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BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitatswerke (VSE)

Berechnung von Trigerfrequenz-Sperren fiir Hochspannungsleitungen bei vorgeschriebener

Ohmscher Komponente der Sperrenimpedanz
Von A. Rodewald, Basel

Die Impedanz einer Trigerfrequenz-Sperre fiir eine Hoch-
spannungsleitung muss heute im allgemeinen eine bestimmte
Ohmsche Komponente aufweisen. Es wird gezeigt, dass man die
Schaltung der Sperre mit Riicksicht auf die Ohmsche Kompo-
nente sehr iibersichtlich mit Hilfe einer einfachen Netzwerksyn-
these entwerfen kann. Es werden nur Sperren untersucht, die
aus einer im Zuge der Hochspannungsleitung angebrachten In-
duktivitidt und einer parallel zur Induktivitit angeordneten Ab-
stimmschaltung bestehen. Ein allgemeines Netzwerktheorem
fithrt zu der wichtigen Aussage, dass sich eine bestimmte Ohm-
sche Komponente innerhalb eines vorgeschriebenen Frequenz-
bandes nicht mit einer beliebig kleinen Induktivitit erreichen
lisst. Es existiert ein unterer Grenzwert fiir die Induktivitit, der
jedoch nur dann erreicht wird, wenn die Abstimmschaltung un-
endlich viele Schaltelemente enthiilt.

1. Einfiihrung

Die Hochspannungsleitungen der Elektrizitdtsversorgungs-
unternehmen werden vielfach — ausser fiir den Transport der
elektrischen Energie von den Kraftwerken zu den Verbrau-
cherzentren — dazu benutzt, Nachrichten zu iibertragen. Es
handelt sich meist um Nachrichten, die fiir den Betrieb des
Hochspannungsnetzes von Bedeutung sind, wie z.B. Fern-
meBsignale fiir die Lastverteiler, Fernsteuerbefehle fiir
Schalter, Telephongesprdache, Fernschreiben usw.

Fig. 1 zeigt schematisch eine Nachrichteniibertragung tiber
eine Hochspannungsleitung: Der Nachrichtensender modu-
liert einen Hochfrequenzsender, der iiber einen Kopplungs-
kondensator an die Hochspannungsleitung angeschlossen ist.
Das modulierte Hochfrequenzsignal pflanzt sich lings der
Hochspannungsleitung bis zum HF-Empfianger fort und wird
dort demoduliert. Das demodulierte Signal wird dem Nach-
richtenempfanger zugefiihrt.

Die in den Hochspannungsleitungen angebrachten Sper-
ren 1 und 2 sind frequenzabhingige Schaltelemente, die den
niederfrequenten Wechselstrom der Energieiibertragung prak-
tisch ungehindert durchlassen, jedoch den hochfrequenten
Stromen der Nachrichteniibermittlung einen grossen Wider-
stand bieten. Hochfrequenzsperren haben zwei Aufgaben:

a) Sie sollen verhindern, dass wesentliche Anteile der vom HF-
Sender erzeugten HF-Energie in die Netze I und 1I gelangen.

b) Sie machen die Nachrichtentibertragung iiber die Hoch-
spannungsleitung unabhidngig vom starkstromtechnischen Schalt-
zustand der Netze [ und I1. So kann man z.B. die Leitung beidseitig

unmittelbar hinter den Sperren erden, ohne dadurch die Nach-
richtentibermittlung wesentlich zu beeinflussen.

Im normalen Betriebsfall fliessen in einer Hochspannungs-
leitung und damit auch in den Hochfrequenzsperren nieder-
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621.315.051.2 : 621.3.052.63
On caractérise actuellement un circuit-bouchon pour ondes
porteuses sur les réseaux & haute tension par la résistivité de son
impédance. On démontre que pour l'étude de la composante
résistive, le circuit-bouchon peut étre calculé d’une maniere tres
simple a partir de la synthése du circuit. L'article traite unique-
ment des circuits de blocage composés d’'une self montée en série
sur une ligne a haute tension, et comportant un bloc d’accord
disposé en paralléle. La théorie générale des réseaux énonce le
fait important, que dans une bande de fréquence déterminée, une
composante résistive donnée ne peut étre obtenue que pour une
valeur minima de linductance. 1l existe une limite inférieure de
cette inductance, qui ne peut toutefois étre atteinte que si le bloc
d’accord comporte un nombre infini d’éléments de circuit.

frequente Wechselstrome von 102...10% A, wihrend im Sto-
rungsfall fiir einige Sekunden KurzschluBstrome von 10%4..
10° A auftreten konnen. Diese fiir ein HF-Geridt ungewohnlich
hohen Strome haben einen wesentlichen Einfluss auf die Kon-
struktion der Sperre und die Struktur der Sperrenschaltung.

Die folgende Untersuchung hat den Entwurf von HF-
Sperren mit Hilfe der Netzwerksynthese zum Gegenstand.
Der synthetische Entwurf geht von der mathematischen Funk-
tion der gewiinschten Frequenzcharakteristik aus und ergibt
im allgemeinen nicht nur eine, sondern mehrere Schaltungen.
Davon sind jedoch nur diejenigen als HF-Sperre fiir eine
Hochspannungsleitung brauchbar, die fiir den Durchlass des
niederfrequenten Wechselstromes gewisse Bedingungen erfiil-
len. Fiir die Strombahn des niederfrequenten Wechselstromes
durch die Sperre kommen praktisch nur Induktivititen in
Frage, denn der Wechselstromwiderstand einer Induktivitét

Sperre Sperre
1 2

Hochspannungsleitung

=

-

=ECK CK
Nachrichten HF HF Nachrichten
Sender Sender Empfangen Empféngen
Fig. 1
Schematische Darstell einer Trigerfr verbind iiber eine
Hochspannungsleitung

Cx Kopplungskondensator
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Fig. 2
Trigerfrequenz-Sperre fiir eine 500-kV-Leitung
Induktivitit der Hauptspule 440 pH, dynamischer Kurzschluss-
strom 107 kA, Dauerstrom 2000 A

entspricht der gestellten Forderung nach einem geringen Wider-
stand bei tiefen Frequenzen und einem grossen Widerstand bei
hohen Frequenzen. Dagegen erreichen Lingskondensatoren
einer Hochspannungsleitung mit Riicksicht auf die moglichst
ungehinderte Ubertragung der niederfrequenten Stréme sehr
grosse Kapazitdtswerte, so dass sie als Schaltelemente fur
Hochfrequenzsperrkreise ungeeignet sind. Auch Ohmsche
Widerstdnde sind als Strombahn fiir die niederfrequenten
Strome durch die Sperre wegen der damit verbundenen
Verlustwdrme unbrauchbar.

Bei der Wahl der Schaltung im Hinblick auf die Herstel-
lungskosten ist zu beachten, dass nicht alle Schaltelemente
gleich teuer sind. Die Spulen, die von den erwéihnten hohen
niederfrequenten Stromen durchflossen werden, miissen ent-
sprechend stark dimensioniert sein und sind deshalb besonders
teuer. Fig. 2 vermittelt einen Eindruck von der Grosse einer
solchen Spule. Die Herstellungskosten einer Sperre werden im
wesentlichen durch die Grosse dieser Induktivititen bestimmit.
Aus diesem Grunde muss man bestrebt sein, die Schaltung so
zu entwerfen, dass die hohen Strome durch mdoglichst kleine
Induktivitdten fliessen konnen.

2. Formulierung der Aufgabe

Im folgenden werden Schaltungen untersucht, bei denen
jeweils die Strombahn fiir den niederfrequenten Wechselstrom
durch nur eine Induktivitdt gebildet wird. Der die HF-Sperre
reprasentierende Zweipol hat somit die in Fig. 3 dargestellte
Struktur. Der Gesamtzweipol mit den Klemmen 1 und 2
besteht aus einer Parallelschaltung der Induktivitdt L mit dem
Zweipol Z’. Der Zweipol Z’ enthilt nur passive Schaltele-
mente, d.h. Kapazitidten, Induktivititen und Widerstinde.

Im Pflichtenheft einer HF-Sperre sind neben den Betriebs-
und KurzschluB3stromen der Hochspannungsleitung im allge-
meinen folgende Daten vorgeschrieben:

a) Das Frequenzband, in dem der HF-Sender betrieben wird;
b) Der Minimalwert des Realteils der Sperrenimpedanz (Ohm-
sche Komponente) innerhalb des angegebenen Frequenzbandes.
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Es ist sinnvoll, nicht den Betrag der Impedanz, sondern den
Minimalwert der Ohmschen Komponente vorzuschreiben, da
die Blindkomponente der Sperrenimpedanz mit einer ent-
sprechenden  Blindkomponente der Impedanz des Netzes I
bzw. II (Fig. 1) einen Serienschwingkreis bilden kann. Die
Blindkomponente der Sperrenimpedanz liefert in diesem Fall
keinen Beitrag zur Sperrung der Trigerfrequenz, und das ein-
wandfreie Funktionieren der Nachrichteniibertragung ist nur
durch die Ohmsche Komponente gesichert.

Beim Entwurf einer Schaltung nach Fig. 3 mit Hilfe der
Netzwerksynthese geht man zweckmaéssigerweise wie folgt vor:

a) Anstelle einer Ohmschen Komponente Re(w)=> R im
Bereich w1 < w < w2 wird zunéchst die Ohmsche Komponente
vom Betrag 1 im normierten Frequenzbereich —1 < Q < +1
approximiert. Man wiéhlt zu diesem Zweck eine mathematische
Funktion H(2), die = 1 im Bereich —1 < Q < 1 ist. Mit
Riicksicht auf die Realisierbarkeit als Realteil einer Impedanz-
funktion muss die Struktur der Funktion H () den in der Netz-
werktheorie vorgeschriebenen Bedingungen entsprechen.

b) Aus der Funktion H () lisst sich mit der von Gewertz [1]1)
angegebenen Methode die zugehorige vollstindige Scheinwider-
standsfunktion Z () bestimmen.

¢) Die normierte Scheinwiderstandsfunktion Z (£2) wird in eine
Schaltung entwickelt. Die Entwicklung hat so zu erfolgen, dass sich
direkt zwischen den beiden Klemmen des Zweipols eine Kapazitit
Cu befindet (Fig. 4a). Die Struktur der restlichen Schaltung ist
beliebig.

d) Aus der normierten Schaltung nach Fig. 4a ergibt sich nach
einer Widerstandsentnormierung, einer Frequenzentnormierung
und schliesslich einer Bandtransformation die gewiinschte Schal-
tung der HF-Sperre (Fig. 4c) mit der Induktivitit L zwischen den
beiden Klemmen des Zweipols.

Man erkennt aus der in Fig. 4 dargestellten Entwicklung,
dass die im Hinblick auf eine wirtschaftliche Dimensionierung
der Sperre besonders interessierende Induktivitit L erst im
letzten Rechenschritt, niamlich bei der Bandtransformation
«entsteht». Die Grosse der Induktivitdt L ist umgekehrt pro-
portional zur Grosse der Kapazitit Cy. Das bedeutet, dass
man das Optimierungsproblem im Hinblick auf eine moglichst
kleine Induktivitdt L schon in der normierten Schaltung 16sen
kann, indem man die Bedingungen fiir eine moglichst grosse
Kapazitit Cu aufsucht.

3. Die ideale Sperre und der Ausnutzungsgrad der
wirklichen Sperre

Wie aus dem vorangegangenen Abschnitt hervorgeht,
besteht das Hauptproblem beim Entwurf der Schaltung mit
Hilfe der Netzwerksynthese in der Wahl einer zweckméssigen
mathematischen Funktion H () mit der die rechteckformige
Charakteristik des Sollwertes der Ohmschen Komponente auf
die in Fig. 4a dargestellte Art approximiert wird. Da im Pflich-
tenheft der Hochfrequenzsperre im allgemeinen nur vorge-
schrieben wird, welchen Wert die Ohmsche Komponente nicht

1) Siehe Literatur am Schluss des Aufsatzes,

Hochspannungsleitung
—_—

L
+-G00000

z

Fig. 3
Prinzipielle Struktur einer Tragerfrequenz-Sperre
mit der Induktivitdt L im Netzstromkreis und dem Zweipol Z’ zur
Abstimmung auf das gewiinschte Frequenzband
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Fig. 4
Schematische Darstellung des schrittweisen
Uberganges von der normierten Schaltung (a)
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Realteil
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05

0

-1 0
unterschreiten darf, ohne dass gleich-
zeitig eine obere Grenze festgelegt ist,
kommt es 1m Hmbhck auf die_ techm-

sche Funktion der | Sperre nicht darauf

tion H(2) (---)

+1

Approximation des rechteckférmigen
Sollwenrts (ess==) durch die Funk -

Struktur der normierten Schaltung

!

an, dass die rechteckférmige Soll-Cha-
rakterlstlk'besonders gut \approx1m1ert
w1rd M1t Ruckswht *il-lf 'die Herstel-
lungskosten der ¢ Sperrenschaltung sollte
man jedoch nicht unnotig weit iiber den

R
Widerstandsentnormierung : R = —1—SRH; C’=

(Rg= Sollwert des Realteils)

Frequenzentnormierung
(B = Sollwert der Bandbreite )

1. 2Rs
R Cui G’ =556y

R=R;

Sollwert hinausgehen.
Wollte man als elektrischen Idealfall
— ohne Riicksicht auf die wirtschaftlich

|

Realteil

”
z

-
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optimale Losung — die in Fig. 4a dar-
gestellte rechteckformige Charakteristik
des Sollwertes ohne die geringste Ab-
weichung realisieren, so brauchte man
unendlich viele Schaltelemente. Die Un-
tersuchung dieses praktisch nicht reali-

Rs

+05R,

Stnuktur der widerstands- und frequenz:

sierbaren Idealfalles hat insofern einen =8

Sinn als sie die Grenzen erkennen lisst,

entnormierten Schaltung.

+B

die man theoretisch tiberhaupt erreichen
kann. Es ist zweckmissig, sich beim
Schaltungsentwurf vor Augen zu fiihren,
wie weit man jeweils von dem erwihn-

Bandtnransformation :
o= Obere Bandgrenze
Q= Untere Bandgrenze:

L=

R=R,

= Ve, wy)

ten elektrischen Idealzustand entfernt
ist.

Eine quantitative Aussage iiber die
Abweichung vom Idealfall ergibt sich,
wenn man die entsprechenden Wider-
stands-FrequenZ-Flb‘.chen(WF-Fléichen)
miteinander vergleicht. Unter der WEF-
Fldche einer Funktion H () versteht
man das Integral:

A Realteil

+00 -@s

Fa= [H(@Q)dQ

M

b — R ——d

Das ist in der graphischen Darstellung die zwischen der mit
einem linearen MaBstab versehenen 2-Achse und der Kurve
H (£2) aufgespannte Fliche.

In Fig. 5 ist der elektrische Idealfall

Ofiir —c0c<Q < —1

Hi(Q)= { 1fir—1<Q < +1 )
Ofir +1 L0 <+
zusammen mit einer realisierbaren Zweipolfunktion
Ofiir —co<Q < —1
H(Q) > Ifir-1<0<+1 3)

Ofir +1 <Q < +

dargestellt. Man erkennt, dass dem elektrischen Idealfall eine
WE-Fliache von

F—2.[1
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wy| wq

5 —

Struktur der endgliltigen
Sperrenschaltung

entspricht. Da nach den GI. (2) und (3) fiir alle Werte von Q2
H(Q) > Hi(Q)

ist, kann man schliessen, dass die der Funktion H () ent-
sprechende WF-Fliche Fu grosser ist als Fi:

—o0
Fu= [H(Q)dQ > F,
+oo

Von allen Funktionen, die den Wert Eins im Bereich
—1 £ 2 = +1 nicht unterschreiten, hat die Funktion H; ()
die kleinste WF-Flidche. F; ist also die normierte Soll-WF-
Flache. Es liegt deshalb nahe, die WF-Fliche einer beliebigen
Funktion H () auf die Sollfliche Fi zu beziehen und das
Verhiltnis
F;
Fu

&)

7]H =

als den Ausnutzungsgrad der Funktion H () zu bezeichnen.

(A302) 471



Realteil

/‘i\\
"‘<‘\ M

1

2
Fig.5
Zum Vergleich der idealen Sperr-Charakteristik ( ) mit
dem Realteil einer mit endlichem Aufwand realisierbaren Zweipol-
funktion (———.)

N normierte WE-Fldache des realisierbaren Zweipols

normierte WF-Flache der idealen Sperre

Der Begriff der Widerstands-Frequenz-Fldache ist fiir die
folgenden Betrachtungen insofern sehr niitzlich, als er die
beiden im Pflichtenheft einer Sperre geforderten Grossen,
ndmlich die Bandbreite und die Ohmsche Komponente, zu
einer einzigen Kennziffer zusammenfasst. Es wird sich
zeigen, dass zu jeder Schaltung eine ganz bestimmte WF-
Fliache gehort.

Die Verbindung zwischen der von einer Funktion H ()
erzeugten WF-Fliche und den Elementen der zugehorigen
Schaltung wird durch den sog. Widerstands-Fldchen-Satz [2]
hergestellt. Dieser Satz besagt folgendes:

Besteht ein Zweipol aus einer Parallelschaltung einer Kapa-
zitdt Cu mit einem beliebigen komplexen Widerstand, so gilt
zwischen der Ohmschen Komponente H (£2) des resultierenden
komplexen Widerstandes und der Kapazitit Cu die Bezie-
hung:

+ 00 -
Fu— [H@d2 = Cy ©)

—00

Gl. (6) ergibt die zwischen den Klemmen des idealen Zwei-
pols wirksame Kapazitdt Ci, wenn man F gleich F; setzt:

Ci= % = 12‘— Q)

Dies ist die grosste Kapazitit, die man beim Entwurf einer

Schaltung zwischen den Klemmen des normierten Zweipols

tiberhaupt erhalten kann. Analog ergibt sich eine der Fliche

Fg entsprechende Kapazitit Cx. Man kann den Ausnutzungs-
grad der Funktion Ru auf verschiedene Weise schreiben:

F; 2
T = = e (5a)
[ H(Q)dQ
—o00
C 2
e = = Cn (5b)

Wie Gl. (5a) zeigt, kann man den Ausnutzungsgrad direkt
aus der Funktion H () durch eine Integration bestimmen.
Falls die Integration aus irgendwelchen Griinden auf Schwie-
rigkeiten stossen sollte, kann man nach der Methode von
Geweriz die zu H () gehorige Zweipolfunktion ermitteln
und aus der entsprechenden Schaltungsentwicklung die Kapa-
zitdt Cu bestimmen. Gl. (5b) liefert dann den Ausnutzungs-
grad.
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4. Der Ausnutzungsgrad und die Induktivitit
Die Induktivitit L, die im Mittelpunkt des wirtschaftlichen
Optimierungsproblems steht, ergibt sich — wie bereits darge-
legt — aus der normierten Kapazitdit Ca durch Widerstands-
und Frequenz-Entnormierung sowie eine Bandtransformation:
R f 0 “‘f u
21 Cu - f o f u (8)

L =

Es bedeuten:

fu die untere Grenze des Frequenzbandes;

fo die obere Grenze des Frequenzbandes;

R die zugelassene unter Grenze der Ohmschen Komponente
innerhalb des zu sperrenden Frequenzbandes.

Fiihrt man noch mit Hilfe von GI. (5b) den Ausnutzungs-
grad 7 in GI. (8) ein, so folgt: ’

R fo—fu

20

Sofu

Gl. (8a) ldsst deutlich erkennen, dass eine bestimmte Ohm-
sche Komponente innerhalb eines vorgeschriebenen Frequenz-
bandes nicht mit einer beliebig kleinen Induktivitiit zu erreichen
ist, da 1y héchstens den Wert 1 annehmen kann. Kennt man
anderseits fiir verschiedene Schaltungen die entsprechenden
Ausnutzungsgrade, so kann man — wenn die Induktivitit L
vorgegeben ist — die Art der Schaltung und damit den Schal-
tungsaufwand fiir eine gewiinschte Ohmsche Komponente
bestimmen.

In Fig. 6 ist Gl. (8a) mit der Induktivitit L und dem Aus-

fo —/fu
druck R- m—
graphisch dargestellt. Jeder Schaltung ist in diesem Diagramm
eine Gerade mit der Steigerung 1/ #,; zugeordnet. Die Gerade

(8a)

als Verénderlicher und 7, als Parameter

41074 6-107% 0s

Fig. 6
Die Induktivitit L in Funktion der minimalen Ohmschen Komponente R
und der Bandgrenzen fo und fu
(Parameter: Tschebyscheff-Funktionen verschiedenen Grades
als Realteil)

Beispiel: fo =175 kHz; f, =50 kHz; R = 500 Q
R Jo=hu _ 33510
= fofu
Aus dem Diagramm ergeben sich folgende Induktivititen:
Lypy=1,06mH; Lpy=0,53mH; Lpy= 0,441 mH;

Ly oo = 0,338 mH

Bull. SEV 58(1967)11, 27. Mai



mit der Steigung 1 entspricht der idealen Sperre, die nur mit
unendlich vielen Schaltelementen zu realisieren ist. Da die Aus-
nutzungsgrade 7, von Schaltungen mit endlich vielen Schalt-
elementen immer kleiner als Eins sind, ist der Existenzbereich
aller moglichen Sperren-Schaltungen in Fig. 6 durch die
Ordinaten-Achse und die Gerade mit der Steigung 1 begrenzt.
Die in dieses Gebiet eingezeichneten Geraden fiir verschiedene
Werte von 7 entsprechen den Schaltungen, die im folgenden
berechnet werden.

5. Die Methode von Gewertz

Zum besseren Verstindnis des Rechnungsganges soll
zunichst die Methode von Gewertz kurz beschrieben werden.
Wie bereits erwédhnt, gestattet es diese Methode, aus dem vor-
gegebenen algebraischen Ausdruck des Realteils einer Impe-
danzfunktion die vollstindige Impedanzfunktion zu bestim-
men.

In der Netzwerktheorie wird gezeigt (siehe z.B. [1], dass
sich die Impedanzfunktion eines Zweipols immer in die
Form

M=

‘ av pY
Z () = ao +arp + azp®+...+ anp® _ v=0 _ A(p)
P bo+bip+bap?+. A+ bmpm | m B(p)
X by pv
v=0
©)

bringen ldsst. Die Koeffizienten ay und by sind grosser oder
hochstens gleich Null. Fiir den Grad der Nenner- und Zéhler-
polynome gelten die Relationen:

m=n—1

m=n

m=n -+ 1

oder
oder

p =0 + jQ ist eine komplexe Variable. Im Imaginirteil
jQ = j2r fder Variablen ist die technische Frequenz f enthalten.

Gewertz hat fiir rein imagindre p, d.h. p = jQ die in Form
der Gl. (9) vorliegende Impedanzfunktion derart in Real- und
Imaginirteil zerlegt, dass sowohl der Real- als auch der Imagi-
ndrteil aus Teilsummen des Zéhlerpolynoms A (p) und des
Nennerpolynoms B (p) bestehen. Die Zerlegung geht im einzel-
nen so vor sich: Im Zihler und im Nenner der GI. (9) werden
aus den Gliedern mit geraden Potenzen von p und aus den
Gliedern mit ungeraden Potenzen von p je zwei Teilsummen
gebildet:

A(p) = GA + UA

mit
GA =ao+ axp®>+ a*p* + ...
und
UA =aip +asp?+ ..
B(p) = GB + UB
mit
GB =bo+bap?+ bip*+ ..
und
UB =bip+ bsp?—+ ..
Es ist also: .

GA, UA, GBund UB sind Polynome in der rein imaginiren
Variablen p = j2. Nun hat jedes beliebige Polynom F (p) mit
reellen Koeffizienten und rein imagindrem p folgende Eigen-
schaften:

Bull. ASE 58(1967)11, 27 mai

a) Der Realteil von F(p) besteht aus der Summe der
geradzahligen Potenzen von p

GF(p) = Re F(p) (1)

b) Der Imaginérteil von F(p) besteht aus der Summe der

ungeradzahligen Potenzen von p
UF(p) = jlm F(p) (12)

c) Ist F(p)* die zu F(p) konjugiert komplexe Funktion, so

gilt
GF(p) = GF(p)*, 13)
UF(p)= — UF(p)*, (14)
und F(p)-F(p)*=|F(p|? 15)

Nach diesen Vorbereitungen kann nun Gl. (9) auf die
gewiinschte Form gebracht werden. Zdhler und Nenner wer-
den zu diesem Zweck mit der zu B (p) konjugiert komplexen
Funktion B (p)* multipliziert.

A(p) AW B@*  (GA+ UA)-(GB* + UB®

P =Bm) T BmB®* B -B®*
(16)
Mit GI. (13), (14) und (15) folgt:
(GA + UA)-(GB — UB)
ZO =" Ty
_ GA-GB—UA-UB , UA-GB—GA-UB
20 =" gy 2 IRV TN an

Der erste Term auf der rechten Seite von Gl. (17) ist offen-
bar der Realteil und der zweite Term der Imaginirteil der
Impedanz Z (p).

Wichtig fiir die Losung der eingangs gestellten Aufgabe ist
nun die Umkehrung des Problems:

Wie kann Z (p) gefunden werden, wenn Re [Z (j§2)] gegeben
ist? Diese Frage lédsst sich mit Hilfe von Gl. (17) wie folgt
beantworten:

Der Nenner des Realteils von GI. (17) ist aus dem Nenner-
polynom B(p) der Impedanzfunktion durch eine Multipli-
kation mit der konjugiert komplexen Funktion B (p)* ent-
standen. Fiir rein imagindre Werte von p kann man den Nenner
von GI. (17) umformen:

[B(D) B(D)*]y—jo = [B()B(—p),—jo =[B(—P)]y_jn (18)

B(p) hat als Nenner einer Impedanzfunktion nur Null-
stellen mit negativem Realteil. Die Nullstellen liegen immer
paarweise symmetrisch zur reellen o-Achse. Demnach hat
B (— p) nur Nullstellen mit positivem Realteil. Die Null-
stellen des Produktes B(p) - B (— p) liegen also spiegelbildlich
zum Ursprung, d.h. spiegelbildlich zur imaginédren jQ-Achse
und zur reellen o-Achse.

Nun sei der Realteil in der Form

C@) _[C(—p)
D(Q* [D(*PZ)]psz
gegeben. Die Nullstellen des Polynoms D (— p2) miissen
spiegelbildlich zum Ursprung liegen, anderenfalls ist die Funk-
tion in GIl. (19) als Realteil einer Impedanzfunktion unge-
eignet. Vergleicht man GI. (19) mit dem ersten Term von
Gl. (17), so ergibt sich:

Re[Z (Q)] = 19)

(20)

GA-GB — UA-UB =[C(—pI],_;q
B(py*=B(p)- B(—p) = [D(—pI],_jq @1
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Der erste Schritt zur Ermittlung der Impedanzfunktion aus
dem Realteil besteht darin, den Nenner B(p) der Impedanz-
funktion aus dem Polynom D (— p2) zu berechnen. Dies ist
auf zweierlei Weise moglich:

a) Man bestimmt sdamtliche Nullstellen von D (—p?). Sind py,

(v =1,2..., n) die Nullstellen mit negativem Realteil und p*, (v =
1, 2, 3..., n) die Nullstellen mit positivem Realteil, so gilt:

B(p) = rill<p~pv) @)

und
B(—p) =VI:II(p —p*)
b) Man macht einen Koeffizientenvergleich in der Gleichung
D(—p®» =B(p)-B(—p) = (23)
=(bo +bip +bop®+..)-(bo—b1p + bap® —bsp3+..)

Unter den verschiedenen Ldsungen des sich beim Koeffizienten-
vergleich aus GI. (23) entwickelnden Gleichungssystems sind nur die
Losungen auszuwéhlen, die positive Koeffizienten by ergeben, ent-
sprechend der fir die Schaltungsrealisierung notwendigen Bedin-
gung, dass B (p) ein Hurwitzpolynom mit positiven Koeffizienten
sein muss.

Ist B(p) bekannt, so kann man den noch fehlenden Nenner
A(p) der Impedanzfunktion leicht berechnen, indem man
B(p) in Gl. (20) einsetzt. Die unbekannten Koeffizienten ay
ergeben sich dann durch Koeffizientenvergleich.

6. Der Realteil in Form einer Potenzfunktion
Die Funktionen

- B
[+ (=D p

haben offenbar die in Abschnitt 2 geforderte Eigenschaft,
langs der imagindren jR2-Achse fir —1 < 2 < + 1 nirgends
den Wert 1 zu unterschreiten.

Fig. 7 zeigt den Verlauf der Funktionen Rp1, Rp2 und Rps
lings der j©2-Achse. Am Beispiel der Potenzfunktion zweiten
Grades (n = 2) wird die Entwicklung der Impedanzfunktion
aus dem gegebenen Realteil durchgefiihrt:

2 Cc(—p
1+p* D(—p

Der Nenner B(p) der gesuchten Impedanzfunktion ergibt
sich aus dem Nenner der Gl. (25) durch Koeffizientenvergleich:

D(—p?) =B/p)-B(—p)
L +p* = (bo+ bip+ b2p?) - (bo — bip + b2p?)

Ren(p) = [ ]p:m;n —1,2,3.. (4

Rp2(p) = (25)

S

\ ~

\, S~ Beiga
AN

N
~Fe2ga
Beigen

Fig.7
Approximation des Widerstandswertes 1 iiber der normierten Bandbreite 1
mit Potenzfunktionen 1., 2. und 3. Grades
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Der Koeffizientenvergleich ergibt das Gleichungssystem:

bo=1
bobs — bl +bo ba=0
bs =1

Beachtet man die erwidhnte Zusatzbedingung, dass von den
moglichen Losungen des Gleichungssystems nur die mit
durchweg positivem by gesucht ist, dann folgt:

b =y2
Somit ist:
B(p)=1+1V2 +p?

Nun fehlt noch der Zidhler 4 (p) der Impedanzfunktion. Er
wird ebenfalls durch Koeffizientenvergleich, und zwar mit
Hilfe von GI. (20) bestimmt:

GA-GB—UA-UB=C(—p? (20)
(ao + azp?) - (bo + b2p?) — (a1p + asp®) - (bip + bsp®) =1

Die Losung des durch den Koeffizientenvergleich entste-
henden Gleichungssystems lautet :

av=2;a1=V)2;as=0;as=0

Damit ist die gesuchte Impedanzfunktion berechnet. Sie
lautet:

(26)

Die Kettenbruchentwicklung von Gl. (26) fuhrt auf die
entsprechende Schaltung:

Z(p) =

5 1 (26a)

2 p}/2_+2

Aus dem Kettenbruch in GIl. (26a) liest man unmittelbar
die in der zweiten Spalte von Tabelle I dargestellte Schaltung ab.

Der Ausnutzungsgrad der Schaltung ergibt sich mit Hilfe
des Widerstands-Fldchen-Satzes (6) aus der direkt zwischen
den Zweipolklemmen vorhandenen Kapazitit. Aus Gl. (5)
folgt:

2 2
lpeg = — - Cp2 = — - =
T T

In Tabelle I sind die Potenzfunktionen 1., 2, und 3. Grades
die Impedanzfunktionen, die zugehdrigen kanonischen Schal-
tungen und die Ausnutzungsgrade zusammengestellt.

7. Tschebyscheff-Funktion als Realteil

Die im Abschnitt 6. beschriebenen Potenzfunktionen haben
offensichtlich den Nachteil, dass die Ohmsche Komponente in
der Bandmitte — beim normierten Tiefpass bei der Frequenz
Null — den Sollwert um das Zweifache iibersteigt. Dadurch
wird jeweils nur ein geringer Bruchteil der von der Potenz-
funktion erzeugten WF-Fliche ausgeniitzt und der Aus-
nutzungsgrad ist entsprechend gering.

Mit Hilfe von Tschebyscheff-Funktionen lassen sich, wie im
folgenden gezeigt wird, bei gleichem Schaltungsaufwand
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Impedanzfunktionen, Schaltungen und Ausnutzungsgrade fiir die Potenzfunktionen 1., 2. und 3. Grades

Tabelle 1
. ey 2 s . — 2__
Realteil Rp1 = T— 78 Rpo = vmél Rps = [0
3 4
% 2+ 5p+ 3P
2 2+ V2 3P T3
i 4 S = S Zpa(p) = ——— . . S
Impedanzfunktion e1(p) i+ p 1+ V2p + p? ’ Zp3(p) [ 2p 122+ 0
SH)
e YL J_
Schaltung ==% [F) | |20 = % [F] T%[F] [j?[ﬁ]
ol ‘ |
Ausnutzungsgrad 7 0,318 0,45 \ 0,478
bessere Ausnutzungsgrade erzielen. Der Betrag der Tscheby- Res (Q) — 1+e B
scheff-Funktionen T2 1 +eQZ—1)2
T1(x) = x 1+e¢ . ‘
Ta2(x) =2x%2—1 Rr2(p) = T+:e@p@ L1 (r=i (28)
Ts(x) =4x3 —3x
; : 1 1+
! ; Rea(p) = 4= —— (282)
To+1(x) =2xTn(x) — Tn-1(x) p4+pz+z

ist bekanntlich im Bereich —1 < x < + 1 nirgends grosser
als 1. Fiir die Ohmsche Komponente der Impedanzfunktion
wird nun die Funktion

1+e¢

Rrn () = 1+ e[Tn (@]

gewihlt. Rrn () unterschreitet an keiner Stelle im Bereich
—1 £ 2 < + 1 den Wert 1. Mit Hilfe des Parameters ¢ kann
man vorschreiben, wie weit die Funktion den Wert 1 hochstens
iberschreiten soll.

Entwickelt man aus den Realteilen die zugehdrigen Impe-
danzfunktionen und daraus wiederum die Schaltungen, so ist
der Parameter ¢ natiirlich auch in den Formeln enthalten, die
sich fur die verschiedenen Schaltelemente ergeben. Es zeigt
sich nun, dass bei einer Variation des Parameters ¢ fiir jede Ein-
gangskapazitit des normierten Zweipols — der sich mit Hilfe
einer bestimmten Tschebyscheff-Funktion ergibt — ein Maxi-
mum existiert. Da die Eingangskapazitdt des normierten Zwei-
pols nach Gl. (5b) unmittelbar mit dem Ausnutzungsgrad der
Schaltung zusammenhdngt, kommt der Existenz dieser
Maxima besondere Bedeutung zu.

Mit der Tschebyscheff-Funktion 2. Grades ergibt sich zum
Beispiel folgender Rechnungsgang:

100-1711_,
oy
Nr3(®
i N1,
Ve ————
1 ]
50 ' '
] i
' '
B ! Vo "
| =
]
\ I !
o h
0 —L T t

Fig. 8
Die Ausnutzungsgrade 7 der Schaltungen mit Tschebyscheff-Realteil
1., 2. und 3. Grades sowie unendlich hohen Grades in Abhingigkeit
vom Parameter ¢

Maxima der Ausniitzungsgrade
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Die Pole von GI. (28a) liegen bei:

1 L1
D1.,2,3,4= + ——Vz_ l/ —1 i]l/%

Von diesen vier Polen liegen:

und

1y te .1 it
p2 = 4V l+l/8 le/l+]/8
in der linken Hilfte der komplexen Ebene. Die beiden anderen

Pole liegen in der rechten Hilfte. Nach Geweriz ergibt sich nun
die Impedanzfunktion zu:

ao + aip + azp?

ZP) =) —p2)

2
Z(p) = —— ao+aip+azp

5 | 1 4/ 1
PTLPl/l/l‘l'? 1+‘2“/1+8

N Frigaye=1
<

RraGo; = 0333

Y
~ Rragay e=0178

= 0 . + i
152
Fig. 9
Approximation des Widerstandswertes 1 iiber der normierten Bandbreite 1
mit Tschebyscheff-Polynomen verschiedenen Grades und jeweils optimalem ¢
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Impedanzfunktionen und Schaltungen fiir die Tschebyscheff-Funktionen 1., 2. und 3. Grades

Die Koeffizienten lassen sich — wie bereits beschrieben —
leicht mit Hilfe eines Koeffizientenvergleichs ermitteln. Es
ergibt sich schliesslich folgende Kettenbruchentwicklung der
Impedanzfunktion:

Z(p) =

[“Vl eyt ;?]’” __L]:

(29)

Der Ausdruck in der eckigen Klammer ist offenbar die
unmittelbar zwischen den Klemmen des Zweipols wirksame

Kapazitit:
23V1+ —_—
l/l/l +— —1 (29a)

1+e
Mit Hilfe von Gl. (5b) folgt schliesslich der Ausnutzungs-
grad der Schaltung:

Cr3 (&) =

T @ = 2 - Cra(e) (30)
Der Ausnutzungsgrad #rs (¢) hat ein Maximum bei ¢ = 1/3.
In Fig. 8 sind die Ausnutzungsgrade der Schaltungen in
Abhiéngigkeit von ¢ und in Tabelle II die Impedanzfunktionen
sowie die optimalen Schaltungen zusammengestellt, die sich
mit Hilfe der Tschebyscheff-Funktionen 1., 2. und 3. Grades

ergeben.

Fig. 9 vermittelt einen Uberblick tiber den Verlauf der
Funktionen Rrn (2), (n = 1, 2, 3) mit jeweils optimalem e.

Vergleicht man die Tabelle II mit den entsprechenden
Spalten der Tabelle I, so wird deutlich, dass man mit Hilfe der
Tschebyscheff-Funktionen bei gleichem Aufwand an Schalt-
elementen bedeutend leistungsfihigere Schaltungen entwerfen
kann als mit Potenzfunktionen. Mit 4 Schaltelementen des
normierten Tiefpasses — d.h. 7 Schaltelementen des Band-
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Tabelle II
1+4¢
_ = Tx "e" fT,. Or
n 1 2 3
Ta (Q) T () = To(@) =202 —1 Ts(Q)=4Q3-3Q
Tu(p);(p=i9) Ti(p)=—ijp To(p) = —2p% —1 T3(p) =4jp®+3jp
; 1+4e¢ 1+e¢ 1+e
Realteil R = " R e o _
caltel T1 (p) 1— 8P2 T2 (p) 1 Te [2P2 P 1]2 RT3(p) 1 e spz [4p2 R 3]2
Optimales ¢ 1 0,33 0,178
Impedanzfunktion 2 1+p 1,178 +1,5662 p 41,3986 p?
x A V4 = = P X =
(mit optimalem &) () = 7+ P Zr2(P) = 1,7 P2 Zns(P) =71 2,3171p + 1,8841p> + 1,6876 p3
- 1[H) 07808 [H]
YL -
Schaltung L 1m Mot == © _L 3
(mit optimalem &) T?2 =1[F] 1(R] ==1,207 15207 [~
o (F] (F] T &
Ausnutzungsgrad 7 0,318 0,637 0,766

passes — ergibt beispielsweise der Entwurf mit der Potenz-
funktion 3. Grades einen Ausnutzungsfaktor von 47,89,
wihrend man mit der Tschebyscheff-Funktion 3. Grades die
Schaltung zu 76,6 %; ausniitzen kann.

Schliesslich sei noch darauf hingewiesen, dass die in
Tabelle I bzw. II dargestellten Schaltungen mit Potenz- bzw.
Tschebyscheff-Funktion 1. Grades nicht ohne weiteres fiir den
Entwurf von Sperrenschaltungen verwendet werden konnen.
Dies hiangt damit zusammen, dass direkt zwischen den Klem-
men des normierten Zweipols ein Ohmscher Widerstand vor-
handen ist. Ein solcher Widerstand ist aber, wie bereits dar-
gelegt, wegen der Verluste, die die netzfrequenten Strome in ihm
verursachen, unerwiinscht. Die Schaltungen miissen deshalb,
falls sie fiir den Entwurf von Sperren verwendet werden
sollen, in andere transformiert werden. Mit dieser Trans-
formation dndert sich aber im allgemeinen der Ausnutzungs-
grad der Schaltung, es sei denn, man erhoht den Aufwand an
Schaltelementen.

8. Zusammenfassung

Es wurde gezeigt, wie man mit Hilfe der Netzwerksynthese
Triagerfrequenz-Sperren fiir Hochspannungsleitungen {iber-
sichtlich entwerfen kann. Da die Trigerfrequenz-Sperren im
allgemeinen so ausgefithrt werden, dass zu einer im Zuge der
Hochspannungsleitung angebrachten Induktivitit eine Ab-
stimmschaltung parallel geschaltet wird, ist es niitzlich zu
wissen, welche Bandbreite man mit einer vorgegebenen
Induktivitit hochstens erreichen kann. Diese Frage wurde mit
Hilfe eines Netzwerktheorems beantwortet.

Literatur
[1] J. L. Stewart: Theorie und Entwurf elektrischer Netzwerke. Ber-
liner Union, Stuttgart, 1958.
[2]1 J. Peters: Einschwingvorginge, Gegenkopplungen, Stabilitat. Theo-
retische Grundlagen und Anwendungen. Springer, Berlin/Gottin-
gen/Heidelberg, 1954.

Adresse des Autors:
Dr.-Ing. Arnold Rodewald, Emil Haefely & Cie. AG, Postfach, 4028 Basel.

Bull. SEV 58(1967)11, 27. Mai



	Berechnung von Trägerfrequenz-Sperren für Hochspannungsleitungen bei vorgeschriebener Ohmscher Komponente der Sperrenimpedanz

