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sind [5]. Ersetzt man p durch — 1/7, so wird Gl. (A6) zu:

m

Z Ise Tse -0
T— Tsc

c=1

(Ab6a)

Die Wurzeln dieser Gleichung sind die Kurzschlusszeit-
konstanten.

In gleicher Weise konnen die Leerlaufzeitkonstanten aus
den Wurzeln der Gleichung:

Ra-Q(p) i ise 0

P PP)FRO(P) “1+ptec

(A7)

c=1

berechnet werden. GI. (A7) ergibt sich aus dem Vergleich
zwischen GI. (A4b) und (A5b). Mit p = —1/To wird diese zu:
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Die Wurzel dieser Gleichung sind die Leerlaufzeitkonstan-
ten.

Setzt manin Gl. (A6) p = 0 ein, so erhilt man P (0)/R. Q (0),
was Xs/R, ist. Somit kann die synchrone Reaktanz der Lings-
bzw. Querachse aus der Gleichung:

m
Xs= Ra Z ise Tse

c=1

(A8)

ermittelt werden. In dhnlicher Weise erhédlt man eine Glei-
chung fur die subtransiente Zeitkonstante, wenn man die
GI. (A7) mit p multipliziert und dann p = co setzt.
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Daraus folgt:

(A9)

Tse

Es soll hier nachdriicklich betont werden, dass die kleinste
Reaktanz X,” auch bei einer Nachbildung mit mehreren Er-
satzdampferwicklungen als subtransiente Reaktanz X;” be-
zeichnet wurde [3], obwohl die subtransiente Reaktanz ur-
spriinglich in der Theorie fiir Maschinen mit nur einer Ersatz-
dampferwicklung definiert worden ist.

Nachdem die Kurzschluss- und Leerlaufzeitkonstanten als
Wurzeln der Gl. (A6) und (A7) und die synchrone und sub-
transiente Reaktanzen nach den GIl. (A8) und (A9) ermittelt
worden sind, konnen die anderen Reaktanzen mit Hilfe von
GI1. (A2) berechnet werden. Fiir die transiente Reaktanz der
Liangsachse folgt daraus:

~L:L+lim Q) 1+pTd Ta 1
Xa' Xa 1 P(p) P Td  Xa (A10)
T
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Beitrige zum Problem der kritischen elektrischen Feldstirke in Hochspannungsgeriiten

Von G. Cremosnik, Ziirich

Ein wichtiges Problem in der Praxis der Hochspannungstech-
nik ist der Einfluss von vorstehenden Rdindern in Bezug auf die
auftretende maximale elektrische Feldstirke. Diese Feldstirke
ist nur fiir einfache Fiille theoretisch bestimmbar, wie z. B. im
Falle einer halbkreiszylindrischen Form des vorstehenden Randes.
Mit Hilfe des Spiegelungsverfahrens wurde die Berechnung auf
den Fall eines elliptischen Zylinders erweitert. Niherungsweise
kann diese Berechnung auch fiir abgerundete Plattformen ange-
wendet werden.

1. Einleitung

Im allgemeinen stehen zwei Mittel zur Verfiigung, die
maximale elektrische Feldstirke zu beeinflussen. Das erste
ist die Anwendung von Isolierstoffen mit der relativen Di-
elektrizitatskonstante grosser als Eins (g, > 1). Die Durch-
schlagsfeldstirke liegt bei diesen Isolierstoffen viel hoher,
womit auch die kritische Feldstirke beeinflusst wird.

Dieses Mittel kann jedoch nicht immer angewendet wer-
den. Denke man nur an Ausfithrungen, wo einzig Luft als
Isolation in Betracht kommt. Dazu gehdren auch Probleme
bei Strahlerzeugungssystemen im Hochvakuum, wo mit

g, =1 gerechnet werden muss. In diesen Fillen ist die kri-
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621.3.095.3
Un important probléme pratique en technique de la haute
tension est linfluence de rebords sur lintensité maximale du
champ électrique. Cette intensité ne peut étre déterminée théori-
quement que dans des cas simples, par exemple quand il sagit
d’'un rebord semi-cylindrique. A l'aide du procédé de symétrie
inverse, le calcul est étendu a un cylindre elliptique. D'une facon
approchée, ce calcul peut également étre appliqué a des formes
planes arrondies.

tische, elektrische Feldstirke nur von der geometrischen
Konfiguration abhingig. Es liegt am Konstrukteur, die geo-
metrische Ausfithrung moglichst giinstig zu gestalten, so dass
die auftretende maximale elektrische Feldstirke den kriti-
schen Wert nicht {iberschreitet.

Leider ist die maximale elektrische Feldstirke nur bei
wenigen einfachen geometrischen Formen theoretisch exakt
bestimmbar. In den meisten praktischen Fillen begniigt man
sich, die gestellte Aufgabe nur ndaherungsweise zu losen, in-
dem man vereinfachte Konfigurationen annimmt. Im folgen-
den wird ein praktisch oft auftretender zweidimensionaler
Fall theoretisch betrachtet. Das bekannte Spiegelungsverfah-
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U=0

Fig. 1

Ein halbzylindrischer Rand mit Radius 7, als Storung des homogenen
Feldes E, zwischen zwei leitenden Ebenen
x, ¥ kartesische Koordinaten; d Abstand d_e)r leitenden Ebenen; U an-
gelegte Spannung; T kritischer Punkt; m Dipolmoment (zweidime-
sional); r, d Zylinder-Koordinaten; P Feldpunkt

ren am Kreiszylinder wird auf den elliptischen Zylinder
erweitert. Die theoretisch gefundene Losung kann auf weitere
Fille naherungsweise angewendet werden.

2. Berechnung der maximalen Feldstirke an vorstehenden
Rindern

2.1 Kreiszylinder im homogenen Feld

Die Rinder in den Hochspannungsgeriten sind abgerun-
det. In erster Niherung konnen diese Riander theoretisch
als Problem eines leitenden Halbzylinders, gegeniiber der
geerdeten leitenden Wand, aufgefasst werden, wie aus Fig. 1
ersichtlich ist.

Die Aufgabe wird damit auf den bekannten Fall eines
leitenden Zylinders im homogenen elektrischen Feld iiberge-
fiihrt. Die storende Wirkung des Halbzylinders wird, wic
bekannt, mit einem Dipol (zweidimensional) in der Achse
des Zylinders nachgebildet. Das resultierende Feld folgt
durch Uberlagerung des homogenen Feldes und des Dipol-
feldes. Der geradlinige Dipol stellt nach den Spiegelungs-
gesetzen die vereinfachende Nachbildung des Einflusses der
Ladungsverteilung auf der Zylinderoberflache, die durch die
influenzierte Ladung des Zylinders entsteht, dar.

Obwohl die Losung dieses Problems bekannt ist ([1; 2;
3]), sei hier die Berechnung kurz angegeben, da analog zu
dieser der kompliziertere Fall eines elliptischen Halbzylin-
ders behandelt wird.

Fiir das elektrische Potential im beliebigen Punkt P
(Fig. 1) ausserhalb des Zylinders und infolge des homogenen
Feldes kann man schreiben (in Zylinder-Koordinaten):

Vp,=— E¢x =— Eyrcosa (€)]

Fiir das Potential, infolge des storenden Liniendipols,
folgt:
m  Ccosa

Vea=9me

=kE, % cosa 2)
Somit ist das resultierende Potential:

r@::m%+r@d:(—m4~§)amwa 3)

1) Siehe Anhang und Fig. 4.
2) Siehe Literatur am Schluss des Aufsatzes.
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Die Konstante & wird aus dem vorgeschriebenen Poten-
tial auf der Zylinderoberfliche r = r, (Aquipotentialfliche
V = 0 zu k = re? errechnet. Fiir die Berechnung der maxi-
malen Feldstirke ist die radiale Komponente E, an der Zy-
linderoberfliche wichtig. Diese folgt aus Gl. (3):

b 2
B=—(U :{%+Q&mm
r=ry r

= 4 =2FEycos« )

Die maximale Feldstirke tritt bei « = 0 bzw. « = =
(Punkt 7 in Fig. 1) auf und betrigt 2FE,. Die Feldstirke an
abgerundeten Rindern, die man als Kreiszylinder annehmen
kann, steigt bis zum zweifachen Wert der Feldstirke im
homogenen Feld.

2.2 Elliptischer Zylinder im homogenen Feld

In Wirklichkeit hat das elektrische Feld keine so elemen-
tare geometrische Formen wie unter Ziff. 2.1 behandelt.
Die Riander sind zwar abgerundet, aber die Form ist
eher elliptisch. Somit wird das Problem komplizierter, da
die influenzierte Ladung eines elliptischen Zylinders als Sto-
rung des Feldes beriicksichtigt werden muss. Auf der Ober-
flache des linken Halbzylinders befinden sich verteilte nega-
tive und auf dem anderen Halbzylinder (in Fig. 2 rechts
gestrichelt eingezeichnet) positive Ladungen, deren Summe
Null ist 1).

Anstatt den direkten Weg der Losung der Laplaceschen
Potentialgleichung zu befolgen, sei hier die einfachere Lo-
sung mit dem Spiegelungsverfahren angegeben. Analog zum
zweidimensionalen Problem mit einem Kreiszylinder sei als
Spiegeldipol ein Liniendipol mit verteilter Ladung angenom-
men. Beim Kreiszylinder war es ein elementarer Liniendipol
in dessen Mittelpunkt; beim elliptischen Zylinder sind es ana-
log auf der Verbindungslinie zwischen den zwei Brennpunk-
ten verteilte positive und negative Linienladungen. Gegen
das Unendliche wirkt sich dieser Dipol als ein einfacher
Liniendipol aus, dessen Wirkung allmihlich verschwindet.

Anstatt der kreiszylindrischen seien hier die elliptisch-
zylindrischen Koordinaten (u, v) eingefiihrt [3; 5] 2). Dabei
ist:

x =1[cosh u-cosv

5
y=Isinhu-sinv ®)
y
5
Plu,v)
b 12 \° e
s
u=uy il
d
U>0 0
(0) (U<0)
Fig. 2

Ein elliptischer Halbzylinderrand als Storung des homogenen Feldes E
zwischen zwei leitenden Ebenen
a, b Halbachsen der Ellipse; u, welliptisch-zylindrische Koordinaten
Weitere Bezeichnungen siehe Fig. 1
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Das Potential des homogenen Feldes wird:
Vp, = —Eyx = — Eylcoshu-cosv (6)

Wenn mit «, die Koordinate des elliptischen Zylinders
nach Fig. 2 bezeichnet wird, folgt fiir die Halbachsen:

a = [ cosh u,
und

b = [sinh u,
Weiter wird

I Vo

die Entfernung der Brennpunkte vom Mittelpunkt.

Von der gespiegelten Dipolladung muss das Potential
wegen des stetigen Uberganges der Tangentialkomponente
der Feldstirke die gleiche Abhédngigkeit von v haben wie das
primire homogene Potential. Somit kann fiir ¥; der Ansatz:

Va=kiEof(u)-cosv (7)

geschrieben werden. Nun ist aus der konformen Abbildung
bekannt, dass die Funktion kcosh u# das homogene Feld in
die konzentrische elliptische Kurvenschar transformiert
[2; 5]. Fiir das Dipolfeld muss bei der Feldstérung durch den
elliptischen Zylinder das Potential mit grosser werdendem
Parameter u abklingen, d. h. aus der Funktion kcosh u ver-
bleibt nur der Ansatz:

f(u) = cexp (— u) (8)

Die gleiche Losung fiir f(u) folgt auch direkt aus der La-
placeschen Differentialgleichung, wenn in diese der Losungs-
ansatz (7) eingesetzt wird [3]. Das resultierende Potential
im beliebigen Feldpunkt ausserhalb des elliptischen Zylin-
ders wird somit:

Vp = Vp, + Vpa = — Eolcosv [coshu4k =40 (l_ li)] )

Da bei u = uo (Oberfliche des storenden elliptischen Zy-
linders) nach dem Spiegelungsprinzip V' = 0 ist, ergibt sich
fiir die Unbekannte k:

cosh ug
=]— 10
k exp (— o) (e
und fiir das resultierende Potential [GI. (9)]:
_ - exp (— u)
Vp= — Eglcosv [coshu cosh ug e ] (11)

Die Feldstdrke an der Zylinderoberfliche «# = uy hat nur
die u-Komponente, da die v-Komponente (Tangentialkom-
ponente) gleich Null sein muss. Aus der Losung (11) fiir das
Potential folgt fiir die E,-Komponente im beliebigen Feld-
punkt:

1
Be=—gr =
cosv 3 exp (— u)
= FEy———— [smh u-+cosh u ] 12
! J/cosh?u — cos? v *exp (— uo) t12)
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B —
o
a o~
d
U=0 0
(0) (U=0)
Fig. 3

Ein Rand mit abgerundeter Plattenform als Storung des homogenen
Feldes E, zwischen zwei leitenden Ebenen
a, b Halbachsen der Ersatzellipse; o Kriimmungsradius im Punkt T
der Ellipse
Weitere Bezeichnungen siehe Fig. 1

wobei fiir den metrischen Koeffizienten /; 3):

hy = l/ XV (22) =1 Veosh?u — costo

eingesetzt wurde. Fiir die Zylinderoberfliche folgt aus
Gl. (12):

(13)

Ew=E e s inh h
= Ey 7=——>——=——sinh uy + cosh u,
“0 =0 cosh? up — cos?o [ o+ o]

(14)

Die maximale Feldstirke tritt an den Stellen des klein-
sten Kriimmungsradiuses auf, d. h. bei v = 0 bzw. v = m,
Aus Gl. (14) ergibt sich endlich:

Evuy max = iEo[l +Ctghuo] ==+ Ep [1 _i‘%] (15)

Fiir den Kreiszylinder gilt @ = b und GI. (15) stimmt mit
dem friither angegebenen Wert nach GI. (4) iiberein. Da
a > b ist, ist die Feldstarke nach Gl. (15) grosser als im Falle
Feld E,.

Aus der Gl. (15) ist ebenfalls ersichtlich, dass es giinstig
ist, wenn a > b ist, wie im Falle der sog. Querpolarisation
des elliptischen Zylinders. Dann wird der Ausdruck 1 + a/b
kleiner als 2 und im Falle, dass a klein, bzw. b sehr gross
ist, erhdlt man anndhernd die ungestorte Feldstirke des
homogenen Feldes.

2.3 Abgerundete Plattenform

In den praktischen Fillen ist die Form des elektrischen
Feldes nie ideal elliptisch. Gewdhnlich hat es eine Platten-
form, die am Rande abgerundet ist (Fig. 3). Die Stelle der
maximalen Feldstirke deckt sich mit der geometrischen Stelle
des minimalen Kriimmungsradiuses. Die Platte ist gewohn-
lich im Halbkreis mit dem Radius 0 abgerundet, wie dies in
Fig. 3 skizziert ist. Mit guter Naherung kann daher ange-
nommen werden, dass in diesem Fall die Feldstarke an der
kritischen Stelle den Wert eines elliptischen Zylinders hat,
der an der Léngsachse den Kriimmungsradius o aufweist. (In
Fig. 3 ist der elliptische Querschnitt gestrichelt eingezeich-
net.)

3) Fiir das entsprechende Linienelement in elliptisch—_zylindrischen
Koordinaten kann man ds, = h, du schreiben, wobei &, eine Transfor-

mationsgrosse ist.
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Fiir den Kriimmungsradius in einem Punkt T (x, y) auf
der Ellipse gilt:

2 2\3
on(Zegs e

In diesem Fall interessiert besonders der Kriimmungs-
radius im Punkte T (x = a, y = 0) auf der grosseren Halb-
achse. Fiir diesen gilt o = gmin oder nach Gl. (16):

b2

0= (17)
Daraus folgt die kleinere Halbachse:
b=Vao (18)

Mit Hilfe der Beziehung (18) kann aus der Linge des
hervorstehenden Randes a und aus dem vorgegebenen Kriim-
mungsradius o der elliptische Ersatzzylinder bestimmt wer-
den.

2.4 Beispiele

An einem praktischen Beispiel sollen die Resultate der
verschiedenen Berechnungsmdglichkeiten verglichen werden,
um den Fehler der verschiedenen Niherungsverfahren ab-
schitzen zu konnen.

Bei einer Hochspannung von 150 kV soll der Abstand
zwischen den leitenden Ebenen (Fig. 1) d = 15 cm betragen.
Der abgerundete Rand soll einen Radius von 0,5 cm haben.
Nach der GI. (4) fiir kreiszylindrische Form wird:

Enaz = Eo = 20 kV/cm

Wenn die Abrundung eine elliptische Form mit @ = 1cm,
b = 0,5 cm hat, dann wird:

Emaz - Eo (1 + Cl/b) = 3Eo = 30 kV/cm

Zuletzt soll der Plattenvorsatz von der Linge 1 cm (frii-
her a) mit o= 0,5 cm abgerundet sein. Dann wird:

Enar = 2,4 Eo = 24 kV/cm

also viel giinstiger als im Falle einer elliptischen Abrundung
mit b = 0,5 cm.

Vorausgesetzt, dass der Abstand zwischen dem Rand-
scheitel und der geerdeten Wand gleich ist, wird fiir das
obere Beispiel d = 15,5 cm und die Feldstarke des homoge-
nen Feldes auf E, = 9,67 kV/cm herabgesetzt. Dement-
sprechend folgt fiir den elliptischen Rand nach obigem Bei-
spiel:

Emaz = 3 Eo = 29 kV/cm

und fiir den abgerundeten Plattenvorsatz:
Emaz = 2,4 E() = 23,5 kV/Cm

Die maximale Feldstdarke hat sich in Bezug auf die ersten
Beispiele wenig verdandert. Mit der Vergrosserung der Distanz
zwischen den leitenden Ebenen d um 3,33 9/, hat sich die
maximale Feldstirke auch um 3,33 9/, verdndert. Die geo-
metrische Form der Abrundung hat dagegen einen viel gros-
seren Einfluss. Fiir die Praxis ist es wichtig, immer die giin-
stigste Form zu verwirklichen.

3. Anhang

In theoretischer Hinsicht ist es interessant, die Verteilung
der Spiegelladung auf der Verbindungslinie der beiden
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Fig. 4
Die Ladungsdichteverteilung auf der Oberfliiche eines elliptischen Zylinders
im homogenen Feld E  und die Spiegellad verteilung (Linienladungen)

an der Verbindungsebene zwischen den beiden Brennpunkten
k Dimensionsgrésse; 2 | Brennpunktabstand der Ellipse; F,, F, Brenn-
punkte der Ellipse
Weitere Bezeichnungen siehe Fig. 1 und 2

Brennpunkte eines elliptischen Zylinders zu kennen. Diese
Ladungsverteilung muss mit dem urspriinglichen homoge-
nen Feld auf der Oberflache des elliptischen Zylinders die
gleiche Ladungsverteilung hervorrufen, wie sie in Wirklich-
keit infolge der Polarisation des elliptischen Zylinders ent-
steht. Diese kann leicht aus Gl. (14) fiir die Normalkompo-
nente der Feldstdarke auf den elliptischen Zylinder berechnet
werden. Es ist:

sinh uy + cosh up

on=¢Ey=¢ By —————
Vcosh2 Uy — cos?v

cos v (19)

Fiir die Verbindungslinie zwischen den zwei Brennpunk-
ten gilt # = 0 und nach Gl. (19):

on =€ Egctgo (20)

Die Ladungsdichte wird in den Brennpunkten unendlich
und in der Mitte, wo v=m/2 ist, gleich Null. Aus GI. (20)
kann gleich die Linienladungsverteilung an der Verbindungs-
linie zwischen den beiden Brennpunkten angegeben werden:

gq=onl=cEylctgv

Die Ladungsdichteverteilung auf der Zylinderoberfliche
sowie die Spiegelladungsverteilung an der Verbindungslinie
zwischen den beiden Brennpunkten zeigt Fig. 4.

Prof. Dr. E. Baumann, Leiter der Abteilung fiir indu-
strielle Forschung an der ETH, dankt der Autor fiir die
Erlaubnis zur Veroffentlichung dieser Arbeit.
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