Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 57 (1966)

Heft: 1

Artikel: Probleme der Gestaltung elektrischer Netze

Autor: Sacer, J.

DOI: https://doi.org/10.5169/seals-916558

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

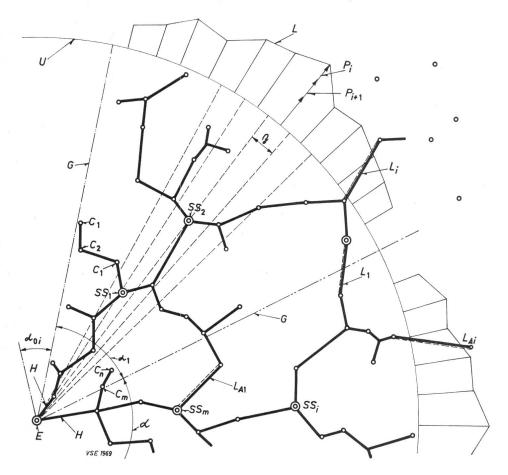
Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Probleme der Gestaltung elektrischer Netze


von J. Sacer, Neuenhof

Planungsverfahren zur Ausgestaltung von Hochspannungsnetzen

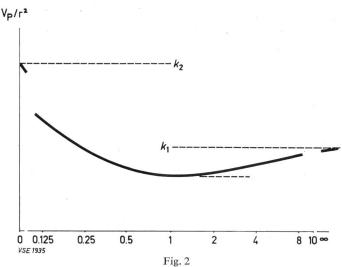
Ergänzung der Bestimmung wirtschaftlicher Leitungsverbindungen zwischen benachbarten Hauptleitungen

621.316.11

Fig. 1
Allgemeiner Netzaufbau

Im Bulletin SEV, «Seiten ds VSE», Nr. 14/65, Seite 131, wurde das neue Planungsverfahren zur optimalen Ausgestaltung eines elektrischen Netzes in Wesenszügen beschrieben, und zwar: Bestimmung der Zahl der Hauptleitungen H, die aus einem Einspeisepunkt E eines Netzes verlaufen und die Bestimmung des Verlaufes der einzelnen Hauptleitungen gemäss ihren optimalen Abweichungen $k_i = h_i/l_i$ samt ihren Nebenerscheinungen. Schliesslich wurde die Wahl der Verbindungsleitungen (L_1 , L_2 , L_i) (s. Fig. 1) zwischen benachbarten Hauptleitungen zwecks Steigerung der Betriebskontinuität (BG-Leitungen) einzelner Bedarfsstellen (C_i), die im Rahmen der diesbezüglichen Wirtschaftlichkeitsrechnung betrachtet wurden, erläutert.

Das Gebilde des optimal gestalteten elektrischen Netzes, wie es in dem oben genannten Artikel beschrieben wurde, kann natürlich nur für bestimmte Belastungszustände als genau angesehen werden: es ist nämlich zunächst dabei ein annähernd konstantes Verhältnis der Last auf benachbarten Hauptleitungen vorausgesetzt worden. Darüber hinaus sollte noch einiges beachtet werden:


1. Ausser jenen Laständerungen, die durch den ständigen Zuwachs der Belastung bedingt sind, spielen auch jene Tages- und Jahresänderungen der Belastung eine Rolle, die durch die Struktur der Verbraucher bei einzelnen Bedarfsstellen entstehen, da dadurch oft wesentliche Unterschiede in der relativen Belastung der benachbarten Hauptleitungen

sich ergeben. Es ist klar, dass ein exakt ermitteltes Gebilde eines Netzes diesen Laständerungen ebenso Rechnung zu tragen hat.

2. Bei der Dimensionierung eines Leitungsquerschnittes werden die Laständerungen auf die Weise berücksichtigt, dass aufgrund der Tages-, Monats- und Jahres-Effektivwerte der Belastung ein Effektivwert über mehrere Jahre ermittelt wird, wobei die jährliche Zuwachsrate der Belastung meistens nur geschätzt werden kann; danach wird die wirtschaftliche Stromdichte für jene Zeitspanne bestimmt, in wel-

cher der Querschnitt ausreichend gut dienen soll, und ein entsprechend normierter Querschnitt gewählt. Der Leitungsquerschnitt muss über mehrere Jahre hinaus eingesetzt bleiben, weil seine Auswechslung mit grossen Kosten verbunden ist und sich demnach nicht lohnt. Das Gleiche gilt konsequenterweise für ein Netzgebilde, abgesehen von zusätzlichen Neubauten zumindest für den Grundaufbau; dasselbe Netzgebilde in seiner Grundkonzeption muss über viele Jahre hindurch gut dienen können, vielerorts gilt diese Forderung wegen der einmal festliegenden Trassen der Leitungen im verschärften Sinne.

3. Wie vorhin angedeutet, muss ein Netzgebilde ausser den Anforderungen der ausreichenden Betriebssicherheit seiner Bedarfsstellen auch der Forderung nach einem guten Ausgleich der zeitlich verschieden schwankenden Lasten in benachbarten Hauptleitungen im Rahmen der Wirtschaftlichkeit genügen. Die Lastspitzen und -baissen verteilen sich zeitlich verschieden in einzelnen Bedarfsstellen, je nach der Struktur der an sie angeschlossenen Verbraucher: solche zeitliche Lastdiagramme der Bedarfsstellen liegen meistens vor; wo nicht, können sie aus der Struktur der Verbraucher geschätzt werden, da eine ähnliche Zusammensetzung der Verbraucher auch ähnliche Diagramme nach sich zieht. So ergeben sich in einzelnen Leitungsabschnitten benachbarter Hauptleitungen Unterschiede in der relativen Belastung ihrer

Abhängigkeit der spezifischen Leistungsverluste vom Faktor y

Querschnitte, ein höherer Leistungsverlust und damit grössere jährliche Kosten, als wenn die relative Belastung etwa ausgeglichen wäre.

4. Einen Ausgleich der relativen Belastung wird meistens eine Leitung zwecks Steigerung der Betriebskontinuität sowieso ergeben, so dass eine Berechnung der Lastausgleichsleitung (nachstehend kurz LA bezeichnet, siehe Fig. 1) sich erübrigen wird. Nach Transport-Leitungen und BG-Leitungen werden demnach noch LA-Leitungen unterschieden. Als eine reine Lastausgleich-Leitung kann diejenige bezeichnet werden, deren Wirtschaftlichkeit allein durch die Verminderung der Kosten wegen der verminderten Energieverluste begründet ist, wohingegen der Anteil der Ersparnisse wegen der gesteigerten Betriebskontinuität einzelner Bedarfsstellen durch sie vernachlässigbar bleibt.

Im allgemeinen wird es keine solche reinen Grenzfälle geben, sondern vielmehr mittlere Fälle, bei denen in einer Verbindungsleitung eine Betriebskontinuitätsleitung und eine La-Leitung vereinigt erst den wirtschaftlichen Vorteil bieten kann.

Die Hauptleitungen führen anfangs von der Einspeisestelle aus grössere Lasten als gegen ihre Enden, dafür sind aber am Anfang die relativen Belastungen an benachbarten Hauptleitungen mehr ausgeglichen. Gegen die Enden ist der Fall umgekehrt: die Lasten sind kleiner, die Unterschiede in der relativen Belastung grösser, was je durch immer kleinere Zahlen von Bedarfsstellen gegen das Ende bedingt ist.

5. Eine rechnerische Berücksichtigung des dynamischen Verhaltens der Belastung benachbarter Hauptleitungen lässt sich im Gebilde eines Hochspannungsnetzes einfach durchführen: es muss nur die Änderung der Energieverluste durch eine eventuelle LA-Leitung erfasst werden. Die Qualität der Energie wird nämlich in Hochspannungsnetzen durch Spannungsabfälle nicht beeinträchtigt, wenigstens nicht in dem Rahmen, der von normalen Stufenschaltern leicht zu bewältigen ist, was im allgemeinen der Fall ist.

Demgegenüber ist die Problematik bei Niederspannungsnetzen zusätzlich durch Änderungen der Qualität der Energie wegen der Spannungsabfälle kompliziert.

6. Für ein Hochspannungsnetz kann die Berechnung folgendermassen erfolgen: Aus zeitlichen Leistungsdiagrammen der Bedarfsstellen einer Hauptleitung werden entsprechende Leistungsdiagramme der einzelnen Leitungsabschnitte zusammengestellt oder gemessen; diese Diagramme werden dann in Stromdiagramme bei Berücksichtigung der Spannungsregulierung umgewandelt. Der Leistungsverlust in einer Drehstromleitung pro Längeneinheit ist annähernd

$$\begin{split} V_P &= I^2 \cdot R \cdot \sqrt[]{3} \cdot \left(\cos \phi + \frac{X}{R} \cdot \sin \phi \right) \cong I^2 \cdot k \\ R &= (\Omega/km) \qquad X = (\Omega/km) \end{split}$$

Daraus kann durch Integration über die Zeit und die Länge der Energieverlust ermittelt werden:

$$V_{\rm E} = \int \int V p \cdot dt \cdot dl$$

Hier interessiert aber nur die mögliche Verminderung von Energieverlusten durch LA-Leitung zwischen benachbarten Hauptleitungen.

In zwei parallel verlaufenden Leitungsabschnitten von zwei benachbarten Hauptleitungen betragen die Leistungsverluste bei einer beliebigen Aufteilung der Ströme I_1 und I_2 :

$$V_P = I_{1^2} \cdot k_1 + I_{2^2} \cdot k_2$$

Ein Minimum der gesamten Verluste V_P ergibt sich nach einfacher Berechnung dann, wenn die Aufteilung der beiden Ströme I_1 und I_2 bei einem konstanten Gesamtstrom I im umgekehrten Verhältnis der Konstanten k_1 und k_2 stattfindet:

$$I_1/I_2 = k_2/k_1$$

Die minimalen Leistungsverluste betragen dann:

$$V_{Pmin} = I^2 \cdot (k_1^2 \cdot k_2 + k_1 \cdot k_2^2) / (k_1 + k_2)^2$$

Ohne eine LA-Leitung trifft diese Aufteilung der beiden Ströme nicht zu, sondern sie stehen in einem beliebigen Verhältnis:

$$\mathbf{I_1}/\mathbf{I_2} = \mathbf{k_2} \cdot \mathbf{y}/\mathbf{k_1}$$

Dadurch entstehen erhöhte Leistungsverluste in bezug auf $V_{\mathrm{Pmin}}\mbox{:}$

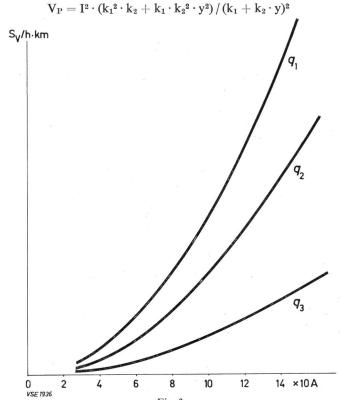


Fig. 3
Spezifische Kosten in Funktion des Stromes bei verschiedenen Querschnitten

Die Abhängigkeit der erhöhten Leistungsverluste vom Faktor y ist aus der Kurve in Fig. 2 ersichtlich. Aus dieser Kurve und aus den Kurven der spezifischen Kosten wegen der Leistungsverluste für verschiedene Querschnitte in Funktion des Stromes nach Fig. 3 lässt sich schon die Verminderung der Übertragungskosten durch eine LA-Leitung ermitteln:

$$S_{V} = C \sum_{o}^{i} \sum_{o}^{j} (V_{P, ij} - V_{Pmin, ij}) \cdot \Delta l_{i} \cdot \Delta t_{j}$$

und eine reine LA-Leitung ist durch die Bedingung gegeben:

$$S_{LA} \leq S_{V}$$

Dabei bedeuten: C= Preis pro kWh, Δ $1_i=$ betrachtete Leitungslängen, Δ $t_j=$ betrachtete Zeitintervalle, $S_{\rm LA}=$ Kosten für die LA-Leitung. Damit scheint sich ein enormer Arbeitsaufwand aufzuzwingen, um ein Netz in der hier erörterten Hinsicht genau zu berechnen.

Im allgemeinen wird sich jedoch diese Berechnung viel einfacher gestalten, da bei weitem die meisten von E gleich weit entfernten Leitungsabschnitte von benachbarten Hauptleitungen einen ähnlichen zeitlichen Leistungsverlauf aufweisen werden. Nur in Sonderfällen werden sich stärkere Tagesoder Jahresabweichungen einstellen.

Somit werden jene Fälle, die näher untersucht werden sollten, schnell überblickt und mit einigen Griffen überschlägig gut genug berechnet. Die S_V-Kosten müssen dann auch bei der Berechnung der BG-Leitungen zur Steigerung der Betriebskontinuität berücksichtigt werden, wie das im erwähnten Planungsverfahren angedeutet wurde.

Wohl könnten noch einige Punkte obiger Erörterung vertieft werden, der Zweck dieser Arbeit war aber zunächst nur, eine prinzipielle Lösung der Frage des optimalen Netzes hinsichtlich des dynamischen Verhaltens der Belastung aufzuzeichnen.

Eine sehr genaue Ausarbeitung des Planungsverfahrens scheint sich bei einer oberflächlichen Betrachtung durch folgende Umstände zu erübrigen: erstens seien die elektrischen Netze schon aufgebaut und es erfolgen nur noch Erweiterungen mit wenigen Variationsmöglichkeiten; zweitens seien Geographie- und Eigentums-Verhältnisse derart, dass sie selten den optimalen Verlauf der Leitungen zulassen; drittens sei die zukünftige Belastung im weiten Bereich eine unbestimmbare oder zumindest unzuverlässige Angabe.

Alle erwähnten Umstände mögen zutreffend sein, sie vermindern jedoch die Nützlichkeit des Planungsverfahrens keinesfalls und deshalb auch nicht die Zweckmässigkeit seiner Verfeinerung. Denn einerseits bleibt nie nur eine Variante als Lösung für das Projekt übrig, mögen die Verhältnisse noch so speziellen Charakter aufweisen, und andererseits besteht das Problem der Bestimmung der zukünftigen Belastung als Planungsunterlage unabhängig von dem Problem der Ausgestaltung des Netzes aufgrund dieser Unterlagen. Der Zusammenhang verhält sich ähnlich wie bei der Toleranz einer Passung von zwei Teilen, die von den Einzeltoleranzen der beiden Teile abhängt, wobei nun ein Teil ohne Toleranz erstellt wird.

Sicherlich wird die eventuelle Unzuverlässigkeit der Daten der zukünftigen Belastung nicht zum Verwerfen des Planungsverfahrens führen, sondern umgekehrt, das Planungsverfahren wird eine genauere Bestimmung der zukünftigen Belastung anregen; denn die Praxis braucht so ein Planungsverfahren, weil sie nichts gleichwertiges als Ersatz zu bieten vermag. In den Städten, wo eine Zonen-Bauplanung vorhanden ist, ist die zuverlässige Bestimmung der zukünftigen Belastung für einen guten Netzplan ausreichend möglich.

Allen grundsätzlichen Gegnern der Planung kann beruhigend gesagt werden, dass der Bereich derselben zunächst gar nicht erweitert werden muss, sondern dass die Planung sich noch lange einfach auf Objekte verlagern lässt, indem dann die Subjekte immer weniger eingeplant werden.

(Alle Rechte gemäss Erwähnung im oben genannten Artikel vorbehalten)

Adresse des Autors:

Joze Sacer, Dipl. Elektro-Ingenieur, Ackerstrasse 1, 5432 Neuenhof, Schweiz.

Gas und Elektrizität

Der Zürcher Regierungsrat und die Gemeindeversammlung von Pfäffikon lehnen den Gaszwang ab

662.764.003 : 621.31.003

Die Argumente der Gasleute haben offenbar nicht überall gewirkt. Am nachstehenden Beispiel kann man ermessen, dass im Konkurrenzkampf zwischen den Energieträgern nur hieb- und stichfeste Argumente auf die Dauer Erfolg haben. Die Elektrizitätswerke lehnen den Kampf nicht ab, dürfen aber verlangen, dass er mit Argumenten und nicht mit administrativen Zwangsmassnahmen geführt wird. Wir werden noch auf den Entscheid des Zürcher Regierungsrates zurückkommen. Die Redaktion

Mit Entscheid vom 18. November 1965 hat der Regierungsrat des Kantons Zürich einen Rekurs der Werkkommission der Gemeinde Pfäffikon gegen einen Entscheid des Bezirksrates Pfäffikon betreffend Verweigerung der Lieferung elektrischer Wärme-Energie abgewiesen. Die Gemeindeversammlung Pfäffikon vom 22. November bestätigte mit allen gegen eine Stimme den Antrag des Gemeinderates auf Aufhebung des sogenannten Zwangsartikels, wo-

Les arguments des gaziers n'ont de toute évidence pas été entendus partout. L'exemple qui suit prouve que seuls les arguments irréfutables peuvent garantir à la longue le succès. Les services électriques ne veulent pas éviter la concurrence, mais espèrent qu'elle se manifeste par des arguments et non pas par des mesures administratives de coercition. Nous reviendrons sur la décision du Conseil d'Etat de Zurich.

La rédaction

nach die Werkkommission berechtigt war, bei Neubauten in einem bestimmten Teil der Gemeinde die Installation von Gas als Wärme-Energieträger im Interesse einer besseren Ausnützung zu verlangen. Die gleiche Gemeindeversammlung verwarf auch wuchtig den Abschluss eines Gaslieferungsvertrages mit Uster, der für Gas zu einem Konsumentenpreis von 42 Rp. je m³ geführt hätte, was einen um 20 % höheren Paritätspreis als für Kochstrom von 10 Rp. je kWh