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BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames'Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Die digitale Berechnung von Ausgleichsvorgängen in elektrischen Netzwerken

unter besonderer Berücksichtigung komplizierter Randschaltungen
Von P. Althammer, Baden

Zur Berechnung von Ausgleichsvorgängen in elektrischen
Netzwerken bedient man sich häufig eines nach Bergeron
benannten Wanderwellenverfahrens. Der vorliegende Aufsatz
beschreibt eine Erweiterung dieses Verfahrens, welche die
Berücksichtigung von komplizierten Randschaltungen, besonders auch
die Behandlung von Nichtlinearitäten, erlaubt. Die Ausführungen
werden im Hinblick auf eine Programmierung auf einer digitalen
Rechenmaschine formuliert. Einige Anwendungsbeispiele zeigen
die Leistungsfähigkeit der Methode.

621.316.11.08.782.3

Pour te calcul des phénomènes transitoires survenant dans les
réseaux électriques, on se sert souvent du procédé dit des ondes
mobiles de Bergeron. Le présent travail décrit une extension de
ce procédé qui, en considérant certains circuits de couplage
d'extrémité complexes, permet également d'envisager le cas de non
linéarités. Les représentations sont formulées en un sens tel qu'il
soit possible de les programmer sur une calculatrice numérique.
Par ailleurs, des exemples pratiques illustreront ta validité et la
portée de la méthode.

1. Einleitung

Die Berechnung von elektromagnetischen Ausgleichsvorgängen

in elektrischen Netzwerken hat in den letzten Jahren

in steigendem Masse an Bedeutung gewonnen. Bei der immer
weiter fortschreitenden Vermaschung der elektrischen Netze
und den immer höheren Betriebsspannungen wird es uner-
lässlich, ein Bild von den Überspannungsvorgängen zu
erhalten, die nach Schaltmanövern und Störungsfällen, wie

Blitzeinschlägen usw., zu erwarten sind.
Eine mathematische Methode zur Behandlung solcher

Ausgleichsvorgänge, die schon seit längerer Zeit erfolgreich
verwendet wird, ist ein in der technischen Literatur meist nach

Bergeron [l]1) benanntes Wanderwellenverfahren2). Über dieses

Verfahren existiert bereits eine umfangreichere Literatur.
Ein kürzlich erschienener Aufsatz von Prinz, Zaengl und
Völcker [2] gibt eine gute Übersicht über die Methode und
ausserdem eine Zusammenstellung der über diesen Gegenstand

vorhandenen Literatur.
Das Bergeron-Verfahren ist ursprünglich als ein graphisches

Verfahren entwickelt worden. Der erforderliche
Aufwand wird aber bei komplizierteren Netzkonfigurationen
rasch so gross, dass man sich bei einer graphischen Bearbeitung

auf relativ einfache Schaltungen beschränken muss.
Insbesondere wird die Behandlung von nichtlinearen Schaltungen
sehr mühsam. Aus diesem Grunde drängt sich eine analytische

Formulierung der Methode auf, um einen Einsatz von
digitalen Rechenautomaten und damit die Behandlung
komplizierterer Fälle zu ermöglichen.

In einem früheren Aufsatz [3] wurde bereits eine auf dem

Bergeron-Verfahren aufbauende rein analytische Methode be-

') Siehe Literatur am Schluss des Aufsatzes.
2) Es sei jedoch bemerkt, dass die mathematischen Grundlagen

dieses Verfahrens bereits weitgehend Riemann bekannt waren.

schrieben, die als Grundlage für ein universelles Digitalprogramm

zur Berechnung von elektromagnetischen Ausgleichsvorgängen

diente. Diese Methode wurde in der Zwischenzeit
in verschiedenen Richtungen weiterentwickelt. Der vorliegende
Aufsatz soll eine Zusammenfassung der mathematischen
Grundlagen des Verfahrens geben und an einigen Beispielen
seine praktischen Möglichkeiten erläutern.

2. Die Grundlage der Theorie

Die Grundlagen der Theorie von Bergeron sind in der Literatur

bereits öfters dargelegt worden (vgl. z. B. [1 ; 2]), so dass

man sich mit einer knappen Zusammenfassung begnügen
kann. Die Ausgleichsvorgänge auf einer verlustlosen Freileitung

werden durch die bekannten Leitungsgleichungen:

du _ di
~1Ï3F ~ ~ö7

(D
01 _ du" ~àT

beschrieben. Hierin bedeuten u(x, t) und i(x, t) Spannung

gegen Erde bzw. Strom, L' und C die Induktivität bzw. Kapazität

der Leitung pro Längeneinheit. Die allgemeine Lösung
dieser Gleichungen lautet:

i(x,t)= F(x -vi) +f(x + vt)
u(x,t) Z F(x — vi) — Z f(x + v t)

worin F(y) und /(>) zwei beliebige Funktionen einer Variablen

y und

i/l'C y c
die Fortpflanzungsgeschwindigkeit der Vorgänge auf der
Leitung bzw. den Wellenwiderstand bedeuten. In einem konkret
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vorliegenden Fall müssten die Funktionen F(v) und /(>) aus
den jeweiligen Rand- und Anfangsbedingungen bestimmt werden.

Eine geschlossene Darstellung dieser Funktionen ist
jedoch nur in einfacheren Fällen möglich.

Das Bergeron-Verfahren vermeidet die geschlossene

Berechnung der Funktionen F(y) und /( v), vielmehr werden die

Lösungen mittels eines Schrittverfahrens aufgebaut, das auch

in komplizierteren Fällen zum Ziele führt. Der Grundgedanke
besteht in der Ausnützung der durch Kombination der Gl. (2)

folgenden Beziehungen :

u (x, t) + Z i (x, /) 2 Z F (x — v t)

u (.x, t) — Zi (x, i) — 2 Z • /(.v + v t)

Diese Beziehungen besagen, dass für Punkte x, t der Ort-
Zeit-Ebene, die nach x — v t konst. zusammenhängen,
auch u(x, t) + Z i(x, t) konst. gilt; entsprechend ist

u (x, t) — Z i (x, t) konst. für x + v t konst. Man pflegt
diesen Umstand anschaulich so zu beschreiben, dass ein mit
der Fortpflanzungsgeschwindigkeit v bewegter «Beobachter»
auf der Leitung Spannungen und Ströme feststellt, die einer
Relation :

u (x, t) ± Z • ; (x, t) konst. (3)

genügen. Diese linearen Beziehungen zwischen den Zuständen,
d.h. den Spannungen und Strömen, sollen im folgenden als

«Zustandsgieichungen» bezeichnet werden. Um den Zustand
der Leitung für einen Punkt xo, to der Ort-Zeit-Ebene zu
bestimmen, lässt man zu den Zeiten h /o — t.\ und to to — t3
in den beiden benachbarten Orten .vi xo — v ti und X2

xo+vr-2 zwei «Beobachter» mit der Geschwindigkeit v in
Richtung auf xo starten, die beide zur Zeit to in xa eintreffen,
und bestimmt den Schnittpunkt der ihnen entsprechenden Zu-
standsgeraden :

ti (.v, t) + Z i (x, t) u (.vi, ti) + Z • i (xi, ti)
Il (X, t) — Z i (.V, /) II (A'2, ti) Z i to)

Dieser Schnittpunkt liefert den Zustand der Leitung im

Ort xo zur Zeit /o. Vorauszusetzen ist hiebei, dass der Zustand

für die Orte vi, xo zu den Zeiten ti to — ti, to to — t2
bereits bekannt war.

3. Die Berücksichtigung von Verbindungsschaltungen

Die Ausführungen des Abschnittes 2 berücksichtigten nur
den einfachsten Fall einer Leitung ohne elektrische Schaltungen.

In der Praxis befinden sich jedoch in einem Netzwerk
stets noch irgendwelche Schaltungen, wie Generatoren,
Transformatoren o. ä. Die Laufzeit der Wellen durch diese

Schaltungen ist vernachlässigbar klein. Man kann die Schaltungen
durch konzentrierte Elemente, etwa konzentrierte Ohmsche

Widerstände, Induktivitäten und Kapazitäten, darstellen.

Mathematisch werden sie durch Systeme von gewöhnlichen

Differentialgleichungen beschrieben, die auch nichtlinearen
Charakter besitzen können (z.B. bei Berücksichtigung der

Sättigung). Im einfachen Fall von rein Ohmschen Widerständen

treten an Stelle von Differentialgleichungen nur finite
Gleichungen auf.

Der Einfachheit halber sollen zunächst nur Leitungssysteme

ohne Verzweigungen betrachtet werden. Das Schema

des Systems besitzt also die in Fig. 1 angegebene prinzipielle
Gestalt. Das System umfasse / Freileitungen oder Kabel

h...h, die als verlustlos vorausgesetzt und durch ihren
Wellenwiderstand Z] und die Laufzeit der Wellen r, charakterisiert

uo ij^ö
l, A tj '2j__ 2J-H tj+j

S< ||U3 u2j| S, p2j+f
pz P3 P2, P2j + <

h '21 '21 +1

u211 |sl|ïu2l+<

2 t 21 +1

Fig. 1

Schema eines unverzweigten Leitungssystems mit / Leitungen
lv..lj und l + 1 Schaltungen S0...Sl

sind. Zwischen den Leitungen /,• und am Rande des Leitungssystems

befinden sich / + 1 Schaltungen So, Si von
konzentrierten Elementen. Während die Leitungen lj durch
partielle Differentialgleichungen beschrieben werden, sind die

Schaltungen Sj durch Systeme von gewöhnlichen Differentialgleichungen

bzw. durch finite Gleichungen charakterisiert.
Ausserdem müssen an den beiden Rändern Po, P21 + 1

Randbedingungen vorgegeben sein. Sie sollen in einer linearen
Beziehung zwischen Spannung und Strom vorausgesetzt werden :

Aj (1) iij + B) • ij (t)

7 0, 2 / + 1

Cj (t) (4)

Weiter wird angenommen, dass der Ausgleichsvorgang zur
Zeit t 0 durch ein Schaltmanöver oder eine Störung eingeleitet

wird und der Zustand des Systems vor dieser Störung,
d.h. für t < 0, bekannt ist. Mathematisch besteht die Aufgabe

darin, die Leitungsgleichungen (1) unter den

Anfangsbedingungen und den durch die Relationen in Gl. (4) und die

Schaltungen Sj gegebenen Randbedingungen zu integrieren.
Man kann sich darauf beschränken, die Spannungen iij(t) und
die Ströme ij (t) in den unmittelbar an den Klemmen der

Schaltungen Sj befindlichen Punkten Po, Pi, P2/. + 1 (vgl.
Fig. 1) für die Zeiten 0, Ii, 2 h,.... Nh zu berechnen, h ist hiebei
die Schrittlänge des numerischen Verfahrens. Weiterhin sei

vorausgesetzt, dass die Laufzeiten der Wellen Tj ganzzahlige
Vielfache der Schrittlänge h sind:

Tj Tj h

Tj ganzzahlig, /' 1 ,...,/
Zur Bestimmung der Zustände

Tj (0) - [üj (0), ij (0)]

in den Punkten P,, / 0, 2 / + 1, zur Zeit Null geht man
wie folgt vor (ist erst der Zustand für t 0 vollständig
bestimmt, so kann man zur Berechnung des Zustandes für t h

nach einer Zeittransformation /* t — h in derselben Weise

verfahren) :

In jedem Punkt P, besteht zur Zeit t 0 zwischen Spannung

Uj (0) und Strom ij (0) eine bekannte Beziehung der Form :

a> (0) Uj (0) + bj (0) ij (0) cj (0)

7=0, 2/+ 1

Die Koeffizienten aj (0), bj (0), Cj (0) berechnen sich dabei nach

folgendem Schema:

00 (0) Ao (0)

bo (0) Bo (0)

co (0) Co (0)

Ö2j-l(0) 1

boj-i (0) — Zj
Cij-i (0) uoj (- tj) - Zj iij tj)

azj (0) 1

bij(0) Zj
coj (0) iiij-j (— Tj) + Zj iij — 1 (— Tj)

7=1,-,/

790 (A 568) Bull. SEV 54(1963)19, 21. September



7/2 I + 1 (0) Ai f+ 1 (0)

hi i +1 (0) B-2 1 + 1 (0)

C2/ + l(0) C-2 1 + 1 (0)

Die oberen und die unteren drei Zeilen folgen hiebei sofort
aus den Randbedingungen in Gl. (4), während man die mittleren

Zeilen durch Spezialisierung der Zustandsgieichungen
(3) erhält.

An den Klemmen Pij, Pij 1 der Schaltung Sj bestehen

also zwischen den vier Spannungen und Strömen «2,(0). 72j(0),

»2;/. 1 (0), i-2j -i (0) zwei lineare Beziehungen:

azj (0) U2j (0) + 1)2} (0) hj (0) C2j (0) (5a)

a-2j + i (0) u-2j + i (0) + Ä2j + i (0) i'2] +1 (0) c-2j +1 (0) (5b)

Um diese vier Grössen berechnen zu können, sind noch
zwei weitere Gleichungen erforderlich. Diese beiden Gleichungen

werden durch den Vierpol Sj geliefert, der die Zustände

Wh und 'Ipj ; 1 in einer für die jeweilige Gestalt der Schaltung

typischen Weise miteinander verknüpft. Die rechnerische

Behandlung dieser Verknüpfung kann auf verschiedene Arten
erfolgen und soll in den nächsten Abschnitten erläutert werden.

4. Die Modifizierung der Zustandsgeraden

Eine erste Möglichkeit, das am Ende des vorigen
Abschnittes angedeutete Problem zu behandeln, besteht in der

«Modifizierung» der Zustandsgeraden (Gl. 5a, b). Ein
einfaches Beispiel soll darlegen, was darunter verstanden wird:

Die Schaltung Sj bestehe aus einem Ohmschen Vierpol,
d.h. enthalte lediglich passive lineare Ohmsche Widerstände.
Ein solcher Ohmscher Vierpol kann durch seine Kettenmatrix :

An An
An A 22

charakterisiert werden, die den Zusammenhang zwischen den

Zuständen an den Ein- und Ausgangsklemmen herstellt:

U2j All U2jl 1 + A\i 7*22 + 1

hj An i/2j+i + A22/22+1

Die Determinante von A muss stets gleich 1 sein. Setzt man
die besonders auch für t 0 geltende Beziehung (6) in die

Zustandsgieichung (5a) ein, so folgt:

[An az] (0) + A21 b'ij (0)] «22+1 (0) +
+ [An a-2j (0) + ^22 bij (0)] iij+i (0) C2j (0)

Entsprechend erhält man, wenn man Gl. (6) zunächst nach

U2j + i und 72:j + i auflöst und dann in Gl. (5b) einsetzt:

[A 22 a2j+i (0) — An bij+i (0)] mj (0) +
+ [— Aiidij+i (0) + An bij+i (0)] hj(0) C2j+i (0)

Die linearen Gleichungen (7a, b) sollen als die

«Modifizierungen» der Zustandsgeraden in Gl. (5a, b) bezeichnet

werden. Sie haben die prinzipielle Gestalt:

ah} (0) z/22+1 (0) + b'ij (0) /2j-i (0) c'ij (0)

d'ij+i (0) Uij (0) 4 b'ij 1 (0) iij (0) c'ij 1 (0)

wobei die Koeffizienten:

a'ij (0) An aij (0) + ^21 bij (0)

b'ij (0) ^412 an (0) + An bij (0)

eh) (0) dj (0)

a'2j+i (0) An ûij+i (0) — An bij+i (0)

b'ij+i (0) — A12 dij+i (0) + An 622+1 (0)

c'ij+i (0) Cij+i (0)

A

Fig-2
Eine konzentrierte Induktivität im Zuge

der Leitung

'2j '2j+<

AWA- 1

2 j |°2j H-4

lauten. Durch Auflösung der beiden Gleichungen (5a), (8b)
kann man nun den Zustand A'ij (0) und aus Gl. (5b), (8a) den
Zustand V2i+i(0) bestimmen. Dieser numerischen Auflösung
der linearen Gleichungen (5) und (8) entspricht bei graphischer
Behandlung des Problems [1] der Schnitt der Zustandsgeraden
in der Strom-Spannungs-Ebene.

Die soeben dargelegte Methode lässt sich im Sinne eines

Näherungsverfahrens auch beim Auftreten von konzentrierten
Induktivitäten und Kapazitäten anwenden. Der Grundgedanke
der Methode sei am Beispiel einer in Serie in die Leitung
eingeschalteten Induktivität erläutert (Fig. 2).

Zwischen den Ein- und Ausgangsgrössen der Schaltung
bestehen die Beziehungen

Uij

hj -

Uij vi + L

Hin

àiij+i
d t

(9a)

(9b)

In der oberen dieser Gleichungen ersetzt man den

Differentialquotienten durch einen symmetrischen Differenzenquotienten:

un (0) + im (--7z)

«2 2+7 (0) + 7/22+1 (— h) 72 2+1 (0) — 7*22+1 h)
(10)

(6)

Damit diese näherungsweise Ersetzung des Differentialquotienten

zulässig ist, muss die Schrittlänge h genügend klein
gewählt werden. Mittels der Gl. (9b) und (10) kann man in

(5a) «2j (0) und iij (0) bzw. in Gl. (5b) 7/22-1 (0) und 7*22+1 (0)
eliminieren und erhält wieder «modifizierte» Zustandsgleichun-
gen der Form (8a, b), wobei sich diesmal die Koeffizienten zu

a'ij (0)

b'ij (0)

aoj (0)

bij (0)
2 L

a-ij (0)

c'a (0)

(7a) C2j(0) — an (0) [z/22+1 (— h) — Uij(-h) iij+i (—/z)j

a'ij+i (0) <72 2+1 (0)

b'ij+i (0) bi j+i (0)
2 L

«2 2+1 (0)

(7b) c'ij+i (0) ~

(8a)

(8b)

r 2 l *1

Cij H (0) — üij+l (0) I

7/2; (— h) — 7/22+1 (—h) -\
^

- iij //) I

berechnen. In der bereits früher beschriebenen Weise lässt

sich nun der Zustand A'ij (0) und 'P22 11 (0) bestimmen.
Das soeben erläuterte Verfahren kann im Prinzip auf jede

Schaltung von linearen konzentrierten Elementen angewendet
werden. Man hat dazu in der im obigen Beispiel beschriebenen

Weise sämtliche auftretenden Differentialquotienten durch

Differenzenquotienten zu ersetzen. Die Koeffizienten der
modifizierten Zustandsgeraden (8a, b) berechnen sich dann in einer
für die Schaltung charakteristischen Weise aus den Koeffizienten

der ursprünglichen Zustandsgeraden (5a, b), den
Konstanten der Schaltung, dem Zustand der Schaltung zur Zeit
— /z und der Schrittlänge.
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5. Simultane Integration eines Systems von gewöhnlichen <p2 i (yi,
Differentialgleichungen

(11)

«23

«23+1(?)

C2j(0 - &23 Z
a-2j

C23+1 — b2j+i(t)-y(t)
«23+1

d.r
d? r [ C23 - b2j -y(?)

a2j

ça 3+1 — b2j+i(t)-y{t) "

ß2j+l(')

«23 + + ¥>24 (yi, ym, t) hj+1

<pz(yi, t)
(15b)

Das in Abschnitt 4 erklärte Verfahren der Modifizierung
besitzt einige Nachteile, die seine universelle Verwendbarkeit
einschränken. Einesteils wird nämlich die Anwendung dieser

Methode bei komplizierteren Schaltungen sehr mühsam,
anderenteils lassen sich Nichtlinearitäten (Berücksichtigung der

Sättigung o. ä.) in dieser Weise nicht ohne weiteres behandeln.
In solchen Fällen erscheint es zweckmässiger, die Randbedingungen

direkt zu berücksichtigen, indem man das gekoppelte
Problem der Integration der partiellen Differentialgleichungen
(1) unter den durch die Schaltung S) gegebenen Randbedingungen

schrittweise auflöst in die Integration eines Systems

von gewöhnlichen Differentialgleichungen und die nachfolgende

Bestimmung der Lösung der partiellen
Differentialgleichungen.

Der Grundgedanke der Methode möge zunächst am bereits

im vorigen Abschnitt behandelten einfachen Beispiel einer in
Serie geschalteten konzentrierten Induktivität erläutert werden

(vgl. Fig. 2). Für die Grösse y i2j hj + i gilt nach
Gl. (9a) die Beziehung

bestehen. Dann lassen sich die vier in den Funktionen u2j, hj,
«2j + i, /a3-: l linearen Gleichungen (5a, b) (15a, b) nach diesen

Grössen auflösen:

(16)

Die Zustandsgieichungen (5a, b), die auch für eine beliebige
Zeit gelten, ergeben :

(12)

Dies in Gl. (11) eingesetzt, liefert die gewöhnliche
Differentialgleichung:

(13)

Ausgehend von dem bekannten Wert y — Ii), kann man
durch Integration dieser Differentialgleichung y (0) /23(C))

?23 +1 (0) bestimmen. «23(0) und «23 + 1(0) erhält man anschliessend

nach Gl. (12). Man beachte, dass die in Gl. (13)
auftretenden Koeffizientenfunktionen a2j C23 + 1 für < 0

bekannt sind.
Das an diesem einfachen Beispiel skizzierte Verfahren kann

auf Schaltungen beliebiger Gestalt angewendet werden. Das

Problem muss sich dazu auf folgende mathematische Form
bringen lassen:

Die Schaltung Sj sei durch m «Hilfsvariablen» y\
ym(t) (irgendwelche Ströme, Spannungen, zeitabhängige Widerstände

o. ä.) charakterisiert, die einem System von gewöhnlichen

Differentialgleichungen genügen:

-^r h{yiym, «23, hj, «23+1, hj+i, (14)

k 1, m

Ausserdem müssen zwischen den Hilfsgrössen yi- und den

Zuständen ¥*23, 'P>j 1-1 an den Klemmen der Schaltung
Zusammenhänge der Form

¥>11 (yi, •••, ym, t) «23 + + ¥>14 (yi, ym, /23+1

U2j XI (Zl » ••• ym «23 C23+I

hj X2 (yi y m «23 C23+I

«23+1 X3(yi, —, ym, «23,..., C23+1,

/23+1 xi (zi > ••• > ym, 023,..., C23+1,

Diese Relationen in Gl. (14) eingesetzt, ergibt für die
Hilfsvariablen yi, ym ein Differentialgleichungssystem der
Gestalt

dys ^^ S to j ••• > ym 9 ^2j 9 5 C2j+19 t) 9

k 1, m

Man kann nun, ausgehend von den als bekannt vorausgesetzten

Werten yi( —A), ym( — h), den Zustand yi(0),
ym (0) durch Integration dieses Gleichungssystems gewinnen.
Die Integration wird man zweckmässigerweise mittels eines

numerischen Näherungsverfahrens durchführen, etwa mittels
des Verfahrens von Euler-Cauchy oder von Runge-Kutta. Bei
Verwendung des Runge-Kutta-Verfahrens müssen jedoch die

Werte der Funktionen 023, 023 + 1 ausser für die Zeiten —Ii
und 0 auch noch für — h/2 bekannt sein.

Hat man in dieser Weise die Hilfsgrössen yi (0), y,„ (0)
bestimmt, so liefern die Gl. (16) die Werte von Spannung und
Strom an den Klemmen der Schaltung.

Mit der soeben beschriebenen Methode sollte es möglich
sein, sämtliche in der Praxis auftretenden Typen von
Verbindungsschaltungen zu behandeln. Besondere Bedeutung dürfte
der Methode beim Vorhandensein von nichtlinearen Gliedern
zukommen.

6. Leitungsverzweigungen

Die bisherigen Ausführungen bezogen sich lediglich auf die

Berechnung von Ausgleichsvorgängen in unverzweigten
Leitungen. Nur kurz soll auf die Behandlung von Leitungsverzweigungen

eingegangen werden. Es möge dabei lediglich der
einfache Fall besprochen werden, dass im Verzweigungspunkt
keinerlei Schaltungen von konzentrierten Elementen vorhanden
sind; doch lassen sich solche Schaltungen in einer ähnlichen
Weise wie bei den Ausführungen der Abschnitte 4 und 5

berücksichtigen.
Wie Fig. 3 zeigt, möge der Verzweigungspunkt durch den

Zusammenstoss von m Leitungen l\, lm entstehen. Jede der

Leitungen lj liefert für die zugehörige «Klemme» P, des

Verzweigungspunktes eine Zustandsgieichung zwischen Spannung
und Strom

«3 «3 + bj ij Cj

j 1, m

b

¥>i(ti, y m
(15a)

Fig. 3

Schema eines Verzweigungspunktes mit m zusammenstossenden
Leitungen lv..lm
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Fig. 4
Beispiel für die mit dem Programm behandelbaren Netzkonfignrationen

l Leitungen; S elektrische Schaltungen

Ausserdem gelten die Beziehungen:

U\ U2 Um

2 £lc ik 0
und

wobei
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56V3216!

b
Fig. 5

Schema für die Untersuchung von Überspannungsvorgängen bei
Blitzeinschlägen

T Transformator; A Abieiter; F Fehlerstelle
Daten: a Z,= Z2 500 n; R 10 000 «; v2 300 m/g.s;

1"! 1 us; T«. 0,1 us; C 10"9 F
b wie a, jedoch t1= 1,1 ^

1, falls die positive Stromrichtung auf der Leitung
Ik auf den Verzweigungspunkt hin zeigt.

— 1 falls die positive Stromrichtung auf der Leitung
lk vom Verzweigungspunkt weg zeigt.

Aus diesen Gleichungen ergeben sich die Spannungen und
Ströme in den Klemmen Pi, Pm zu:

Fig. 6

Strom-Spannungs-Charakteristik des Abieiters HKF 228

gen müssen von Fall zu Fall neu bearbeitet und in Form eines

Unterprogrammes vorgegeben werden. Wegen der beschränkten

Speicherkapazität der Maschine dürfen die Netze maximal
30 Leitungen / und 24 Knotenpunkte 5 umfassen.

Für jede Rechnung muss ein Datenstreifen hergestellt werden,

der die Angaben über die Topologie des Netzes, die
Konstanten der Schaltungen S und der Leitungen / usw. enthält.
Die Vorbereitung dieses Streifens erfordert nur einen geringen
Zeitaufwand.

8.1

8. Beispiele
Schutz eines Transformators durch einen Abieiter

7=1,..., m

7. Ein digitales Rechenprogramm

Nach den in den vorangegangenen Abschnitten erläuterten
Gesichtspunkten wurde ein universelles Digitalprogramm zur
Berechnung von Ausgleichsvorgängen in elektrischen
Netzwerken für den Rechner Siemens 2002 entwickelt. Eine erste

Fassung dieses Programmes ist bereits in [3] beschrieben.
Mit diesem Digitalprogramm können beliebig vermaschte

Netze behandelt werden, wie es in Fig. 4 für einen einfachen
Fall angedeutet ist. Die am häufigsten auftretenden
Grundschaltungen 5 sind fest programmiert und werden durch
bestimmte Kennzahlen charakterisiert. Kompliziertere Schaltun-

Die Möglichkeiten und Leistungsfähigkeiten der im
vorangegangenen geschilderten Methoden sollen an Hand einiger
Beispiele illustriert werden. Als erstes Beispiel wird die
Berechnung von Überspannungen betrachtet, die bei einem
Blitzeinschlag in eine Freileitung an einem in der Nähe befindlichen
Transformator zu erwarten sind.

Das Schema der betrachteten Anordnung ist in Fig. 5

wiedergegeben. Der Transformator T, der durch Wellenwiderstand

R und Eingangskapazität C dargestellt ist, wird durch
einen in einer Entfernung von 30 m befindlichen Abieiter A
geschützt. Im ersten Fall (Fig. 5a) ist der Abieiter an der
Freileitung vor dem Transformator angebracht, im zweiten Fall
(Fig. 5b) hinter dem Transformator (etwa auf einer separaten
Abzweigung von einer Sammelschiene). Im störungsfreien
Betrieb wirkt der Abieiter als Isolator. Er spricht erst an, sobald
durch eine Störung bedingt die Ansprechspannung
überschritten wird. Während bei den bisher bekannt gewordenen
Rechnungen vorausgesetzt wurde, dass die Restspannung
unabhängig vom Strom oder Zumindestens die Ansprechspannung

unabhängig von der Frontsteilheit der einfallenden
Welle ist, konnten diese Einschränkungen bei den im folgenden
beschriebenen Rechnungen fallengelassen werden. In Fig. 6 ist
die Abhängigkeit der Restspannung vom Ableitstrom und in
Fig. 7 die Abhängigkeit der Ansprechspannung von der Steilheit

der einfallenden Welle für den modernen Abieiter HKF 228

(Löschspannung 228 kV, Restspannung bei Nennableitver-

kV

800

600-
<

L 400

200

0 0,5
5EV32J83

1,5 2 JJS 2,5
-t

Fig. 7

Ansprechspannung uA in Funktion der Frontdauer der einfallenden Welle
für den Abieiter HKF 228
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Fig. 8

Zeitlicher Verlauf von Transformatorspannung uT, Ableiterspannung uÄ
und Ableiterstrom iA (Steilheit der einfallenden Welle 1000 kV l

a Anordnung nach Fig. 5a; b Anordnung nach Fig. 5b

mögen 570 kV) dargestellt, der den folgenden Rechnungen zu
Grunde gelegt wurde.

Der Blitzeinschlag erfolge im Punkte F in einer Entfernung
von 330 m vom Transformator. Es wird angenommen, dass

an der Fehlerstelle die Spannung linear bis zu einem Wert von
1500 kV ansteigt, was einer oberen Grenze für das Isolationsniveau

der Leitung entspricht. Nachher möge die Spannung
konstant auf diesem Wert bleiben. Bezüglich der Steilheit des

Spannungsanstieges wurden zwei Fälle, und zwar Gradienten
von 1000 kV/;is bzw. 500 kV/'us, untersucht.

Für insgesamt vier Varianten wurden die Spannungsverläufe

am Transformator ut und über dem Abieiter ua sowie
der Ableitstrom G berechnet. Die Fig. 8a, b zeigen zwei
Beispiele der erhaltenen Kurvenverläufe. Man erkennt deutlich
den Moment des Ansprechens des Abieiters an dem in diesem
Moment eintretenden Spannungseinbruch. Nachher steigt die

Spannung über dem Abieiter wieder langsam an. Die
Transformatorspannung schwingt um die Ableiterspannung, die

Frequenz dieser Schwingungen wird in erster Näherung durch
Leitungsinduktivität und Transformatorkapazität bestimmt.
Da für die Variante nach Fig. 5b am Transformator zwei
Leitungen angrenzen, erhält man zwei Frequenzen, deren
Überlagerung die in Fig. 8b gezeigte Form ergibt.

Die am Transformator maximal auftretenden Spannungen
sind für die verschiedenen behandelten Fälle in Tabelle I
zusammengestellt; in Klammern sind die entsprechenden
Ansprechspannungen beigefügt. Natürlich bewirkt die steilere
einfallende Spannungswelle auch höhere Überspannungen.
Weiter erkennt man, dass die Anordnung des Abieiters auf

794 (A 572)

s

Schema für die Untersuchung von Einschaltvorgängen auf einer
380-kV-übertragung

Daten: Zx Z.1 385 cd; vt t>2 300 m/M-s; t± — 667 lis;
t2 500 ns; L, 1,22 H; L» 0,31 H; L3 20 H;
û 13,5 H; L, 6,75 H

der Freileitung vor dem Transformator vorteilhafter ist. Ein
Grund hiefür ist darin zu suchen, dass bei der Anordnung
nach Fig. 5b der Spannungsanstieg am Abieiter steiler ist und
dadurch die Ansprechspannung höher liegt.

8.2 Einschaltvorgänge auf einer 380-kV-Übertragung

Schliesslich werden Überspannungsvorgänge beim
Einschalten einer 380-kV-Übertragungsleitung betrachtet. Das
der Rechnung zu Grunde gelegte Ersatzschema der Übertragung

ist in Fig. 9 angegeben. Von der Station S geht eine 350km
lange Freileitung aus. Es wird der Fall untersucht, dass das

Leitungsende in B offen ist; bekanntlich ergeben Ausgleichsvorgänge

bei Reflexionen an einem offenen Ende die
gefährlichsten Überspannungen. Am Leitungsanfang A und in der

Leitungsmitte M sind Hochspannungsdrosselspulen Li und Ts

angebracht, die so bemessen sind, dass sie ca. 70% der
Blindleistung kompensieren. Die Generatoren und Transformatoren
der Station S werden durch ihren Leistungen entsprechende
Induktivitäten Li und Li dargestellt. L3 bezeichnet eine weitere

Hochspannungsdrosselspule.
Die Wirkverluste der Freileitung von 0,05 D/km wurden

durch zwei in die Leitung eingeschaltete konzentrierte Ohm-
sche Widerstände von insgesamt 17,5 fl nachgebildet. Die
Ohmschen Verluste der Generatoren, Transformatoren und
Hochspannungsdrosselspulen wurden vernachlässigt.

Es wurden die Überspannungsvorgänge beim Einschalten
des Schalters D untersucht; die Schaltung erfolge im
Spannungsmaximum. Der Verlauf der Spannung am Leitungsanfang

A und am Leitungsende B ist in Fig. 10a, b
wiedergegeben (ausgezogene Kurven). Die angegebenen Amplituden
beziehen sich auf das Einschalten einer Spannung von 1 V
Scheitelwert. Die am offenen Ende B auftretenden
Überspannungen betragen etwa das Doppelte der angelegten
Spannung.

Man beobachtet deutlich, wie nach der doppelten Laufzeit
durch die Leitung (2,33 ms) die am offenen Ende reflektierten
Wellen wieder am Leitungsanfang eintreffen. Der weitere Verlauf

der Spannungen ist durch die Überlagerung der erregenden

Frequenz (50 Hz) und der Eigenfrequenz des Systems zu
erklären. Wegen der als gering vorausgesetzten Dämpfung

Berechnete Maxima der Transformatorspannung up (in kV) für
die verschiedenen Rechenvarianten (in Klammern sie die ent¬

sprechenden Ansprechspannungen beigefügt)
Tabelle I

Steilheit der einfallenden
Welle Anordnung nach Fig. 5a Anordnung nach Fig. 5b

kV/^s

500 645 (530) 765 (545)

1000 780 (600) 900 (630)

Bull. SEV 54(1963)19, 21. September



0
S£VJ21S7 — h

Fig. 11

2 xtO'3A

Bezogene Sättigungskurven <Z> f(iL) für die beiden Hochspannungs¬
drosselspulen L4 und L_

I Drosselspule L4; II Drosselspule L3
Zum Vergleich sind auch die linearen Charakteristiken wiedergegeben:

lineare Charakteristik,
gesättigte Charakteristik
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Fig. 10

überspannungsvorgänge beim Einschalten einer 380-kY-Freileitnng
Rechnung ohne Sättigung
Rechnung unter Berücksichtigung der Sättigung der
Hochspannungsdrosselspulen

a Spannung am Leitungsanfang A; b Spannung am Leitungsende B\
c Strom durch die Drosselspule Lr,

klingt der Einschaltvorgang nur langsam ab. Innerhalb des bei
der Rechnung betrachteten Zeitraums von 70 ms ist der
stationäre Zustand noch nicht erreicht.

Bei einer weiteren Rechenvariante wurde die Sättigung der

Hochspannungsdrosselspulen Li und Es berücksichtigt. Es

wurden dazu die in Abschnitt 5 geschilderten mathematischen
Methoden verwendet. In Fig. 11 ist die zu Grunde gelegte

Sättigungskurve (Fluss O als Funktion des durch die Drosselspule

fliessenden Stromes wieder bezogen auf 1 V Scheitelwert

der eingeschalteten Spannung) angegeben. Das Resultat
der Rechnung ist in Fig. 10 gestrichelt eingezeichnet. Man
erkennt einen beachtlichen Einfluss der Sättigung. Die
Überspannungen werden bedeutend reduziert und betragen am
offenen Ende nur noch etwa das l,6fache der eingeschalteten
Spannung.

Um einen weiteren Vergleich zwischen gesättigter und
ungesättigter Drosselspule zu ermöglichen, ist für diese beiden
Fälle in Fig. 10c der Strom durch die Drosselspule in der

Leitungsmitte aufgetragen. Im gesättigten Fall zeigt der
Stromverlauf das von nichtlinearen Schwingkreisen bekannte
Verhalten.

9. Schlussfolgerungen

Bereits die wenigen hier angeführten Beispiele lassen

erkennen, dass es heute möglich ist, auch komplizierte
Ausgleichsvorgänge in elektrischen Netzwerken mittels rein
mathematischer digitaler Methoden zu behandeln. Die Hauptarbeit
ist hiebei für die Aufstellung eines universellen Digitalpro-
grammes aufzuwenden. Liegt ein solches Rechenprogramm
fertig ausgeprüft vor, so erfordert die Durchrechnung eines

besonderen Falles nur einen geringen Zeitaufwand. Als Vorteil

der Digitalrechnung gegenüber einer Untersuchung auf
einem Schwingungsnetzmodell ist insbesondere hervorzuheben,

dass die Vorbereitungszeit gering ist, die Rechnung
jederzeit wiederholt werden kann und der gedruckt vorliegende
Daten- und Resultatstreifen eine leichte Kontrolle der Rechnung

ermöglicht.
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