Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 54 (1963)

Heft: 24

Artikel: Augustin Jean Fresnel: 1788-1827

Autor: W., H.

DOI: https://doi.org/10.5169/seals-916538

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

AUGUSTIN JEAN FRESNEL

1788 - 1827

Larousse

Der französische Physiker Fresnel, Sohn eines Architekten, wurde am 10. Mai 1788 in Chambrais (jetzt heisst es Broglie) im Département Eure geboren. Seine Schulung genoss er an der Ecole Polytechnique in Paris und arbeitete bis 1814 in Vendée, in den Départementen La Drôme und l'Ille et Vilaine bei der Verwaltung der Ponts et Chaussées als Ingenieur. Während der Restauration sympathisierte er mit den Bourbonen und kämpfte sogar, trotz seiner zarten Gesundheit, während den «Cent jours» gegen Kaiser Napoléon.

Erst nach dieser bewegten Zeit begann Fresnel auf Empfehlung Aragos mit Studien über Optik und das Licht. Er stellt zuerst eine Äther-Theorie auf. Später folgen theoretische und experimentelle Untersuchungen über das Licht. 1819 erlangt er mit einer Arbeit über die Beugung des Lichtes den Preis der Académie des Sciences. Er weist nach, dass zwei rechtwinklig zueinander polarisierte Wellen keine Interferenz zeigen und folgert daraus, dass Lichtquellen transversal seien. 1821 folgen Wellenlängenmessungen, dann Arbeiten über Brechung, Doppelbrechung, Beugung und zusammen mit Arago über polarisiertes Licht.

Sein Hauptverdienst besteht in der Aufstellung der Wellentheorie des Lichtes. Dabei ist es interessant, dass im Jahre 1821 auch der Däne Örsted die Vermutung aussprach, Licht sei eine elektromagnetische Erscheinung. Fresnel untermauerte diese Theorie aber mathematisch, was ihm 1823 die Mitgliedschaft der Académie eintrug.

Fresnel hat für seine Untersuchungen viele Apparaturen selber entwickelt.

So erfand er den nach ihm benannten Doppelspiegel, ferner 1821 die «Zonenlinsen», die noch heute bei Leuchttürmen verwendet werden. Später erhielt er wieder eine Anstellung als Inspektor für Strassenbau und war Sekretär der Kommission für Leuchttürme.

Auf dem Sterbebett, in Ville d'Avray, überreichte ihm sein Freund und Mitarbeiter Arago die ihm von der Royal Society in London verliehene «Rumford-Medaille». Am 14. Juli 1827 schloss er seine Augen für immer.

H. W.

Lichtbogenversuche mit verschiedenen Schutzarmaturen

Vortrag, gehalten an der Diskussionsversammlung des SEV vom 26. April 1963 in Bern von H. Kläy, Langenthal

537.523.001.4:621.316.36

Die starke Vermaschung der Hochspannungsnetze hat zur Folge, dass heute die Kurzschlussleistung an einigen Stellen schon gegen 10 000 MVA beträgt und in wenigen Jahren, wenn die projektierten Leitungen erstellt sein werden, auf 20 000 MVA anwachsen [1] 1). Damit sind Kurzschlußströme bis zu 50 kA zu erwarten. Zusammen mit der Georg Fischer AG, Schaffhausen, und einigen Elektrizitätswerken wurde untersucht, wie Schutzarmaturen ausgebildet sein müssen, um Isolatoren gegen Kurzschlußströme dieser Grösse wirksam zu schützen. Die Versuche wurden in den Kurzschlussanlagen der FKH (bis 1500 A), der MFO (bis 25 kA) und der KEMA (bis 40 kA) durchgeführt. Die Entwicklung des Lichtbogens wurde mit einer Schnellkamera mit 7000 Bildern pro Sekunde auf Farbfilm aufgenommen. Bei der Wiedergabe des Films mit 24 Bildern pro Sekunde wird eine Zeitdehnung von 300 erreicht, d. h. eine Halbperiode dauert 3 s. Die Entwicklung des Lichtbogens lässt sich damit gut verfolgen, und es konnten dabei neue Erkenntnisse gewonnen werden. Schon in früheren Arbeiten [2] wurden die auf einen freibrennenden Lichtbogen wirkenden Kräfte berechnet:

$$F = \frac{I_2}{a} 10^{-8} \text{ kg/cm}^2 \text{ (Biot-Savart)}$$

Bei I = 10 kA und a = 1 cm wird F = 1 kg/cm²

Bei einem geschlossenen Ring, wie er noch viel verwendet wird, fliesst der Strom von beiden Seiten auf den Lichtbogenfusspunkt zu und die resultierende Kraft ist sehr klein. Bei einem offenen Leiter wird der Lichtbogenstiel an das offene Ende «geblasen» und dort stellt er sich in die Verlängerung des letzten Leiterstückes ein. Die Kraft nimmt linear mit dem Abstand a ab, wirkt also merklich nur auf den Lichtbogenstiel und nimmt mit dem Quadrat der Stromstärke zu. Die elektrodynamische Blaswirkung ist für Ströme unter 1000 A gegenüber dem thermischen Auftrieb vernachlässigbar, wächst aber bei grösseren Stromstärken stark an. Es handelt sich hier um eine richtige Luftströmung von etwa 50 m/s. Das leitende Plasma wird durch die elektrodynamischen Kräfte weggetrieben (Ionenwind). Bei 14 kA kann ein Seitenwind von 8 m/s die elektrodynamische «Blaswirkung» kaum beeinflussen. Dieser Versuch ist im Film festgehalten. Die Kraft pulsiert mit I^2 , wirkt also besonders im Stromscheitelwert und ist Null beim Stromnulldurchgang. Im Film zeigt

¹⁾ Siehe Literatur am Schluss des Aufsatzes.