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BULLETIN

‘DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitdtswerke (VSE)

Kurvenapproximation mittels verallgemeinerter Laguerre-Funktionen
Von H. G. Biirgin, La Jolla, USA

Die Aufgabe, eine gegebene Funktion durch einen mathema-
tischen Ausdruck anzunéihern, tritt in der Elektro- und Regelungs-
technik héiufig auf. Da die Giite der Approximation oft stark
davon abhdngt, mit welcher Klasse von Funktionen sie durchge-
fithrt wird, ist es empfehlenswert, ein relativ grosses Repertoire
von Approximationsmethoden zur Auswahl zu haben. Dieser Ar-
tikel beschreibt, wie abklingende Funktionen mittels Summen
von verallgemeinerten Laguerre-Funktionen angenihert werden
konnen. Nach einer Beschreibung der wichtigsten Eigenschaften
dieser Funktionen werden die Formeln fiir die Berechnung der
Approximationsfunktion hergeleitet, wobei eine sehr allgemeine
Gewichtsfunktion zugelassen wird. Ein numerisches Beispiel zeigt
unter anderem den Einfluss verschiedener Gewichisfunktionen.
Die Laguerre-Funktionen haben grosse praktische Bedeutung,
weil sie eine einfache Laplacetransformierte besitzen. Diese wird
abgeleitet und zum Schluss gezeigt, wie Laguerre-Funktionen
stabil auf einem Analogrechner nachgebildet werden konnen.

1. Allgemeine Bemerkungen iiber Kurven-Approximationen

Eine Kurve, die in Form einer Tabelle, als Resultat von
Messungen (kontinuierlich oder diskret) oder in Form eines
komplizierten mathematischen Ausdruckes gegeben ist, durch
eine verhiltnisméssig einfache mathematische Funktion anzu-
ndhern, ist eine fiir den Ingenieur und den Elektrotechniker
hidufig auftretende Aufgabe. Wihrend der Mathematiker bei
solchen Problemen die Frage nach der Existenz von Losungen,
die Art der Konvergenz und so weiter untersucht, interessiert
es den Ingenieur viel eher, ob er eine gegebene Funktion mit
wirtschaftlichem Aufwand «hinreichend genau» approximie-
ren kann. Eine befriedigende Losung dieses Problems erfordert
im allgemeinen Erfahrung, gutes Verstidndnis fiir die Anwen-
dung der Approximation und etwas Phantasie. Einige der
Parameter, iiber die man sich bei Kurvenapproximationen
entscheiden muss, sind:

1. Der analytische Ausdruck fiir die Approximationsfunktion.
(Polynome, trigonometrische Funktionen, Exponentialfunktionen,
gebrochene rationale Funktionen etc.)

2. Das Kiriterium fiir die «beste» Approximation (kleinstes
Fehlerquadrat, minimaler Maximum-Fehler (Minimax), «Glatte»
der approximierenden Funktion, Art der Gewichtsfunktionen).

3. Bereich der unabhingigen Variablen, in welchem die Approxi-
mation Giiltigkeit haben soll. (Endlicher Bereich, halbunendlicher
Bereich, unendlicher Bereich.)

4. Kompliziertheit der Approximationsfunktion und der notige
Aufwand, um die beste Approximation zu finden.

Grundsitzlich sollte bei Kurvenapproximationen der
Charakter der Anndherungsfunktion gleich demjenigen der zu
approximierenden Funktion sein. Periodische Kurven sollen
zum Beispiel durch periodische Funktionen approximiert
werden. Annédhernd exponentiell abklingende Funktionen soll
man daher nicht durch Polynome annidhern, gebrochene
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En électronique et en régulation, il est souvent nécessaire
d'exprimer mathématiquement, avec une bonne approximation,
une fonction donnée. La qualité de l'approximation dépendant
parfois beaucoup du genre de la fonction, il est utile de disposer
d’'un relativement grand répertoire de méthodes d’approximation.
L’auteur montre comment des fonctions décroissantes peuvent
étre exprimées approximativement par sommation de fonctions
de Laguerre généralisées. Aprés une description des principales
propriétés de ces fonctions, il indique les formules de calcul de
la fonction approximative, en admettant une fonction pondérée
trés générale. Un exemple numérique montre notamment lin-
fluence de diverses fonctions pondérées.

Les fonctions de Laguerre ont une grande importance pratique,
car elles comportent une simple transformée de Laplace. Celle-ci
est dérivée et l'auteur montre, pour terminer, comment les fonc-
tions de Laguerre peuvent étre reproduites d'une fagon stable avec
un calculateur analogique.

rationale Funktionen oder Summen von Exponentialfunktio-
nen eignen sich meistens besser.

Dieser Artikel zeigt, wie abklingende Funktionen durch
Summen von Laguerre-Funktionen approximiert werden kon-
nen. Laguerre-Polynome und Laguerre-Funktionen spielen
eine wichtige Rolle in der Elektro- und Regelungstechnik, sind
aber leider unter Technikern und Ingenieuren im allgemeinen
nicht sehr bekannt. Es ist einer der Zwecke dieser Arbeit, den
Leser mit diesen interessanten Funktionen bekannt zu machen
und ihn anzuregen, sie zu gebrauchen.

Schon 1932 verwendete Lee [1]') Laguerre-Funktionen fiir
die Synthese elektrischer Netzwerke. Head veroffentlichte
zwischen 1956 und 1958 eine Reihe von Artikeln [2;3;4] in
welchen er zeigte, wie Laguerre-Funktionen fiir die Approxima-
tion von Funktionen gebraucht werden konnen. Die Methode,
welche in diesem Artikel beschrieben wird, ist eine Verall-
gemeinerung der von Head vorgeschlagenen Methode, in
manchen Fillen gibt sie etwas bessere Resultate. In neuerer
Zeit machte Dean [5] ausgedehnten Gebrauch von Laguerre-
Funktionen in Verbindung mit seismologischen Untersuchun-
gen.

2. Eigenschaften der Laguerre Polynome und der
Laguerrre Funktionen

In der Literatur existieren mehrere, verschiedene Defini-
tionen der Laguerre-Polynome und der Laguerre-Funktionen,
Head|[3]stellte mehreredieser Definitionen zusammen. Indiesem
Artikel wird die mit Head und andern iibereinstimmende
Definition des Laguerre-Polynoms vom n-ten Grad beniitzt.
Danach ist:

) Siehe Literatur am Schluss des Aufsatzes.
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Das von Laguerre [6] urspriinglich gebrauchte Polynom
entspricht dem oben definierten, multipliziert mit »! und ¢ er-
setzt durch —. Die ersten sechs Laguerre-Polynome sind:

Lo(t)=1

Lit)=1—1

Lo(t)=1—21t+ 122

Ls()=1—3¢t+312/2—13/6 2

Li()=1—4¢r+32—213/3+ 1424
Ls(t)=1—5¢+ 52— 513/3 4 5424 — t5/120

Die folgenden Eigenschaften sind wichtig fiir numerische
Rechnungen:

1. Die Rekursionsformel .

1

Luy=2""1"1p, - "1

n

Ln—2 (f) (3)

Diese Formel wird verwendet, um Ly (¢) f iir gegebenes
numerisch mittels eines Rechenautomaten zu berechnen.

2. Die Orthogonalitiits-Bezielhung :

=0 flirn=+m
=1 furn=m

fe“ “Ln(t)-Lin(f)dt 4)
0

Von der Orthogonalitit wird bei der Berechnung der
Koeffizienten der approximierenden Funktion Gebrauch ge-
macht.

3. Die verallgemeinerte Formel von Rodrigues:

1 dn
Ln®) =57 g

(e &)

Diese Formel ist niitzlich bei der Herleitung der Laplace-
transformierten der Laguerre-Funktionen.

4. Die Differentialgleichung:

t Ln@+A =0 La@®+n-Lu(®)=0 (6)

Wie man sich durch Einsetzen leicht iiberzeugen kann, be-
friedigen die Laguerre-Polynome die obige, gewOhnliche,
lineare homogene Differentialgleichung zweiter Ordnung.

Eine vielleicht noch wichtigere Rolle als die Laguerre-
Polynome spielen die Laguerre-Funktionen. Jahnke und Emde
[7] definieren die Laguerre-Funktion wie folgt:

An (f) = €742 Ly (1) (7

In dieser Arbeit wird der Begriff der Laguerre-Funktion
etwas verallgemeinert und eine verallgemeinerte Laguerre-
Funktion wie folgt definiert:

In,m () =et Ly (mt) (8)

Man sieht ohne weiteres, dass die Formel (7) einen Spezial-
fall von (8) darstellt. Setzt man ndmlich in Gl. (8) m = 2
und substituiert man 7 = 2¢, so ergibt sich Gl. (7).

In Fig. 1 sind die ersten fiinf verallgemeinerten Laguerre-
Funktionen mit m = 2 dargestellt. Man findet sie tabelliert
in [8].

Die in GIl. (8) definierten verallgemeinerten Laguerre-
Funktionen befriedigen folgende Differentialgleichung:
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Fig. 1

Die ersten fiinf Laguerre-Funktionen [, , (1)

L@ 1
et e @) + (o +

2—m
m

r)% U (0] +
)

t+n+ ’11) 'ln,m(f) =0

+ (5

3. Herleitung der Formeln fiir die Approximation mittels
verallgemeinerter Laguerre-Funktionen
Es sei y () eine gegebene, zu approximierende Funktion der
Zeit. y () kann entweder in Form einer Tabelle, in graphi-
scher Form oder als komplizierter mathematischer Aus-
druck gegeben sein.
Die approximierende Funktion ) (¢) soll folgende Form
haben:
N—1
y(O)=et ) ap-Li(mo) (10)
k=0
Die Koeffizienten ax sind vorldufig unbekannt, m ist ein
konstanter Zahlenfaktor, welcher spdter im Zusammenhang
mit der Gewichtsfunktion bestimmt werden wird.
Fiir die Approximation soll verlangt werden:

R= f w() [y () —y®]2d s = Minimum (11)
0

Der Ausdruck in der eckigen Klammer ist der Fehler als
Funktion der Zeit, w () ist die Gewichtsfunktion. Die Ge-
wichtsfunktion ist die Gesamtheit von Masszahlen, mit deren
Hilfe der zu einer bestimmten Zeit auftretende Fehler in der
approximierenden Funktion zu bewerten ist. Wahlt man w ()
als konstant, so bedeutet dies, dass man dem Fehler zu allen
Zeiten ein gleiches Gewicht zumessen will. Ist man aber zum
Beispiel daran interessiert, dass die Approximation vor allem
fiir kleine Werte von ¢ gut ist, so kann man als Gewichts-
funktion w (r) = e* wihlen. Im folgenden sei angenommen,
dass die Gewichtsfunktion von der Form:

w(t) = evt

(12)

sei, wobel v eine beliebige reele Zahl < 1 sei.

Wenn die Gewichtsfunktion bekannt ist, kann man die
Koeffizienten in GI. (10) bestimmen. Substitution von GI. (10)
in GIL. (11) ergibt:

oo N—I1 2

R= [w(n) [y (1) —et ) arLi (m z)] df = Minimum (13)
0 k=0

Eine notwendige Bedingung, dass R ein Minimum wird, ist:

R

_ba_i_O furi=0,1,2...(N—1) (14)
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Beniitzt man die in Gl. (12) definierte Gewichtsfunktion, so
ergibt sich:

o] N—1
fe [y(t)—e‘ Y a -Lk(mz)] et-Li(mf)dr=0 (15)
k=0

0

oder

[e5] N—1 oo
fe’("~1)‘ y(@)-Li(mpdt= Z akfe’("—Z)Lk (mt)-Li (mt)dt
0 k=0 0
(16)

Zur GI. (16) sind zwei Bemerkungen zu machen:

a) Fur die Gewichtsfunktion (12) wurde verlangt, dass v
< 1 sei. Der Grund fiir diese Forderung liegt darin, dass das
Integral auf der linken Seite von GI. (16) existiert (endliche
Werte hat), solange die zu approximierende Funktion y (r)
eine exponentiell abklingende Funktion und der Exponent
(v—1) negativ ist.

b) Dank der Orthogonalititsbeziechung

fet L@ Li(ndt=0 fir k=i
0

verschwindet das Integral auf der rechten Seite von GI. (16)
fir alle Werte k = i, wenn man

(17)

wihlt. Fiir diesen Wert von m wird die rechte Seite von Gl1. (16)

m=2—v

N—1 o0
Yiae [P Li(@ =W - Li(2—v)Ddt
k=0 0

Substituiert man

und

so bleibt auf der rechten Seite nur der Term:

ai
2—vy

1 o0
ai -2—:70[6’ -L2()dz =

und es folgt somit als Bestimmungsgleichung fiir die Koeffi-
zienten ar:

a=Q—v) [e " LIQ- A y@d (17)
0

Es zeigt sich hier eine, allen Kurvenapproximationsmetho-
den, welche orthogonale Funktionssysteme als approximie-
rende Funktionen brauchen, gemeinsame wichtige Eigen-
schaft. Der k-te Koeffizient der approximierenden Funktion
kann isoliert berechnet werden, weil in seiner Bestimmungs-
gleichung keine andern unbekannten Koeffizienten auftreten.
Eine wichtige praktische Bedeutung hat diese Eigenschaft des-
halb, weil sie erlaubt, die Anzahl der Terme in einer Approxi-
mation und somit ihre Genauigkeit zu erhohen, ohne dass man
die bereits berechneten Koeffizienten neu zu berechnen
brauchte. Dem Elektroingenieur ist diese Eigenschaft von der
Fouriersynthese, wo ja auch ein orthogonales Funktionen-
system gebraucht wird, bekannt. Er ist sich nur oft dieser
wichtigen Eigenschaft und ihrer Ursache nicht bewusst.
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Fur praktische Anwendungen kommen hauptsidchlich die
folgenden drei Gewichtsfunktionen in Frage:

a) w(@ =1
b) w(t) = ett
c) w() =et

In Tabelle I sind die Formeln fiir diese drei wichtigen
Spezialfille zusammengestellt.

Formeln fiir die Approximation mit drei verschiedenen Gewichts-

Sfunktionen
Tabelle I
Gewichts : ; ; Formel fiir
" funktion Approxlmelnonsfunkuon Koeffizienten
w(t) y® ag
N—1 0
0 1 et Y ar-Lp(21) 2fetLi2n y@)de
k=0 0
| N—1 00
+1 1 et e"Zak-Lk(I) ka(f)'J’(’)d’
k=0 0
N—1 [}
—1 et et Y apLi(31) 3 [e2t- Lp(30) y()dt
k=0 0

4. Skalierung
Bei Kurvenapproximationen mittels Laguerre-Funktionen
ist es im allgemeinen notwendig, die unabhidngige Variable
mit einem geeigneten MalBstabsfaktor zu skalieren. Mathe-
matisch bedeutet dies, dass die approximierende Funktion
folgende Gestalt erhilt:

N—1

vy =e" Z arp*Liy(mat)
k=0

(18)

Der Wert von «, welcher im wesentlichen den ZeitmaB-
stabsfaktor bedeutet, kann auf verschiedene Arten gefunden
werden. Head [3] schlug folgende Methode vor: Es sei to der
Wert der unabhéngigen Variablen, so dass fiir alle 7 = 7o der
Wert der zu approximierenden Funktion als Null angenom-
men werden kann. Es sei ferner angenommen, dass die Zahl
der Terme in der approximierenden Funktion gleich N sei.
Dann soll « so gewihlt werden, dass:

l ,k,m (d f) | < 104 (19)

fiir alle Werte ¢+ > fo und & = 0; 1;2;...N. Praktisch be-
deutet das, dass man den ZeitmaBstab so wihlen soll, dass die
Laguerre-Funktion von der hochsten Ordnung geniigend
stark geddmpft ist.

Ein etwas anderes Vorgehen, welches recht gute Resultate
zeigte, wird hier vorgeschlagen. Es werde zuerst die gegebene
Funktion durch eine reine Exponentialfunktion angenihert:

Yy~ yo() =Ae™ (20)

Es gibt verschiedene Mdoglichkeiten, die beiden unbe-
kannten Parameter 4 und « in der obigen Gleichung zu be-
stimmen. Da man hier jedoch nur einen ersten, groben
Naiherungswert von « braucht, geniigt es zum Beispiel, gra-
phisch log y (¢) durch eine Gerade zu approximieren, deren
Steigung ein Mass fiir « ist. Ist y (¢) in Form einer Tabelle mit
M Wertpaaren gegeben, so kann man auch verlangen, dass:
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]

[log yi (t:) — log yoi (1)]> = Minimum 1)
1

~

wird.

Ersetzt man in der obigen Gleichung log yo; durch log
A — t; und setzt die partiellen Ableitung der Summe nach A4
und « gleich Null, so findet man sofort zwei lineare Gleichun-
gen fiir 4 und «. Lost man die Aufgabe mittels eines Rechen-
automaten, so ist diese Methode zur Bestimmung eines ersten
Néiherungwertes zu empfehlen.

Hat man einen Nidherungswert fiir a« gefunden, so kann
man die eigentliche Kurvenapproximation fiir verschiedene
Werte von « und N durchfithren. Man wird dann diejenige
Approximation wihlen, welche mit der kleinsten Anzahl von
Termen die gewiinschte Genauigkeit ergibt. Auf diese Weise
wird « zu einem weiteren freien Parameter in der Kurven-
approximation, und es ist moglich, dass man so 6konomischere
Approximationsfunktionen findet als bei einer a-priori-Wahl
eines festen Wertes von «, wie dies von Head vorgeschlagen
wurde. Die hier beschriebene Methode, welche a als zusétz-
lichen freien Parameter betrachtet, ist vor allem dann sehr
zweckméssig, wenn man die Approximation mittels eines
Rechenautomaten durchfiihrt.

5. Numerische Ermittlung der Koeffizienten a,

Es soll im folgenden angenommen werden, die Gewichts-
funktion sei w(f) = 1 und der Skalierungsfaktor « sei ge-
geben. Fiir die unabhingige Variable macht man folgende
Substitution:

T=o0t (22)

und erhélt somit als Ausdruck fiir die approximierende Funk-
tion:

N—1
y@=€¢TY ar Lx(27) (23)
k=0

Die Koeffizienten ax werden dann gemiss Gl. (17) be-
stimmt durch:
[o'e]

ay=2[e 7 y(@) Ly 27)dr
0

(24)

Wohl die beste Art, dieses Integral numerisch auszu-
werten, ist die Gauss-Laguerre-Integration, d. h.:

00 P
fe—z.f(x)dx%' ZWj'f(x]') 25)
0

i=1

Die Gewichte w; und die Abszissenwerte x; sind in der
Literatur tabelliert [5; 9].

Ist die zu approximierende Funktion fiir &dquidistante
Abszissenwerte gegeben, so geniigt in vielen Fillen auch eine
einfache Ermittlung des Integrales mittels der Simpsonschen
Formel. Es ist aber darauf zu achten, dass die Intervallbreite
gentigend klein ist ; dies ist besonders kritisch fiir die Laguerre-
funktionen hoherer Ordnung.

6. Numerisches Beispiel
Es sei die in Tabelle II, Kolonne 2 und in Fig. 2 als aus-
gezogene Kurve dargestellte Funktion gegeben. Zur Demcn-
stration soll diese Funktion mittels Summen von Laguerre-
Funktionen angendhert werden, wobei die Approximation

98 (A 68)

~N
!
|
|
|
|

_______

.yt
4

®”

0 10 20 30 40 50 60 70 s 80
et

Fig. 2
Numerisches Beispiel

gegebene Funktion; Anniherung mit reiner

Exponentialfunktion; Laguerre-Approximation mit

w(t) = etat; — - — —.— Laguerre-Approximation w(r) = ¢

mit verschiedenen Gewichtsfunktionen durchgefiihrt werden
soll. Die folgenden drei Fille werden untersucht:

Falll: w(r) =1
Fall II: w () = et
Fall ITI: w (1) = e '

Der erste Schritt besteht in der Bestimmung eines ge-
eigneten Malstabfaktors fir die Zeitachse. Approximiert man
die Funktion gemdss Gl. (21) mittels einer reinen Exponential-
funktion, so findet man:

yo(f) ~ 9,4¢70,08¢ (26)

Diese erste Anndherung ist in Fig. 2 punktiert eingetragen.

Fiir die folgenden Approximationen wurde der Einfachheit
halber ein « von 0,1 gewihlt. Der optimale Wert von « ist
verschieden je nach der Gewichtsfunktion. o = 0,1 ist ein
Wert, der gute Resultate fiir alle drei Gewichtsfunktionen
ergibt.

Um den Effekt der Gewichtsfunktion deutlicher zum Vor-
schein kemmen zu lassen, wird absichtlich die Anzahl der
Terme in der Approximation klein gehalten (N = 5). Die
Koeffizienten ar wurden mittels Gauss-Laguerre-Integration
bestimmt (50 Punkte Integration, von welchen 12 in den Be-
reich 0 < ar < 7,2 fallen).

Die Kceffizienten ax werden:

Fall I Fall IT Fall IIT

w =1 w@=etat W) =e ¢
ao + 8,37 + 10,15 -+ 8,67
ai — 0,17 — 5,35 -+ 1,00
as + 2,33 + 1,19 + 1,14
as -+ 0,60 + 3,67 — 0,07
aa — 0,35 + 2,35 — 0,18

In Tabelle II sind die approximierenden Funktionen fiir
diese drei Félle tabelliert. In Fig. 2 ist die Approximations-
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Gegebene Funktion und drei Approximationen
Numerisches Beispiel

Tabelle 11

Fall T Fall I Fall 11T

t (t=ot| Y1) wi) =1 wy =e Tt w(e) = e
Y1) i) Y@
0 0,0 |10,30 10,77 12,00 10,49
2 0,2 7,55 7,36 7,39 7,42
4 0,4 5,15 5,08 4,69 5,20
6 0,6 3,61 3,61 3,19 3,67
8 0,8 2,70 2,70 2,42 2,68
10 1,0 2,15 2,18 2,07 2,09
12 1,2 1,83 1,88 1,94 1,78
14 1,4 1,70 1,75 1,91 1,65
16 1,6 1,62 1,69 1,92 1,62
18 1,8 1,58 1,67 1,91 1,64
20 2,0 1,60 1,66 1,88 1,67
22 2,2 1,65 1,64 1,82 1,69
24 2.4 1,72 1,61 1,73 1,69
26 2,6 1,72 1,55 1,62 1,66
28 2,8 1,67 1,48 1,49 1,59
30 3,0 1,55 1,39 1,35 1,50
32 3,2 1,40 1,29 1,21 1,38
34 3.4 1,24 1,78 1,07 1,24
36 3,6 1,04 1,06 0,94 1,10
38 3,8 0,85 0,94 0,82 0,95
40 4,0 0,70 0,83 0,70 0,80
42 4,2 0,59 0,72 0,60 0,66
44 4,4 0,50 0,61 0,50 0,52
46 4,6 0,40 0,51 0,42 0,39
48 4,8 0,33 0,42 0,35 0,27
50 5,8 0,28 0,34 0,29 0,17
52 52 0,20 0,27 0,23 0,07
54 5.4 0,18 0,21 0,19 0,00
56 5,6 0,13 0,15 0,15 — 0,07
58 5,8 0,11 0,10 0,12 — 0,13
60 6,0 0,10 0,06 0,09 — 0,17
62 6,2 0,08 0,03 0,07 — 0,21
64 6,4 0,06 0,00 0,05 — 0,23
66 6,6 0,04 — 0,02 0,04 — 0,25
68 6,8 0,02 — 0,04 0,03 — 0,27
70 7,0 0,01 — 0,05 0,02 — 0,27
72 7,2 0,005| — 0,06 0,01 — 0,27

funktion fiir den Fall II strichpunktiert, fiir den Fall III ge-
strichelt dargestellt.

Der Einfluss der Gewichtsfunktion zeigt sich noch deutlicher
in Fig. 3, wo die Fehler als Funktion der Zeit fiir die drei
Fille dargestellt sind. Man sieht gut, wie die Gewichtsfunk-
tion w (7) = e+« die Approximation zwingt, fiir grosse Werte
von ¢ sich der gegebenen Kurve anzupassen, wéhrend die
Gewichtsfunktion e—o gerade den umgekehrten Effekt hat.

Durch Berticksichtigung von mehr Gliedern in der Approxi-
mation (z. B. N = 8), ldsst sich die Kurve mit Zeichenge-
nauigkeit annédhern.

7. Herleitung der Laplacetransformation der
Laguerre-Funktionen

Wohl eine der attraktivsten Eigenschaften der Laguerre-
Funktionen ist die Tatsache, dass sie eine einfache Laplace-
transformierte besitzen, und dass sie deshalb leicht mittels
Analogcomputer oder elektrischen Netzwerken nachgebildet
werden konnen. Da die Herleitung der Laplacetransformierten
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der verallgemeinerten Laguerre-Funktionen, soweit es dem Ver-
fasser bekannt ist, nirgends in der Literatur zu finden ist, sei
sie im folgenden kurz erwihnt.

Es sei
y()=et-Ly(mt) 7
Dann ist definitionsgeméss die Laplacetransformierte:
Ly@)=Y()=[etetLy(mnds (28)
0

Indem man fiir mt = & substituiert, kann man L, (m?)
gemiss Gl. (5) ausdriicken als:

dn

5. én
S @ (29)

Ln(é):ni!ef-

Der letzte Term in Gl. (29) kann geschrieben werden als:
£ gmym) _ N (7). i &, i
i) —i;)(l.) (= 1)ye e (30)

Substituiert man GI. (30) in Gl. (29) und dann in Gl. (28),
so erhdlt man:

Y(s) = fe st a—t . ,,,emt i ( )“ it (—1)n=ie—mt (mr)yr—ide
- 31

Vertauscht man Summation und Integration, so ergibt sich:

9 00
( ”’) o (_m)nfidfe—t(s%-l) (i dr .

yt)-yt)

Fig.3

Fehler in der Approximationsfunktion als Funktion der Zeit
e(r) = y() —¥()
e(r) fir Fall I [w() = 1];

_______ e(f) fiir Fall III [w(i) = e

______ e(r) fir Fall IT

() = eT*;
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Fir den Wert des Integrales in Gl. (32) findet man in
Tabellen, z. B. [10, S. 820]:

(o]

B » (n—1)!
6[8 t(s+1) n 1df = (IW (33)
Substituiert man GI1. (33) in Gl. (32), so findet man:
1 \h(n _ (n—1)
YO D7) it Cmr (G 69
oder
Y(s):L i( ) il-(n—0) - (—m)n-i(1 +s)t
n! (1 + s)ntl +s)n+1 = ’ ’
(35)
oder

Y= G X(F)emrisint co
Die Summe im obigen Ausdruck ist aber nichts anderes als:
LT Emrictni=et1-—mn @)

so dass man fiir die Laplacetransformierte der Laguerre-
Funktion schliesslich findet:

i (s +1—mnr
L= L,(mx))= ——Gm (38)
Fiir den wichtigen Spezialfall, wo m = 2 ist, ergibt sich:
. N G L
Lle* L,(2x)]= E ) il 39)

8. Nachbildung der Laguerre-Funktionen
auf dem Analogrechner

Es sei im folgenden wieder angenommen, die Zeitfunktion
laute

y@O)=et-L.(2D (40)

Ihre Laplacetransformierte ist durch Gl. (39) gegeben. Es
soll eine Analogcomputerschaltung gefunden werden, welche
diese Funktion erzeugt. Es wurde zum Beispiel vorgeschlagen
[11], diese Funktion im Prinzip durch Serieschaltung von
Elementen von der Form (s—1)/(s+-1) und einem Element
1/(s+1) zu erzeugen. Diese Art, Laguerre-Funktionen mittels
Analogrechnern zu erzeugen, kann aber nicht empfohlen
werden, da diese Schaltung zu Instabilitit neigt und fiir Rau-
schen anfillig ist. Dean [5] schlug vor, die Laplacetransfor-

. = =
1 5+1 1 5+1)° 1 s+’ s+
S+ 541 s+1 s+
(s-17 =
(s +1) Z :
Fig. 4
Blockschaltbild fiir die Darstellung der Laguerre-Funktionen auf einem
Analogrechner
Die resultierende Zeitfunktion dieser Schaltung ist: y(£) = ¢ - Ly(2r)
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mierte in Partialbriiche zu zerlegen. Es ldsst sich (durch
mathematische Induktion), beweisen, dass:

(s :UJ_: i ( h )(_ 2)15—1_ 41)
(s+ Dt Z\n—k (s 4 1)k+1
Die rechte Seite von GI. (41) ldsst sich auf einem Analog-
rechner ohne Schwierigkeiten, durch den ausschliesslichen
Gebrauch von linearen Elementen stabil nachbilden. Fig. 4
zeigt das Blockschaltbild fiir die Analogrechner-Nachbildung
der Funktion
y(O)=et-L320) 42)
Ein Beispiel fiir die Analogrechner-Realisierung einer
Kurvenapproximation ist in [12] gegeben.
Tabelle IIT gibt die Koeffizienten fiir die Nachbildung der
Laguerre-Funktionen bis zur sechsten Ordnung.

Koeffizienten by, fiir die Partialbruchzerlegung der Funktion
(s—1y1f(s+ 1yt

Tabelle III
X" 0 1 2 3 4 5 6
=
0 1
1 1 | =2
2 1 | —4 4
3 1 | ==6 12 | — 8
4 1 | —8 | 24 | —32] 16
5 1 | —10 | 40 | —8 | 8 | — 32
6 1 | —12 | 60 | —160 230 | —192 | 64
_(s—=1Dn :ankil_
(S + 1)n+1 =L (S + 1)]{}-!-1
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