
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätswerke

Band: 54 (1963)

Heft: 25

Artikel: Programmierung elektrotechnischer Probleme beim Einsatz von
Digitalrechnern

Autor: Dommel, H.

DOI: https://doi.org/10.5169/seals-916543

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-916543
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Programmierung elektrotechnischer Probleme beim Einsatz von Digitalrechnern
Von H. Dommel, München

681.14-523.8.518.5

Der Digitalrechner wird zunehmend zur Lösung elektrotechnischer

Probleme eingesetzt. Sicher wird er eines Tages für den
Ingenieur ein selbstverständliches Hilfsmittel bei grösseren
Aufgaben sein, wenn Rechenschieber und Tischrechenmaschine nicht
mehr ausreichen. Unbehagen gegenüber Digitalrechnern möchte
der Verfasser als unbegründet entkräften und aufzeigen, wie
einfach Programmieren ist.

Nach einem Überblick über Aufbau und Wirkungsweise des
Digitalrechners und sein Befehlssystem wird anhand konkreter
Beispiele das Vorgehen beim Programmieren gezeigt. Die
Anfertigung eines Maschinenprogrammes aus einem Flussdiagramm
wird kurz skizziert; die Programmierung in der Formelsprache
ALGOL wird wegen ihrer wachsenden Bedeutung eingehender
beschrieben. Am Problem der Kurzschlussberechnung soll
abschliessend die praktische Anwendung gezeigt werden.

Bei Verwendung eines Digitalrechners liegt die schöpferische
Arbeit in der präzisen Festlegung des Lösungswegs. Die
anschliessende Formulierung eines Programmes ist dann nur noch
eine einfache Aufgabe.

1. Einleitung

Programmgesteuerte elektronische Rechenanlagen — auch

Digitalrechner genannt — brachten einen umwälzenden
Fortschritt für das Zahlenrechnen im Bereich der Wissenschaft,
Technik und Wirtschaft. Überall, wo Daten in irgendeiner
Form «verarbeitet», z. B. umgerechnet oder sortiert werden

müssen, können Digitalrechner unvergleichlich schneller als

der Mensch Routineaufgaben erledigen. In zunehmendem
Masse werden Digitalrechner deshalb auch zur Lösung von
elektrotechnischen Aufgaben verschiedenster Art herangezogen.

Zahlreiche Probleme der Elektrotechnik lassen sich mit
genügender Genauigkeit analytisch lösen. Hier liegt ein sehr

weites Anwendungsgebiet für den Digitalrechner. Während man
früher einfache und rasch auswertbare «Faustformeln» gerne
benutzt und dafür Ungenauigkeiten in Kauf genommen hat,
besteht heute die Tendenz, bei Digitalrechnern weitgehend
exakte Rechenverfahren zu verwenden. Einerseits fällt der
Mehraufwand bei den hohen Rechengeschwindigkeiten meist
kaum ins Gewicht und anderseits können dadurch
Genauigkeitsabschätzungen entfallen, die bei Faustformeln immer etwas

schwierig sind, vor allem wenn auf neuen Gebieten wenig
Rechenerfahrungen vorliegen. Manche Probleme lassen sich

überhaupt erst mit Hilfe eines Digitalrechners analytisch lösen.
Hiezu zählen u. a. die Berechnungen des Betriebsverhaltens
elektrischer Netze [1 ; 2]1) eine Aufgabe, die vorher nur mittels
Modellmessungen zu lösen war.

') Siehe Literatur am Schluss des Aufsatzes.

Le calculateur numérique est de plus en plus souvent utilisé
pour résoudre des problèmes d'électrotechnique. Il deviendra
certainement l'outil courant de l'ingénieur pour les calculs d'une
certaine ampleur, pour lesquels la règle à calcul et la simple
machine à calculer ne suffisent plus. L'auteur montre que les
calculateurs numériques n'ont rien de très mystérieux et que la
programmation n'est pas bien compliquée.

Après une brève description de la construction et du fonctionnement

du calculateur numérique et de son système d'ordination,
il donne quelques exemples concrets de programmation, puis
décrit schématiquement la manière d'établir un programme de
calculateur en partant d'un graphe de fluence. Il s'étend ensuite plus
longuement sur le langage de programmation (langage
algorithmique, ALGOL), dont l'importance ne cesse de s'accroître.
Pour terminer, l'auteur indique, à titre d'application pratique, le
problème du calcul du cas d'un court-circuit.

Lors de l'utilisation d'un calculateur numérique, le travail
créateur consiste à déterminer d'une façon précise la voie de la
solution. L'établissement d'un programme n'est ensuite qu'une
tâche relativement simple.

Immer mehr wird der Digitalrechner auch für solche
Aufgaben eingesetzt, wo sich durch Verändern von Parametern
eine Vielzahl von möglichen Lösungen ergibt, aus denen dann
nach bestimmten Gesichtspunkten nur die günstigste ausgesucht

wird. Typische Beispiele dieses Aufgabentyps sind die
Entwurfsberechnungen für elektrische Maschinen [3] und für
Transformatoren [4]. Interessant ist in diesem Zusammenhang
die Verwendung von Digitalrechnern für Netzplanungen [5],

wo viele mögliche Varianten «durchgespielt» werden, um u. a.

mit Methoden der Wahrscheinlichkeit Planungsunterlagen zu
gewinnen.

In Zukunft wird man den Digitalrechner vermutlich immer
mehr auch zur Steuerung technisch komplizierter Vorgänge
einsetzen. So wird zur Zeit die Frage diskutiert, ob die
Lastverteilung in einem Netz von einem Digitalrechner automatisch

nach wirtschaftlichen Gesichtspunkten gesteuert werden
soll [6; 7], Auch die zentrale Überwachung und Steuerung

grosser Dampfkraftwerke kann eine «Prozess-Rechenanlage»
übernehmen [8]. Bei allen Steuerungsaufgaben müssen Messwerte

direkt der Rechenanlage zugeführt werden, die dann auf
Grund von daraus berechneten Resultaten ihrerseits wieder die

Auslösung von Regel- und Warnimpulsen veranlasst.

Auf allen Gebieten nimmt der Digitalrechner dem Ingenieur
lästige Routinearbeit ab und macht ihn für schöpferische
Aufgaben frei. Es ist deshalb lohnenswert, die Möglichkeiten dieses

neuen, leistungsfähigen Hilfsmittels richtig zu erkennen. «Da
der Digitalrechner nun eine Hilfskraft ist, die^ überhaupt keine
Einsicht in das hat, was sie tut, muss man ihr eine Arbeitsvor-

Bull. ASE 54(1963)25, 14 décembre (A 761) 1065

Schrift geben, die bis ins kleinste Detail hinein den Ablauf der

durchzuführenden Arbeiten eindeutig festlegt» [10]. Wie eine
solche Arbeitsvorschrift in ein «Programm» gekleidet wird,
versucht dieser Aufsatz im folgenden an Hand einfacher
Beispiele zu schildern, ohne dabei auf spezielle Digitalrechner
einzugehen.

2. Die Lösung eines technisch-wissenschaftlichen Problems

Bei der Behandlung eines technisch-wissenschaftlichen
Problems gelangt man schematisch über 4 Stufen zur Lösung:

1. Idealisierung des Problems durch Schaffung einer Modellvorstellung;

2. Beschreibung des Modells durch einen mathematischen Ansatz ;

3. Auswahl eines konstruktiven Lösungsverfahrens;
4. Wertmässige Lösung, und zwar entweder

a) ziffernmässig (von Hand, Tischrechenmaschine, Digitalrechner);

b) analog (Rechenschieber, Netzmodell) oder
c) graphisch.

Handelt es sich beispielsweise um die Berechnung der Kurz-
schlusströme in einem Netz, so könnte man in der 1. Stufe das

Netz durch eine für Kurzschlussberechnungen zulässige
Ersatzschaltung darstellen, in der 2. Stufe hiefür die
Knotenpunktgleichungen anschreiben, in der 3. Stufe als Lösungsverfahren

die Eliminationsmethode wählen und in der 4. Stufe mit
einer Tischrechenmaschine die Werte ziffernmässig ermitteln.
Es ist klar, dass eine Modellvorstellung die physikalische
Wirklichkeit nur für das spezielle Problem richtig wiedergibt. So ist
bei einer Freileitung das «Modell» eines Ohmschen
Widerstandes zwar brauchbar für die Berechnung der stationären
Ströme und Spannungen bei Gleichstrom, aber unbrauchbar
für die Berechnung elektromagnetischer Ausgleichsvorgänge
oder gar für die Berechnung des Durchhangs.

Während die 1. Stufe eine rein ingenieurmässige Aufgabe
ist, wird in der 3. Stufe oft die Hilfe eines Mathematikers oder
eines mathematisch versierten Ingenieurs notwendig sein. Als
Beispiel für die Wahl eines Lösungsverfahrens sei die
Auflösung von n linearen Gleichungen mit n Unbekannten
betrachtet, eine Aufgabe, die sich bei fast allen Netzberechnungen
stellt. Tabelle I zeigt abgerundet die von R. Sauer [9] angegebenen

Rechenzeiten für einen Digitalrechner, einmal bei

Verwendung des Eliminationsverfahrens nach Gauss [11], zum
anderen bei Verwendung der bekannten Cramerschen

Determinanten-Regel. Die mit steigender Zahl n der Unbekannten
hoffnungslos wachsenden Rechenzeiten bei der Cramer-Regel
zeigen drastisch, welche Sorgfalt bei der Wahl eines
Lösungsverfahrens notwendig ist. Schon einfache Probleme erfordern
oft sehr gründliche mathematische Kenntnisse.

Ungefähre Rechenzeiten bei 200 Operationen/s zur Auflösung von n
linearen Gleichungen mit n Unbekannten [9]

Tabelle I

Anzahl n der Elimination Cramersche
Unbekannten nach Gauss Determinanten-Regel

5 1,5 S 1 min
10 10 S 85 Tage
20 1 min 1011 Jahre

3. Der Digitalrechner

Aufbau und Wirkungsweise eines Digitalrechners seien,

ohne auf Einzelheiten einzugehen, an Hand von Fig. 1 erläutert.
Der Digitalrechner besteht im wesentlichen aus :

1. Rechenwerk, das der Tischrechenmaschine eines Rechners
vergleichbar ist und wie diese verschiedene Register zur Ausführung der
4 Grundrechnungsarten besitzt;

2. Speicher, vergleichbar den Papierblättern eines Rechners, auf
denen er Rechenablauf und Zwischenergebnisse notiert;

3. Steuerwerk, das die steuernde Tätigkeit des Rechners
übernimmt und

4. u. 5. Ein-und Ausgabegeräten, die eine Verbindung des
Digitalrechners mit der Aussenwelt herstellen.

Der Speicher kann entweder Zahlen (Ausgangszahlen,
Zwischenergebnisse) oder auch Befehle aufnehmen ; der Inhalt
einer Speicherzelle wird «Wort» genannt. Ein Wort kann also

ein Befehl oder eine Zahl sein. Beträgt die «Wortlänge» des

Digitalrechners z. B. 10 Dezimalstellen, so wird die Rechnung
grundsätzlich 10-stellig ausgeführt; die Befehle wären dann als

10-stellige Zahlen verschlüsselt2). Beim Rechnen holt sich das

Steuerwerk fortlaufend Befehl für Befehl (Wort für Wort) aus
den Zellen des Speichers, entschlüsselt sie und führt die

entsprechenden Operationen im Rechenwerk aus. Die Leistungsfähigkeit

eines Digitalrechners wird wesentlich durch Art und
Grösse des Speichers bestimmt. Je weniger Zeit zum
Aufsuchen eines Wortes im Speicher notwendig ist («Zugriffszeit»),
desto schneller läuft die Rechnung ab. Die Zugriffszeit bei

rotierenden Trommelspeichern mit magnetischer Oberfläche

beträgt 5...20 ms, bei Ferritkern-Speichern 5...15 ;as und bei

den neuerdings verwendeten magnetischen Dünnschicht-Speichern

bis herab zu 100 ns. Die Kapazität von Trommelspeichern
liegt bei 4000...30000 Worten, von Magnetkernspeichern bei

2000...60000 Worten.
Eingabegeräte sind notwendig, um die Befehlsliste und die

Zahlen, mit denen gerechnet werden soll, dem Digitalrechner
mitzuteilen; Ausgabegeräte braucht man zum Ausdruck der

Ergebnisse. Als Eingabegeräte werden hauptsächlich
Magnetbandeinheiten, Lochstreifen- und Lochkartenleser sowie
Fernschreiber verwendet, als Ausgabegeräte Magnetbandeinheiten,
Lochstreifen- und Lochkartenstanzer, Schnelldrucker,
Analogsichtgeräte und Fernschreiber.

Einen groben Überblick über die mittleren Rechengeschwindigkeiten

3) einiger kommerzieller Digitalrechner gibt Tabelle II.

zvLn

Fig. 1

Funktionsschema eines Digitalrechners

Es sei ausdrücklich darauf hingewiesen, dass der Digitalrechner

ausschliesslich auf der letzten und 4. Stufe seine Dienste
als Hilfskraft anbieten kann.

0 Von Digitalrechnern mit variabler Wortlänge sei hier abgesehen.
s) Die mittlere Rechengeschwindigkeit güt für ein gedachtes

Programm, das 25 % Additionen, 25 % Multiplikationen und 50 %
organisatorische Befehle (z. B. Lesen aus Speicher) enthält.

1066 (A 762) Bull. SEV 54(1963)25, 14. Dezember

Fig. 2

Digitalrechner Z 22

Fig. 2 zeigt einen Digitalrechner, Fig. 3 die Ausgabe der

Ergebniskurven auf einem Analogsichtgerät.

Mittlere Operationsgeschwindigkeiten von Digitalrechnern [12]
Tabelle II

Rechenmaschine Mittlere Operationsgeschwindigkeiten
Operation/s

Tischrechenmaschine 0,2
Z 22 (Zuse KG) 20
IBM 650 200
S-2002 (Siemens) 2 000
IBM 704 10 000
IBM 7090 50 000
TR4 (Telefunken) 70000
Larc (Remington Rand) 100000
Stretch (IBM) 1 000000

Die wesentlichen Vorteile eines Digitalrechners sind: hohe
Rechengeschwindigkeit, die jedoch nur sinnvoll ist bei automatischem
Rechenablauf. Ausserdem hat der Digitalrechner hohe
Stellengenauigkeit und wesentlich geringere Fehlerhäufigkeit als der Mensch.
Er ist ausserdem relativ billig und sofort einsatzfähig.

4. Das Befehlssystem eines Digitalrechners

Die volle Wirksamkeit des Digitalrechners liegt in seiner

Fähigkeit, mit Befehlen rechnen zu können, die er sich Wort
für Wort aus dem Speicher holt und ausführt. Dadurch wird
ein automatischer Rechenablauf von der Dateneingabe über
die Rechnung bis zur Ergebnisausgabe möglich. Die Gesamtheit

aller Befehle, die ein Digitalrechner ausführen kann, nennt
man sein Befehlssystem; dieses Repertoire bildet seine «Intelligenz.

»

Obwohl die Befehlssysteme der verschiedenen Digitalrechner

mehr oder weniger voneinander abweichen, sind doch

gewisse Ähnlichkeiten vorhanden. Tabelle III zeigt typische
Befehle, wie sie fast jeder Digitalrechner ausführen kann4).
Zur Ausführung der Befehle dienen die verschiedenen

Register des Rechenwerks. Für die 4 Grundrechnungsarten werden

gewöhnlich 2 Register benötigt, Multiplikandenregister
und Akkumulatorregister. Sehr vorteilhaft beim Programmieren

sind Indexregister, die ganze Zahlen aufnehmen können und

zum Zählen und Adressenändern verwendet werden. Die
Befehlsdarstellung in Tabelle III wird «memotechnischer Code»
oder «Externcode» genannt. Bei der Eingabe der Befehlsliste

4) Auf die Wiedergabe des Befehlssystems eines speziellen
Digitalrechners wird aus Gründen der Anschaulichkeit bewusst verzichtet. Bei
Verwendung von Formelsprachen, z. B. ALGOL, braucht der Programmierer

ohnehin das Befehlssystem eines speziellen Digitalrechners nicht
mehr zu kennen.

Werkfoto Siemens
Fig. 3

Analogsichtgerät

1. Arithmetische Befehle (1...4) für die Durchführung der
Grundrechnungsarten ;

2. Organisatorische Befehle, und zwar
a) Transportbefehle (5 und 6) für den Verkehr zwischen Speicher

und Rechenwerk,
b) Regiebefehle (7...9) für den Verkehr mit der Aussenwelt,
c) Indexbefehle (10 und 11) und
d) Sprungbefehle (12... 14)

Bei den Befehlen 7...10 ist der Adressteil bedeutungslos,
beim Befehl 11 ist der Adressteil der Operand selbst. Bei
Ausführung der Befehle 6 und 9... 14 bleibt der Inhalt des

Akkumulatorregisters unverändert. Zu Beginn der Rechnung wird
dem Digitalrechner durch Einstellen des Befehlszählregisters
die Nummer derjenigen Speicherzelle mitgeteilt, aus der er den
1. Befehl zu holen hat. Danach sorgt dieses Befehlszählregister

in den Speicher werden die im memotechnisehen
Code geschriebenen Befehle (Externcode) automatisch

in Zahlen verschlüsselt, mit denen dann der

Digitalrechner intern arbeitet (Interncode). Ein mit
Lochstreifen oder Lochkarten eingegebener Befehl

«ADD 123» könnte bei einer Wortlänge von 10

Dezimalen intern etwa als 0001110123 verschlüsselt
sein. Der memotechnische Code dient nur der leichteren

Verständlichkeit beim Niederschreiben des

Programms.
Die Befehle von Tabelle III haben einen Operationsteil, der

die auszuführende Operation festlegt, und einen Adressteil, der

meist die Zellennummer angibt, in der eine an der Operation
beteiligte Zahl zu finden ist. Man kann die Befehle von
Tabelle III einteilen in:

Bull. ASE 54(1963)25, 14 décembre (A 763) 1067

Typische Befehle eines Digitalrechners
Tabelle III

Nr.
Befehl

Wirkung Ergebnis im
Operationsteil Adressteil

1

2

3

4

ADD
SUB
MULT

DIV

a

a

a

a

ADDiere Inhalt der Zelle a zum Inhalt des Akkumulatorregisters
SUBtrahiere Inhalt der Zelle a vom Inhalt des Akkumulatorregisters
MULTipliziere Inhalt der Zelle a mit Inhalt des Akkumulatorregisters

Dividiere durch Inhalt der Zelle a den Inhalt des Akkumulatorregisters

Akkumulatorregister

5

6

BRING
SPEICHER

a
a

BRINGe Inhalt der Zelle a ins Akkumulatorregister
SPEICHERe Inhalt des Akkumulatorregisters nach Zelle a

Akkumulatorregister

und Zelle a

7

8

LESE
DRUCK —

LESE 1 Wort über Eingabegerät ins Akkumulatorregister
DRUCKe Inhalt des Akkumulatorregisters am Ausgabegerät

Akkumulatorregister

9 STOP — führe keinen weiteren Befehl mehr aus

10

11

ISETZ

ISUB a

besetze Indexregister mit dem (auf eine ganze Zahl gerundeten)
Inhalt des Akkumulatorregisters
vermindere Inhalt des Indexregisters um den Wert a

Indexregister

12

13

14

SPRUNG
ISPRUNG

ASPRUNG

a

a

a

setze Rechnung mit Befehl aus Zelle a fort
setze Rechnung dann mit Befehl aus Zelle a fort, wenn Inhalt des
Indexregisters negativ ist (ansonsten mit nächstem Befehl)
setze Rechnung dann mit Befehl aus Zelle a fort, wenn Inhalt des
Akkumulatorregisters negativ ist (ansonsten mit nächstem Befehl)

dafür, dass die Rechnung mit den im Speicher unmittelbar
folgenden Befehlen solange fortgesetzt wird, bis ein STOP-
Befehl erscheint. Durch die Sprungbefehle 12...14 kann von
dieser normalen, sukzessiven Folge in der Befehlsausführung
abgewichen werden. Die «bedingten» Sprungbefehle 13 und 14

bewirken eine Abweichung von der normalen Folge nur dann,
wenn eine bestimmte Bedingung erfüllt ist. Fliedurch kann der

Digitalrechner logische Entscheidungen selbst treffen. Das
Befehlsrepertoire kommerzieller Digitalrechner reicht von etwa
20 Befehlen bis über 1000 Befehle bei sog. Mikrobefehls-
systemen.

Viele Digitalrechner lassen bei den Befehlen 1.. .6 und 12... 14

Änderungen des Adressteils mit Hilfe des Indexregisters zu.
Eine «Adressenmodifikation», mit der die Adresse um den

Inhalt des Indexregisters erhöht wird, möge für die Befehle von
Tabelle III durch Anfügen von «I» an den Adressteil
gekennzeichnet sein. Der Befehl «ADD 1231» würde dann folgender-
massen interpretiert, wenn bei Ausführung des Befehls gerade
die Zahl 12 im Indexregister steht: «Addiere Inhalt der Zelle
135 123 + 12) zum Inhalt des Akkumulatorregisters».

Die hier beschriebenen Befehle sind die einer Einadress-
Maschine. Es gibt auch Zweiadress-Maschinen, bei der ein

Additionsbefehl etwa lauten würde «ADD 123/129» (ADDiere
zum Inhalt der Zelle 123 den Inhalt der Zelle 129 mit Ergebnis
im Akkumulatorregister).

Für die arithmetischen Befehle ist die interne Darstellung
der Zahlen wichtig5). Man unterscheidet Festkomma-Darstellung

und Gleitkomma-Darstellung. Die meisten Digitalrechner

können wahlweise in Festkomma- oder in Gleitkomma-
Arithmetik rechnen. Fig. 4 zeigt eine Darstellung von
Festkommazahlen, Gleitkommazahlen und Befehlen bei einer

Wortlänge von 10 Dezimalen. Die Vorzeichen sind dabei in

5) Es sei angenommen, dass der Digitalrechner intern im Dezimalsystem

rechnet. In Wirklichkeit arbeiten viele Digitalrechner intern im
Dualsystem.

Wirklichkeit als Zahl verschlüsselt (z. B. 2 für — und 1 für +).
Bei Festkommazahlen ist das Komma unmittelbar nach dem
Vorzeichen zu denken. Es dürfen deshalb bei Festkomma-
Arithmetik niemals Zahlen auftreten, die dem Betrage nach

grösser oder gleich 1 sind, was sich durch geeignete Masstabsfaktoren

für die Rechnung erreichen lässt. Wesentlich flexibler
ist die Gleitkomma-Darstellung. Hiebei wird ein Teil des Wortes

als Exponent benützt in einer halblogarithmischen
Darstellung m 10''. Die Ergebnisse im Rechenwerk sind meist
normalisierte Gleitkommazahlen, d. h. die unmittelbar nach
dem Vorzeichen und dem gedachten Komma stehende Ziffer
ist von Null verschieden. Beispiele für normalisierte
Gleitkommazahlen in Darstellung von Fig. 4 sind

+ 328561 + 03 + 328,561

— 100210 + 00 — 0,10021

+ 217563 — 02 + 0,00217563.

Eine nicht normalisierte Gleitkommazahl wäre + 032856 +
04 + 328,56.

5. Die Programmierung

Die schöpferische, mathematische Aufgabe bei der Lösung
eines Problems liegt in der Auswahl oder der Neuentwicklung
geeigneter Lösungsverfahren. Der Rechenablauf muss hiebei

Festkomma : 1 5

Gleitkomma : I- FT°ïïl

+ 0,314159265

0.328561-KF03

Mantisse m Exponent b

Befehl

SEV32475

go | 0 | 0 11 |1 |1 Boll I 2]3~| add 123

Operationsteil Adressteil

Fig. 4

Beispiel für interne Zahlen- und Befehlsdarstellung

1068 (A 764) Bull. SEV 54(1963)25, 14. Dezember

mit Sorgfalt in allen Einzelheiten festgelegt sein, bevor ein

«Programm» geschrieben werden kann. Fehlerabschätzungen
und Schätzungen des Rechenaufwands sind unerlässlich, wenn
bei umfangreichen Problemen der Einfluss der Rundungsfehler

und die erforderlichen Rechenzeiten grössere Bedeutung
gewinnen.

Hat man sich für ein bestimmtes Lösungsverfahren
entschieden, so muss die numerische Formulierung aufgegliedert
werden in eine Folge arithmetischer und logischer Operationen.
Eine solche Folge nennt man «Rechenplan» oder «Algorithmus».

Als Beispiel A [10] sei die Auflösung von 2 Gleichungen mit
2 Unbekannten betrachtet,

an xi + ai2 X2 yi
«21 XI + «22 X2 y2

In der üblichen Sprache und mit den herkömmlichen arithmetischen

Formeln liesse sich der Rechenplan für die

Berechnung von xi und X2 etwa folgendermassen ausdrücken :

«Berechne aus den Zahlen an, ai2, «21, 022, vi und ,V2 den Wert
d ana22 — «12021; wenn d A 0 ist, berechne

XI (vi «22 — V2 a\2)ld ;

X2 (V2 an —vi «2l)/rf ;

ansonsten zeige an, dass die Determinante Null ist.»

Würde der Fall d 0 nicht gesondert behandelt, so

ergäbe sich theoretisch xi X2 00. Jeder Digitalrechner kann
aber nur Zahlen bis zu einer bestimmten Grösse (z. B. 1050)

darstellen ; bei Überschreitung dieses Betrages bleibt der
Digitalrechner mit Fehleranzeige stehen. Der automatische Rechenablauf

wäre dadurch gestört.
Formeln dürfen in einem Rechenplan nicht als Gleichungen

sondern als Wertzuweisungen verstanden werden. So bedeutet

beispielsweise die obige Formel d an 022 — ai2 021: «Setze

die Zahlenwerte für an, «12, 021, 022 in die Formel ein und
weise den aus der numerischen Auswertung resultierenden
Zahlenwert der Variablen d zu». Um zu betonen, dass es sich
bei Formeln in Rechenplänen nicht um Gleichungen handelt,
schreibt man Wertzuweisungen in der Form:

an x 022 — 012 x «21 d
oder

d: an x «22 — «12 x «21

Bei Verwendung von Digitalrechnern entspricht einer
Wertzuweisung das Abspeichern eines Zahlenwertes in diejenige
Zelle, die für die betreffende Variable reserviert ist. Der Unterschied

zwischen Gleichung und Wertzuweisung wird deutlich
an dem Beispiel x: x + 1. Als Gleichung wäre diese Formel

sinnwidrig; als Wertzuweisung bedeutet sie, dass zum
Zahlenwert für x die Zahl 1 zu addieren ist und das Ergebnis
wiederum der Variablen je zugeordnet wird.

5.1 Das Flussdiagramm

Einen anschaulichen Überblick über die Folge der
arithmetischen Operationen und logischen Entscheidungen
vermittelt die graphische Darstellung des Rechenplans. Ein solches

graphisches Schema wird als «Flussdiagramm» bezeichnet. Die
arithmetischen Operationen sowie Ein- und Ausgabeoperationen

schreibt man hiebei z. B. in rechteckige Kästchen,
logische Entscheidungen in Kreise. Pfeile geben die Richtung
des Rechenablaufs an.

In Fig. 5 ist das Flussdiagramm für Beispiel A dargestellt.
Es zeigt erstens, dass an bestimmten Stellen des Rechenplans

Start

Fig. 5

Flussdiagramm für Beispiel A

logische Entscheidungen zu treffen sind, mit denen die Richtung

des weiteren Rechenablaufs festgelegt wird. Zweitens
lässt es erkennen, dass Rechenpläne so allgemein gehalten werden

können, dass man damit die Lösung für beliebige Parameter

bekommt. Rechenpläne (und daraus entwickelte Programme)
sollen grundsätzlich so beschaffen sein, dass sie allgemeingültig
sind. Ein guter Rechenplan zur Auflösung linearer Gleichungen

würde deshalb nicht nur für 2 Gleichungen mit 2
Unbekannten geeignet sein, sondern im allgemeinen für « Gleichungen

mit « Unbekannten ; der Wert n würde dann lediglich durch
die Speicherkapazität des Digitalrechners begrenzt.

Im Flussdiagramm von Fig. 5 wird jeder Teil (jedes Kästchen)

gerade einmal durchlaufen. Solche «Geradeaus»-Programme

sind nur für kleine Probleme möglich ; bei grösseren
Problemen würde die dazu notwendige Folge von Operationen
sehr bald zu lang. Für umfangreiche Probleme wird das

Programm wesentlich dadurch verkürzt, dass man weitgehend
induktive und iterative Prozesse verwendet; der Rechenplan
enthält dann Operationsfolgen, die schleifenartig mehrmals
durchlaufen werden. Solche «Schleifen» sind im folgenden an
Hand konkreter Beispiele erklärt.

Als Beispiel B sei die Berechnung der Produktsumme

n

y ai bi
i= 1

mit Hilfe einer «Induktionsschleife» betrachtet. Der
zweckmässige Rechenplan Hesse sich in Worten wie folgt ausdrücken :

«Setze y: 0;
rechne für i 1,2, 3,...,« jeweilsy: mbi + v»

Zunächst wird der Variablen y der Wert 0 zugeordnet, dann
bei i 1 der Wert ai bi, bei i 2 der Wert a\ bi + 02 62

usw., bis schliesslich bei i n die Variable y den Wert

n

^ aibi
1=1

angenommen hat. Fig. 6 zeigt das zugehörige Flussdiagramm.
Dabei sollen die Zahlen «; und bi erst während des

Rechenprozesses eingelesen werden. Die Induktionsschleife wird «-mal
(« > 0) durchlaufen und erst bei /' n verlassen. Mit wach-

Bull. ASE 54(1963)25, 14 décembre (A 765) 106S

Start

drucke die
Zahl y

T
Stop

Induktions -' schleife

Fig. 6

Flussdiagramm für Beispiel B

und
P'z_

Uz

S-IOÜ P7

Uj - 4D0 kV V-?
U2-?

e-IOrfi

e-10"2

1000 2000 3000

Fig. 7

Anzahl der Iterationsschritte z als Funktion von P2
P2 Leistung am Ende; e relative Genauigkeit; Ux Spannung am
Anfang; U2 Spannung am Ende; J Strom; R Ohmscher Widerstand;

z Anzahl der Iterationsschritte

Start

1

lese die Zahlen
U),R,P2,t

^2 neu -UM
ZI'.0

Z:=Z*1;
"2scAä>r:="2/ieu''

J-."P2'U2schütz '

Ü2ntu:-"ra¬

sendem Paramter n nimmt auch die Folge der auszuführenden

Operationen zu. Dadurch, dass gleichartige Rechnungen in
einer Schleife «dynamisch» öfters durchlaufen werden, bleibt
die «statische» Länge des Rechenplans jedoch gleich gross für
beliebige n.

Die Verwendung einer «Iterationsschleife» sei am Beispiel C

gezeigt : Am Ende einer Gleichspannungsleitung mit dem Widerstand

R werde nach Fig. 7 die Leistung Pz entnommen mit
konstanter Spannung Ui am Anfang der Leitung; gesucht seien

der Strom I und die Spannung Uz am Ende der Leitung. Es

gelten die beiden Gleichungen:

Uz Ui — IR (1)

Iterations-
r schleife

Stop

Fig. 8

Flussdiagramm für Beispiel C

Setzt man Gl. (2) in Gl. (1) ein, so ergibt sich eine quadratische

Gleichung für Uz. Dieses direkte Lösungsverfahren soll
hier jedoch nicht verwendet werden sondern ein Iterations-
prozess, der schrittweise zur Lösung führt und sich folgender-
massen formulieren lässt:

«1. Schätze die Spannung Uz auf Uz Li ;

2. Berechne damit / aus Gl. (2) und danach Uz aus Gl. (1);
3. Wenn berechneter und geschätzter Wert um mehr als die

gewünschte Genauigkeit e abweichen, dann nehme den berechneten
Wert Uz als neuen Schätzwert und wiederhole 2. und 3. ; ansonsten
drucke / und Uz. »

Fig. 8 zeigt das zugehörige Flussdiagramm. Wie oft die
Iterationsschleife bis zum Erreichen der gewünschten Genauigkeit

durchlaufen wird, ist vorher nicht zu sagen. Die Anzahl

der Iterationsschritte hängt ab von der Leistung Pz und der
gewünschten Genauigkeit e. In Fig. 7 ist diese Abhängigkeit
eingetragen für R 10 O und Ui 400 kV. Da bei
Iterationsprozessen die Anzahl der Iterationsschritte oft schwer

vorauszusagen ist und grundsätzlich der Fall eintreten kann,
dass das Verfahren überhaupt nicht zur Lösung führt, empfiehlt
sich immer eine Zählung der Iterationsschritte mit Beendigung
des Rechenprozesses bei Erreichen einer festgelegten, maximalen

Schrittzahl («Fehlerausgang» in Fig. 8). Im Beispiel C mit
den Werten von Fig. 7 existiert für Pz > 4000 MW keine
Lösung mehr, die Lösung würde also hiefür nie erreicht. Wäre
die Anzahl der durchlaufenen Schleifen dabei nicht nach oben
durch eine maximale Schrittzahl 100 in Fig. 8) begrenzt, so
würde der Digitalrechner theoretisch unendlich lange
weiterrechnen.

Für den mit Digitalrechnern weniger vertrauten Leser mag
die Verwendung eines Iterationsprozesses in Beispiel C
überraschend erscheinen, da sich Uz direkt berechnen lässt aus:

Uz
Ui
2 mr- RPz (3)

Man darf aber nicht vergessen, dass die Berechnung einer
Quadratwurzel auf die 4 Grundrechnungsarten zurückgeführt
werden muss. Meist verwendet man hiezu eine Tschebyscheff-
sche Polynomapproximation, deren Befehlsfolge dann im
wesentlichen eine Induktionsschleife ist. Die direkte Lösung
kann dadurch aufwendiger werden als das Iterationsverfahren.
Für die direkte Lösung eines Falles von Beispiel C ergab sich

an der PERM 6) eine Rechenzeit von 14 ms, für 1 Schritt des

Iterationsprozesses von 4 ms. Mit den Daten und Ergebnissen
von Fig. 7 folgt daraus, dass für eine relative Genauigkeit von
s 10 '- der Iterationsprozess bis zu Pz 2640 MW schneller
verläuft als das direkte Lösungsverfahren. Viele Probleme lassen

sich überhaupt nicht direkt sondern nur mit Iterationsprozessen

lösen.

•) Programmgesteuerte Elektronische Rechenanlage München.

1070 (A 766) Bull. SEV 54(1963)25, 14. Dezember

Die Erstellung eines Rechenplans — z. B. in Form eines

Flussdiagramms — hat unmittelbar mit dem Einsatz des

Digitalrechners noch wenig zu tun. Ein solcher Rechenplan ist
grundsätzlich auch bei Handrechnungen notwendig; er wird
dabei nur selten vorher explizit ausgearbeitet vorliegen.
Vielmehr entscheidet man meist erst im Laufe der Rechenarbeiten

den weiteren Weg, falls eine Entscheidung notwendig wird.
Anders ist die Situation bei Verwendung eines Digitalrechners,
wo vorher schon alle Einzelheiten des Rechenablaufs genau
festgelegt werden müssen. Hierin liegt die schöpferische Arbeit
beim Einsatz von Digitalrechnern, und nicht etwa in der

Niederschrift eines für den Digitalrechner verständlichen

Programms.

5.2 Das Maschinenprogramm

Der Digitalrechner versteht nur die Befehle seines vereinbarten
Befehlssystems. Er braucht deshalb eine Befehlsliste, wenn er
die im Rechenplan festgelegten Operationen automatisch
ausführen soll. Eine solche Befehlsliste heisst Maschinenprogramm.
Die Art der Niederschrift muss dabei so sein, dass das

Programm dem Digitalrechner eingegeben werden kann, also

z. B. auf Lochstreifen oder Lochkarten.
Für das Beispiel B ist im folgenden nach dem Flussdiagramm

von Fig. 6 das Maschinenprogramm aufgestellt unter
Verwendung der in Tabelle III angegebenen Befehle:

Speicherzelle- Befehl
Nr. Operations-Teil Adressteil
100: LESE
101: ISETZ
102: BRING 115
103: SPEICHER 116
104: 1SUB 1

105: ISPRUNG 113
106: LESE
107: SPEICHER 117
108: LESE
109: MULT 117
110: ADD 116
111: SPEICHER 116
112: SPRUNG 104
113: DRUCK
114: STOP
115: + 000000 + 00
116:
117:

Ist dieses Maschinenprogramm einmal in die Zellen 100 bis
117 des Speichers eingelesen, so kann damit die Berechnung
der Produktsumme

n

y 2 aibi
i — 1

beliebig oft wiederholt werden. Es ist nur dafür zu sorgen, dass

vorher immer die Zahlen am Eingabemedium (z. B. auf
Lochstreifen) in folgender Reihenfolge bereitliegen :

«, ai, bi, ü2, 62, ...an, bn

5.2.1 Erläuterung des Rechenablaufs
1. Dem Digitalrechner wird mitgeteilt, dass das Programm ab

Zelle 100 im Speicher steht durch Einstellen des Befehlszählregisters
auf 100.

2. Nach Drücken der Starttaste holt das Steuerwerk den 1.
Befehl «LESE» aus Zelle 100 und führt ihn aus. Es wird also die erste
Zahl ri) vom Lochstreifen gelesen und ins Akkumulatorregister —
kurz AR genannt — gebracht. Hierauf holt das Steuerwerk den
nächsten Befehl 101 ; seine Ausführung bewirkt, dass die Zahl n aus
dem AR ins Indexregister gebracht wird.

3. Befehl 102 bringt den Wert 0 aus Zelle 115 ins AR, der
anschliessend mit Befehl 103 nach Zelle 116 gespeichert wird. In Zelle
116 soll der jeweilige Wert von y stehen. Befehl 102 und 103 bewirken
also die Anweisung y : 0.

4. Durch Befehl 104 wird der Inhalt des Indexregisters um 1

verringert. Hier beginnt die Induktionsschleife, die «-mal zu durchlaufen
ist. Vom Wert «-1 ausgehend wird dadurch im Indexregister
abwärts gezählt, bis beim «-ten Durchlauf der Wert —1 im Indexregister

steht. Erst dann bewirkt Befehl 105, dass von der normalen
Befehlsfolge abgewichen wird und die Rechnung auf Befehl 113 springt,
wo zunächst das Ergebnis gedruckt und mit Befehl 114 die Maschine
angehalten wird. Ansonsten führen

5. die Befehle 106 bis 111 die Anweisung y: at x bi + y aus.
Durch Befehl 106 wird die Zahl at ins AR gelesen und mit Befehl 107
nach Zelle 117 abgespeichert. Befehl 108 bewirkt das Einlesen der
Zahl bi ins AR, die anschliessend durch Befehl 109 mit at multipliziert

wird. Zu diesem Produkt wird mit Befehl 110 der Wert für y aus
Zelle 116 addiert und das Ergebnis wieder nach Zelle 116 gebracht.
Danach beginnt die Schleife durch den Sprungbefehl 112 erneut mit
Befehl 104 (Fortsetzung siehe 4.).

5.3 Die Formelsprachen

Das Codieren eines Maschinenprogramms erfordert viel
Zeit und Sorgfalt. Es ist deshalb naheliegend, die mühsame und
fehleranfällige Arbeit des Codierens dem Digitalrechner zu
übertragen. Dazu sind 2 Voraussetzungen notwendig:

1. Es muss eine Formelsprache geben, in der sich der Rechenplan
präzise und eindeutig ausdrücken lässt. Eine solche genormte
Formelsprache ist z. B. ALGOL.

2. Für jeden Digitalrechner-Typ muss ein für allemal ein Uber-
setzungs-Maschinenprogramm angefertigt sein; mit Hilfe dieses
«Übersetzers» werden dann alle in der Formelsprache formulierten
Rechenpläne durch den Digitalrechner selbst in ein ihm verständliches

Maschinenprogramm übersetzt.

Im technisch-wissenschaftlichen Bereich bedient man sich

beim Programmieren immer mehr der Formelsprache ALGOL
(ALGOrithmic Language); daneben wird auch die Formelsprache

FORTRAN (FORmula TRANslation) vor allem in
USA noch viel verwendet. Beide Formelsprachen sind im
Grundsätzlichen sehr ähnlich. Für kaufmännische Zwecke
wurde COBOL (COmmon Business Oriented Language)
entwickelt, für nichtnumerische logische Aufgaben LOGALGOL.
Die Formelsprachen APT (Automatic Programming of Tools)
und AUTOPROMT (AUTOmatic PROgramming of Machine

Tools) werden bei der numerischen Steuerung von
Werkzeugmaschinen benutzt. Das Aufkommen der Formelsprachen
— auch operative oder algorithmische Sprachen genannt —
hat einen Begriffswandel der Bezeichnung «Programmieren»
mit sich gebracht. Früher wurde sie oft gleichbedeutend mit
Codieren gebraucht; heute bezieht sie sich auf das höhere
Niveau der Niederschrift in einer Formelsprache [14].

6. ALGOL
Mit Hilfe der Formelsprache ALGOL lässt sich ein

Flussdiagramm sehr einfach in vertrauter Schreibweise ausdrücken.

Dazu benützt man ausser arithmetischen Formeln noch
bestimmte Wortsymbole. ALGOL beruht auf internationalen
Vereinbarungen und dient vorwiegend als Programmierungssprache;

in zunehmendem Masse werden Rechenverfahren
auch mittels ALGOL beschrieben und publiziert. Wie einfach
das Programmieren mit ALGOL ist, lässt sich am besten an

Hand konkreter Beispiele zeigen. Deshalb werden im folgenden
die wichtigsten Vereinbarungen der Formelsprache ALGOL
skizziert, soweit sie für das Verständnis der Beispiele notwendig

sind. Derjenige Leser, der sich eingehend über ALGOL
informieren will, sei auf das ALGOL-Manual der ALCOR-
Gruppe7) verwiesen [10].

') Zur Vereinheitlichung der ALGOL-Übersetzungsprogramme und
zum Erfahrungsaustausch haben sich mehrere Institutionen 1959 zur
ALCOR-Gruppe zusammengeschlossen (ALCOR: algol converter).
Mitglieder der ALCOR-Gruppe sind Rechenzentren an Techn.
Hochschulen, Universitäten, Forschungsinstituten und Firmen in der
Schweiz, Deutschland, Österreich, Holland und den USA.

Bull. ASE 54(1963)25, 14 décembre (A 767) 1071

6.1 Zeichen

Bei Eingabe des ALGOL-Programms mittels 5-Kanal-
Lochstreifen wird der internationale Fernschreibcode CCIT 2

benutzt mit
den Buchstaben"A...Z
den Ziffern 0...9
den Schriftzeichen 4 /.,: ()'

und den zusätzlichen, vom CCIT 2-Code abweichenden
Schriftzeichen x ; 10 []
Bei Verwendung von Lochkarten stehen im wesentlichen die

gleichen Zeichen zur Verfügung. Zwischenräume und Neubeginn

einer Zeile sind in ALGOL im allgemeinen bedeutungslos ;

sie sollen aber ausgiebig benutzt werden, um die Übersichtlichkeit

der Aufschreibung zu erhöhen.

6.2 Zahlen und Variable

6.2.1 Zahlen werden als Dezimalzahl mit (oder ohne)
Vorzeichen und Skalenfaktor zur Basis 10 geschrieben, z. B. die
Zahl 3,14 in der Form

+ 3.14 3.14 +0.3141o + 1 0.314J 314t0-2

6.2.2 Variable werden mit Namen bezeichnet, die aus der

Aneinanderreihung von Buchstaben und Ziffern entstehen,
z. B.

X AI A22 JNEU OMEGA1

(Das 1. Zeichen ist immer ein Buchstabe; 7. und mehr Zeichen
sind bedeutungslos). Bei indizierten Variablen setzt man die
Indizes in eckige Klammern (durch Komma getrennt), z. B.

A [I, K] für aik
U [R, S, MUE] für URSIll

Indizes sind natürlich nur dort sinnvoll, wo sie sich im
Laufe der Rechnung ändern, z. B. bei Matrixelementen. Der
gleichbleibenden Nennspannung Un würde man deshalb den
Namen UN geben; die Variablen U2schätz und Uineu im
Flussdiagramm Fig. 8 könnten mit UALT und UN EU bezeichnet
werden.

6.3 Einfache Anweisungen

6.3.1 Mit Hilfe der Eingabeanweisung werden Eingabedaten
am Eingabemedium aufgerufen; sie hat die Form8)

READ (V, ...V)\

V beliebige Variable, Semikolon Schlusszeichen der
Anweisung!). Z. B. bewirkt die Eingabeanweisung

READ (U1, R, P2, EPS);

das Einlesen von 4 am Eingabegerät hintereinander stehenden

Zahlen, deren Werte den Variablen U1,...EPS zugeordnet wer-
werden. (EPS Name für die Variable f).

6.3.2 Die arithmetische Wertzuweisung dient zur Berechnung
des Zahlenwertes einer Variablen aus einer Formel und hat die

Form

(V Variable, E arithmetischer Ausdruck). Arithmetische
Ausdrücke setzen sich aus Zahlen, Variablen und den
Operationszeichen zusammen.

8) Vereinbarungen über Formen werden durch Einrahmung
hervorgehoben.

Beispiele:
Y : X ;

X1 : (Y1 x A22 — Y2 x A12) / (A11 x A22 —A12 x A21);
UMFANG : 6.2831 x R;

Der Bruchstrich wird durch den Schrägstrich ersetzt. Die
Klammern haben die übliche Bedeutung. Die artihmetische
Wertzuweisung darf fest vereinbarte Standardfunktionen
enthalten. Solche Standardfunktionen sind:

SQRT(F) für Quadratwurzel von E
SIN(F) für sinus von E
EXP(L) für Exponentialfunktion von E
A BS(£) für Absolutbetrag von E

und andere.

Beispiele mit Standardfunktionen:

Y : SIN (X);
U2 : U1/2 + SQRT (U1 x U1/4-R x P2);

6.3.3 Mit Hilfe der Ausgabeanweisung werden Zahlenwerte
der Variablen am Ausgabemedium gedruckt; sie hat die zur
Eingabeanweisung analoge Form

PRINT (V,...V);

6.3.4 Die Schreibanweisung in der Form

WRITE "beliebiger Text");

bewirkt, dass der zwischen den Doppelapostrophen stehende

Text am Ausgabemedium geschrieben wird. Sie findet
Anwendung für Tabellenüberschriften und Erläuterungen des

Rechenablaufs, z. B. in

WRITE ("DET=0");

6.4 Die bedingte Anweisung

Will man den Ablauf der Rechnung von einem Vergleich
zweier Zahlen abhängig machen, so wird dazu die bedingte
Anweisung benützt. Zum Vergleichen bedient man sich der 6

Vergleichszeichen in Form der Wortsymbole (zwischen Ein-
fach-Apostrophen gesetzt) :

'LESS' für <
'NOT GREATER' +
'EQUAL'
'NOT LESS' ^
'GREATER' >
'NOT EQUAL' +

Die einseitige Form der bedingten Anweisung lautet

'IF' Ei 0 Ei 'THEN' S;

(Ei, Ei arithmetische Ausdrücke, q eines der 6

Vergleichszeichen, S Anweisung). Ist die Bedingung Ei q Ei
erfüllt, so wird die Anweisung S ausgeführt. Bei Nichterfüllung
läuft die Rechnung mit der auf S folgenden Anweisung weiter,
d. h. S wird dann «übersprungen» (Fig. 9a). Beispiele:

'IF' D 'EQUAL' 0 'THEN' WRITE ("DET =0");
'IF' A + B 'GREATER' C-D 'THEN' G: AxB + CxD;

Die Anweisung S kann auch aus mehreren einzelnen

Anweisungen bestehen, wenn diese mit den Wortsymbolen
'BEGIN' und 'END' zu einer zusammengesetzten Anweisung
«zusammengeklammert» werden, z. B.

1072 (A 768) Bull. SEV 54(1963)25, 14. Dezember

Fig. 9
Bedingte Anweisung im Flussdiagramm

a einseitige Form; b echte Alternative

IF' D 'NOT EQUAL' 0 'THEN' 'BEGIN' X1 : C1/D;
X2: C2/D;
PRINT (X1,X2)
'END';

Unter Anweisung sei im folgenden allgemein eine
zusammengesetzte Anweisung verstanden. Diese darf sich aus allen
Formen von Anweisungen zusammensetzen, z. B. aus
einfachen und bedingten Anweisungen.

Die echte Alternative der bedingten Anweisung hat die
Form

'IF' EIQEZ 'THEN' Si 'ELSE' Sa;

Ist die Bedingung erfüllt, dann wird nur die Anweisung Si
ausgeführt, ansonsten nur die Anweisung S2 (Fig. 9b). Beispiel :

'IF' D 'EQUAL' 0 'THEN' WRITE ("DET=0")
'ELSE' 'BEGIN' X1 : C1/D ; X2: C2/D ; PRINT (X1, X2)

'END';

6.5 Die Laufanweisung

Wenn ein Programmteil mehrmals gerechnet und dabei die
Variable V vom Wert des Ausdruckes Ei ausgehend in Schritten

von Ei bis zum Wert E3 verändert werden soll, benützt man
die Laufanweisung

'FOR' V: =Ei 'STEP' £2 'UNTIL' Es 'DO' S;

(E arithmetische Ausdrücke). Der mehrmals zu rechnende

Programmteil ist die (zusammengesetzte) Anweisung S.

Beispiel;

'FOR' P2: PMIN 'STEP' PDELTA 'UNTIL' PMAX 'DO'
'BEGIN'U2: U1/2 + SQRT (U1 X U1/4 — R x P2) ;

PRINT (U2)'END';

Hier wird also die Spannung U2 des Beispiels C wiederholt
berechnet mit einer Leistung P2, die von Pmtn ausgehend in
Schritten von Pdelta bis zu Pmax verändert wird. Mit Hilfe der

Laufanweisung lassen sich Induktionsschleifen mit indizierten
Variablen sehr einfach formulieren. Z. B. bewirkt die
Laufanweisung:

'FOR' I : 1 'STEP' 1 'UNTIL' M 'DO' 'FOR' K: 1 'STEP'1
'UNTIL' N 'DO' READ (A[l, K]);

dass die Elemente einer w-zeiligen und n-spaltigen Matrix
zeilenweise gelesen und den indizierten Variablen ait
zugeordnet werden. Hiebei ist die für den laufenden Index k sich

wiederholende Anweisung selbst wieder eine Laufanweisung
für den laufenden Index i.

6.6 Die Sprunganweisung

Einen von der normalen Folge abweichenden Rechenablauf
erzielt man mit der Sprunganweisung

'GO TO' M;

(M Marke). Sie bewirkt, dass die Rechnung mit derjenigen
Anweisung S fortgesetzt wird, die mit der Marke M markiert
ist in der Form

M:S;

Als Marken können Namen und ganze Zahlen verwendet
werden. Häufig benützt man die Sprunganweisung als Teil
einer bedingten Anweisung («bedingter Sprung»), Beispiel:

D:=A11 xA22 — A12x A21 ;

'IF' D 'EQUAL' 0 'THEN' 'GO TO' SING;
X1 : C1/D ; X2: C2/D ; PRINT (X1, X2); 'GO TO' 11111 ;

SING: WRITE ("DET 0");
11111: WRITE ("ENDE");

Ist d 0, so würde der Text DET 0 gedruckt, ansonsten
die Werte der Variablen xi und X2 und danach stets der Text
ENDE. Sprünge aus Laufanweisungen heraus sind erlaubt,
Sprünge in Laufanweisungen hinein sind unerlaubt. Als
Beispiel diene die Berechnung des Produktes y ai a>...an :

Y: =1 ;

'FOR' l: 1 'STEP' 1 'UNTIL' N 'DO'
'BEGIN' 'IF' A[l] 'EQUAL' 0 'THEN' 'GO TO' DRUCK;
Y: YxA[l]
'END';
DRUCK: PRINT(Y);

6.7 Programmaufbau

Ein vollständiges Programm kann als eine einzige
zusammengesetzte Anweisung betrachtet werden. Das Programm
wird deshalb mit dem Wortsymbol 'BEGIN' eingeleitet und mit
dem Wortsymbol 'END' abgeschlossen. Unmittelbar nach dem
einleitenden 'BEGIN' muss für die im Programm vorkommenden

Variablen vereinbart werden, ob sie als ganzzahlig, reell
oder indiziert zu betrachten sind. Ganzzahlige Variable werden
vereinbart in der Form

'INTEGER' V,...V;

und reelle Variable in der Form

'REAL' V„..V;
Beispiel :

'REAL' AI, Bl, Y; 'INTEGER' I, N;

Für indizierte Variable werden Anzahl der Indizes und die
Laufbereiche ihrer Zahlenwerte durch die Feldvereinbarung
festgelegt mit dem Wortsymbol 'ARRAY'

Beispiel :

'ARRAY'A[1:M,L:30];

legt fest, dass A eine zweifach indizierte Variable ait ist, wobei
der 1. Index i die Werte 1 bis M und der 2. Index k die Werte L

bis 30 annehmen kann.

6.8 Programmbeispiele

Sehr einfach ist die Formulierung des ALGOL-Programms
für Beispiel A (Abschnitt 5) mit dem Flussdiagramm in Fig. 5.

Bull. ASE 54(1963)25, 14 décembre (A 769) 1073

Man erkennt rasch, dass die Verzweigung im Flussdiagramm

genau der echten Alternative der bedingten Anweisung von
Fig. 9 entspricht. Das vollständige ALGOL-Programm für
Beispiel A lautet:

'BEGIN' 'REAL' A11, A12, A21, A22, X1, X2, Y1, Y2, D;
READ (A11, A12, A21, A22, Y1, Y2) ;

D: A11 x A22 — A12 x A21 ;

'IF' D 'EQUAL' 0 'THEN' WRITE ("DET=0")
'ELSE' 'BEGIN' X1 := (Y1 x A22 —Y2x A12)/D;
X2: (Y2 x A11 — Y1 X A21)/D;
PRINT (X1,X2)
'END'
'END'

Beispiel B mit Flussdiagramm in Fig. 6 enthält im wesentlichen

eine Induktionsschleife. Hiefür verwendet man vorteilhaft

die Laufanweisung. Das ALGOL-Programm wird
dadurch sehr kurz :

'BEGIN' 'REAL' AI, Bl, Y; 'INTEGER' I, N; READ (N) ; Y : =0;
'FOR' l: 1 'STEP' 1 'UNTIL' N 'DO'
'BEGIN' READ (AI, Bl); Y: AI X Bl + Y 'END';
PRINT(Y)
'END'

Im Beispiel C mit Flussdiagramm in Fig. 8 sind Entscheidungen

zu treffen, die sich einfach mit bedingten Sprüngen
formulieren lassen. Das ALGOL-Programm für Beispiel C
lautet:

'BEGIN' 'REAL' U1, UNEU, UALT, R, P2,1, EPS; 'INTEGER'Z;
READ (U1, R, P2, EPS); UNEU: U1 ; Z: 0;

ITER: Z: Z + 1 ; UALT: UNEU; l: P2/UALT;
UNEU: U1 — I x R;
MF' Z 'EQUAL' 100 'THEN'
'BEGIN' WRITE ("KEINE KONVERGENZ");

'GOTO' SCHLUSS
'END';
MF' ABS((UNEU - UALTJ/UNEU) 'GREATER' EPS 'THEN'

.'GO TO'ITER;
SCHLUSS: PRINT (UNEU, I)

'END'

Der Anfang der Iterationsschleife wird durch die Marke
ITER markiert, auf die am Ende der Schleife (10. Zeile)
zurückgesprungen wird, wenn die Genauigkeit noch nicht erreicht ist.

7. ALGOL-Programm für die Kurzschlussberechnung

Die Gedankengänge, die von der Formulierung eines
Problems bis zur Erstellung des ALGOL-Programms führen, sollen
skizziert werden am Beispiel einer automatischen Kurzschlussberechnung.

Das gestellte Problem sei die Berechnung der

dreipoligen, symmetrischen Stosskurzschluss-Wechselströme

in einem beliebig aufgebauten Drehstromnetz. Der
Kurzschlussort soll der Reihe nach an allen Sammelschienen des

Netzes angenommen werden.
Zunächst gilt es, das Problem zu idealisieren. Dabei ist zu

untersuchen, ob durch die Vereinfachung noch brauchbare

Ergebnisse erzielt werden. So möge es hier genügen, bei

Freileitungen und Kabeln nur die Reaktanzen zu berücksichtigen 9).

9) Um das Programm anschaulich zu gestalten, wird auf die
Einbeziehung von Transformatoren und die Berücksichtigung Ohmscher
Widerstände verzichtet.

10) Anzahl der Spalten Anzahl der Zeilen.

1074 (A 770)

Fig. 10

Ersatzschaltung eines Netzes mit Reaktanzwerten und Polrad-EMK's

Generatoren sollen durch ihre Anfangsreaktanz und ihre Pol-
rad-EMK charakterisiert sein; die Polrad-EMK Go sei

konstant und überall gleich (Uo 1,1 Gn). Verbraucher bleiben

unberücksichtigt. Als Modell erhält man dann eine
Ersatzschaltung, in der die Sammelschienen als Knotenpunkte
erscheinen, die miteinander verbunden sind über Zweige mit den

Reaktanzwerten der Leitungen, Kabel und Generatoren.

Fig. 10 zeigt die Ersatzschaltung eines Netzes mit einem
Leitungs-Dreieck, an dessen Eckpunkten Generatoren einspeisen.

Als mathematischer Ansatz für die Ersatzschaltung eines

beliebigen Netzes werde das Knotenpunktsverfahren gewählt
[1 ; 2J. Die n Knotenpunkte im Netz seien fortlaufend l,...w
numeriert, die Knotenpunkte der Polrad-EMK's mögen mit
der Nummer 0 gekennzeichnet sein. Bei Kurzschluss z. B. im
Knotenpunkt 1 lautet dann das System der Knotenpunktsgleichungen

:

Gio t/o + Gu Gi + G12G2 + ...Gm Un -]ffh
G20 Go + G21 Gl + G22 G2 + Gzn Un 0

Gjio Go + Gki Gi + Gni Uz + ...Gnn Un — 0

mit G Leiterspannung und / Kurzschlußstrom. Die mit
Go multiplizierten, konstanten Anteile bringt man auf die
rechte Seite und erhält dann ein System von n linearen
Gleichungen mit n Unbekannten:

Gn Gi + G12 Uz + ...Gm Un yi
Gzi Gl + G22 Uz + ...Gzn Un yz (4)

Gni Gl + GnZ Uz + ...Gnn Un yn

Die Koeffizienten G« in Gl. (4) lassen sich übersichtlich zu
einer quadratischen Matrix10) zusammenfassen:

(Gn

G12 ...Gin
G21 G22 ...Gzn

Gni GnZ ...Gnn

Ihre Elemente bestimmen sich sehr einfach aus den
Kehrwerten der Reaktanzen :

Diagonalelement Gu Summe der Leitwerte der im
Knotenpunkt i anliegenden
Zweige,

Bull. SEV 54(1963)25, 14. Dezember

nichtdiagonal-Element Git negative Summe der Leit¬

werte der die Knotenpunkte
i und k verbindenden Zweige.

Ein günstiges Lösungsverfahren ergibt sich, wenn Gl. (4)
nach den Unbekannten Ui,...Un aufgelöst wird in der Form:

Ui Zu yi + Z12 yz + Ztn yn
Uz Zzi y l + Zzz yz + ...Zznyn

Start

Un — Zniyi ~F Znzyz "F • ••Znnyn

mit der Koeffizientenmatrix

Z

Zw Z\z ...Z\n
Z21 Z22 '"Zzn

\Znl ZnZ • • •Zn r.

0,200 -0,050 -0,050 \
-0,050 0,200 -0,100 I und Z
-0,050 -0,100 0,225/

560 260 240
87 87 87

260 680 360
87 87 87

240 360 600
87 87 87

Die Werte dieser Kehrmatrix sind deshalb von Bedeutung,
weil sich bei Kurzschluss im Knotenpunkt k der Kurzschlussstrom

äusserst einfach aus dem /c-ten Diagonalelement ergibt
[2]:

Uo _ 1,1 Us
Z,Ck Ztl:

he

Die Hauptaufgabe liegt also im Lösungsprozess für die
Berechnung der Kehrmatrix. Hiefür stehen an den Rechenzentren

im allgemeinen fertige «Bibliotheksprogramme» zur
Verfügung. Die Ermittlung der Kehrmatrix entspricht im
wesentlichen der Auflösung eines Systems linearer Gleichungen
und erfolgt meist nach der Gaußschen Eliminationsmethode
(Tabelle I).

Nach der Wahl des Lösungsverfahrens ist noch zu
überlegen, unter welchen Bedingungen eine Lösung möglich ist.
Sicherlich darf erstens kein Zweig eine Reaktanz 0 (Leitwert

00) haben. Dies lässt sich vermeiden durch Zusammenlegung

der angrenzenden Knotenpunkte zu einem einzigen
Knotenpunkt. Zweitens darf die Determinante der Matrix G

nicht Null werden. Dies ist immer der Fall, wenn alle Zweige
an die Polrad-EMK's direkt oder über andere Zweige
angeschlossen sind («zusammenhängendes» Netz). Bei einer
automatischen Berechnung ist es zweckmässig zu prüfen, ob einer
dieser beiden Fälle eintritt.

Der Rechenplan für das Lösungsverfahren ist im
Flussdiagramm von Fig. 11 skizziert. Als Zahlen sollen zunächst die
Parameter n=Anzahl der Netz-Knotenpunkte, /—Anzahl der
Zweige und J/N=Netzspannung in kV eingelesen werden,
danach für die / Zweige jeweils die Nummern / und k der
anliegenden Knotenpunkte und der Reaktanzwert X. Interessant
ist die Berechnung der Matrix G. Da jeder Zweig (zwischen den

Knotenpunkten i und k) mit seinem Leitwert Y=l/X einen
additiven Beitrag zu den Diagonalelementen Gu, Gut liefert
und einen negativen Beitrag zu den nichtdiagonalen Elementen
Giic, Gki, lässt sich die Matrix Zweig für Zweig «aufbauen». Zu

lese die Zahlen
n, l, UN

~~T~
setze für i, k*1,...n:

Gjk : " 0

Die Matrix Z bezeichnet man als Kehrmatrix zu G; sie

entspricht im|Matrizenkalkül ungefähr dem, was der Kehrwert bei
reellen Zahlen ist.

Für das Netz von Fig. 10 ist:

führe l-mal aus:
lese die Zahlen

i,k,X

I Y-.-VX |

Gij-Gs*Y; G;*:*Gik-Y, Gki:-Gkj-Y

Gm'--Gkk*y

berechne die
Kehrmatrix zu (G;*);

Ergebnis heisse
wiederum (G/*)

bei det'O

bei det + 0

führe für k « 1,... n aus:
1.1* U»j

Gkk

drucke h

Matrix -
aufbau

drucke folgenden Text:
FEHLER IN NETZDATEN

Stop

Fig. 11

Flussdiagramm für die Kurzschlussberechnung

Beginn müssen hiezu alle Elemente auf den Wert Null gesetzt
werden. Ferner ist zu beachten, dass z. B. ein Zweig zwischen
den Knotenpunkten 3 und 0 (—Polrad-EMK) nur einen
Beitrag zu dem Diagonalelement G33 liefern darf, da die Elemente
Goo, G03, G30 in der Matrix überhaupt nicht existieren. Eine
logische Entscheidung, ob der Fall i oder k 0 eintritt,
erreicht man einfach durch Prüfung des Produkts i k. Ist dies

i • k — 0, so erhält man diejenige Knotenpunktsnummer, die
nicht Null ist, aus der Anweisung k:=k+i und berechnet
anschliessend die additive Erhöhung nur für Gtf

Die Aufstellung des vollständigen ALGOL-Programms an
Hand des Flussdiagramms ist dann sehr einfach. Es lautet :

'BEGIN' 'REAL' UN, X, Y; 'INTEGER' N, L, I, K, Z;
READ (N, L, UN);
'BEGIN' 'ARRAY' G[1 :N, 1 :N];
'FOR' I : =1 'STEP' 1 'UNTIL' N 'DO"FOR' K: 1 'STEP'1
'UNTIL' N 'DO' G[l, K]:=0;
'FOR' Z: 1 'STEP' 1 'UNTIL'L'DO'
'BEGIN' READ (I, K, X) ;'IF'X'EQUAL'0'THEN' 'GOTO'
FEHLER;
Y: 1/X;
'IF' I X K 'EQUAL' 0 'THEN' 'BEGIN' K: K + I ; 'GO TO'
GKK'END';
G[l, l]: G[l, I]-FY; G[l, K]: G[I, K] -Y; G[K, l]: G[K, I] -Y;
GKK: G[K, K]: G[K, K]+Y
'END';

Bull. ASE 54(1963)25, 14 décembre (A 771) 1075

INVERS (G, N, FEHLER) ; UN : UN x 1.1 ;

'FOR' K: 1 'STEP' 1 'UNTIL' N 'DO' 'BEGIN' X: UN/
G[K, K]; PRINT (K, X) 'END';
'GO TO' SCHLUSS;
FEHLER: WRITE ("FEHLER IN NETZDATEN");
SCHLUSS: WRITE ("ENDE RECHNUNG")
'END'
'END'

Dieses Programm enthält 2 Besonderheiten, die in Abschnitt
6 nicht behandelt wurden :

1. Die Feldvereinbarung 'ARRAY' kann nicht bei den
Vereinbarungen nach dem ersten 'BEGIN' stehen, da erst nach der
Eingabeanweisung READ(N,L, UN) der notwendige Wert für n bekannt ist.
In solchen Fällen klammert man das Programm in ein zweites
'BEGIN' und 'END' ein, an dessen Anfang die Feldvereinbarung
gesetzt wird (3. und vorletzte Zeile).

2. Für die Berechnung der Kehrmatrix soll ein fertiges
«Bibliotheksprogramm» vorhanden sein, für das die Anweisung

INVERS (Fi, Vo,M);
gelten soll (Fi Name der Matrix, V2 Grad der Matrix und
M Marke für Sprungziel, wenn die Determinante Null ist). Diese
Anweisung bewirkt, dass nach ihrer Ausführung die Kehrmatrix auf
dem Platz steht, wo vorher die ursprüngliche Matrix stand. Im obigen
Programm wäre alsolNVERS(G, N, FEHLER);zuschreiben;nach
Ausführung ist dann z. B. die Variable G [1, 1] mit dem Wert des
Elementes Zu der Kehrmatrix besetzt.

Ist dieses Programm ein für allemal geschrieben und vom
Digitalrechner in die Maschinensprache übersetzt und z. B.

auf Lochstreifen vorhanden, so kann damit zu jedem späteren
Zeitpunkt jedes beliebige Netz gerechnet werden. Die
Vorbereitung des Digitalrechners besteht dann lediglich im Einlesen
dieses Programm-Lochstreifens in den Speicher. Ausserdem
müssen die Netzdaten auf Lochstreifen oder Lochkarten
gestanzt werden, z. B. für das Netz von Fig. 10 in folgender
Reihenfolge:

(Anzahl der Netz-Knotenpunkte)
(Anzahl der Zweige)
(Netzspannung in kV)

(;', k, X für die 6 Zweige)

Als Ergebnis würden dann für die 3 Knotenpunkte folgende
Kurzschlußströme (in kA) ausgedrückt:

1 17,0893 3 15,9500
2 14,0735

3
£o

10

1 2 20
1 3 20
2 3 10

1 0 10
2 0 20
3 0 13,333 >

Zusammenfassung

Bei Verwendung eines Digitalrechners ist es vor allem
notwendig, im voraus den Lösungsweg in allen Einzelheiten genau
festzulegen. Dass die anschliessende Formulierung eines

Programms dann nur noch eine einfache Aufgabe ist, versucht
dieser Aufsatz zu zeigen.

Die Formelsprache ALGOL erleichtert dabei das Programmieren

sehr wesentlich, da sie sich eng an die gewohnte
Ausdrucksweise der Mathematik anlehnt. An Hand von Beispielen
wird versucht, auch dem mit Digitalrechnern nicht vertrauten
Leser das Unbehagen gegenüber der Programmierung zu
nehmen.

Literatur
[1] H.Prinz: Elektronische Netzberechnung. Elektrizitätswirtschaft

57(1958), S. 524.

[2] H. Dommel: Digitale Rechenverfahren für elektrische Netze.
Archiv f. Elektrotechnik 48(1963), S. 41 u. S. 118.

[3] H. Frohne: Rationalisierung beim Entwurf elektrischer Maschi¬
nen unter Verwendung digitaler Rechenautomaten. ETZ-A
84(1963), S. 49.

[4] E. Kochendörfer: Erfahrungen mit der elektronischen Berech¬
nung von Transformatoren. Elektrizitätswirtschaft 62(1963),
S. 158.

[5] J. K. Dillard, H. K. Sels: An Introduction to the Study of System
Planning by Operational Gaming Models. Trans. AIEE III
78(1959), S. 1284.

[6] J. Carpentier: Contribution à l'étude du dispatching économique.
Bull. Soc. Française des Electriciens 32(1962), S. 431.

[7] W. Schneider: Gesichtspunkte für die praktische Durchführung
einer Netzbetriebs-Optimierung. Elektrizitätswirtschaft 62(1963),
S. 152.

[8] K.-J. Lesemann: Prozess-Rechenanlage ermöglicht rationellen Be¬
trieb von Kraftwerken. Elektronische Rechenanlagen 3(1961),
S. 101.

[9] R. Sauer: Grossrechenanlagen und numerische Mathematik.
Jahresbericht d. Deutschen Math.-Vereinigung 60(1957), S. 21.

[10] R. Baumann: ALGOL-Manual der ALCOR-Gruppe. Elektroni¬
sche Rechenanlagen-3 (1961), 5/6 und 4 (1962), 2.

[11] R.Zurmiihl: Matrizen. Springer Berlin, Göttingen, Heidelberg
1958.

[12] W. Heimann: Der Einsatz von Digital-Rechnern in Wissenschaft
und Technik. Regelungstechnik 6(1958), S. 294.

[13] W. Kämmerer: Ziffernrechenautomaten. Akademie-Verlag Berlin
1960.

[14] A. Wallher: Bedeutung der modernen Mathematik für Wissen¬
schaft, Technik und Wirtschaft. Referat, gehalten am 12. 10.
1961 anlässlich der Jahreshauptversammlung der Arbeitsgem.
Industrieller Forschungsvereinigungen in Bad Godesberg.

Adresse des Autors:
Dr.-Ing. Hermann Dommel, Institut für Hochspannungs- und Anlagentechnik,
Technische Hochschule München, Arcisstrasse 21, München 2 (Deutschland).

1076 (A 772) Bull. SEV 54(1963)25, 14. Dezember

	Programmierung elektrotechnischer Probleme beim Einsatz von Digitalrechnern

