentlicher Unterschied auf. Um das

zu erkennen, seien die folgenden Multiplikationstheoreme der
Sinus- und Cosinusfunktionen betrachtet:

2 cos id cos kd cos (/ — k)0 + cos(;' + k)9
2 sin id cos kd sin (/ — k)d + sin(i + k)d
2 cos id sin kd —sin (/' — k)d + sin(; + k)d
2 sin id sin kd cos (/' — k)d — cos(i + k)d

(3)

Die Multiplikation zweier Funktionen liefert immer zwei
Funktionen mit Argument (/ — k)6 und (/' + k)9. Repräsentieren

cos kd und sin kO Träger, cos id und sin iß die Fourier-
Komponenten eines Signals, dann repräsentieren die Glieder
auf der rechten Seite von Gl. (3) die bei der Amplitudenmodulation

entstehenden unteren und oberen Komponenten. Am-

Fig. 3

Walsh-Fourier-Transformierte oc00 oder ag(/0 der Impulse von Fig. 2

ß normierte Sequenz

quenz-Leistungsdichte-Spektren - oder kurz Sequenzspektren -
ac2G«) + cis2{ß). Mit Ausnahme der Funktionen in der
3. Zeile verschwinden sowohl die Funktionen F(9) als auch
ihre Sequenzspektren ausserhalb eines endlichen Bereiches.
Diese Funktionen sind also zeit- und sequenzbegrenzt und sie

belegen nur einen endlichen Teilbereich des Zeit-Sequenzbe-
reiches. In der Fourier-Analysis gibt es keine zeit- und
frequenzbegrenzten Funktionen.

Die Filter der Sequenztechnik sind nach Tabelle I linear
und zeitlich periodisch variabel. Ihre Eigenschaften lassen sich
durch den Sequenzgang von Dämpfung und Verzögerung
beschreiben. Multiplexen mehrerer Signale ist durch Amplitudenmodulation

von Walsh-Trägern möglich. (Walsh-Träger sind
die periodisch fortgesetzten Walsh-Funktionen von Fig. 1.)

F(d)=Flt/T) I d ,\S2 SP

/I'
-F"(t/T)

F(6>

F*kg> I
125 250 ps 375

Fig. 5

Sequenztiefpass
a praktische Ausführung; b Blockschema; c Zeitdiagramm;

d Integration von F (6)
I Integrator; SP Speicher; V Operationsverstärker

plitudenmoduliert man einen Träger nicht mit einer Fourier-
Komponente, sondern mit vielen, dann entstehen untere und
obere Frequenz-Seitenbänder. Die Zweiseitenband-Modulation

ist also eine Folge der Multiplikationstheoreme in Gl. (3).
Für Walsh-Funktionen gelten die folgenden

Multiplikationstheoreme:

cal(/,0) cal(k,d) cal(/' © k,9)
sal(/,0) cal(£,0) sal([A:@(/—1)] +1,0)
cal(/',0)sal(/r,0) sal([/' ©(£—1 )] +1,0)
sal(/,0) sal(k,d) cal [(/—1) © (k—1),0]

(4)

Das Symbol ©zeigt eine Addition modulo 2 an. Die
Summanden werden als binäre Zahlen geschrieben und unter
Beachtung folgender Regeln addiert : 1 © 0 0 © 1 1,

0@0 1©1 0 (kein Übertrag).

1198 (A 748) Bull. SEV 59(1968)26, 21. Dezember



Fig. 6
Blockschema eines Sequenzbandpasses (a) und praktische Ausführung eines

Multiplikators M (b)
TP Tiefpass nach Fig. 5

Im Gegensatz zu Gl. (3) steht auf der rechten Seite der Gl. (4)

jeweils nur eine Funktion. Interpretiert man cal(k,6) und

ssd(k,9) als Träger, cal(/,0) und sal(/,0) als Walsh-Fourier-
Komponenten eines Signals, dann liefert die Amplitudenmodulation

nur eine Komponente. Amplitudenmoduliert man einen

Walsh-Träger nicht mit einer Komponente, sondern mit vielen,

dann entsteht nur ein einziges Sequenz-Seitenband. In
einem Sequenz-Multiplexsystem fallen daher die Einseiten-
bandfilter weg.

3. Filter
Fig. 5 zeigt das praktische Schaltbild, das Blockschema und

das Zeitdiagramm eines einfachen Sequenztiefpasses. Das
Eingangssignal F(0) wird in eine Treppenkurve Ftt(0) umgewandelt,

deren Stufen eine vorgegebene Breite haben. Die Amplituden

der Stufen sind so gewählt, dass F(6) durch Ftt((7) im
Sinne des kleinsten quadratischen Fehlers am besten angenähert

wird; ausserdem ist Ftt(0) um eine Stufenbreite gegen F(8)
verschoben. Praktisch wird Ftt(0) erzeugt, indem F(0) über

Intervalle von der Dauer der Stufenbreite integriert wird
(Zeile d). Die am Ende des Integrationsintervalles erhaltene

Spannung wird durch Schalter s2 abgetastet und in einem Speicher

gehalten. Unmittelbar danach wird der Integrator durch
Schalter .v, entladen. Beträgt die Breite der Stufen 125 ps, dann
nimmt Ftt(0J pro Sekunde 8000 unabhängige Amplituden an.

Zerlegt man Ftt(0) nach Walsh-Funktionen, dann können
daher Funktionen mit 0 bis 8000 Zeichenwechseln pro Sekunde

oder mit einer Sequenz zwischen 0 und 4000 zps 4 kzps
auftreten. Nach dem Abtasttheorem der Fourier-Analysis hat das

Ausgangsssignal eines Frequenztiefpasses mit 4 kHz
Grenzfrequenz ebenfalls 8000 unabhängige Amplituden pro Sekunde.

Fig. 6 zeigt einen Sequenzbandpass. Das Eingangssignal
F(ß) wird durch Multiplikation mit einem Walsh-Träger
cal(/,0) oder sal(/,0) von seinem Sequenzbereich in den des

Tiefpasses von Fig. 5 verschoben. Nach Durchlaufen des

Tiefpasses TP wird das Signal durch nochmaliges Multiplizieren
mit dem gleichen Walsh-Träger in seinen ursprünglichen
Sequenzbereich zurückverschoben. Dieses Prinzip des Aufbaues
eines Bandfilters aus zwei Multiplikatoren und einem Tiefpass
ist auch für Frequenzfilter bekannt. Die bei Sinus-Cosinusträgern

auftretende Zweiseitenband-Modulation macht die

Realisierung schwierig. Ferner ist es nicht leicht, genaue
Multiplikatoren für Sinus-Cosinusfunktionen herzustellen. Da
Walsh-Funktionen nur die Werte +1 und —1 annehmen,

bedeutet eine Multiplikation mit ihnen, dass das Signal
entweder unverändert bleibt, oder dass seine Amplitude umgedreht

wird. Einen geeigneten einfachen und genauen
Multiplikator zeigt Fig. 6.

Die Eigenschaften von Frequenzfiltern können durch den

Frequenzgang von Dämpfung und Phasendrehung beschrieben

werden. Entsprechend lassen sich die Eigenschaften von
Sequenzfiltern durch den Sequenzgang von Dämpfung und

Verzögerung beschreiben. Fig. 7 zeigt für K{0) 1 Dämpfung

und Verzögerung eines Tiefpasses; Kc(l) 1, Kc(2)
1, Ks(l) 1 und Ks(2) 1 zeigen Dämpfung und Verzögerung

von Bandpässen nach Fig. 6, wenn man dort die Träger
cal(l,0), cal(2,0), sal(l,0) und sal(2,0) zuführt. Die Sequenz ist

normiert als fi aufgetragen, und nicht normiert als </> für die
Zeitbasis T 125 ps.

Die Dämpfung von Sequenzfiltern springt nach Fig. 7 an
den Bandgrenzen von 0 nach unendlich. Die Verzögerung ist

im ganzen Durchlassbereich konstant. Sequenzfilter haben
daher prinzipiell weder Dämpfungs- noch Laufzeitverzerrungen.
Die Dämpfung praktischer Filter ist zur Zeit genügend hoch,
um mit Hilfe von Kompandern die Empfehlungen des CC1T

für die Nebensprechdämpfung im Telephonie-Multiplexbe-
trieb zu erfüllen. Die unendlich steilen Filterflanken wirken
ungewöhnlich, da sie bei Frequenzfiltern nicht auftreten. Sie wirken

weniger ungewöhnlich, wenn man berücksichtigt, dass

Sequenzfilter Schalter enthalten, die eine Zeitquantisierung
erzeugen. Eine Amplitudenquantisierung erfolgt nicht.
Selbstverständlich kann man aber auch amplitudenquantisierte oder
kodierte Signale filtern. Ein solcher Fall tritt ein, wenn man
PCM-Telephoniesignale nicht mit Zeitteilung, sondern mit
Sequenzteilung überträgt; ein Signal besteht dann nicht aus 7

nacheinander übertragenen Rechteckimpulsen mit Amplitude
+ 1 oder — 1, sondern aus 7 gleichzeitig übertragenen Walsh-
Funktionen mit Amplitude +1 oder — 1.

Sequenzfilter sind von M. Bösswetter im Institut für
allgemeine Nachrichtentechnik der Technischen Hochschule Darmstadt

für einen Sequenz-Kanalvocoder, ferner von H. Liike
und R. Maile im Forschungsinstitut von AEG-Telefunken
für ein Telephonie-Multiplexsystem mit Sequenzteilung,
entwickelt worden. Eine mathematische Theorie dieser Filter
veröffentlichte F. Pichler [8],

Ein Signal, das einen Sequenztiefpass mit der Sequenzbandbreite

4 kzps durchlaufen hat, nimmt pro Sekunde 8000

unabhängige Amplituden an. Es muss sich daher trotz seiner
Treppenform durch einen Telephoniekanal von 4 kHz Frequenz-

k(0) =1 /f(0) =1

R

I

kc(1)=1

f

wé,
1

kc(2)=1

§
3

KM) =1

tu,,.;,...

125 us

kc<1>=1

125 jjs
K(1)=l
125 (js

Ks(2M kc(2)=1
125 us

ks(2)=1

125us

0 1

U—
0 1

u -
o 1

p —
0 4000 8000 12000s-1 0 4000 8000 s-' 0 4000 800012000 s-' 0 4000 8000s"1
7= 125us 7= 125us 7=125 ps 7=125ps

0—- 0—- f,—- 0—-
Fig. 7

Sequenzgang von Dämpfung und Verzögerung einiger Sequenzfilter
9 Sequenz in zps; ß normierte Sequenz
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ujt)
-ujt)
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Kanal He

1

Sender Empfänger

Frequenz-Multiplexübertragung sehr ähnlich sind. Fig. 9

zeigt das Blockschema eines Sequenz-Multiplexsystems für
1024 Kanäle. Die analogen oder digitalen Signale werden
durch Sequenztiefpässe TP zu Multiplikatoren M geleitet. Für
Telephonieübertragung ist die Bandbreite der Tiefpässe
Ar/; 4kzps. Den Multiplikatoren werden 32Walsh-Funktionen

1

cal(i,0) und sal(/,0) mit einer Zeitbasis T
2A«i

zugeführt.

Fig.
Abschrägung der Sprünge einer Treppenkurve (a) und eine dazu geeignete

Schaltung (b)

handbreite übertragen lassen. Nach Fig. 8a kann man eine

Treppenspannung ujt) durch ein Filter schicken, das

beispielsweise den Polygonzug ujt) erzeugt. Zu den Zeitpunkten
T, 2T, 3T, nimmt ujt) die Werte an, die ujt) im
vorangegangenen Zeitintervall der Dauer T hatte, ujt) hat ein
Frequenz-Leistungsdichte-Spektrum von der Form (sin 7t/T)2/
(nfT)2, während das von ujt) die günstigere Form (sin nfT)1/
(ju/T)4 hat. Aus ujt) lässt sich uJt—T)= ujt) zurückgewinnen,

beispielsweise indem man ujt) zu den Zeitpunkten T, IT,
3 T, abtastet und die abgetastete Spannung während eines

Zeitintervalles der Dauer T speichert. Eine mögliche Schaltung
zur Umwandlung von ujt) in ujt) ist in Fig. 8b gezeigt. Sie

eignet sich auch zur Rückumwand]ung von ujt) in ujt); legt
man ujt) statt ujt) an den Eingang, dann erhält man —ujt)
am Ausgang von V2.

4. Multiplexsysteme mit Sequenzteilung

Mit Hilfe der Sequenzfilter und von Multiplikatoren, wie
beispielsweise den in Fig. 6b gezeigten, lassen sich Geräte
für eine Sequenz-Multiplexübertragung bauen, die denen für

Hipz
12—jjpJZ-

Kf—j TP

Hjjît'
|

32 Gruppen,

je 32 Kanäle

T33nR-i
Leitung

T32

S32
T64'

T33n0-
TH[ïMÏLb

T32«

T64<

T1-T32

QlHI
T33-T64

—Î—L
FG

sync.:-C

T33-TW

T32'

T1-T32

Die Ausgangsspannungen von je 32 Multiplikatoren werden in
Summatoren S summiert. Die summierten Spannungen können

in weiteren Multiplikatoren wieder zur Multiplikation von
Walsh-Trägern verwendet werden. So wie Frequenz-Multi-
plexsysteme eine mehrfache Frequenz-Umsetzung erlauben,
ist auch hier eine mehrfache Sequenz-Umsetzung möglich.

Auf der Empfangsseite erhält man die getrennten Signale
wieder, indem man mit den gleichen, synchronen Walsh-

Trägern multipliziert und die Signale durch Sequenztiefpässe
schickt. Das Blockschema von Fig. 9 unterscheidet sich von
dem eines Frequenz-Multiplexsystems nur durch das Fehlen

von Einseitenbandfiltern. Die Schaltungen der einzelnen Blöcke
sind jedoch wesentlich anders.

Ein Sequenz-Multiplexsystem nach Fig. 9 ist ausführlich
beschrieben worden [10], Ein experimentelles System wurde

von H. Liike und R. Maile im Forschungsinstitut der AEG-
Telefunken entwickelt. Es soll daher hier nur darüber diskutiert

werden, welche technischen und wirtschaftlichen Vorteile
im Vergleich zu Frequenz- und Zeit-Multiplexsystemen man zu
erreichen hofft.

Sequenz-Multiplexsysteme brauchen im Gegensatz zu Fre-
quenz-Multiplexsystemen keine Einseitenbandfilter. Die
notwendigen Tief- und Bandpässe erzeugen keine Dämpfungsoder

Laufzeitverzerrungen. Für Telephonieübertragung sind
diese Eigenschaften nicht wichtig, für die Datenübertragung
jedoch ausserordentlich. Alle Filter können in integrierter
Schaltungstechnik ausgeführt werden. Die Toleranzen der
Schaltelemente sind genügend unkritisch, um ein individuelles
Abstimmen der Filter unnötig zu machen. Die Bandbreite der
Filter wird durch die zeitliche Lage der Impulse bestimmt,
welche die Schalter si und S2 in Fig. 5 steuern. An die Stelle

des Abstimmens tritt die Zuführung exakt synchronisierter
Impulse, die aber viele Filter gleichzeitig steuern. So wie die

Abstimmung entfällt auch die Temperaturkompensation der

Filter. Die zum Verschieben der Signale im Sequenzbereich

notwendigen Walsh-Träger lassen sich durch binäre Zähler
und Gatter herstellen. Der einzige Baustein in einem Sequenz-

Multiplexsystem, der Abstimmung und
Temperaturkompensation erfordert, ist daher ein Taktimpuls-
Generator.

Zeit-Multiplexsysteme brauchen so wie Sequenz-
Multiplexsysteme keine verzerrenden Filter, und sie

eignen sich ebenfalls sehr gut für die Realisierung
in Halbleitertechnologie. Der Vorteil des Sequenz-

Multiplexens liegt hier hauptsächlich in der grösseren

Betriebssicherheit, die besonders für die
Datenübertragung wichtig ist. Sie kommt durch zwei
verschiedene Ursachen zustande:

Kanal Nr

1

33

Ib®
Fig. 9

Blockschema eines Sequenz-Multiplexsystems
TP Sequenztiefpass; M Multiplikator; S Summator;

TG, FG, SG Takt-, Walsh-Funktionen- und Steuergenerator
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sungen noch nicht vor, sie sind aber eines der nächsten Ziele
experimenteller Arbeiten. Theoretisch lässt sich voraussagen, dass Walshund

Sinus-Cosinusfunktionen annähernd die gleiche Fehlerhäufigkeit
liefern sollten.

Es lassen sich noch eine Reihe anderer Unterschiede
zwischen Zeit- und Sequenz-Multiplexsystemen anführen.
Beispielsweise sind manche Geräte der Zeitteilung billiger; die
Sequenzteilung macht es etwas einfacher, Netze aufzubauen
oder Telephonie- und Datensignale zu mischen. Im Vergleich
zur verschiedenen Betriebssicherheit - oder bei gleicher
Betriebssicherheit zu verschiedenem Informationsfluss durch eine
gegebene Leitung - fallen diese Unterschiede jedoch weniger ins
Gewicht.

5. Formerkennung und Winkelmessung
Zwei mögliche Anwendungen der Walsh-Funktionen, die

sich noch im rein theoretischen Stadium befinden, sind die
Formerkennung von reflektierenden Objekten und eine extrem
genaue Winkelmessung mit Radargeräten, die Walsh-Wellen
statt Sinuswellen verwenden. Fig. 10 zeigt die Reflexion von
Wellen, die von einem Radargerät R ausgestrahlt werden, an
zwei Punkten B, und B2. Der Abstand r/3 soll in der Grössen-
ordnung der Wellenlänge liegen, der Winkel zwischen rA und
r/2 soll so klein sein, dass er auf Grund des Richtdiagramms des

Radargerätes nicht mehr gemessen werden kann.
a und b in Fig. 10 zeigen die von Bi und B2 reflektierten

Sinuswellen. Empfangen wird ihre Summe c. Abgesehen von
den Abweichungen zu Beginn und Ende einer gepulsten Sinuswelle,

kann man aus Fig. 10c nicht erkennen, ob es sich um die
Reflexion von zwei Punkten oder von nur einem stärker
reflektierenden Punkt handelt.

Wird statt einer Sinuswelle eine Walsh-Welle ausgesandt,
dann erhält man im einfachsten Fall die reflektierten Wellen

Fig. 10

Prinzip der Formerkennung mit einem Walsh-Wellen-Radar

Erklärungen siehe im Text

a) In einem Mehrkanalsystem ist immer nur ein Teil der Kanäle
aktiv. Beispielsweise steigt der Aktivitätsfaktor für Telephonieka-
näle auch in der Hauptverkehrszeit nicht über 14 • Die Verstärker
sind daher mindestens % der Zeit nicht ausgenutzt, und die mittlere
Leistung der Signale ist entsprechend verringert [11]. Frequenz- und
Sequenz-Multiplexsignale können bei gleicher Spitzenleistung für
Aktivitätsfaktoren kleiner oder gleich [4 eine grössere mittlere
Signalleistung und damit eine höhere Betriebssicherheit erreichen.
Besonders vorteilhaft ist, dass man durch Regelverstärker eine
annähernd konstante mittlere Leistung einhalten kann, wenn der
Aktivitätsfaktor in verkehrsschwachen Zeiten stark absinkt.

b) In Telephonienetzen werden digitale Zeichen in erster Linie
durch Störimpulse gestört. Es ist bekannt, dass die Zeitteilung
gegen diese Störungen empfindlicher ist als Frequenz- oder Sequenzteilung.

Der Grund ist folgender: Ein Rechteckimpuls kann durch
einen hinzuaddierten Störimpuls sehr stark verändert werden, während

die vorangehenden und nachfolgenden Rechteckimpulse gar-
nicht verändert werden. Bei Frequenz- und Sequenzteilung werden
immer viele Sinus-Cosinus- oder Walsh-Funktionen gleichzeitig
übertragen. Die Energie eines Störimpulses verteilt sich daher auf
diese vielen Funktionen. Sind diese quantisiert, dann ist eine
beträchtliche Energie des Störimpulses erforderlich, um eine Störung
zu erzeugen. Messungen bei der Übertragung binärer, kodierter
Zeichen durch Telephoniekanäle ergaben eine rund hundertmal
geringere Fehlerhäufigkeit bei gleicher mittlerer Leistung, wenn die
Zeichen aus Sinus-Cosinusfunktionen und nicht aus Rechteckimpulsen

aufgebaut waren. Für Walsh-Funktionen liegen solche Mes-

1+coscx

rf=r, cosor, -r2 cosoc2

r2=r1 + d

AE DA'

EG=ÄB'
GB= BF

Fig. 11
Reflexion von Walsh-Wellen durch Parabolspiegel und Winkelreflektor

Erklärungen siehe im Text
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ÂAAA/-

T-Uf \—

^^--"•Lr=bFb=R0T-,

aw ~ t

180-2a

AT
i—

—

il—i i—i rI—1 l _J
1 J

T-i/0 -1

A7=AC/c

A rmix =r=(ÄB/c)cos«
Armin -(ÄB/OA/J

Fig.12
Winkelmessung mittels der relativen Laufzeit von Sinus- und Walsh-Wellen

Erklärungen siehe im Text

d und e in Fig. 10. Die empfangene Summe dieser zwei Wellen
zeigt Fig. lOf. Diese Welle hat eine völlig andere Form als in
Fig. lOd und 10e. Man kann aus ihr auf die Zahl der reflektierenden

Punkte und ihren Abstand schliessen. Dieses Prinzip ist
auf komplizierte Fälle anwendbar. Ein reflektierender Körper
endlicher Ausdehnung reflektiert von jedem Punkt seiner
Oberfläche eine Welle. Die gegenseitige zeitliche Verschiebung
dieser reflektierten Wellen hängt von der Lage der Punkte auf
der Oberfläche des Körpers ab. Aus der Form der Summe aller
reflektierten Wellen lässt sich daher auf die geometrische Form
des Körpers schliessen. Ein wesentliches Ergebnis ist, dass

dadurch ein geometrisch kleiner, aber gut reflektierender Winkelspiegel

von einem geometrisch grossen, aber schlecht reflektierenden

Körper mit beispielsweise zylindrischer Form
unterschieden werden kann.

Fig. 11 zeigt die Reflexion von Wellen durch einen Parabolspiegel

und einen zweidimensionalen Winkelspiegel. Aus der

Gleichung r p/( 1 + cos a) der Parabel in Polarkoordination
folgt, dass die Strecken i\ -- d und ri in Fig. IIa gleich lang
sind. Eine vom Brennpunkt D eines Parabolspiegels
ausgesandte Walsh-Welle wird daher durch die Reflexion am
Parabolspiegel nicht verzerrt; ein solcher Spiegel ist zur Bündelung
von Walsh-Wellen geeignet. Fig. IIb zeigt zwei Wege a und b

von Wellen, die durch einen Winkelspiegel reflektiert werden.
Für Parallel einfallende Wellen sind diese Wege gleich lang.
Eine Walsh-Welle wird daher durch einen Winkelspiegel ohne

Änderung ihrer Form reflektiert. Diese Eigenschaft haben auch
dreidimensionale Winkelspiegel.

Das Prinzip einer Winkelmessung durch Vergleich von
Laufzeiten zeigt Fig. 12c. Zwei Empfänger an den Punkten A
und B empfangen die von einem Sender in grosser Entfernung
ausgestrahlten Wellen, die praktisch parallel in Richtung der
Strahlen a und b einfallen. Aus einer Messung der Laufzeitdifferenz

AT AC/c folgt der Winkel ß arc sin cAT/AB.

Die kleinste messbare Laufzeitdifferenz A7jninhängt für Sinus-
und Walsh-Funktionen davon ab, wie steil die Funktionen in
den Nulldurchgängen verlaufen. Für Sinusfunktionen ist
A7min daher proportional 1//, für Walsh-Funktionen proportional

l/ii>; in den Fig. 12a und 12b ist der Proportionalitätsfaktor

mit e bezeichnet. Das Auflösungsvermögen - das ist
die kleinste messbare Zeit ATmin, oder der kleinste messbare
Winkel Aß «a cATmin/AB - ist für Sinus- und Walsh-Funktionen

annähernd gleich. Der Auflösungsbereich ist jedoch
völlig verschieden: Der grösste zulässige Wert von AT muss
zwischen —772 und +T/2 liegen, wenn Tdie Periode der Welle
ist, da eine um ein Vielfaches von T verzögerte Welle gleich der
unverzögerten Welle ist. Daher ist ATmax gleich T. Im Falle der
Sinusfunktion gilt T 1/f also ATmax ATmin/e. Für
gewisse Walsh-Funktionen sal(/,0) gilt jedoch T i/$, und daher
ATmax /ATmin/s. Für i 3 ist eine solche Walsh-Funktion
in Fig. 12b gezeigt; andere geeignete Werte sind / 2k — 1.

Durch die Wahl eines grossen Wertes von i kann der
Auflösungsbereich ATmax vergrössert werden, ohne dass die kleinste
messbare Laufzeitdifferenz ATmin vergrössert wird.

Man erhält folgende Richtwerte nach Fig. 12c für zwei
Punkte A und B auf der Erde mit a 51° nördlicher und
südlicher Breite und ATmin KL9 s: AB 10000 km; nutzbarer
Beobachtungswinkel 180 — 2a 78°; Auflösungsvermögen
Aß ~ 0,05" oder Aß 3 X 10-»; i > eATmax/ATmin
£ cos a/AyS 2,5 108£ «a 106. Einem Winkel von 0,05"
entspricht eine Bogenlänge von rund 10m in der Entfernung des
Mondes und von rund 3 km in der Entfernung des Mars, wenn
er in Erdnähe ist. Dieses Winkelmessverfahren bietet daher die
Möglichkeit einer extrem genauen Positionsbestimmung und
damit Steuerung von Weltraumsonden [12]. Der auflösbare
Winkel von 0,05" liegt ungefähr eine Grössenordnung unter
dem durch astronomische Fernrohre auflösbaren Winkel.

6. Dopplereffekt von Walsh-Wellen

Eine sinusförmige elektromagnetische Welle E sm2nf
(f — x/c) wird durch den Dopplereffekt in die Welle E sin

2nf (t' — x'/c) umgewandelt,f hat den Wert :

/'=/ 1 — v/c
I

(v Relativgeschwindigkeit von Sender und Empfänger)
Eine Walsh-Welle:

x/c '

E(x,t) E sal («IT, - yT-)

(5)

(6)

(7)

wird durch die Transformationsgleichungen der Relativitätstheorie

:

f_ t' + vx'/c2
|/l— v2/c2

x' + vt'
X ~ \! 1 - v2/c2

in die folgende Form umgewandelt:

E(x', t') TTsal
t' — x'/c
V1 — d2/C2

1 — v/c

(8)

Um Gl. (8) in die Form von Gl. (6) zu bringen, muss man die
transformierte Sequenz «L und Zeitbasis T' folgendermassen
definieren :
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1 — v/c
]/1 — v2/c2

T'=T V2/c2

- u/c

Man erhält damit:

E(x', t') Esal (t'T'/ rf/C)

(9)

(10)

(11)

Aus Gl. (9) und (5) folgt, dass Sequenz und Frequenz durch
den Dopplereffekt gleich verändert werden. Die zusätzliche
Änderung der Zeitbasis nach Gl. (10) erzeugt eine Invariante
des Dopplereffektes oder der Lorentztransformation:

T'f T</> (12)

Während man einer Sinuswelle nicht ansehen kann, ob sie

mit Frequenz /von einem Sender mit Relativgeschwindigkeit v

oder mit Frequenz /' von einem Sender mit Relativgeschwindigkeit

0 stammt, ist das bei Walsh-Wellen im allgemeinen der
Fall. Dieses Ergebnis leuchtet unmittelbar ein, denn nach Fig. 1

würde eine Verringerung der Sequenz <! 4/T von sal(4,0) auf
<!>' 3/4(^ zwar den Wert </>' 3/T liefern, die entstehende
Walsh-Funktion würde sich jedoch von sal(5,0) unterscheiden.

Die bisher bekannt gewordenen möglichen Anwendungen
des Dopplereffektes der Walsh-Funktionen liegen ausserhalb
des Bereiches der Nachrichtentechnik. Beispielsweise würde

ein auf einem Planeten befindlicher, Sinuswellen abstrahlender
Sender aus jeder Richtung im Weltraum mit einer anderen

Frequenz empfangen werden, und diese Frequenz hinge auch

von der Position des Planeten auf seiner Umlaufbahn ab; eine

Walsh-Welle würde hingegen unabhängig von Richtung und
Position immer als dieselbe Welle identifiziert werden können.
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EIN BLICK ZURÜCK
Apparat zur Leitungsberechnung von H. Helberger, 1892

267^
Als im Laufe der 80er Jahre des vergangenen Jahrhunderts

die elektrischen Zentralstationen und damit die Ver-

if ft" sorgungsnetze für elektrische Energie enstanden, versuchte

*j-* 3jS f
" *TjjTL. man schon, sich das Berechnen der Kabelquerschnitte zu er-

i 4è leichtern. Der Spannungsabfall durfte mit Rücksicht auf die

^
M damit verbundene starke Helligkeitsabnahme der Kohlen-

fadenlampen etwa 3 % nicht unterschreiten. Anderseits wa-
reu Kabel teuer. Auch durfte die Spannung, mit Rücksicht
au^ d'e Lebensdauer der Lampen, an den nahe beim Unter-
werk liegenden Stellen nicht zu hoch werden.

An und für sich rechnete man mit sehr unsicheren Unterlagen,

da man die Entwicklung selbst für wenige Jahre im
Deutsches Museum, München voraus nicht ahnen konnte. Auch war die Berechnung des

Spannungsabfalls in den einzelnen Knotenpunkten des Netzes schwierig.
Die Analogie zwischen der Konstruktion des Seilpolygons in der Statik und den Formeln für den Spannungsabfall in

den Leitungen war der Anlass für den abgebildeten Apparat. Die Strombelastungen wurden durch Gewichte dargestellt, die

an den die Kabel symbolisierenden Drähten angehängt waren. Dann ergaben die Durchhänge an den einzelnen Punkten
den Spannungsabfall. Es konnte bei diesem Apparat jeweils der Spannungsabfall in zwei Knotenpunkten bestimmt werden,
wenn die Spannung der umliegenden Knotenpunkte bekannt war. Jedenfalls war es möglich, mit diesem Gerät ohne viei
Rechnerei ein ganzes Stadtnetz durchzuarbeiten. A. Wissner
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