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BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizititswerke (VSE)

Programmierung elektrotechnischer Probleme beim Einsatz von Digitalrechnern

Von H. Dommel, Miinchen

Der Digitalrechner wird zunehmend zur Losung elektrotechni-
scher Probleme eingesetzt. Sicher wird er eines Tages fiir den In-
genieur ein selbstverstindliches Hilfsmittel bei grosseren Auf-
gaben sein, wenn Rechenschieber und Tischrechenmaschine nicht
mehr ausreichen. Unbehagen gegeniiber Digitalrechnern méchte
der Verfasser als unbegriindet entkrdften und aufzeigen, wie ein-
fach Programmieren ist.

Nach einem Uberblick iiber Aufbau und Wirkungsweise des
Digitalrechners und sein Befehlssystem wird anhand konkreter
Beispiele das Vorgehen beim Programmieren gezeigt. Die An-
fertigung eines Maschinenprogrammes aus einem Flussdiagramm
wird kurz skizziert; die Programmierung in der Formelsprache
ALGOL wird wegen ihrer wachsenden Bedeutung eingehender
beschrieben. Am Problem der Kurzschlussberechnung soll ab-
schliessend die praktische Anwendung gezeigt werden.

Bei Verwendung eines Digitalrechners liegt die schopferische
Arbeit in der prazisen Festlegung des Liosungswegs. Die an-
schliessende Formulierung eines Programmes ist dann nur noch
eine cinfache Aufgabe.

1. Einleitung

Programmgesteuerte elektronische Rechenanlagen — auch
Digitalrechner genannt — brachten einen umwilzenden Fort-
schritt fiir das Zahlenrechnen im Bereich der Wissenschaft,
Technik und Wirtschaft. Uberall, wo Daten in irgendeiner
Form «verarbeitet», z. B. umgerechnet oder sortiert werden
miissen, konnen Digitalrechner unvergleichlich schneller als
der Mensch Routineaufgaben erledigen. In zunehmendem
Masse werden Digitalrechner deshalb auch zur Losung von
elektrotechnischen Aufgaben verschiedenster Art herangezo-
gen.

Zahlreiche Probleme der Elektrotechnik lassen sich mit ge-
niigender Genauigkeit analytisch 16sen. Hier liegt ein sehr
weites Anwendungsgebiet fiir den Digitalrechner. Wahrend man
frither einfache und rasch auswertbare «Faustformeln» gerne
benutzt und dafiir Ungenauigkeiten in Kauf genommen hat,
besteht heute die Tendenz, bei Digitalrechnern weitgehend
exakte Rechenverfahren zu verwenden. Einerseits féllt der
Mehraufwand bei den hohen Rechengeschwindigkeiten meist
kaum ins Gewicht und anderseits konnen dadurch Genauig-
keitsabschitzungen entfallen, die bei Faustformeln immer etwas
schwierig sind, vor allem wenn auf neuen Gebieten wenig
Rechenerfahrungen vorliegen. Manche Probleme lassen sich
iiberhaupt erst mit Hilfe eines Digitalrechners analytisch 10sen.
Hiezu zdhlen u. a. die Berechnungen des Betriebsverhaltens
elektrischer Netze [1; 2]1) eine Aufgabe, die vorher nur mittels
Modellmessungen zu 16sen war.

1) Siehe Literatur am Schluss des Aufsatzes.
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Le calculateur numérique est de plus en plus souvent utilisé
pour résoudre des problemes d’électrotechnique. Il deviendra
certainement l'outil courant de l'ingénieur pour les calculs d’'une
certaine ampleur, pour lesquels la régle a calcul et la simple
machine a calculer ne suffisent plus. L'auteur montre que les
calculateurs numériques n'ont rien de trés mystérieux et que la
programmation n'est pas bien compliquée.

Aprés une bréve description de la construction et du fonction-
nement du calculateur numérique et de son systéme d’ordination,
il donne quelques exemples concrets de programmation, puis dé-
crit schématiquement la maniére d’établir un programme de cal-
culateur en partant d’un graphe de fluence. Il s’étend ensuite plus
longuement sur le langage de programmation (langage algo-
rithmique, ALGOL), dont I'importance ne cesse de s'accroitre.
Pour terminer, l'auteur indique, a titre d’application pratique, le
probléme du calcul du cas d’un court-circuit.

Lors de lutilisation d’'un calculateur numérique, le travail
créateur consiste a déterminer d’'une fagon précise la voie de la
solution. L’établissement d'un programme n'est ensuite qi'une
tache relativement simple.

Immer mehr wird der Digitalrechner auch fiir solche Auf-
gaben eingesetzt, wo sich durch Verindern von Parametern
eine Vielzahl von moglichen Losungen ergibt, aus denen dann
nach bestimmten Gesichtspunkten nur die giinstigste ausge-
sucht wird. Typische Beispiele dieses Aufgabentyps sind die
Entwurfsberechnungen fiir elektrische Maschinen [3] und fiir
Transformatoren [4]. Interessant ist in diesem Zusammenhang
die Verwendung von Digitalrechnern fiir Netzplanungen [5],
wo viele mogliche Varianten «durchgespielt» werden, um u. a.
mit Methoden der Wahrscheinlichkeit Planungsunterlagen zu
gewinnen.

In Zukunft wird man den Digitalrechner vermutlich immer
mehr auch zur Steuerung technisch komplizierter Vorginge
einsetzen. So wird zur Zeit die Frage diskutiert, ob die Last-
verteilung in einem Netz von einem Digitalrechner automa-
tisch nach wirtschaftlichen Gesichtspunkten gesteuert werden
soll [6;7]. Auch die zentrale Uberwachung und Steuerung
grosser Dampfkraftwerke kann eine « Prozess-Rechenanlage»
iibernehmen [8]. Bei allen Steuerungsaufgaben miissen Mess-
werte direkt der Rechenanlage zugefiihrt werden, die dann auf
Grund von daraus berechneten Resultaten ihrerseits wieder die
Auslosung von Regel- und Warnimpulsen veranlasst.

Auf allen Gebieten nimmt der Digitalrechner dem Ingenieur
lastige Routinearbeit ab und macht ihn fiir schopferische Auf-
gaben frei. Es ist deshalb lohnenswert, die Moglichkeiten dieses
neuen, leistungsfdhigen Hilfsmittels richtig zu erkennen. «Da
der Digitalrechner nun eine Hilfskraft ist, die_tiberhaupt keine
Einsicht in das hat, was sie tut, muss man ihr eine Arbeitsvor-
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schrift geben, die bis ins kleinste Detail hinein den Ablauf der
durchzufiihrenden Arbeiten eindeutig festlegt» [10]. Wie eine
solche Arbeitsvorschrift in ein «Programm» gekleidet wird,
versucht dieser Aufsatz im folgenden an Hand einfacher Bei-
spiele zu schildern, ohne dabei auf spezielle Digitalrechner ein-
zugehen.

2. Die Losung eines technisch-wissenschaftlichen Problems

Bei der Behandlung eines technisch-wissenschaftlichen Pro-
blems gelangt man schematisch tiber 4 Stufen zur Losung:

1. Idealisierung des Problems durch Schaffung einer Modellvor-
stellung;

2. Beschreibung des Modells durch einen mathematischen Ansatz;

3. Auswahl eines konstruktiven Losungsverfahrens;

4. Wertmissige Losung, und zwar entweder

a) ziffernmissig (von Hand, Tischrechenmaschine, Digitalrech-
ner);

b) analog (Rechenschieber, Netzmodell) oder

c) graphisch.

Handelt es sich beispielsweise um die Berechnung der Kurz-
schlusstrome in einem Netz, so konnte man in der 1. Stufe das
Netz durch eine fiir Kurzschlussberechnungen zulédssige Er-
satzschaltung darstellen, in der 2. Stufe hiefiir die Knoten-
punktgleichungen anschreiben, in der 3. Stufe als Losungsver-
fahren die Eliminationsmethode wihlen und in der 4. Stufe mit
einer Tischrechenmaschine die Werte ziffernmdissig ermitteln.
Es ist klar, dass eine Modellvorstellung die physikalische Wirk-
lichkeit nur fiir das spezielle Problem richtig wiedergibt. So ist
bei einer Freileitung das «Modell» eines Ohmschen Wider-
standes zwar brauchbar fiir die Berechnung der stationdren
Strome und Spannungen bei Gleichstrom, aber unbrauchbar
fiir die Berechnung elektromagnetischer Ausgleichsvorgidnge
oder gar fiir die Berechnung des Durchhangs.

Wihrend die 1. Stufe eine rein ingenieurméssige Aufgabe
ist, wird in der 3. Stufe oft die Hilfe eines Mathematikers oder
eines mathematisch versierten Ingenieurs notwendig sein. Als
Beispiel fiir die Wahl eines Losungsverfahrens sei die Auf-
16sung von n linearen Gleichungen mit » Unbekannten be-
trachtet, eine Aufgabe, die sich bei fast allen Netzberechnungen
stellt. Tabelle I zeigt abgerundet die von R. Sauer [9] angege-
benen Rechenzeiten fiir einen Digitalrechner, einmal bei Ver-
wendung des Eliminationsverfahrens nach Gauss [11], zum
anderen bei Verwendung der bekannten Cramerschen Deter-
minanten-Regel. Die mit steigender Zahl » der Unbekannten
hoffnungslos wachsenden Rechenzeiten bei der Cramer-Regel
zeigen drastisch, welche Sorgfalt bei der Wahl eines Losungs-
verfahrens notwendig ist. Schon einfache Probleme erfordern
oft sehr griindliche mathematische Kenntnisse.

Ungefiihre Rechenzeiten bei 200 Operationen|s zur Aufldsung von n
linearen Gleichungen mit n Unbekannten [9]

Tabelle I
Anzahl n der Elimination Cramersche
Unbekannten nach Gauss Determinanten-Regel
5 1,5s 1 min
10 10s 85 Tage
20 1 min 1011 Jahre

Es sei ausdriicklich darauf hingewiesen, dass der Digital-
rechner ausschliesslich auf der letzten und 4. Stufe seine Dienste
als Hilfskraft anbieten kann.
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3. Der Digitalrechner

Aufbau und Wirkungsweise eines Digitalrechners seien,
ohne auf Einzelheiten einzugehen, an Hand von Fig. 1 erldutert.
Der Digitalrechner besteht im wesentlichen aus:

1. Rechenwerk, das der Tischrechenmaschine eines Rechners ver-
gleichbar ist und wie diese verschiedene Register zur Ausfithrung der
4 Grundrechnungsarten besitzt;

2. Speicher, vergleichbar den Papierblittern eines Rechners, auf
denen er Rechenablauf und Zwischenergebnisse notiert ;

3. Steuerwerk, das die steuernde Tétigkeit des Rechners iiber-
nimmt und

4. u. 5. Ein-und Ausgabegeriten, die eine Verbindung des Digi-
talrechners mit der Aussenwelt herstellen.

Der Speicher kann entweder Zahlen (Ausgangszahlen,
Zwischenergebnisse) oder auch Befehle aufnehmen; der Inhalt
einer Speicherzelle wird « Wort» genannt. Ein Wort kann also
ein Befehl oder eine Zahl sein. Betrigt die « Wortldnge» des
Digitalrechners z. B. 10 Dezimalstellen, so wird die Rechnung
grundsatzlich 10-stellig ausgefiihrt; die Befehle wiren dann als
10-stellige Zahlen verschliisselt 2). Beim Rechnen holt sich das
Steuerwerk fortlaufend Befehl fiir Befehl (Wort fiir Wort) aus
den Zellen des Speichers, entschliisselt sie und fiihrt die ent-
sprechenden Operationen im Rechenwerk aus. Die Leistungs-
fihigkeit eines Digitalrechners wird wesentlich durch Art und
Grosse des Speichers bestimmt. Je weniger Zeit zum Auf-
suchen eines Wortes im Speicher notwendig ist (« Zugriffszeit»),
desto schneller lduft die Rechnung ab. Die Zugriffszeit bei
rotierenden Trommelspeichern mit magnetischer Oberfliche
betrigt 5...20 ms, bei Ferritkern-Speichern 5...15 ys und bei
den neuerdings verwendeten magnetischen Diinnschicht-Spei-
chern bis herab zu 100 ns. Die Kapazitit von Trommelspeichern
liegt bei 4000...30000 Worten, von Magnetkernspeichern bei
2000...60000 Worten.

Eingabegerite sind notwendig, um die Befehlsliste und die
Zahlen, mit denen gerechnet werden soll, dem Digitalrechner
mitzuteilen; Ausgabegerdte braucht man zum Ausdruck der
Ergebnisse. Als Eingabegerite werden hauptsdchlich Magnet-
bandeinheiten, Lochstreifen- und Lochkartenleser sowie Fern-
schreiber verwendet, als Ausgabegerite Magnetbandeinheiten,
Lochstreifen- und Lochkartenstanzer, Schnelldrucker, Analog-
sichtgerite und Fernschreiber.

Einen groben Uberblick iiber die mittleren Rechengeschwin-
digkeiten 3) einiger kommerzieller Digitalrechner gibt Tabelle I1.

,

e K e
o L X A /
REL Y AL=HL L

Steuerwerk
/ T T 1
/ [ |
/ (|
N
| 1
| |
' |
Reld'\enw?rk
| |
TS l
Ll
! %
— Datenfluss
Speicher — — = Steuerleitung
SEV3I2472
Fig. 1

Funktionsschema eines Digitalrechners

2) Von Digitalrechnern mit variabler Wortlange sei hier abgesehen.

8) Die mittlere Rechengeschwindigkeit gilt fiir ein gedachtes Pro-
gramm, das 25 % Additionen, 25 % Multiplikationen und 50 % organi-
satorische Befehle (z. B. Lesen aus Speicher) enthilt.
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Fig. 2
Digitalrechner Z 22

in den Speicher werden die im memotechnischen
Code geschriebenen Befehle (Externcode) automa-
tisch in Zahlen verschliisselt, mit denen dann der
Digitalrechner intern arbeitet (Interncode). Ein mit
Lochstreifen oder Lochkarten eingegebener Befehl
«ADD 123 » konnte bei einer Wortldnge von 10 De-
zimalen intern etwa als 0001110123 verschliisselt
sein. Der memotechnische Code dient nur der leich-

: Sevazera R . . . .
Werkfoto Zuse KG, Bad Hersfeld  teren  Verstdndlichkeit beim Niederschreiben des

Fig. 2 zeigt einen Digitalrechner, Fig. 3 die Ausgabe der Er-
gebniskurven auf einem Analogsichtgerit.

Mittlere Operationsgeschwindigkeiten von Digitalrechnern [12]

Tabelle II
Rechenmaschine Mittlere Opelglt)i:;sﬁggtsl(/:?windigkeiten
Tischrechenmaschine 0,2
Z 22 (Zuse KG) 20
IBM 650 200
S-2002 (Siemens) i 2000
IBM 704 10 000
IBM 7090 50 000
TR4 (Telefunken) 70 000
Larc (Remington Rand) 100 000
Stretch (IBM) 1 000 000

Die wesentlichen Vorteile eines Digitalrechners sind: hohe
Rechengeschwindigkeit, die jedoch nur sinnvoll ist bei automatischem
Rechenablauf. Ausserdem hat der Digitalrechner hohe Stellen-
genauigkeit und wesentlich geringere Fehlerhéufigkeit als der Mensch.
Er ist ausserdem relativ billig und sofort einsatzfihig.

4. Das Befehlssystem eines Digitalrechners

Die volle Wirksamkeit des Digitalrechners liegt in seiner
Fihigkeit, mit Befehlen rechnen zu konnen, die er sich Wort
fiir Wort aus dem Speicher holt und ausfiihrt. Dadurch wird
ein automatischer Rechenablauf von der Dateneingabe iiber
die Rechnung bis zur Ergebnisausgabe moglich. Die Gesamt-
heit aller Befehle, die ein Digitalrechner ausfithren kann, nennt
man sein Befehlssystem; dieses Repertoire bildet seine «Intelli-
genz.»

Obwohl die Befehlssysteme der verschiedenen Digital-
rechner mehr oder weniger voneinander abweichen, sind doch
gewisse Ahnlichkeiten vorhanden. Tabelle IIT zeigt typische
Befehle, wie sie fast jeder Digitalrechner ausfithren kann4).
Zur Ausfithrung der Befehle dienen die verschiedenen Re-
gister des Rechenwerks. Fiir die 4 Grundrechnungsarten wer-
den gewohnlich 2 Register bendtigt, Multiplikandenregister
und Akkumulatorregister. Sehr vorteilhaft beim Programmie-
ren sind Indexregister, die ganze Zahlen aufnehmen konnen und
zum Zihlen und Adressenindern verwendet werden. Die Be-
fehlsdarstellung in Tabelle ITT wird «memotechnischer Code»
oder «Externcode» genannt. Bei der Eingabe der Befehlsliste

4) Auf die Wiedergabe des Befehlssystems eines speziellen Digital-
rechners wird aus Griinden der Anschaulichkeit bewusst verzichtet. Bei
Verwendung von Formelsprachen, z. B. ALGOL, braucht der Program-

mierer ohnehin das Befehlssystem eines speziellen Digitalrechners nicht
mehr zu kennen. .
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Programms.

Die Befehle von Tabelle IIT haben einen Operationsteil, der
die auszufiihrende Operation festlegt, und einen Adressteil, der
meist die Zellennummer angibt, in der eine an der Operation
beteiligte Zahl zu finden ist. Man kann die Befehle von Ta-
belle III einteilen in:

1. Arithmetische Befehle (1...4) fiir die Durchfiihrung der Grund-

rechnungsarten;

2. Organisatorische Befehle, und zwar

a) Transportbefehle (5 und 6) fiir den Verkehr zwischen Speicher

und Rechenwerk,

b) Regiebefehle (7...9) fiir den Verkehr mit der Aussenwelt,

¢) Indexbefehle (10 und 11) und

d) Sprungbefehle (12...14)

Bei den Befehlen 7...10 ist der Adressteil bedeutungslos,
beim Befehl 11 ist der Adressteil der Operand selbst. Bei Aus-
fiihrung der Befehle 6 und 9...14 bleibt der Inhalt des Akku-
mulatorregisters unverdndert. Zu Beginn der Rechnung wird
dem Digitalrechner durch Einstellen des Befehlszdhlregisters
die Nummer derjenigen Speicherzelle mitgeteilt, aus der er den
1. Befehl zu holen hat. Danach sorgt dieses Befehlszédhlregister

Werkfoto Siemens
Fig. 3
Analogsichtgerit
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Typische Befehle eines Digitalrechners

Tabelle II1

Befehl
Nr. Wirkung Ergebnis im
Operationsteil Adressteil
1 ADD a ADDiere Inhalt der Zelle @ zum Inhalt des Akkumulatorregisters
2 SUB a SUBtrahiere Inhalt der Zelle a vom Inhalt des Akkumulatorregisters
3 MULT a MULTipliziere Inhalt der Zelle a mit Inhalt des Akkumulator- Akkumulator-
registers register
4 DIV a DIVidiere durch Inhalt der Zelle a den Inhalt des Akkumulator-
registers
5 BRING a BRINGe Inhalt der Zelle a ins Akkumulatorregister Ak!(umulator-
6 SPEICHER a SPEICHEREe Inhalt des Akkumulatorregisters nach Zelle a register
und Zelle a
7 LESE — LESE 1 Wort iiber Eingabegerit ins Akkumulatorregister Akkumulator-
8 DRUCK —_ DRUCKe Inhalt des Akkumulatorregisters am Ausgabegerit register
9 STOP ‘ — ‘ fiihre keinen weiteren Befehl mehr aus
10 ISETZ — besetze Indexregister mit dem (auf eine ganze Zahl gerundeten) In-
halt des Akkumulatorregisters Indexregister
11 ISUB a vermindere Inhalt des Indexregisters um den Wert a
12 SPRUNG a setze Rechnung mit Befehl aus Zelle a fort
13 ISPRUNG a setze Rechnung dann mit Befehl aus Zelle a fort, wenn Inhalt des
Indexregisters negativ ist (ansonsten mit ndchstem Befehl)
14 ASPRUNG a setze Rechnung dann mit Befehl aus Zelle a fort, wenn Inhalt des
Akkumulatorregisters negativ ist (ansonsten mit nachstem Befehl)

dafiir, dass die Rechnung mit den im Speicher unmittelbar
folgenden Befehlen solange fortgesetzt wird, bis ein STOP-
Befehl erscheint. Durch die Sprungbefehle 12...14 kann von
dieser normalen, sukzessiven Folge in der Befehlsausfiihrung
abgewichen werden. Die «bedingten» Sprungbefehle 13 und 14
bewirken eine Abweichung von der normalen Folge nur dann,
wenn eine bestimmte Bedingung erfiillt ist. Hiedurch kann der
Digitalrechner logische Entscheidungen selbst treffen. Das Be-
fehlsrepertoire kommerzieller Digitalrechner reicht von etwa
20 Befehlen bis iiber 1000 Befehle bei sog. Mikrobefehls-
systemen.

Viele Digitalrechner lassen bei den Befehlen 1...6 und 12...14
Anderungen des Adressteils mit Hilfe des Indexregisters zu.
Fine «Adressenmodifikation», mit der die Adresse um den
Inhalt des Indexregisters erhoht wird, moge fiir die Befehle von
Tabelle IIT durch Anfiigen von «I» an den Adressteil gekenn-
zeichnet sein. Der Befehl « ADD 123I» wiirde dann folgender-
massen interpretiert, wenn bei Ausfithrung des Befehls gerade
die Zahl 12 im Indexregister steht: « Addiere Inhalt der Zelle
135 (=123-+12) zum Inhalt des Akkumulatorregisters».

Die hier beschriebenen Befehle sind die einer Einadress-
Maschine. Es gibt auch Zweiadress-Maschinen, bei der ein
Additionsbefehl etwa lauten wiirde « ADD 123/129» (ADDiere
zum Inhalt der Zelle 123 den Inhalt der Zelle 129 mit Ergebnis
im Akkumulatorregister).

Fiir die arithmetischen Befehle ist die interne Darstellung
der Zahlen wichtig®). Man unterscheidet Festkomma-Dar-
stellung und Gleitkomma-Darstellung. Die meisten Digital-
rechner konnen wahlweise in Festkomma- oder in Gleitkomma-
Arithmetik rechnen. Fig. 4 zeigt eine Darstellung von Fest-
kommazahlen, Gleitkommazahlen und Befehlen bei einer
Wortlinge von 10 Dezimalen. Die Vorzeichen sind dabei in

5) Es sei angenommen, dass der Digitalrechner intern im Dezimal-
system rechnet. In Wirklichkeit arbeiten viele Digitalrechner intern im
Dualsystem.
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Wirklichkeit als Zahl verschliisselt (z. B. 2 fiir — und 1 fiir +).
Bei Festkommazahlen ist das Komma unmittelbar nach dem
Vorzeichen zu denken. Es diirfen deshalb bei Festkomma-
Arithmetik niemals Zahlen auftreten, die dem Betrage nach
grosser oder gleich 1 sind, was sich durch geeignete Masstabs-
faktoren fiir die Rechnung erreichen ldsst. Wesentlich flexibler
ist die Gleitkomma-Darstellung. Hiebei wird ein Teil des Wor-
tes als Exponent beniitzt in einer halblogarithmischen Dar-
stellung m - 10°. Die Ergebnisse im Rechenwerk sind meist
normalisierte Gleitkommazahlen, d. h. die unmittelbar nach
dem Vorzeichen und dem gedachten Komma stehende Ziffer
ist von Null verschieden. Beispiele fiir normalisierte Gleit-
kommazahlen in Darstellung von Fig. 4 sind '

+ 328561 + 03 = -+ 328,561
— 100210 + 00 = — 0,10021
+ 217563 — 02 = +  0,00217563.

Eine nicht normalisierte Gleitkommazahl wire -+ 032856 4
04 = + 328,56.
5. Die Programmierung

Die schopferische, mathematische Aufgabe bei der Losung
eines Problems liegt in der Auswahl oder der Neuentwicklung
geeigneter Losungsverfahren. Der Rechenablauf muss hiebei

Festkomma: f+|3]1]4[1]5]|9]2[6]|s} =+0.314159265
)

- 0,328561-10*03

Gleitkomma :  [—]3]2]8]s]6[1 f+[o]3}

5 T 4 “w_—)
Mantisse m Exponent b

Betent: Jofofo[1[1]1fo]1]2]3) = 40D 123

& 48 . Y .
Operationsteil  Adressteil
Fig. 4
Beispiel fiir interne Zahlen- und Befehlsdarstellung

SEV32475
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mit Sorgfalt in allen Einzelheiten festgelegt sein, bevor ein
«Programm>» geschrieben werden kann. Fehlerabschidtzungen
und Schitzungen des Rechenaufwands sind unerlédsslich, wenn
bei umfangreichen Problemen der Einfluss der Rundungs-
fehler und die erforderlichen Rechenzeiten grossere Bedeutung
gewinnen.

Hat man sich fiir ein bestimmtes Losungsverfahren ent-
schieden, so muss die numerische Formulierung aufgegliedert
werden in eine Folge arithmetischer und logischer Operationen.
Eine solche Folge nennt man «Rechenplan» oder «Algorith-
mus».

Als Beispiel A[10] sei die Auflosung von 2 Gleichungen mit
2 Unbekannten betrachtet,

a1 X1 + a1z x2 = y1

a x1 + a2 x2 = y2
In der ublichen Sprache und mit den herkommlichen arithme-
tischen Formeln liesse sich der Rechenplan fiir die Be-
rechnung von x1 und x2 etwa folgendermassen ausdriicken:

«Berechne aus den Zahlen aii, ai2, az1, a2z, y1 und y2 den Wert

d = ajj azs —ajzaz;; wenn d # 0 ist, berechne

x1 = (yrass— y2ai12)/d ;

x2 = (y2a11 —y1a21)/d ;

ansonsten zeige an, dass die Determinante Null ist.»

Wiirde der Fall d = 0 nicht gesondert behandelt, so er-
gibe sich theoretisch x; = xa = oo. Jeder Digitalrechner kann
aber nur Zahlen bis zu einer bestimmten Grosse (z. B. 1050)
darstellen; bei Uberschreitung dieses Betrages bleibt der Digi-
talrechner mit Fehleranzeige stehen. Der automatische Rechen-
ablauf ware dadurch gestort.

Formeln diirfen in einem Rechenplan nicht als Gleichungen
sondern als Wertzuweisungen verstanden werden. So bedeutet
beispielsweise die obige Formel d = ai1 ass — a2 az1: «Setze
die Zahlenwerte fir ai1, ai2, a21, a22 in die Formel ein und
weise den aus der numerischen Auswertung resultierenden
Zahlenwert der Variablen d zu». Um zu betonen, dass es sich
bei Formeln in Rechenplidnen nicht um Gleichungen handelt,
schreibt man Wertzuweisungen in der Form:

an X azs—ai2 X az —yd
oder
d: = a1 X azza—a12 X az1

Bei Verwendung von Digitalrechnern entspricht einer Wert-
zuweisung das Abspeichern eines Zahlenwertes in diejenige
Zelle, die fiir die betreffende Variable reserviert ist. Der Unter-
schied zwischen Gleichung und Wertzuweisung wird deutlich
an dem Beispiel x: = x + 1. Als Gleichung wire diese For-
mel sinnwidrig; als Wertzuweisung bedeutet sie, dass zum
Zahlenwert fiir x die Zahl 1 zu addieren ist und das Ergebnis
wiederum der Variablen x zugeordnet wird.

5.1 Das Flussdiagramm

Einen anschaulichen Uberblick iiber die Folge der arith-
metischen Operationen und logischen Entscheidungen ver-
mittelt die graphische Darstellung des Rechenplans. Ein solches
graphisches Schema wird als « Flussdiagramm» bezeichnet. Die
arithmetischen Operationen sowie Ein- und Ausgabeopera-
tionen schreibt man hiebei z.B. in rechteckige Késtchen,
logische Entscheidungen in Kreise. Pfeile geben die Richtung
des Rechenablaufs an.

In Fig. 5 ist das Flussdiagramm fiir Beispiel 4 dargestellt.
Es zeigt erstens, dass an bestimmten Stellen des Rechenplans
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Fig. 5
Flussdiagramm fiir Beispiel 4

logische Entscheidungen zu treffen sind, mit denen die Rich-
tung des weiteren Rechenablaufs festgelegt wird. Zweitens
ldsst es erkennen, dass Rechenpline so allgemein gehalten wer-
den konnen, dass man damit die Lésung fiir beliebige Parame-
ter bekommt. Rechenpline (und darausentwickelte Programme)
sollen grundsétzlich so beschaffen sein, dass sie allgemeingiiltig
sind. Ein guter Rechenplan zur Aufldsung linearer Gleichun-
gen wiirde deshalb nicht nur fiir 2 Gleichungen mit 2 Unbe-
kannten geeignet sein, sondern im allgemeinen fiir » Gleichun-
gen mit » Unbekannten ; der Wert n wiirde dann lediglich durch
die Speicherkapazitit des Digitalrechners begrenzt.

Im Flussdiagramm von Fig. 5 wird jeder Teil (jedes Kdist-
chen) gerade einmal durchlaufen. Solche «Geradeaus»-Pro-
gramme sind nur fiir kleine Probleme moglich; bei grosseren
Problemen wiirde die dazu notwendige Folge von Operationen
sehr bald zu lang. Fiir umfangreiche Probleme wird das Pro-
gramm wesentlich dadurch verkiirzt, dass man weitgehend
induktive und iterative Prozesse verwendet; der Rechenplan
enthilt dann Operationsfolgen, die schleifenartig mehrmals
durchlaufen werden. Solche «Schleifen» sind im folgenden an
Hand konkreter Beispiele erklirt.

Als Beispiel B sei die Berechnung der Produktsumme

n

y= Z a; b;
i=1
mit Hilfe einer «Induktionsschleife» betrachtet. Der zweck-
maéssige Rechenplan liesse sich in Worten wie folgt ausdriicken :

«Setze y: = 0;
rechne firi =1, 2, 3,...,njeweils y: = ai bi + y»
Zunichst wird der Variablen y der Wert 0 zugeordnet, dann
bei i = 1 der Wert a1 b1, bei i = 2 der Wert a1 b1 + az b2
usw., bis schliesslich bei i = n die Variable y den Wert

n

Z a; b;

i=1
angenommen hat. Fig. 6 zeigt das zugehorige Flussdiagramm.
Dabei sollen die Zahlen a; und b; erst wiahrend des Rechen-
prozesses eingelesen werden. Die Induktionsschleife wird n-mal
(n = 0) durchlaufen und erst bei / = n verlassen. Mit wach-
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Flussdiagramm fiir Beispiel B
sendem Paramter n nimmt auch die Folge der auszufiihrenden
Operationen zu. Dadurch, dass gleichartige Rechnungen in
einer Schleife «dynamisch» o6fters durchlaufen werden, bleibt
die «statische» Linge des Rechenplans jedoch gleich gross fiir
beliebige n.

Die Verwendung einer «Iterationsschleife» sei am Beispiel C
gezeigt: Am Ende einer Gleichspannungsleitung mitdem Wider-
stand R werde nach Fig.7 die Leistung P2 entnommen mit
konstanter Spannung U; am Anfang der Leitung; gesucht seien
der Strom 7 und die Spannung Us am Ende der Leitung. Es
gelten die beiden Gleichungen:

Us = Uy — IR 1)

Ps
A

Setzt man GI1. (2) in Gl. (1) ein, so ergibt sich eine quadra-
tische Gleichung fiir Us. Dieses direkte Losungsverfahren soll
hier jedoch nicht verwendet werden sondern ein Iterations-
prozess, der schrittweise zur Losung fithrt und sich folgender-
massen formulieren ldsst:

und
I

«1. Schitze die Spannung Uz auf Us = Uy;

2. Berechne damit I aus Gl. (2) und danach Us aus GI. (1);

3. Wenn berechneter und geschitzter Wert um mehr als die ge-
wiinschte Genauigkeit ¢ abweichen, dann nehme den berechneten
Wert Us als neuen Schitzwert und wiederhole 2. und 3.; ansonsten
drucke 7 und Uz.»

Fig. 8 zeigt das zugehorige Flussdiagramm. Wie oft die
Iterationsschleife bis zum Erreichen der gewiinschten Genauig-
keit durchlaufen wird, ist vorher nicht zu sagen. Die Anzahl
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Anzahl der Iterationsschritte z als Funktion von P,
P, Leistung am Ende; ¢ relative Genauigkeit; U, Spannung am An-
fang; U, Spannung am Ende; J Strom; R Ohmscher Widerstand;
z Anzahl der Iterationsschritte
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Flussdiagramm fiir Beispiel C
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der Iterationsschritte hdngt ab von der Leistung P2 und der
gewlinschten Genauigkeit ¢. In Fig. 7 ist diese Abhingigkeit
eingetragen fir R = 10 Q und Ui = 400 kV. Da bei Itera-
tionsprozessen die Anzahl der Iterationsschritte oft schwer
vorauszusagen ist und grundsitzlich der Fall eintreten kann,
dass das Verfahren iiberhaupt nicht zur Losung fiihrt, empfiehlt
sich immer eine Zdhlung der Iterationsschritte mit Beendigung
des Rechenprozesses bei Erreichen einer festgelegten, maxima-
len Schrittzahl («Fehlerausgang» in Fig. 8). Im Beispiel C mit
den Werten von Fig. 7 existiert fiir Py > 4000 MW keine
Losung mehr, die Losung wiirde also hiefiir nie erreicht. Wire
die Anzahl der durchlaufenen Schleifen dabei nicht nach oben
durch eine maximale Schrittzahl (= 100 in Fig. 8) begrenzt, so
wiirde der Digitalrechner theoretisch unendlich lange weiter-
rechnen.

Fiir den mit Digitalrechnern weniger vertrauten Leser mag
die Verwendung eines Iterationsprozesses in Beispiel C iiber-
raschend erscheinen, da sich Uz direkt berechnen ldsst aus:

Man darf aber nicht vergessen, dass die Berechnung einer
Quadratwurzel auf die 4 Grundrechnungsarten zuriickgefiihrt
werden muss. Meist verwendet man hiezu eine Tschebyscheft-
sche Polynomapproximation, deren Befehlsfolge dann im
wesentlichen eine Induktionsschleife ist. Die direkte Losung
kann dadurch aufwendiger werden als das Iterationsverfahren.
Fiir die direkte Losung eines Falles von Beispiel C ergab sich
an der PERM 6) eine Rechenzeit von 14 ms, fiir 1 Schritt des
Iterationsprozesses von 4 ms. Mit den Daten und Ergebnissen
von Fig. 7 folgt daraus, dass fiir eine relative Genauigkeit von
& = 1072 der Iterationsprozess bis zu P» = 2640 MW schneller
verlduft als das direkte Losungsverfahren. Viele Probleme las-
sen sich uberhaupt nicht direkt sondern nur mit Iterations-
prozessen l0sen.

6) Programmgesteuerte Elektronische Rechenanlage Miinchen.
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Die Erstellung eines Rechenplans — z. B. in Form eines
Flussdiagramms — hat unmittelbar mit dem Einsatz des Digi-
talrechners noch wenig zu tun. Ein solcher Rechenplan ist
grundsitzlich auch bei Handrechnungen notwendig; er wird
dabei nur selten vorher explizit ausgearbeitet vorliegen. Viel-
mehr entscheidet man meist erst im Laufe der Rechenarbeiten
den weiteren Weg, falls eine Entscheidung notwendig wird.
Anders ist die Situation bei Verwendung eines Digitalrechners,
wo vorher schon alle Einzelheiten des Rechenablaufs genau
festgelegt werden miissen. Hierin liegt die schopferische Arbeit
beim Einsatz von Digitalrechnern, und nicht etwa in der
Niederschrift eines fiir den Digitalrechner verstindlichen Pro-
gramms.

5.2 Das Maschinenprogramm

Der Digitalrechner versteht nur die Befehle seines vereinbarten
Befehlssystems. Er braucht deshalb eine Befehlsliste, wenn er
die im Rechenplan festgelegten Operationen automatisch aus-
fiithren soll. Eine solche Befehlsliste heisst Maschinenprogramm.
Die Art der Niederschrift muss dabei so sein, dass das Pro-
gramm dem Digitalrechner eingegeben werden kann, also
z. B. auf Lochstreifen oder Lochkarten.

Fiir das Beispiel B ist im folgenden nach dem Flussdia-
gramm von Fig. 6 das Maschinenprogramm aufgestellt unter
Verwendung der in Tabelle I1I angegebenen Befehle:

Speicherzelle- Befehl
Nr. Operations-Teil Adressteil
100: LESE
101: ISETZ
102: BRING 115
103: SPEICHER 116
104: ISUB 1
105: ISPRUNG 113
106: LESE
107: SPEICHER 117
108: LESE
109: MULT 117
110: ADD 116
111: SPEICHER 116
112: SPRUNG 104
113: DRUCK
114: STOP
115z -+ 000000 + 00
116:
117:

Ist dieses Maschinenprogramm einmal in die Zellen 100 bis
117 des Speichers eingelesen, so kann damit die Berechnung
der Produktsumme

n
y= Z a; b;
i=1

beliebig oft wiederholt werden. Es ist nur dafiir zu sorgen, dass
vorher immer die Zahlen am Eingabemedium (z. B. auf Loch-
streifen) in folgender Reihenfolge bereitliegen:

n, ai, b1, as, b, ...an, ba

5.2.1 Erliuterung des Rechenablaufs

1. Dem Digitalrechner wird mitgeteilt, dass das Programm ab
Zelle 100 im Speicher steht durch Einstellen des Befehlszéhlregisters
auf 100.

2. Nach Driicken der Starttaste holt das Steuerwerk den 1. Be-
fehl « LESE» aus Zelle 100 und fiihrt ihn aus. Es wird also die erste
Zahl (= n) vom Lochstreifen gelesen und ins Akkumulatorregister —
kurz AR genannt — gebracht. Hierauf holt das Steuerwerk den
nédchsten Befehl 101 ; seine Ausfithrung bewirkt, dass die Zahl » aus
dem AR ins Indexregister gebracht wird.

3. Befehl 102 bringt den Wert 0 aus Zelle 115 ins AR, der an-
schliessend mit Befehl 103 nach Zelle 116 gespeichert wird. In Zelle
116 soll der jeweilige Wert von y stehen. Befehl 102 und 103 bewirken
also die Anweisung y: =0.
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4. Durch Befehl 104 wird der Inhalt des Indexregisters um 1 ver-
ringert. Hier beginnt die Induktionsschleife, die #-mal zu durchlaufen
ist. Vom Wert n-1 ausgehend wird dadurch im Indexregister ab-
wirts gezihlt, bis beim n-ten Durchlauf der Wert —1 im Indexre-
gister steht. Erst dann bewirkt Befehl 105, dass von der normalen Be-
fehlsfolge abgewichen wird und die Rechnung auf Befehl 113 springt,
wo zunichst das Ergebnis gedruckt und mit Befehl 114 die Maschine
angehalten wird. Ansonsten fiihren

5. die Befehle 106 bis 111 die Anweisung y: = a; X b; + y aus.
Durch Befehl 106 wird die Zahl a; ins AR gelesen und mit Befehl 107
nach Zelle 117 abgespeichert. Befehl 108 bewirkt das Einlesen der
Zahl b; ins AR, die anschliessend durch Befehl 109 mit @; multipli-
ziert wird. Zu diesem Produkt wird mit Befehl 110 der Wert fiir y aus
Zelle 116 addiert und das Ergebnis wieder nach Zelle 116 gebracht.
Danach beginnt die Schleife durch den Sprungbefehl 112 erneut mit
Befehl 104 (Fortsetzung siehe 4.).

5.3 Die Formelsprachen

Das Codieren eines Maschinenprogramms erfordert viel
Zeit und Sorgfalt. Es ist deshalb naheliegend, die miihsame und
fehleranféllige Arbeit des Codierens dem Digitalrechner zu
iibertragen. Dazu sind 2 Voraussetzungen notwendig:

1. Es muss eine Formelsprache geben, in der sich der Rechenplan
prézise und eindeutig ausdriicken ldsst. Eine solche genormte For-
melsprache ist z. B. ALGOL.

2. Fiir jeden Digitalrechner-Typ muss ein fiir allemal ein Uber-
setzungs-Maschinenprogramm angefertigt sein; mit Hilfe dieses
«Ubersetzers» werden dann alle in der Formelsprache formulierten

Rechenplidne durch den Digitalrechner selbst in ein ihm verstind-
liches Maschinenprogramm iibersetzt.

Im technisch-wissenschaftlichen Bereich bedient man sich
beim Programmieren immer mehr der Formelsprache ALGOL
(ALGOrithmic Language); daneben wird auch die Formel-
sprache FORTRAN (FORmula TRANslation) vor allem in
USA noch viel verwendet. Beide Formelsprachen sind im
Grundsitzlichen sehr dhnlich. Fiir kaufménnische Zwecke
wurde COBOL (COmmon Business Oriented Language) ent-
wickelt, fiir nichtnumerische logische Aufgaben LOGALGOL.
Die Formelsprachen APT (Automatic Programming of Tools)
und AUTOPROMT (AUTOmatic PROgramming of Machine
Tools) werden bei der numerischen Steuerung von Werk-
zeugmaschinen benutzt. Das Aufkommen der Formelsprachen
— auch operative oder algorithmische Sprachen genannt —
hat einen Begriffswandel der Bezeichnung «Programmieren»
mit sich gebracht. Frither wurde sie oft gleichbedeutend mit
Codieren gebraucht; heute bezieht sie sich auf das hohere
Niveau der Niederschrift in einer Formelsprache [14].

6. ALGOL

Mit Hilfe der Formelsprache ALGOL lésst sich ein Fluss-
diagramm sehr einfach in vertrauter Schreibweise ausdriicken.
Dazu beniitzt man ausser arithmetischen Formeln noch be-
stimmte Wortsymbole. ALGOL beruht auf internationalen
Vereinbarungen und dient vorwiegend als Programmierungs-
sprache; in zunchmendem Masse werden Rechenverfahren
auch mittels ALGOL beschrieben und publiziert. Wie einfach
das Programmieren mit ALGOL ist, ldsst sich am besten an
Hand konkreter Beispiele zeigen. Deshalb werden im folgenden
die wichtigsten Vereinbarungen der Formelsprache ALGOL
skizziert, soweit sie fiir das Verstindnis der Beispiele notwen-
dig sind. Derjenige Leser, der sich eingehend iiber ALGOL in-
formieren will, sei auf das ALGOL-Manual der ALCOR-
Gruppe 7) verwiesen [10].

7) Zur Vereinheitlichung der ALGOL-Ubersetzungsprogramme und
zum Erfahrungsaustausch haben sich mehrere Institutionen 1959 zur
ALCOR-Gruppe zusammengeschlossen (ALCOR: algol converter).
Mitglieder der ALCOR-Gruppe sind Rechenzentren an Techn. Hoch-

schulen, Universititen, Forschungsinstituten und Firmen in der
Schweiz, Deutschland, Osterreich, Holland und den USA.
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6.1 Zeichen

Bei Eingabe des ALGOL-Programms mittels 5-Kanal-
Lochstreifen wird der internationale Fernschreibcode CCIT 2
benutzt mit

den Buchstaben A...Z

den Ziffern 0...9

den Schriftzeichen + —/.,: = ()"’
und den zusitzlichen, vom CCIT 2-Code abweichenden

Schriftzeichen X ;,,[]

Bei Verwendung von Lochkarten stehen im wesentlichen die
gleichen Zeichen zur Verfiigung. Zwischenrdume und Neube-
ginn einer Zeile sind in ALGOL im allgemeinen bedeutungslos;
sie sollen aber ausgiebig benutzt werden, um die Ubersichtlich-
keit der Aufschreibung zu erhdhen.

6.2 Zahlen und Variable
6.2.1 Zahlen werden als Dezimalzahl mit (oder ohne) Vor-

zeichen und Skalenfaktor zur Basis 10 geschrieben, z. B. die
Zahl 3,14 in der Form

+3.14 314 +0.314,,+1 0314 1 314,—2

6.2.2 Variable werden mit Namen bezeichnet, die aus der
Aneinanderreihung von Buchstaben und Ziffern entstehen,
z., B,

X Al A22 JNEU OMEGA1
(Das 1. Zeichen ist immer ein Buchstabe; 7. und mehr Zeichen
sind bedeutungslos). Bei indizierten Variablen setzt man die
Indizes in eckige Klammern (durch Komma getrennt), z. B.

ATl K] fir aix
U[R, S, MUE] fiir Urs/u

Indizes sind natiirlich nur dort sinnvoll, wo sie sich im
Laufe der Rechnung édndern, z. B. bei Matrixelementen. Der
gleichbleibenden Nennspannung U, wiirde man deshalb den
Namen UN geben; die Variablen Usscnatz und Uspnew im Fluss-
diagramm Fig. 8 konnten mit UALT und UNEU bezeichnet
werden.

6.3 Einfache Anweisungen

6.3.1 Mit Hilfe der Eingabeanweisung werden Eingabedaten
am Eingabemedium aufgerufen; sie hat die Forms®)

|READ(V,...V);|

(V = beliebige Variable, Semikolon = Schlusszeichen der An-
weisung!). Z. B. bewirkt die Eingabeanweisung

READ (U1, R, P2, EPS);

das Einlesen von 4 am Eingabegerit hintereinander stehenden
Zahlen, deren Werte den Variablen U1,...EPS zugeordnet wer-
werden. (EPS = Name fiir die Variable #).

6.3.2 Diearithmetische Wertzuweisung dient zur Berechnung
des Zahlenwertes einer Variablen aus einer Formel und hat die
Form

V:=E;

(V = Variable, E = arithmetischer Ausdruck). Arithmetische
Ausdriicke setzen sich aus Zahlen, Variablen und den Opera-
tionszeichen zusammen.

8) Vereinbarungen iiber Formen werden durch Einrahmung hervor-
gehoben.

1072 (A 768)

Beispiele:

Yia=X;

X1:= (Y1 x A22—Y2 x A12)/(A11x A22 —A12 x A21);
UMFANG : = 6.2831 x R;

Der Bruchstrich wird durch den Schrigstrich ersetzt. Die
Klammern haben die iibliche Bedeutung. Die artihmetische
Wertzuweisung darf fest vereinbarte Standardfunktionen ent-
halten. Solche Standardfunktionen sind:

SQRT(E) fiir Quadratwurzel von E
SIN(E) fiir sinus von E

EXP(E) fiir Exponentialfunktion von E
ABS(E) fiir Absolutbetrag von E

und andere.
Beispiele mit Standardfunktionen:
Y : = SIN (X);

U2:=U1/2 + SQRT (U1 x U1/4—R x P2);

6.3.3 Mit Hilfe der Ausgabeanweisung werden Zahlenwerte
der Variablen am Ausgabemedium gedruckt; sie hat die zur
Eingabeanweisung analoge Form

[PRINT ...

6.3.4 Die Schreibanweisung in der Form

| WRITE * beliebiger Text”);]|

bewirkt, dass der zwischen den Doppelapostrophen stehende
Text am Ausgabemedium geschrieben wird. Sie findet An-
wendung fiir Tabelleniiberschriften und Erlduterungen des
Rechenablaufs, z. B. in

WRITE ("DET =0"");

6.4 Die bedingte Anweisung

Will man den Ablauf der Rechnung von einem Vergleich
zweier Zahlen abhdngig machen, so wird dazu die bedingte
Anweisung beniitzt. Zum Vergleichen bedient man sich der 6
Vergleichszeichen in Form der Wortsymbole (zwischen Ein-
fach-Apostrophen gesetzt):

'LESS’

'NOT GREATER’
'EQUAL’

'NOT LESS’
'GREATER’
'NOT EQUAL’

=
=
A

VIV IA

Die einseitige Form der bedingten Anweisung lautet

'IF" E10 E2 '"THEN' S}

(E1, E» = arithmetische Ausdriicke, ¢ = eines der 6 Ver-
gleichszeichen, S = Anweisung). Ist die Bedingung E; o E:
erfiillt, so wird die Anweisung S ausgefiihrt. Bei Nichterfiillung
lduft die Rechnung mit der auf S folgenden Anweisung weiter,
d. h. § wird dann «iibersprungen» (Fig. 9a). Beispiele:

IFFD'EQUAL'0'THEN' WRITE ("DET=0");

'IF A+B’'GREATER' C—D'THEN'G:=A xB + CxD;

Die Anweisung S kann auch aus mehreren einzelnen An-
weisungen bestehen, wenn diese mit den Wortsymbolen

'BEGIN’ und 'END’ zu einer zusammengesetzten Anweisung
«zusammengeklammert» werden, z. B.
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Fig. 9
Bedingte Anweisung im Flussdiagramm

a einseitige Form; b echte Alternative

'IFFD'NOT EQUAL'0'THEN''BEGIN' X1:=C1/D;
X2:=C2/D;

PRINT (X1, X2)

'END’;

Unter Anweisung sei im folgenden allgemein eine zusam-
mengesetzte Anweisung verstanden. Diese darf sich aus allen
Formen von Anweisungen zusammensetzen, z. B. aus ein-
fachen und bedingten Anweisungen.

Die echte Alternative der bedingten Anweisung hat die
Form

E Eio Es '"THEN' S 'ELSE’ Sz;l

Ist die Bedingung erfiillt, dann wird nur die Anweisung S1

ausgefiihrt, ansonsten nur die Anweisung Ss (Fig. 9b). Beispiel:
'IFD’EQUAL’'0'THEN’ WRITE ("DET =0")
'ELSE''BEGIN’ X1:=C1/D; X2:=C2/D; PRINT (X1, X2)
'END’;

6.5 Die Laufanweisung
Wenn ein Programmteil mehrmals gerechnet und dabei die
Variable ¥ vom Wert des Ausdruckes E1 ausgehend in Schrit-
ten von Ez bis zum Wert E3 verdndert werden soll, beniitzt man
die Laufanweisung ‘

I'FOR’ V: = E1'STEP’ E2 'UNTIL' E3 'DO’ S;

(E = arithmetische Ausdriicke). Der mehrmals zu rechnende
Programmiteil ist die (zusammengesetzte) Anweisung S. Bei-
spiel :
'FOR’ P2:=PMIN'STEP' PDELTA 'UNTIL' PMAX'DO’
'BEGIN’ U2:=U1/2 + SQRT (U1 xU1/4—R x P2);

PRINT (U2) 'END’;

Hier wird also die Spannung Us des Beispiels C wiederholt
berechnet mit einer Leistung Ps, die von Pni» ausgehend in
Schritten von Paetta bis zu Pmas verdndert wird. Mit Hilfe der
Laufanweisung lassen sich Induktionsschleifen mit indizierten
Variablen sehr einfach formulieren. Z.B. bewirkt die Laufan-
weisung:

'FOR’1:=1"'STEP'1’UNTIL'M'DO’'FOR' K:=1'STEP’' 1
'"UNTIL'N 'DO’ READ (A[l, K]);
dass die Elemente einer me-zeiligen und nm-spaltigen Matrix
zeilenweise gelesen und den indizierten Variablen air zuge-
ordnet werden. Hiebei ist die fiir den laufenden Index k sich
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wiederholende Anweisung selbst wieder eine Laufanweisung
fiir den laufenden Index i.

6.6 Die Sprunganweisung
Einen von der normalen Folge abweichenden Rechenablauf
erzielt man mit der Sprunganweisung

|'60 TO' a]|

(M = Marke). Sie bewirkt, dass die Rechnung mit derjenigen
Anweisung S fortgesetzt wird, die mit der Marke M markiert

ist in der Form

Als Marken konnen Namen und ganze Zahlen verwendet
werden. Haufig beniitzt man die Sprunganweisung als Teil
einer bedingten Anweisung («bedingter Sprung»). Beispiel:

D:=A11x A22 — A12 x A21;

'IF'D'EQUAL'0'THEN''GO TO' SING;

X1:=C1/D; X2:=C2/D; PRINT (X1, X2); "GO TO’ 11111;

SING: WRITE ("DET =0");

11111: WRITE ("ENDE");

Ist d = 0, so wiirde der Text DET =0 gedruckt, ansonsten
die Werte der Variablen x; und x2 und danach stets der Text
ENDE. Spriinge aus Laufanweisungen heraus sind erlaubt,
Spriinge in Laufanweisungen hinein sind unerlaubt. Als Bei-
spiel diene die Berechnung des Produktes y = a1 az...an:

Y i=1;

'FOR’1:=1"STEP'1'UNTIL'N'DO’

'BEGIN''IF’ A[I]'’EQUAL’'0'THEN''GO TO’ DRUCK;
Y:=Y x A[l]

'END’;

DRUCK: PRINT(Y);

6.7 Programmaufbau

Ein vollstdndiges Programm kann als eine einzige zusam-
mengesetzte Anweisung betrachtet werden. Das Programm
wird deshalb mit dem Wortsymbol 'BEGIN’ eingeleitet und mit
dem Wortsymbol 'END' abgeschlossen. Unmittelbar nach dem
einleitenden 'BEGIN’ muss fiir die im Programm vorkommen-
den Variablen vereinbart werden, ob sie als ganzzahlig, reell
oder indiziert zu betrachten sind. Ganzzahlige Variable werden
vereinbart in der Form

I'INTEGER' V,...Vﬂ

und reelle Variable in der Form

'REAL' V,...V;
Beispiel:

'REAL' ALLBIL,Y; 'INTEGER'I,N;

Fiir indizierte Variable werden Anzahl der Indizes und die
Laufbereiche ihrer Zahlenwerte durch die Feldvereinbarung
festgelegt mit dem Wortsymbol 'ARRAY’

Beispiel:

'ARRAY’ A[1:M, L:30];
legt fest, dass A eine zweifach indizierte Variable a;r ist, wobei
der 1. Index i die Werte 1 bis M und der 2. Index k die Werte L
bis 30 annehmen kann.

6.8 Programmbeispiele

Sehr einfach ist die Formulierung des ALGOL-Programms
fiir Beispiel A (Abschnitt 5) mit dem Flussdiagramm in Fig. 5.
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Man erkennt rasch, dass die Verzweigung im Flussdiagramm
genau der echten Alternative der bedingten Anweisung von
Fig. 9 entspricht. Das vollstindige ALGOL-Programm fiir
Beispiel A lautet:

'BEGIN' 'REAL’ A11, A12, A21, A22, X1, X2,Y1,Y2,D;
READ (A11, A12, A21, A22,Y1,Y2);

D:=A11x A22 — A12 X A21;
'IF'D’EQUAL’'0'THEN' WRITE ("DET=0"")
'ELSE''BEGIN' X1:= (Y1 x A22 —Y2x A12)/D;
X2:=(Y2x A11 —Y1 x A21)/D;

PRINT (X1, X2)

'END’

'END’

Beispiel B mit Flussdiagramm in Fig. 6 enthélt im wesent-
lichen eine Induktionsschleife. Hiefiir verwendet man vorteil-
haft die Laufanweisung. Das ALGOL-Programm wird da-
durch sehr kurz:

'BEGIN''REAL’ Al, Bl, Y;'INTEGER’ I, N; READ (N); Y:=0;
'FOR’|:=1'STEP'1'UNTIL'N'DO’

'BEGIN' READ (Al,Bl); Y:=Al xBI+ Y 'END’;

PRINT(Y)

'END’

Im Beispiel C mit Flussdiagramm in Fig. 8 sind Entschei-
dungen zu treffen, die sich einfach mit bedingten Spriingen
formulieren lassen. Das ALGOL-Programm fiir Beispiel C
lautet:

'BEGIN' 'REAL’ U1,UNEU,UALT,R,P2,|,EPS;'INTEGER’ Z;
READ (U1, R, P2, EPS); UNEU:=U1;Z:=0;
ITER: Z:=Z+1; UALT:=UNEU; |:=P2/UALT;
UNEU:=U1—IxR;
'IF'Z'EQUAL’ 100 '"THEN’
'BEGIN' WRITE ("KEINE KONVERGENZ");
'GO TO’ SCHLUSS
'END’; )
IF" ABS((UNEU —UALT)/UNEU) 'GREATER' EPS 'THEN'
GO TO'ITER;
SCHLUSS: PRINT (UNEU, I)
'END’
Der Anfang der Iterationsschleife wird durch die Marke

ITER markiert, auf die am Ende der Schleife (10. Zeile) zuriick-
gesprungen wird, wenn die Genauigkeit noch nicht erreicht ist.

7. ALGOL-Programm fiir die Kurzschlussberechnung

Die Gedankenginge, die von der Formulierung eines Pro-
blems bis zur Erstellung des ALGOL-Programms fiithren, sollen
skizziert werden am Beispiel einer automatischen Kurzschluss-
berechnung. Das gestellte Problem sei die Berechnung der
dreipoligen, symmetrischen Stosskurzschluss-Wechselstrome
in einem beliebig aufgebauten Drehstromnetz. Der Kurz-
schlussort soll der Reihe nach an allen Sammelschienen des
Netzes angenommen werden.

Zunichst gilt es, das Problem zu idealisieren. Dabei ist zu
untersuchen, ob durch die Vereinfachung noch brauchbare
Ergebnisse erzielt werden. So mdge es hier geniigen, bei Frei-
leitungen und Kabeln nur die Reaktanzen zu beriicksichtigen °).

9) Um das Programm anschaulich zu gestalten, wird auf die Ein-
beziechung von Transformatoren und die Beriicksichtigung Ohmscher
Widerstande verzichtet.

10) Anzahl der Spalten = Anzahl der Zeilen.
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Uy=n kV

10kV-Netz

UrM WV ysaesr Ug=11kV

Fig. 10
Ersatzschaltung eines Netzes mit Reaktanzwerten und Polrad-EMK’s

Generatoren sollen durch ihre Anfangsreaktanz und ihre Pol-
rad-EMK charakterisiert sein; die Polrad-EMK Uy sei kon-
stant und tiberall gleich (Uo = 1,1 Ux). Verbraucher bleiben
unberiicksichtigt. Als Modell erhilt man dann eine Ersatz-
schaltung, in der die Sammelschienen als Knotenpunkte er-
scheinen, die miteinander verbunden sind iiber Zweige mit den
Reaktanzwerten der Leitungen, Kabel und Generatoren.
Fig. 10 zeigt die Ersatzschaltung eines Netzes mit einem Lei-
tungs-Dreieck, an dessen Eckpunkten Generatoren einspeisen.

Als mathematischer Ansatz fiir die Ersatzschaltung eines
beliebigen Netzes werde das Knotenpunktsverfahren gewihlt
[1;2]. Die n Knotenpunkte im Netz seien fortlaufend 1,...n
numeriert, die Knotenpunkte der Polrad-EMK’s mogen mit
der Nummer 0 gekennzeichnet sein. Bei Kurzschluss z. B. im
Knotenpunkt / lautet dann das System der Knotenpunkts-
gleichungen:

GioUo + G11 Ui + G12Uz2 + ...G1o Un = — V3;11
GooUo 4+ Goar Ur + G2 Uz + ... Gon Up =0

GnoUo+ Gu1 U1t +Gu2Uz + ..Gun Un =0

mit U = Leiterspannung und I/ = KurzschluB3strom. Die mit
Uy multiplizierten, konstanten Anteile bringt man auf die
rechte Seite und erhélt dann ein System von # linearen Glei-
chungen mit # Unbekannten:

Gu Ui +Gi12Uz + ..G1n Un =1
Ga1 Ur + Gaz U + ...G2n Un = y2 4)

Gui Ui + Gr2 U2 + ...Gun Un = ya

Die Koeffizienten Gix in Gl. (4) lassen sich iibersichtlich zu
einer quadratischen Matrix1%) zusammenfassen:

G11G12...G1n
G _ Go1 Ga22 ...G2yp
Gnl an Gnn

Thre Elemente bestimmen sich sehr einfach aus den Kehr-
werten der Reaktanzen:

Diagonalelement Gy; = Summe der Leitwerte der im

Knotenpunkt i anliegenden

Zweige,
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nichtdiagonal-Element Gi» = negative Summe der Leit-
werte der die Knotenpunkte
iund k verbindenden Zweige.

Ein giinstiges Losungsverfahren ergibt sich, wenn Gl. (4)
nach den Unbekannten Us,...U, aufgelost wird in der Form:
Ur=Zuyr 4+ Zizy2 + ...Z1uyn
Us =Zay1 + Zeays + ...22n yn

Un =Znyi+ Znoys + ..Znnyn

mit der Koeffizientenmatrix

'Z11 Z12 ..21n
7 Zo1 222 ...Lon
an Zn2 “nn

Die Matrix Z bezeichnet man als Kehrmatrix zu G; sie ent-
spricht im{Matrizenkalkiil ungefihr dem, was der Kehrwert bei
reellen Zahlen ist.

Fir das Netz von Fig. 10 ist:

560 260 240

0,200 —0,050 —0,050 gl i) 560
G—[-0050 02000100 Jundz=| 2252
0,050 —0,100 0,225 240 360 600

87 87 87

Die Werte dieser Kehrmatrix sind deshalb von Bedeutung,
weil sich bei Kurzschluss im Knotenpunkt k& der Kurzschluss-
strom dusserst einfach aus dem k-ten Diagonalelement ergibt
[2]:

Uo 1,1Ux

T, = —
g Zkk

T Zrk

Die Hauptaufgabe liegt also im Losungsprozess fiir die Be-
rechnung der Kehrmatrix. Hiefiir stehen an den Rechen-
zentren im allgemeinen fertige «Bibliotheksprogramme» zur
Verfiigung. Die Ermittlung der Kehrmatrix entspricht im
wesentlichen der Auflosung eines Systems linearer Gleichungen
und erfolgt meist nach der GauBlschen Eliminationsmethode
(Tabelle 1).

Nach der Wahl des Losungsverfahrens ist noch zu iiber-
legen, unter welchen Bedingungen eine Lésung moglich ist.
Sicherlich darf erstens kein Zweig eine Reaktanz = 0 (Leit-
wert = oo) haben. Dies l4sst sich vermeiden durch Zusammen-
legung der angrenzenden Knotenpunkte zu einem einzigen
Knotenpunkt. Zweitens darf die Determinante der Matrix G
nicht Null werden. Dies ist immer der Fall, wenn alle Zweige
an die Polrad-EMK’s direkt oder iiber andere Zweige ange-
schlossen sind («zusammenhingendes» Netz). Bei einer auto-
matischen Berechnung ist es zweckmassig zu priifen, ob einer
dieser beiden Fille eintritt.

Der Rechenplan fiir das Losungsverfahren ist im Fluss-
diagramm von Fig. 11 skizziert. Als Zahlen sollen zunéchst die
Parameter n=Anzahl der Netz-Knotenpunkte, /=Anzahl der
Zweige und Unx=Netzspannung in kV eingelesen werden, da-
nach fiir die / Zweige jeweils die Nummern / und k der an-
liegenden Knotenpunkte und der Reaktanzwert X. Interessant
ist die Berechnung der Matrix G. Da jeder Zweig (zwischen den
Knotenpunkten i und k) mit seinem Leitwert Y=1/X einen
additiven Beitrag zu den Diagonalelementen Gi;, Grx liefert
und einen negativen Beitrag zu den nichtdiagonalen Elementen
Gk, Grs, lasst sich die Matrix Zweig fiir Zweig «aufbauen». Zu
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lese die Zahlen
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1

setze fir 7, k=1,...n:
Gik:=0
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1k, X

Matrix -
r aufbau

[ Gij=G;i*Y; Gix'=Giu-Y; Gyi*=Gi-¥ I

1
k: -kw; =Gyx*+Y I

A

berechne die
Kehrmatrix zu (Gjy);
Ergebnis heisse
wiederum (G )

‘bei det +0

bei det =0

tihre fur k=1,...n aus: Y

LUy drucke folgenden Text:
K™ G FEHLER IN NETZDATEN

drucke J, \

SEV32482e l {

Stop

Fig. 11

Flussdiagramm fiir die Kurzschlussberechnung

Beginn miissen hiezu alle Elemente auf den Wert Null gesetzt
werden. Ferner ist zu beachten, dass z. B. ein Zweig zwischen
den Knotenpunkten 3 und 0 (=Polrad-EMK) nur einen Bei-
trag zu dem Diagonalelement Gss liefern darf, da die Elemente
Goo, Gos, Gzo in der Matrix iiberhaupt nicht existieren. Eine
logische Entscheidung, ob der Fall i oder &k = 0 eintritt, er-
reicht man einfach durch Priifung des Produkts 7 - k. Ist dies
i-k =0, so erhdlt man diejenige Knotenpunktsnummer, die
nicht Null ist, aus der Anweisung k:=k+7 und berechnet an-
schliessend die additive Erh6hung nur fiir Grx.

Die Aufstellung des vollstindigen ALGOL-Programms an
Hand des Flussdiagramms ist dann sehr einfach. Es lautet:

'BEGIN''REAL’ UN, X, Y;'INTEGER'N, L, |, K, Z;

READ (N, L, UN);

'BEGIN'’ARRAY’ G[1:N, 1:N];
'FOR'I:=1'STEP'1'UNTIL'N'DO''FOR'K:=1"'STEP'1
'"UNTIL'N'DO’ G[l, K]: =0;
'FOR'Z:=1'STEP'1'UNTIL'L'DO’

'BEGIN' READ (I, K, X) ;'IF" X'EQUAL’'0'THEN''GO TO’
FEHLER;

Y o=l X

IFIXK'EQUAL'0'THEN' 'BEGIN' K:=K+1;'GO TO’
GKK'END’;

GIl, 11:=GI[l, 114+ Y; G[I, Kl:=G[l, K1 -Y; G[K, 1:=G[K, 1 —Y;
GKK: G[K, K]:=G[K, K]+ Y

'END’;
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INVERS (G, N, FEHLER); UN:=UN x1.1;
'FOR'K:=1"'STEP'1'UNTIL’N'DO’'BEGIN’ X: = UN/
GIK, KI; PRINT (K, X) 'END’;
'GO TO' SCHLUSS;
FEHLER: WRITE ("FEHLER IN NETZDATEN");
SCHLUSS: WRITE ("ENDE RECHNUNG")
'END’
'END’

Dieses Programm enthélt 2 Besonderheiten, die in Abschnitt
6 nicht behandelt wurden:

1. Die Feldvereinbarung 'ARRAY’ kann nicht bei den Verein-
barungen nach dem ersten "BEGIN’ stehen, da erst nach der Eingabe-
anweisung READ (N, L, UN) der notwendige Wert fiir n bekannt ist.
In solchen Fillen klammert man das Programm in ein zweites
'BEGIN' und 'END’ ein, an dessen Anfang die Feldvereinbarung ge-
setzt wird (3. und vorletzte Zeile).

2. Fiir die Berechnung der Kehrmatrix soll ein fertiges «Biblio-
theksprogramm» vorhanden sein, fiir das die Anweisung

INVERS (V1, Vo, M);

gelten soll (V7 = Name der Matrix, Vo = Grad der Matrix und
M = Marke fiir Sprungziel, wenn die Determinante Null ist). Diese
Anweisung bewirkt, dass nach ihrer Ausfithrung die Kehrmatrix auf
dem Platz steht, wo vorher die urspriingliche Matrix stand. Im obigen
Programmwérealso INVERS (G, N, FEHLER); zu schreiben ; nach Aus-
fithrung ist dann z. B. die Variable G [1, 1] mit dem Wert des Ele-
mentes Z11 der Kehrmatrix besetzt.

Ist dieses Programm ein fiir allemal geschrieben und vom
Digitalrechner in die Maschinensprache tbersetzt und z. B.
auf Lochstreifen vorhanden, so kann damit zu jedem spéteren
Zeitpunkt jedes beliebige Netz gerechnet werden. Die Vorbe-
reitung des Digitalrechners besteht dann lediglich im Einlesen
dieses Programm-Lochstreifens in den Speicher. Ausserdem
miissen die Netzdaten auf Lochstreifen oder Lochkarten ge-
stanzt werden, z. B. fiir das Netz von Fig. 10 in folgender
Reihenfolge:

3 (Anzahl der Netz-Knotenpunkte)
6 (Anzahl der Zweige)
10 (Netzspannung in kV)
1 2 20
1 3 20
¢ 2N G, k, X fir die 6 Zweige)
2 0 20
3 0 13,333

Als Ergebnis wiirden dann fiir die 3 Knotenpunkte folgende
Kurzschluf3strome (in kA) ausgedriickt:
1 17,0893 3
2 14,0735

15,9500

Zusammenfassung

Bei Verwendung eines Digitalrechners ist es vor allem not-
wendig, im voraus den Losungsweg in allen Einzelheiten genau
festzulegen. Dass die anschliessende Formulierung eines Pro-
gramms dann nur noch eine einfache Aufgabe ist, versucht
dieser Aufsatz zu zeigen.

Die Formelsprache ALGOL erleichtert dabei das Program-
mieren sehr wesentlich, da sie sich eng an die gewohnte Aus-
drucksweise der Mathematik anlehnt. An Hand von Beispielen
wird versucht, auch dem mit Digitalrechnern nicht vertrauten
Leser das Unbehagen gegeniiber der Programmierung zu
nehmen.

Literatur

[1] H. Prinz: Elektronische Netzberechnung. Elektrizitdtswirtschaft
57(1958), S. 524.

[2] H. Dommel: Digitale Rechenverfahren fiir elektrische Netze.
Archiv f. Elektrotechnik 48(1963), S. 41 u. S. 118.

[3] H. Frohne: Rationalisierung beim Entwurf elektrischer Maschi-
nen unter Verwendung digitaler Rechenautomaten. ETZ-A
84(1963), S. 49.

[4] E. Kochendorfer: Erfahrungen mit der elektronischen Berech-
nung von Transformatoren. Elektrizitatswirtschaft 62(1963),
S. 158.

[S] J. K. Dillard, H. K. Sels: An Introduction to the Study of System
Planning by Operational Gaming Models. Trans. AIEE IIL
78(1959), S. 1284.

[6] J. Carpentier: Contribution a I’étude du dispatching économique.
Bull. Soc. Frangaise des Electriciens 32(1962), S. 431.

[7] W. Schneider: Gesichtspunkte fiir die praktische Durchfiihrung
einer Netzbetriebs-Optimierung. Elektrizititswirtschaft 62(1963),
S. 152,

[8] K.-J. Lesemann: Prozess-Rechenanlage ermoglicht rationellen Be-
trieb von Kraftwerken. Elektronische Rechenanlagen 3(1961),
S: 101,

[9] R. Sauer: Grossrechenanlagen und numerische Mathematik.
Jahresbericht d. Deutschen Math.-Vereinigung 60(1957), S. 21.

[10] R. Baumann: ALGOL-Manual der ALCOR-Gruppe. Elektroni-
sche Rechenanlagen -3 (1961), 5/6 und 4 (1962), 2.

[11] R. Zurmiihl: Matrizen. Springer Berlin, Goéttingen, Heidelberg
1958.

[12] W. Heimann: Der Einsatz von Digital-Rechnern in Wissenschaft
und Technik. Regelungstechnik 6(1958), S. 294.

[13] W. Kidmmerer: Ziffernrechenautomaten. Akademie-Verlag Berlin
1960.

[14] A. Walther: Bedeutung der modernen Mathematik fiir Wissen-
schaft, Technik und Wirtschaft. Referat, gehalten am 12. 10.
1961 anlisslich der Jahreshauptversammlung der Arbeitsgem. In-
dustrieller Forschungsvereinigungen in Bad Godesberg.

Adresse des Autors:

Dr.-Ing. Hermann Dommel, Institut fiir Hochspannungs- und Anlagentechnik,
Technische Hochschule Miinchen, Arcisstrasse 21, Miinchen 2 (Deutschland).

1076 (A 772)

Bull. SEV 54(1963)25, 14. Dezember



	Programmierung elektrotechnischer Probleme beim Einsatz von Digitalrechnern

