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sind [5]. Ersetzt man p durch — IjT, so wird Gl. (A6) zu:
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Daraus folgt:
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Die Wurzeln dieser Gleichung sind die Kurzschlusszeitkonstanten.

In gleicher Weise können die Leerlaufzeitkonstanten aus

den Wurzeln der Gleichung:

(A7)

berechnet werden. Gl. (A7) ergibt sich aus dem Vergleich
zwischen Gl. (A4b) und (A5b). Mit p —l/7o wird diese zu:

(A7a)

(A8)

Es soll hier nachdrücklich betont werden, dass die kleinste
Reaktanz Xsn" auch bei einer Nachbildung mit mehreren
Ersatzdämpferwicklungen als subtransiente Reaktanz Xs"
bezeichnet wurde [3], obwohl die subtransiente Reaktanz
ursprünglich in der Theorie für Maschinen mit nur einer
Ersatzdämpferwicklung definiert worden ist.

Nachdem die Kurzschluss- und Leerlaufzeitkonstanten als

Wurzeln der Gl. (A6) und (A7) und die synchrone und
subtransiente Reaktanzen nach den Gl. (A8) und (A9) ermittelt
worden sind, können die anderen Reaktanzen mit Hilfe von
Gl. (A2) berechnet werden. Für die transiente Reaktanz der
Längsachse folgt daraus :

Die Wurzel dieser Gleichung sind die Leerlaufzeitkonstanten.

Setzt man in Gl. (A6)p 0 ein, so erhält man P (0)/Ra Q (0),

was Xs/Ra ist. Somit kann die synchrone Reaktanz der Längsbzw.

Querachse aus der Gleichung:
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ermittelt werden. In ähnlicher Weise erhält man eine
Gleichung für die subtransiente Zeitkonstante, wenn man die

Gl. (A7) mit p multipliziert und dann p oo setzt.

P'RaQiP) Ra
p-P(p)+Ra-Q(p)~~X7
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Beiträge zum Problem der kritischen elektrischen Feldstärke in Hochspannungsgeräten
Von G. Cremosnik, Zürich

Ein wichtiges Problem in der Praxis der Hochspannungstechnik
ist der Einfluss von vorstehenden Rändern in Bezug auf die

auftretende maximale elektrische Feldstärke. Diese Feldstärke
ist nur für einfache Fälle theoretisch bestimmbar, wie z. B. im
Falle einer halbkreiszylindrischen Form des vorstehenden Randes.
Mit Hilfe des Spiegelungsverfahrens wurde die Berechnung auf
den Fall eines elliptischen Zylinders erweitert. Näherungsweise
kann diese Berechnung auch für abgerundete Plattformen
angewendet werden.

621.3.095.3

Un important problème pratique en technique de la haute
tension est l'influence de rebords sur l'intensité maximale du
champ électrique. Cette intensité ne peut être déterminée
théoriquement que dans des cas simples, par exemple quand il s'agit
d'un rebord semi-cylindrique. A l'aide du procédé de symétrie
inverse, le calcul est étendu à un cylindre elliptique. D'une façon
approchée, ce calcul peut également être appliqué à des formes
planes arrondies.

1. Einleitung
Im allgemeinen stehen zwei Mittel zur Verfügung, die

maximale elektrische Feldstärke zu beeinflussen. Das erste

ist die Anwendung von Isolierstoffen mit der relativen
Dielektrizitätskonstante grösser als Eins (er > 1). Die
Durchschlagsfeldstärke liegt bei diesen Isolierstoffen viel höher,
womit auch die kritische Feldstärke beeinflusst wird.

Dieses Mittel kann jedoch nicht immer angewendet werden.

Denke man nur an Ausführungen, wo einzig Luft als

Isolation in Betracht kommt. Dazu gehören auch Probleme
bei Strahlerzeugungssystemen im Hochvakuum, wo mit

sr 1 gerechnet werden muss. In diesen Fällen ist die kri¬

tische, elektrische Feldstärke nur von der geometrischen
Konfiguration abhängig. Es liegt am Konstrukteur, die
geometrische Ausführung möglichst günstig zu gestalten, so dass

die auftretende maximale elektrische Feldstärke den
kritischen Wert nicht überschreitet.

Leider ist die maximale elektrische Feldstärke nur bei

wenigen einfachen geometrischen Formen theoretisch exakt
bestimmbar. In den meisten praktischen Fällen begnügt man
sich, die gestellte Aufgabe nur näherungsweise zu lösen,
indem man vereinfachte Konfigurationen annimmt. Im folgenden

wird ein praktisch oft auftretender zweidimensionaler
Fall theoretisch betrachtet. Das bekannte Spiegelungsverfah-
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Fig. 1

Ein liulbzylindrisciier Rand mit Radius >\ als Störung des homogenen
Feldes E0 zwischen zwei leitenden Ebenen

x, y kartesische Koordinaten; d Abstand der leitenden Ebenen; U
angelegte Spannung; T kritischer Punkt; m Dipolmoment (zweidime-

sional); r, d Zylinder-Koordinaten; P Feldpunkt

ren am Kreiszylinder wird auf den elliptischen Zylinder
erweitert. Die theoretisch gefundene Lösung kann auf weitere
Fälle näherungsweise angewendet werden.

2. Berechnung der maximalen Feldstärke an vorstehenden
Rändern

2.1 Kreiszylinder im homogenen Feld

Die Ränder in den Hochspannungsgeräten sind abgerundet.

In erster Näherung können diese Ränder theoretisch
als Problem eines leitenden Halbzylinders, gegenüber der

geerdeten leitenden Wand, aufgefasst werden, wie aus Fig. 1

ersichtlich ist.
Die Aufgabe wird damit auf den bekannten Fall eines

leitenden Zylinders im homogenen elektrischen Feld übergeführt.

Die störende Wirkung des Halbzylinders wird, wie

bekannt, mit einem Dipol (zweidimensional) in der Achse
des Zylinders nachgebildet. Das resultierende Feld folgt
durch Überlagerung des homogenen Feldes und des Dipolfeldes.

Der geradlinige Dipol stellt nach den Spiegelungsgesetzen

die vereinfachende Nachbildung des Einflusses der

Ladungsverteilung auf der Zylinderoberfläche, die durch die

influenzierte Ladung des Zylinders entsteht, dar.

Obwohl die Lösung dieses Problems bekannt ist ([1; 2;

3]), sei hier die Berechnung kurz angegeben, da analog zu
dieser der kompliziertere Fall eines elliptischen Halbzylinders

behandelt wird.
Für das elektrische Potential im beliebigen Punkt P

(Fig. 1) ausserhalb des Zylinders und infolge des homogenen
Feldes kann man schreiben (in Zylinder-Koordinaten):

VPt — E0 x — Ed r cos a (1)

Für das Potential, infolge des störenden Liniendipols,
folgt:

in cos a „ 1

Vpä " =kEo — cos a (2)
2 7t e r r

Somit ist das resultierende Potential:

Vp Vp„ + Vpa (— r + yj E0 cos a (3)

*) Siehe Anhang und Fig. 4.
2) Siehe Literatur am Schluss des Aufsatzes.

Die Konstante k wird aus dem vorgeschriebenen Potential

auf der Zylinderoberfläche r r„ (Äquipotentialfläche
V 0 zu k r0- errechnet. Für die Berechnung der

maximalen Feldstärke ist die radiale Komponente Er an der
Zylinderoberfläche wichtig. Diese folgt aus Gl. (3):

Er — + 1^ Locos a =2£0cosa (4)

Die maximale Feldstärke tritt bei a 0 bzw. a n
(Punkt T in Fig. 1) auf und beträgt 2En. Die Feldstärke an

abgerundeten Rändern, die man als Kreiszylinder annehmen

kann, steigt bis zum zweifachen Wert der Feldstärke im
homogenen Feld.

2.2 Elliptischer Zylinder im homogenen Feld

In Wirklichkeit hat das elektrische Feld keine so elementare

geometrische Formen wie unter Ziff. 2.1 behandelt.
Die Ränder sind zwar abgerundet, aber die Form ist
eher elliptisch. Somit wird das Problem komplizierter, da
die influenzierte Ladung eines elliptischen Zylinders als

Störung des Feldes berücksichtigt werden muss. Auf der
Oberfläche des linken Halbzylinders befinden sich verteilte negative

und auf dem anderen Halbzylinder (in Fig. 2 rechts

gestrichelt eingezeichnet) positive Ladungen, deren Summe

Null ist 1).

Anstatt den direkten Weg der Lösung der Laplaceschen
Potentialgleichung zu befolgen, sei hier die einfachere

Lösung mit dem Spiegelungsverfahren angegeben. Analog zum
zweidimensionalen Problem mit einem Kreiszylinder sei als

Spiegeldipol ein Liniendipol mit verteilter Ladung angenommen.

Beim Kreiszylinder war es ein elementarer Liniendipol
in dessen Mittelpunkt; beim elliptischen Zylinder sind es analog

auf der Verbindungslinie zwischen den zwei Brennpunkten

verteilte positive und negative Linienladungen. Gegen
das Unendliche wirkt sich dieser Dipol als ein einfacher

Liniendipol aus, dessen Wirkung allmählich verschwindet.

Anstatt der kreiszylindrischen seien hier die
elliptischzylindrischen Koordinaten (t/, v) eingeführt [3; 5] 2). Dabei
ist:

x - /cosh U"cosv ^y / sinh u • sin v

y

u> 0 0

(0) (L/<0)
Fig. 2

Ein elliptischer Halbzylinderrand als Störung des homogenen Feldes E0
zwischen zwei leitenden Ebenen

a, b Halbachsen der Ellipse; u, v elliptisch-zylindrische Koordinaten
Weitere Bezeichnungen siehe Fig. 1

P(u.v)

u

d
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Das Potential des homogenen Feldes wird:

Vp„ — E0 x — E0 / cosh u cos v (6)

Wenn mit u0 die Koordinate des elliptischen Zylinders
nach Fig. 2 bezeichnet wird, folgt für die Halbachsen :

und

Weiter wird

a / cosh «o

b / sinh M0

/= ya2— b"-

die Entfernung der Brennpunkte vom Mittelpunkt.
Von der gespiegelten Dipolladung muss das Potential

wegen des stetigen Überganges der Tangentialkomponente
der Feldstärke die gleiche Abhängigkeit von v haben wie das

primäre homogene Potential. Somit kann für V,i der Ansatz:

Vd — ÄTi £"o f (m) • cos v (7)

geschrieben werden. Nun ist aus der konformen Abbildung
bekannt, dass die Funktion /tcosh u das homogene Feld in
die konzentrische elliptische Kurvenschar transformiert
[2; 5], Für das Dipolfeld muss bei der Feldstörung durch den

elliptischen Zylinder das Potential mit grösser werdendem
Parameter u abklingen, d. h. aus der Funktion fccosh u
verbleibt nur der Ansatz:

f(M) c exp (— m) (8)

Die gleiche Lösung für f(m) folgt auch direkt aus der La-
placeschen Differentialgleichung, wenn in diese der Lösungsansatz

(7) eingesetzt wird [3], Das resultierende Potential
im beliebigen Feldpunkt ausserhalb des elliptischen Zylinders

wird somit:

Vp — Vp, + Vp,i — E0 / cos «[cosha-fc6*^-^] (9)

Da bei m u0 (Oberfläche des störenden elliptischen
Zylinders) nach dem Spiegelungsprinzip V 0 ist, ergibt sich

für die Unbekannte k:

k l- cosh M0

exp (— M0)

und für das resultierende Potential [Gl. (9)]:

exp (— m)

(10)

Vp — E0/ cos v [cosh m — cosh m0
exp (— M0)

Ol)

Die Feldstärke an der Zylinderoberfläche u u0 hat nur
die M-Komponente, da die r-Komponente (Tangentialkomponente)

gleich Null sein muss. Aus der Lösung (11) für das

Potential folgt für die /^-Komponente im beliebigen
Feldpunkt:

Eu -

1 dV
hl du

E0 -,
COS V [sinh m+cosh M0

eXp [—~1 (12)
1 cosh2 u - cos2 v

L exp(-M0)J

U>0
(0)

0
(ü< 0)

Fig. 3

Ein Rand mit abgerundeter Plattenform als Störung des homogenen
Feldes E0 zwischen zwei leitenden Ebenen

a, b Halbachsen der Ersatzellipse; q Krümmungsradius im Punkt T
der Ellipse

Weitere Bezeichnungen siehe Fig. 1

wobei für den metrischen Koeffizienten hi3):

hl i(Im") + (^« 7 ^cosh2 u ~ cos2~^ (13^

eingesetzt wurde. Für die Zylinderoberfläche folgt aus
Gl. (12):

cos V

Eu° E° 1/cosh3^^^ tsinh + cosh "•] (14)

Die maximale Feldstärke tritt an den Stellen des kleinsten

Krümmungsradiuses auf, d. h. bei v 0 bzw. v 71.

Aus Gl. (14) ergibt sich endlich:

Eu0 max — ± Eq [IT Ctgh Mo] + Eq [ 1 4—(15)
Für den Kreiszylinder gilt a b und Gl. (15) stimmt mit

dem früher angegebenen Wert nach Gl. (4) überein. Da
a > b ist, ist die Feldstärke nach Gl. (15) grösser als im Falle
Feld E0.

Aus der Gl. (15) ist ebenfalls ersichtlich, dass es günstig
ist, wenn a > b ist, wie im Falle der sog. Querpolarisation
des elliptischen Zylinders. Dann wird der Ausdruck 1 + a/b
kleiner als 2 und im Falle, dass a klein, bzw. b sehr gross
ist, erhält man annähernd die ungestörte Feldstärke des

homogenen Feldes.

2.3 Abgerundete Plattenform

In den praktischen Fällen ist die Form des elektrischen
Feldes nie ideal elliptisch. Gewöhnlich hat es eine Plattenform,

die am Rande abgerundet ist (Fig. 3). Die Stelle der
maximalen Feldstärke deckt sich mit der geometrischen Stelle
des minimalen Krümmungsradiuses. Die Platte ist gewöhnlich

im Halbkreis mit dem Radius q abgerundet, wie dies in
Fig. 3 skizziert ist. Mit guter Näherung kann daher
angenommen werden, dass in diesem Fall die Feldstärke an der
kritischen Stelle den Wert eines elliptischen Zylinders hat,
der an der Längsachse den Krümmungsradius q aufweist. (In
Fig. 3 ist der elliptische Querschnitt gestrichelt eingezeichnet.)

:!) Für das entsprechende Linienelement in elliptisch-zylindrischen
Koordinaten kann man ds„ h± du schreiben, wobei E eine Transfor-
mationsgrösse ist.

Bull. ASE 56(1965)21, 16 octobre (A 620) 951



Für den Krümmungsradius in einem Punkt T (x, y) auf
der Ellipse gilt:

r2

b*i

k ctg v

q — a (16)

In diesem Fall interessiert besonders der Krümmungsradius

im Punkte T (x a, y 0) auf der grösseren
Halbachse. Für diesen gilt q Qmi„ oder nach Gl. (16):

Daraus folgt die kleinere Halbachse:

b yW (18)

Mit Hilfe der Beziehung (18) kann aus der Länge des

hervorstehenden Randes a und aus dem vorgegebenen
Krümmungsradius q der elliptische Ersatzzylinder bestimmt werden.

2.4 Beispiele

An einem praktischen Beispiel sollen die Resultate der
verschiedenen Berechnungsmöglichkeiten verglichen werden,
um den Fehler der verschiedenen Näherungsverfahren
abschätzen zu können.

Bei einer Hochspannung von 150 kV soll der Abstand
zwischen den leitenden Ebenen (Fig. 1) d — 15 cm betragen.
Der abgerundete Rand soll einen Radius von 0,5 cm haben.

Nach der Gl. (4) für kreiszylindrische Form wird:

Emax " E0 20 kV/cm

Wenn die Abrundung eine elliptische Form mit a 1 cm,
b 0,5 cm hat, dann wird:

Emax E0 (1 + a/b) 3 E0 30 kV/cm

Zuletzt soll der Plattenvorsatz von der Länge 1 cm (früher

a) mit p 0,5 cm abgerundet sein. Dann wird:

Emax — 2,4 E0 24 kV/cm

also viel günstiger als im Falle einer elliptischen Abrundung
mit b 0,5 cm.

Vorausgesetzt, dass der Abstand zwischen dem
Randscheitel und der geerdeten Wand gleich ist, wird für das

obere Beispiel d 15,5 cm und die Feldstärke des homogenen

Feldes auf E0 — 9,67 kV/cm herabgesetzt.
Dementsprechend folgt für den elliptischen Rand nach obigem
Beispiel:

Emax — 3 E0 29 kV/cm

und für den abgerundeten Plattenvorsatz:

Emax — 2,4 E0 23,5 kV/cm

Die maximale Feldstärke hat sich in Bezug auf die ersten

Beispiele wenig verändert. Mit der Vergrösserung der Distanz
zwischen den leitenden Ebenen d um 3,33 °/o hat sich die
maximale Feldstärke auch um 3,33 "/o verändert. Die
geometrische Form der Abrundung hat dagegen einen viel
grösseren Einfluss. Für die Praxis ist es wichtig, immer die
günstigste Form zu verwirklichen.

Fig. 4

Die Ladungsdichteverteilung auf der Oberfläche eines elliptischen Zylinders
im homogenen Feld E0 und die Spiegelladungsverteilung (Linienladungen)

an der Verbindungsebene zwischen den beiden Brennpunkten
k Dimensionsgrösse; 2 / Brennpunktabstand der Ellipse; Fly F2 Brenn¬

punkte der Ellipse
Weitere Bezeichnungen siehe Fig. 1 und 2

Brennpunkte eines elliptischen Zylinders zu kennen. Diese

Ladungsverteilung muss mit dem ursprünglichen homogenen

Feld auf der Oberfläche des elliptischen Zylinders die
gleiche Ladungsverteilung hervorrufen, wie sie in Wirklichkeit

infolge der Polarisation des elliptischen Zylinders
entsteht. Diese kann leicht aus Gl. (14) für die Normalkomponente

der Feldstärke auf den elliptischen Zylinder berechnet
werden. Es ist:

Gn - e En e E,
sinh u0 + cosh u0

(/cosh2 «o — cos2 v
cos v (19)

Für die Verbindungslinie zwischen den zwei Brennpunkten

gilt u 0 und nach Gl. (19):

an e E„ Ctg v (20)

Die Ladungsdichte wird in den Brennpunkten unendlich
und in der Mitte, wo v=n/2 ist, gleich Null. Aus Gl. (20)
kann gleich die Linienladungsverteilung an der Verbindungslinie

zwischen den beiden Brennpunkten angegeben werden:

q on l e E01 ctg v

Die Ladungsdichteverteilung auf der Zylinderoberfläche
sowie die Spiegelladungsverteilung an der Verbindungslinie
zwischen den beiden Brennpunkten zeigt Fig. 4.

Prof. Dr. E. Baumann, Leiter der Abteilung für
industrielle Forschung an der ETH, dankt der Autor für die

Erlaubnis zur Veröffentlichung dieser Arbeit.
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3. Anhang

In theoretischer Hinsicht ist es interessant, die Verteilung
der Spiegelladung auf der Verbindungslinie der beiden
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