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BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Kurvenapproximation mittels verallgemeinerter Laguerre-Funktionen
Von H. G. Bürgin, La Jolla, USA

Die Aufgabe, eine gegebene Funktion durch einen mathematischen

Ausdruck anzunähern, tritt in der Elektro- und Regelungstechnik

häufig auf. Da die GUte der Approximation oft stark
davon abhängt, mit welcher Klasse von Funktionen sie durchgeführt

wird, ist es empfehlenswert, ein relativ grosses Repertoire
von Approximationsmethoden zur Auswahl zu haben. Dieser
Artikel beschreibt, wie abklingende Funktionen mittels Summen
von verallgemeinerten Laguerre-Funktionen angenähert werden
können. Nach einer Beschreibung der wichtigsten Eigenschaften
dieser Funktionen werden die Formeln für die Berechnung der
Approximationsfunktion hergeleitet, wobei eine sehr allgemeine
Gewichtsfunktion zugelassen wird. Ein numerisches Beispiel zeigt
unter anderem den Einfluss verschiedener Gewichtsfunktionen.
Die Laguerre-Funktionen haben grosse praktische Bedeutung,
weil sie eine einfache Laplacetransformierte besitzen. Diese wird
abgeleitet und zum Schluss gezeigt, wie Laguerre-Funktionen
stabil auf einem Analogrechner nachgebildet werden können.

517.512.6

En électronique et en régulation, il est souvent nécessaire
d'exprimer mathématiquement, avec une bonne approximation,
une fonction donnée. La qualité de l'approximation dépendant
parfois beaucoup du genre de la fonction, il est utile de disposer
d'un relativement grand répertoire de méthodes d'approximation.
L'auteur montre comment des fonctions décroissantes peuvent
être exprimées approximativement par sommation de fonctions
de Laguerre généralisées. Après une description des principales
propriétés de ces fonctions, il indique les formules de calcul de
la fonction approximative, en admettant une fonction pondérée
très générale. Un exemple numérique montre notamment
l'influence de diverses fonctions pondérées.

Les fonctions de Laguerre ont une grande importance pratique,
car elles comportent une simple transformée de Laplace. Celle-ci
est dérivée et l'auteur montre, pour terminer, comment les fonctions

de Laguerre peuvent être reproduites d'une façon stable avec
un calculateur analogique.

1. Allgemeine Bemerkungen über Kurven-Approximationen

Eine Kurve, die in Form einer Tabelle, als Resultat von
Messungen (kontinuierlich oder diskret) oder in Form eines

komplizierten mathematischen Ausdruckes gegeben ist, durch
eine verhältnismässig einfache mathematische Funktion
anzunähern, ist eine für den Ingenieur und den Elektrotechniker
häufig auftretende Aufgabe. Während der Mathematiker bei

solchen Problemen die Frage nach der Existenz von Lösungen,
die Art der Konvergenz und so weiter untersucht, interessiert

es den Ingenieur viel eher, ob er eine gegebene Funktion mit
wirtschaftlichem Aufwand «hinreichend genau» approximieren

kann. Eine befriedigende Lösung dieses Problems erfordert
im allgemeinen Erfahrung, gutes Verständnis für die Anwendung

der Approximation und etwas Phantasie. Einige der

Parameter, über die man sich bei Kurvenapproximationen
entscheiden muss, sind:

1. Der analytische Ausdruck für die Approximationsfunktion.
(Polynome, trigonometrische Funktionen, Exponentialfunktionen,
gebrochene rationale Funktionen etc.)

2. Das Kriterium für die «beste» Approximation (kleinstes
Fehlerquadrat, minimaler Maximum-Fehler (Minimax), «Glätte»
der approximierenden Funktion, Art der Gewichtsfunktionen).

3. Bereich der unabhängigen Variablen, in welchem die Approximation

Gültigkeit haben soll. (Endlicher Bereich, halbunendlicher
Bereich, unendlicher Bereich.)

4. Kompliziertheit der Approximationsfunktion und der nötige
Aufwand, um die beste Approximation zu finden.

Grundsätzlich sollte bei Kurvenapproximationen der
Charakter der Annäherungsfunktion gleich demjenigen der zu

approximierenden Funktion sein. Periodische Kurven sollen

zum Beispiel durch periodische Funktionen approximiert
werden. Annähernd exponentiell abklingende Funktionen soll

man daher nicht durch Polynome annähern, gebrochene

rationale Funktionen oder Summen von Exponentialfunktionen

eignen sich meistens besser.

Dieser Artikel zeigt, wie abklingende Funktionen durch
Summen von Laguerre-Funktionen approximiert werden können.

Laguerre-Polynome und Laguerre-Funktionen spielen
eine wichtige Rolle in der Elektro- und Regelungstechnik, sind
aber leider unter Technikern und Ingenieuren im allgemeinen
nicht sehr bekannt. Es ist einer der Zwecke dieser Arbeit, den

Leser mit diesen interessanten Funktionen bekannt zu machen

und ihn anzuregen, sie zu gebrauchen.
Schon 1932 verwendete Lee [l]1) Laguerre-Funktionen für

die Synthese elektrischer Netzwerke. Head veröffentlichte
zwischen 1956 und 1958 eine Reihe von Artikeln [2;3;4] in
welchen er zeigte, wie Laguerre-Funktionen für die Approximation

von Funktionen gebraucht werden können. Die Methode,
welche in diesem Artikel beschrieben wird, ist eine

Verallgemeinerung der von Head vorgeschlagenen Methode, in
manchen Fällen gibt sie etwas bessere Resultate. In neuerer
Zeit machte Dean [5] ausgedehnten Gebrauch von Laguerre-
Funktionen in Verbindung mit seismologischen Untersuchungen.

2. Eigenschaften der Laguerre Polynome lind der

Laguerrre Funktionen

In der Literatur existieren mehrere, verschiedene Definitionen

der Laguerre-Polynome und der Laguerre-Funktionen,
Head[3] stellte mehrere dieser Definitionen zusammen. In diesem

Artikel wird die mit Head und andern übereinstimmende
Definition des Laguerre-Polynoms vom w-ten Grad benützt.
Danach ist:

') Siehe Literatur am Schluss des Aufsatzes.
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£„(0-1 ar''- -• + (-»"TT'"®
Das von Laguerre [6] ursprünglich gebrauchte Polynom

entspricht dem oben definierten, multipliziert mit n\ und
ersetzt durch — Die ersten sechs Laguerre-Polynome sind:

La 1

Li 1 —

Z,2(0= 1 -2? + ?2/2

La (0 1 - 3 + 3 ?2/2 - ?3/6 (2)

Li (0 1 - 4 + 3 ?2 - 2 ?3/3 + ?4/24

L5 (0 1 - 5 + 5 ?2 - 5 ?3/3 + 5 ?4/24 - ?5/120

Die folgenden Eigenschaften sind wichtig für numerische

Rechnungen :

1. Die Rekursionsformel :

Ln (0
2 - " Ln-1 (0 - —T '

En-2 (0 (3)
n n

Diese Formel wird verwendet, um Ln (0 für gegebenes t
numerisch mittels eines Rechenautomaten zu berechnen.

2. Die Orthogonalitäts-Beziehung:

°r r / ^ T ^ j =0 für « 4= m
/ e_J • LK • Lm d r.. (4)
J =1 fur n m

Von der Orthogonalität wird bei der Berechnung der

Koeffizienten der approximierenden Funktion Gebrauch
gemacht.

3. Die verallgemeinerte Formel von Rodrigues:

Ln (0 —
1

dt" (,n e-() (5)

A„ (0 e~'/2 • Ln (0

/«,»«(?) e~( Ln (mt)

lLf i-fSyf - L/S~Lf

1 d2

m 'dt'2

Fig. 1

Die ersten fünf Laguerre-Funktionen ln „ (t)

(/.,« (0) + (~ + — t) ,d,- [/.,» (0] +\m m dtv 7« 777

1 — 777

t + tl + - ' /n,ju (0
777 777 /

(9)

0

Diese Formel ist nützlich bei der Herleitung der Laplace-
transformierten der Laguerre-Funktionen.

4. Die Differentialgleichung:

OLb(0 + (1-0--M0 + W--M0 0 (6)

Wie man sich durch Einsetzen leicht überzeugen kann,
befriedigen die Laguerre-Polynome die obige, gewöhnliche,
lineare homogene Differentialgleichung zweiter Ordnung.

Eine vielleicht noch wichtigere Rolle als die Laguerre-
Polynome spielen die Laguerre-Funktionen. Jahnke und Emde

[7] definieren die Laguerre-Funktion wie folgt:

(7)

3. Herleitung der Formeln für die Approximation mittels
verallgemeinerter Laguerre-Funktionen

Es sei y eine gegebene, zu approximierende Funktion der
Zeit, y kann entweder in Form einer Tabelle, in graphischer

Form oder als komplizierter mathematischer
Ausdruck gegeben sein.

Die approximierende Funktion y soll folgende Form
haben :

TV—1

y e,-t ^ aie • Lie (m (10)
Ar 0

Die Koeffizienten aie sind vorläufig unbekannt, m ist ein
konstanter Zahlenfaktor, welcher später im Zusammenhang
mit der Gewichtsfunktion bestimmt werden wird.

Für die Approximation soll verlangt werden:

OO

R J w(?)[y(?) — y (?)]2d?= Minimum (11)
o

Der Ausdruck in der eckigen Klammer ist der Fehler als

Funktion der Zeit, w ist die Gewichtsfunktion. Die
Gewichtsfunktion ist die Gesamtheit von Masszahlen, mit deren

Hilfe der zu einer bestimmten Zeit auftretende Fehler in der

approximierenden Funktion zu bewerten ist. Wählt man w
als konstant, so bedeutet dies, dass man dem Fehler zu allen
Zeiten ein gleiches Gewicht zumessen will. Ist man aber zum
Beispiel daran interessiert, dass die Approximation vor allem

für kleine Werte von gut ist, so kann man als Gewichtsfunktion

vc e~J wählen. Im folgenden sei angenommen,
dass die Gewichtsfunktion von der Form:

In dieser Arbeit wird der Begriff der Laguerre-Funktion
etwas verallgemeinert und eine verallgemeinerte Laguerre-
Funktion wie folgt definiert:

w e" ' (12)

(8)

Man sieht ohne weiteres, dass die Formel (7) einen Spezialfall

von (8) darstellt. Setzt man nämlich in Gl. (8) 777 2

und substituiert man r 2t, so ergibt sich Gl. (7).

In Fig. 1 sind die ersten fünf verallgemeinerten Laguerre-
Funktionen mit t?? 2 dargestellt. Man findet sie tabelliert
in [8].

Die in Gl. (8) definierten verallgemeinerten Laguerre-
Funktionen befriedigen folgende Differentialgleichung:

sei, wobei v eine beliebige reele Zahl < 1 sei.

Wenn die Gewichtsfunktion bekannt ist, kann man die

Koeffizienten in Gl. (10) bestimmen. Substitution von Gl. (10)

in Gl. (11) ergibt:

R f w y — e f 2] ak Lk (m 0 d? Minimum (13)
Ai—1

0 L k 0

Eine notwendige Bedingung, dass R ein Minimum wird, ist:

}R
hat

0 für 7 0,1,2... (N- 1) (14)
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Benützt man die in Gl. (12) definierte Gewichtsfunktion, so

ergibt sich:

o

oder

N— 1

/e" ' y (t) - e~J ^ ak Lk (m I)
k o

tt-Li(mt)dt 0 (15)

oo N—1 oo

J çKv—i). y(t) .Lt(m t)dt ^aic f e'(v~~2)L&(mt) • Li(mt)dt
0 k 0 0

(16)

Zur Gl. (16) sind zwei Bemerkungen zu machen:

a) Für die Gewichtsfunktion (12) wurde verlangt, dass v

1 sei. Der Grund für diese Forderung liegt darin, dass das

Integral auf der linken Seite von Gl. (16) existiert (endliche
Werte hat), solange die zu approximierende Funktion y (t)
eine exponentiell abklingende Funktion und der Exponent
(v—1) negativ ist.

b) Dank der Orthogonalitätsbeziehung

OO

f e~e • Lk (t) • Li (t) d t 0 für k i
o

verschwindet das Integral auf der rechten Seite von Gl. (16)
für alle Werte k z, wenn man

m 2-v (17)

wählt. Für diesen Wert von m wird die rechte Seite von Gl. (16)

£ at J e-'("-2) • Lk (2 - v) 0 • Li (2 - v) t) dt
N— 1 oo

k= 0 0

Substituiert man

und
T ~ (2 — v) t

1

dt — dr
v

so bleibt auf der rechten Seite nur der Term :

f e
T Li2 (r) d xat

und es folgt somit als Bestimmungsgleichung für die
Koeffizienten ak'.

Oi (2 - v) / e ,(1 ''' • Li [(2 - v) t] y (t) dt (17)

Es zeigt sich hier eine, allen Kurvenapproximationsmethoden,
welche orthogonale Funktionssysteme als approximierende

Funktionen brauchen, gemeinsame wichtige Eigenschaft.

Der k-te Koeffizient der approximierenden Funktion
kann isoliert berechnet werden, weil in seiner Bestimmungsgleichung

keine andern unbekannten Koeffizienten auftreten.
Eine wichtige praktische Bedeutung hat diese Eigenschaft
deshalb, weil sie erlaubt, die Anzahl der Terme in einer Approximation

und somit ihre Genauigkeit zu erhöhen, ohne dass man
die bereits berechneten Koeffizienten neu zu berechnen

brauchte. Dem Elektroingenieur ist diese Eigenschaft von der

Fouriersynthese, wo ja auch ein orthogonales Funktionensystem

gebraucht wird, bekannt. Er ist sich nur oft dieser

wichtigen Eigenschaft und ihrer Ursache nicht bewusst.

Für praktische Anwendungen kommen hauptsächlich die

folgenden drei Gewichtsfunktionen in Frage:

a) w (t) 1

b) w (t) e+(

c) w (t) e~(

In Tabelle I sind die Formeln für diese drei wichtigen
Spezialfälle zusammengestellt.

Formeln fiir die Approximation mit drei verschiedenen Gewichts-
funktionen

Tabelle I

V

Gewichts
funktion

w(0

Approximationsfunktion

y(0

Formel für
Koeffizienten

ak

0 1

N—1

Q~1 ^ ü]c • Lk (2 /)
k=0

oo

2J L k(21) - y (/) dt
0

+ 1 Q+t

N—\

k=0

oo

f Ljc (t)-y(t)dt
0

—1
N—1

Q-^ak'Lk(3 t)
k=0

oo

3 Je~2t Lk(}t)-y(t)dt
0

4. Skalierung
Bei Kurvenapproximationen mittels Laguerre-Funktionen

ist es im allgemeinen notwendig, die unabhängige Variable
mit einem geeigneten Maßstabsfaktor zu skalieren.
Mathematisch bedeutet dies, dass die approximierende Funktion
folgende Gestalt erhält:

y(,t) e xl ^ Ok- Lk(mtxt)
k—0

(18)

Der Wert von a, welcher im wesentlichen den
Zeitmaßstabsfaktor bedeutet, kann auf verschiedene Arten gefunden
werden. Head [3] schlug folgende Methode vor: Es sei to der
Wert der unabhängigen Variablen, so dass für alle t ^ to der
Wert der zu approximierenden Funktion als Null angenommen

werden kann. Es sei ferner angenommen, dass die Zahl
der Terme in der approximierenden Funktion gleich N sei.

Dann soll a so gewählt werden, dass:

I Ik.m (a t) | < 10-4 (19)

für alle Werte t > to und k 0; 2;... N. Praktisch
bedeutet das, dass man den Zeitmaßstab so wählen soll, dass die

Laguerre-Funktion von der höchsten Ordnung genügend
stark gedämpft ist.

Ein etwas anderes Vorgehen, welches recht gute Resultate

zeigte, wird hier vorgeschlagen. Es werde zuerst die gegebene
Funktion durch eine reine Exponentialfunktion angenähert:

y (0 ^ yo (t) A e (20)

Es gibt verschiedene Möglichkeiten, die beiden
unbekannten Parameter A und a in der obigen Gleichung zu
bestimmen. Da man hier jedoch nur einen ersten, groben
Näherungswert von a braucht, genügt es zum Beispiel,
graphisch log y (t) durch eine Gerade zu approximieren, deren

Steigung ein Mass für a ist. Ist y (t) in Form einer Tabelle mit
M Wertpaaren gegeben, so kann man auch verlangen, dass:

Bull. ASE 57(1966)3, 3 février (A 67) 97



M
XI [log yi (h) — log poi (O)]2 Minimum (21)

wird.
Ersetzt man in der obigen Gleichung log ym durch log

A — h und setzt die partiellen Ableitung der Summe nach A
und a gleich Null, so findet man sofort zwei lineare Gleichungen

für A und a. Löst man die Aufgabe mittels eines

Rechenautomaten, so ist diese Methode zur Bestimmung eines ersten

Näherungwertes zu empfehlen.
Hat man einen Näherungswert für a gefunden, so kann

man die eigentliche Kurvenapproximation für verschiedene

Werte von a und N durchführen. Man wird dann diejenige

Approximation wählen, welche mit der kleinsten Anzahl von
Termen die gewünschte Genauigkeit ergibt. Auf diese Weise

wird a zu einem weiteren freien Parameter in der
Kurvenapproximation, und es ist möglich, dass man so ökonomischere

Approximationsfunktionen findet als bei einer a-priori-Wahl
eines festen Wertes von a, wie dies von Head vorgeschlagen
wurde. Die hier beschriebene Methode, welche a als zusätzlichen

freien Parameter betrachtet, ist vor allem dann sehr

zweckmässig, wenn man die Approximation mittels eines

Rechenautomaten durchführt.

5. Numerische Ermittlung der Koeffizienten ak
Es soll im folgenden angenommen werden, die Gewichtsfunktion

sei w 1 und der Skalierungsfaktor a sei

gegeben. Für die unabhängige Variable macht man folgende
Substitution:

t a t (22)

und erhält somit als Ausdruck für die approximierende Funktion:

N— I

y (r) e-T Yi a* ' Lk (2 r) (23)
k=o

Die Koeffizienten ak werden dann gemäss Gl. (17)
bestimmt durch:

OO

ak 2 f sTr y (r) • Lk (2 r) dr (24)
o

Wohl die beste Art, dieses Integral numerisch
auszuwerten, ist die Gauss-Laguerre-Integration, d. h. :

OO P

fc~x • f (*) d * ^ wr f to) (25)
o 7=1

Die Gewichte Wj und die Abszissenwerte Xj sind in der

Literatur tabelliert [5 ; 9].

1st die zu approximierende Funktion für äquidistante
Abszissenwerte gegeben, so genügt in vielen Fällen auch eine

einfache Ermittlung des Integrales mittels der Simpsonschen
Formel. Es ist aber darauf zu achten, dass die Intervallbreite
genügend klein ist ; dies ist besonders kritisch für die Laguerre-
funktionen höherer Ordnung.

6. Numerisches Beispiel
Es sei die in Tabelle II, Kolonne 2 und in Fig. 2 als

ausgezogene Kurve dargestellte Funktion gegeben. Zur Derne n-
stration soll diese Funktion mittels Summen von Laguerre-
Funktionen angenähert werden, wobei die Approximation

\2-

1

I1

Ii

\ V
\\

ß»

\\Aw X

^y(t)

7mß

10 20 30 10 50 60 70 s 80
—f

Fig. 2
Numerisches Beispiel

gegebene Funktion; Annäherung mit reiner

Exponentialfunktion; Laguerre-Approximation mit

w(/) =e+«'; Laguerre-Approximation w(t) e Kt

mit verschiedenen Gewichtsfunktionen durchgeführt werden
soll. Die folgenden drei Fälle werden untersucht:

Fall I : w. (0=1
Fall II: w (t) e+"'
Fall III: w (t) e~°"

Der erste Schritt besteht in der Bestimmung eines

geeigneten Maßstabfaktors für die Zeitachse. Approximiert man
die Funktion gemäss Gl. (21) mittels einer reinen Exponentialfunktion,

so findet man:

yo(t) 6» 9,4e~°'08( (26)

Diese erste Annäherung ist in Fig. 2 punktiert eingetragen.
Für die folgenden Approximationen wurde der Einfachheit

halber ein a von 0,1 gewählt. Der optimale Wert von a ist
verschieden je nach der Gewichtsfunktion, a 0,1 ist ein

Wert, der gute Resultate für alle drei Gewichtsfunktionen
ergibt.

Um den Effekt der Gewichtsfunktion deutlicher zum
Vorschein kommen zu lassen, wird absichtlich die Anzahl der
Terme in der Approximation klein gehalten (A 5). Die
Koeffizienten ak wurden mittels Gauss-Laguerre-Integration
bestimmt (50 Punkte Integration, von welchen 12 in den
Bereich 0 ^ a t r 7,2 fallen).

Die Koeffizienten ak werden :

Fall I Fall II Fall III
H>0)= 1 w (0 e3"' w(O =e a'

an + 8,37 + 10,15 + 8,67
ai — 0,17 — 5,35 + 1,00
a-2, + 2,33 + 1,19 + 1,14
«3 + 0,60 + 3,67 — 0,07
Ö4 — 0,35 + 2,35 — 0,18

In Tabelle II sind die approximierenden Funktionen für
diese drei Fälle tabelliert. In Fig. 2 ist die Approximations-
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Gegebene Funktion und drei Approximationen
Numerisches Beispiel

Tabelle II

Fall I Fall II Fall III
t T =<Xt y(-r) w(l) 1 „<()=e+«< w(t) e «'

yi(r) yn(r) yiuto

0 0,0 10,30 10,77 12,00 10,49
2 0,2 7,55 7,36 7,39 7,42
4 0,4 5,15 5,08 4,69 5,20
6 0,6 3,61 3,61 3,19 3,67
8 0,8 2,70 2,70 2,42 2,68

10 1,0 2,15 2,18 2,07 2,09
12 1,2 1,83 1,88 1,94 1,78
14 1,4 1,70 1,75 1,91 1,65
16 1,6 1,62 1,69 1,92 1,62
18 1,8 1,58 1,67 1,91 1,64

20 2,0 1,60 1,66 1,88 1,67
22 2,2 1,65 1,64 1,82 1,69
24 2,4 1,72 1,61 1,73 1,69
26 2,6 1,72 1,55 1,62 1,66
28 2,8 1,67 1,48 1,49 1,59

30 3,0 1,55 1,39 1,35 1,50
32 3,2 1,40 1,29 1,21 1,38
34 3,4 1,24 1,78 1,07 1,24
36 3,6 1,04 1,06 0,94 1,10
38 3,8 0,85 0,94 0,82 0,95

40 4,0 0,70 0,83 0,70 0,80
42 4,2 0,59 0,72 0,60 0,66
44 4,4 0,50 0,61 0,50 0,52
46 4,6 0,40 0,51 0,42 0,39
48 4,8 0,33 0,42 0,35 0,27

50 5,8 0,28 0,34 0,29 0,17
52 5,2 0,20 0,27 0,23 0,07
54 5,4 0,18 0,21 0,19 0,00
56 5,6 0,13 0,15 0,15 — 0,07
58 5,8 0,11 0,10 0,12 — 0,13

60 6,0 0,10 0,06 0,09 — 0,17
62 6,2 0,08 0,03 0,07 — 0,21
64 6,4 0,06 0,00 0,05 — 0,23
66 6,6 0,04 — 0,02 0,04 — 0,25
68 6,8 0,02 — 0,04 0,03 — 0,27

70 7,0 0,01 — 0,05 0,02 — 0,27
72 7,2 0,005 — 0,06 0,01 — 0,27

der verallgemeinerten Laguerre-Funktionen, soweit es dem
Verfasser bekannt ist, nirgends in der Literatur zu finden ist, sei

sie im folgenden kurz erwähnt.
Es sei

y e~s • Ln (m t) (27)

Dann ist definitionsgemäss die Laplacetransformierte:

CO

L (y Y(s) J e~*Ln (m t) dt (28)
o

Indem man für mt Ç substituiert, kann man Ln (mt)
gemäss Gl. (5) ausdrücken als:

(29)

Der letzte Term in Gl. (29) kann geschrieben werden als:

(e~' • ÇnYn) É " )2 n ' (~ 1)"~'e_l ' (30)
i 0

1

Substituiert man Gl. (30) in Gl. (29) und dann in Gl. (28),

so erhält man:

00 « 2

Y(s) /e~st el •

—j- emt 2] n i! (-1 )«-«e"m< {mt)n^dt
0 n- i—0 '

(31)

Vertauscht man Summation und Integration, so ergibt sich:

1 f/iiVL,Y(s) _L W " V /!. (-m)"-' f e-'<s+1) *»"« d?
^ * J A \ / A (32)

OA

0.3

funktion für den Fall II strichpunktiert, für den Fall III
gestrichelt dargestellt.

Der Einfluss der Gewichtsfunktion zeigt sich noch deutlicher
in Fig. 3, wo die Fehler als Funktion der Zeit für die drei
Fälle dargestellt sind. Man sieht gut, wie die Gewichtsfunktion

w e+«' die Approximation zwingt, für grosse Werte

von t sich der gegebenen Kurve anzupassen, während die

Gewichtsfunktion er-«' gerade den umgekehrten Effekt hat.

Durch Berücksichtigung von mehr Gliedern in der Approximation

(z. B. N 8), lässt sich die Kurve mit Zeichengenauigkeit

annähern.

7. Herleitung der Laplacetransformation der

Laguerre-Funktionen

Wohl eine der attraktivsten Eigenschaften der Laguerre-
Funktionen ist die Tatsache, dass sie eine einfache
Laplacetransformierte besitzen, und dass sie deshalb leicht mittels
Analogcomputer oder elektrischen Netzwerken nachgebildet
werden können. Da die Herleitung der Laplacetransformierten
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Fehler in der Approximationsfunktion als Funktion der Zeit

e(0 y( i) — y(t)

e(r) für Fall I [tv(?) 1]; e(?) für Fall II
[„.(,) e+a']; e(0 für Fall III [w(f) e~a']
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Für den Wert des Integrales in Gl. (32) findet man in
Tabellen, z. B. [10, S. 820]:

mierte in Partialbrüche zu zerlegen. Es lässt sich (durch
mathematische Induktion), beweisen, dass:

00
— "i i

f Q-t (s-f-l) /n—i d/ Y1 lb (33)J (1+ *)»-'+1 '

Substituiert man Gl. (33) in Gl. (32), so findet man:

r» - b £ (/ <-»>- -(TT^r (34)

oder

Y(s) =~n\ '
(1 +\)n+i t " )2 ' • (« - 0 • i-mY-i (1 + s)<

(35)
oder

yw -(J+1).+1 £ /
(s + »' (36>

Die Summe im obigen Ausdruck ist aber nichts anderes als :

" / \" (— mY~* (s + 1)® (s + 1 — m)n (37)
1=0

v 1 '

so dass man für die Laplacetransformierte der Laguerre-
Funktion schliesslich findet:

F (e- • Ln (m X)) (S++\-nT (38)

Für den wichtigen Spezialfall, wo m 2 ist, ergibt sich:

L [e- ': Ln (2 x)] (39)

8. Nachbildung der Laguerre-Funktionen
auf dem Analogrechner

Es sei im folgenden wieder angenommen, die Zeitfunktion
laute

y (t) e~( • Ln (2t) (40)

Ihre Laplacetransformierte ist durch Gl. (39) gegeben. Es
soll eine Analogcomputerschaltung gefunden werden, welche
diese Funktion erzeugt. Es wurde zum Beispiel vorgeschlagen
[11], diese Funktion im Prinzip durch Serieschaltung von
Elementen von der Form (j— l)/(i+l) und einem Element
1/C?+1) zu erzeugen. Diese Art, Laguerre-Funktionen mittels
Analogrechnern zu erzeugen, kann aber nicht empfohlen
werden, da diese Schaltung zu Instabilität neigt und für
Rauschen anfällig ist. Dean [5] schlug vor, die Laplacetransfor-

Fig. 4
Blockschaltbild für die Darstellung der Laguerre-Funktionen auf einem

Analogrechner

Die resultierende Zeitfunktion dieser Schaltung ist: y(t) o~l. Ld(2t)

—^-—1)" y /—n—) (_. 2)'.-
1

(4i)(s+])n+i \n — ki L) (5+l)*+i
X

Die rechte Seite von Gl. (41) lässt sich auf einem Analogrechner

ohne Schwierigkeiten, durch den ausschliesslichen
Gebrauch von linearen Elementen stabil nachbilden. Fig. 4

zeigt das Blockschaltbild für die Analogrechner-Nachbildung
der Funktion

y (t) e~( • Z.3 (2 /) (42)

Ein Beispiel für die Analogrechner-Realisierung einer

Kurvenapproximation ist in [12] gegeben.
Tabelle III gibt die Koeffizienten für die Nachbildung der

Laguerre-Funktionen bis zur sechsten Ordnung.

Koeffizienten bjc für die Partialbruchzeriegung der Funktion
0—1 )n/(s+ l)n+1

Tabelle III
k

n 0 1 2 3 4 5 6

0 1

1 1 — 2
2 1 — 4 4
3 1 — 6 12 — 8
4 1 — 8 24 — 32 16
5 1 —10 40 — 80 80 — 32
6 1 —12 60 —160 230 —192 64

(s - 1)" _ y blc
1

(s + 1)"+1 (s + 1)»+1
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