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BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Das elektromagnetische Feld als kinematische Erscheinung
Von Th. Boveri, Baden

538.311

1.

Die Theorie der Elektrizität von Maxwell stützt sich, besonders

in ihrer modernen Form, auf die Theorie der Vektorfelder.
Die elektrische Ladung als skalare Grösse tritt dabei
notgedrungen etwas in den Hintergrund. Das stört nicht, solange

man den elektrischen Leitungsstrom und seine Ergänzung in
rasch wechselnden Feldern, den elektrischen Verschiebungsstrom

als das für die Erregung des elektromagnetischen Feldes

primär Gegebene annimmt. Aber gebührt diese Rolle nicht
eher der elektrischen Ladung, dem stets vorhandenen Bestandteil

aller Materie? Ihre Bewegung erst ergibt den elektrischen

Leitungsstrom und ihr An- und Abschwellen ist die Quelle des

elektrischen Verschiebungsstromes. Die stets quellenfreie
Summe dieser beiden Ströme, die eine von irgendeiner geschlossenen

Kurve berandete Fläche durchstösst, ist gleich dem

Linienintegral der magnetischen Feldstärke längs dieser Kurve.
Es entsteht nun aber sofort die Frage, warum bewegte Ladung
ein elektromagnetisches Feld erzeugt, ruhende aber nicht. Es

scheint doch fast unvermeidlich, hier nichts als einen reinen

Bewegungseffekt zu sehen. Neuere theoretische Arbeiten
bestätigen diese Auffassung, z. B. diejenigen von Page [l]1) und
Dacos [2], Sie führen das Auftreten des elektromagnetischen
Feldes auf die sog. Lorentz-Kontraktion des Raumes zurück.
Die Tatsache, dass eine ziemlich abstrakte Begriffsbildung der

theoretischen Physik eine so enge Beziehung zur praktischen
Elektrotechnik, die unser ganzes Leben aufs stärkste beein-

flusst, aufweist, scheint dem Verfasser einer kurzen Darstellung
im Bulletin des SEV würdig, wobei er sich stark auf Dacos

stützt.
2.

Die Lorentz-Kontraktion des Raumes ist eine Folge der an
sich unserem Gefühl etwas widerstrebenden Tatsache, dass die

kugelförmige Ausbreitung des Lichtes mit der in allen Richtungen

konstanten Geschwindigkeit c 3 • 108 m/s erhalten

bleibt, wenn wir von einem beispielsweise rechtwinkligen
Koordinatensystem S mit dem Nullpunkt 0, in dem die Lichtquelle
ruht, zu einem relativ dazu mit der konstanten Geschwindigkeit

v bewegten S' übergehen. Die Konstanz von c wurde durch
sehr genaue Versuche endgültig erhärtet und von Einstein als

Postulat an die Spitze seiner Überlegungen, die zur speziellen
Relativitätstheorie führten, gestellt. Man kann sich sogar
fragen, ob sie nicht eine notwendige Bedingung unserer Erkenntnis

ist. Milne [3] und Page [1] leiten dieLorentz-Transformation,

x) Siehe Literatur am Schluss des Aufsatzes.

die man benützen muss, um bei der Berechnung der Koordinaten

in S' aus denen von S die kugelförmige Ausbreitung des

Lichtes nicht zu zerstören, unter minimalen Voraussetzungen
ab. Sie betrachten zwei punktförmige Beobachter Fund P', die
im Stande sind, Lichtsignale auszusenden, zu reflektieren und

zu empfangen. Misst P mit seiner Uhr die Zeit zwischen der

Aussendung und dem Wiederempfang eines von P' reflektierten
Signals, so kann er daraus nicht nur der Reflexion an P' einen

bestimmten Zeitpunkt auf seiner eigenen Uhr zuschreiben,
sondern auch die Distanz PP' berechnen, sofern er eine
bestimmte Signalgeschwindigkeit c zu Grunde legt. Diese ist
notwendigerweise konstant, da Variable, von denen sie abhängen
könnte, fehlen. Ihr Zahlwert muss dann allerdings noch durch
Messung bestimmt werden.

Eine Ableitung der Formeln der Lorentz-Transformation
findet man in vielen Büchern. Wenn wir an dieser Stelle eine

solche wiederholen, geschieht es nicht nur wegen ihrer
ausschlaggebenden Bedeutung für die ganze vorliegende Betrachtung,

sondern weil nach Ansicht des Verfassers in den meisten

Darstellungen zu wenig betont wird, dass die Koordinate x'
in S' nicht nur in ,S" gemessen werden kann, sondern auch in S,

wobei sich ein von x' verschiedener Wert xi ergibt. Hierin liegt
gerade das Wesentliche des ganzen Gedankenganges (Fig. 1).

Es mögen also S und S' parallele Achsen haben, v in die

Richtung von x und x' zeigen und die Nullpunkte 0 und 0' zur
Zeit t 0 zusammenfallen. In diesem Moment werde ein Lichtsignal

von 0 ausgesandt. Nach der Zeit t erreiche es den Punkt
A auf der .v-Achse mit der Abszisse x in S und x' in 5'. Die
Konstanz der Lichtgeschwindigkeit liefert die erste physikalische

Bedingung:

,t.
t

i2a»><II><"\
X

0 0' A
!/6 XtX

Fig. 1
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Hier muss man mit Einstein dem System S' eine besondere
Zeit t' zuschreiben, wiederum unserem natürlichen Gefühl
nicht entsprechend. Doch könnte ja hinterher die Rechnung
immer noch t t' ergeben.

Versetzen wir uns nun in das System S. Nach Ablauf der
Zeit t ist der Nullpunkt 0' um vi auf der x-Achse vorgerückt
und der Punkt A hat daher von S aus gesehen in S' die
Abszisse xi x — i't, die ihm bei der klassischen Galilei-Transformation

auch von S' aus gesehen zugeschrieben wird. Damit
kann man aber Gl. (1) nicht befriedigen; man setzt daher etwas

allgemeiner:
x' % Xi « (x - vt) (2)

wo « einen nur von c und v abhängigen Maßstabfaktor bedeutet.

Hier kann die Möglichkeit, dass hinterher \ 1

herauskommen könnte, mit dem Ansatz versöhnen.
Gl. (2) stellt schon die erste Formel der Lorentz-Transfor-

mation dar; die zweite ergibt die Zeit t'. Man gewinnt sie leicht
aus Gl. (1) und (2) :

t
x
c

« (x — vt) l tc vx \ / Vx \(v" C2-) * ('- Ti") (3)

Es fehlt nun nur noch der Wert von \. Um ihn zu erhalten,
muss man eine weitere physikalische Überlegung anstellen, die

nämlich, dass alles, was für S gilt, auch für S' zutreffen muss.
Versetzen wir uns also in das System S', in dem wir x' und t'
messen. Der Nullpunkt 0 hat nach der Zeit t' die Abszisse — vt',
so dass wir von S' aus gesehen dem Punkt A in 5 die Abszisse

x'i x' + vt' in S zuschreiben würden. Soll aber für die Messung

in S selbst wieder derselbe Maßstabsfaktor « gültig sein,

so müssen wir in S für die Abszisse von A setzen:

x x (x' + vt') (4)

Man beachte, dass dieser Ausdruck nicht aus Gl. (2) folgt,
sondern eine neue Beziehung darstellt, aus der sich nun eben

a ergibt. Setzt man nämlich in Gl. (4) x' aus Gl. (2) und Ï aus
Gl. (3) und (1) ein, so bleibt als einzige Variable x übrig, die
sich in allen Gliedern weghebt und die Beziehung:

: \- (1 - /F)

ß - -
c

fl- p

(5)

gibt die inverse Beziehung zu Gl. (2). Die inverse zu Gl.
finden wir leicht aus Gl. (1):

X a. (x' + vt') It'c vx'\ / vx'\
t - - « — + « ' + —

e c \cc \ C" /

uns in dieses begeben würden bzw. könnten und nicht
umgekehrt, wie man aus oberflächlicher Betrachtung der Gl. (2)
und (4) schliessen möchte.

Wir benötigen auch noch das Additionstheorem der
Geschwindigkeiten. Es sei in S: x 0 für t 0 und die konstante
Geschwindigkeit eines Punktes auf der x-Achse mit der Ab-

x
t

(7)

x
t'

II — V

VU
(8)

1

fm System S' erscheint diese Geschwindigkeit als die Differenz

zwischen u und v, oder transformiert geschrieben :

<x(x — vt)

l l'x\

Diese beinahe magisch zu nennende Formel ergibt für u

und kleines v wie es sein muss :

u' u — v (8a)
für u — c oder v c aber :

«' c bzw. u' — c.

Natürlich hätte man in Gl. (8) im Zähler statt einer Differenz

auch eine Summe erhalten können, wenn man statt von S

von S' ausgegangen wäre.

Das elektrische Feld einer ruhenden Ladung Q ist allgemein
bekannt. Die Verschiebungslinien strahlen nach allen
Richtungen gleichntässig aus. Man setzt ihre Zahl gleich Q, so dass

ihre Dichte im Abstand r:
Q

4nr2
D (9)

wird und die Feldstärke in einem homogenen isotropen
Medium von der Dielektrizitätskonstante e:

D
E —

£'
(10)

4tc er2

Wir müssen nun annehmen, dass diese Feldlinien die Lo-
rentz-Kontraktion mitmachen. Dann erhalten wir etwa für die
Feldstärke die Transformations-Formeln :

Ex — Ex

Ey xEy
Ez' \EZ

OD

übrig lässt. Geht v von Null nach c, ß also von Null nach eins,

so überstreicht ß den Bereich von eins bis unendlich, steigt
allerdings zu Beginn nur sehr langsam an. Es muss z. B. ß schon
ungefähr 0,45 sein, damit « auch nur etwa 1,1 wird. Gl. (4)

(3)

(6)

Es ist nun von ausschlaggebender Bedeutung, sich die
Erscheinung der Lorentz-Kontraktion ganz klar zu machen, denn

alles Weitere folgt dann leicht aus ihr.
Erinnern wir uns also daran, dass wir in S eine Abszisse

xi x — vt feststellten, die im System S' «mal grösser war.
Ebenso massen wir in S' eine Abszisse xT x' + vt', der in
5 eine «mal grössere entsprach. Allgemein gesprochen misst

man also in irgendeinem System Distanzen in der relativen
Bewegungsrichtung eines zweiten Systems «mal kleiner, als sie

in diesem bewegten System selbst gemessen würden, wenn wir

Halten wir fest, dass E' die Feldstärke von einem bewegten

System aus gesehen ist, wenn wir im ruhenden E messen, oder

was auf dasselbe hinauskommt, die von einer in x-Richtung
bewegten Ladung Q erzeugte.

Um nun die Verhältnisse zwischen zwei je in x-Richtung
bewegten Ladungen Qi und Q> abzuklären, brauchen wir drei

Koordinatensysteme mit parallelen Achsen S, S' und S", die
sich gegeneinander in x-Richtung bewegen. Die Ladung Qi
ruhe in S' und habe die Geschwindigkeit V\ gegen S, die
Ladung Qi ruhe in S" und habe die Geschwindigkeit v-z in S. Wir
definieren zweckmässig die Verhältniszahlen:

j»i -
ßz

(Xi —

X2

VL
c

V2

C

1

l/i - ßt2

_

(12)

538 (A 380) Bull. SBV 54(1963)14, 13. Juli



£o [#]
/<o 4n 101

I
S

flo t'o C-

Es sei nun E die von der Ladung Qi
d. h.:

QiE'
4iir2eo

Ev' sin &

ßi2 -
ß»~ßl

(16)
1 - ßi ßi

auf Grund der relativistischen Zusammensetzung der
Geschwindigkeiten nach Gl. (8). Daher ist die gesuchte Beziehung :

Ey'
Ey" /l ~ ßl22

(17)

Man überlege, dass die Wurzel im Nenner stehen muss,
weil:

Ey" > E,/ (17a)
sein soll.

Was wir aber letzten Endes brauchen ist Ey, denn nur im
System S bewegen sich beide Ladungen, sind also elektrodynamische

Wirkungen zu erwarten. Wir hätten an sich schreiben
können :

Ey'

'ßi2Vi M Ey (18)

doch wäre dies nichts anderes gewesen als die Lorentz-transfor-
mierte y-Komponente E,/ der elektrostatischen Feldstärke E',
die sich von Ey' selbst kaum unterschieden hätte, da ai, wie
auch \2 sehr nahe an 1 liegen. Interessanterweise bewegen sich
die Elektronen in unseren technischen Stromleitern wegen ihrer
dichten Packung nämlich nur mit Geschwindigkeiten von der

Grössenordnung Hundertstel Zentimeter pro Sekunde.

Deswegen und auch weil die Geschwindigkeit ßz auf diese Weise

gar nicht in den Ausdruck eingegangen wäre, hätte Gl. (18)
die gesuchte elektrodynamische Kraft nicht ergeben können.
Anders wird die Lage, wenn wir Ey aus Ey" transformieren :

Ey" Vi -ßi2
Fig. 2

Aus Fig. 2 kann man auch noch die Bedeutung von 6 und

r entnehmen. vr ist der Einheitsvektor in Richtung r. Wir
wollen die Verhältnisse im leeren Raum von der
Dielektrizitätskonstante £o und der magnetischen Permeabilität juo

betrachten. Es ist :

101

4tic2

Vi ~ßi2
j/rEEß^j

(19)

Um diesen Ausdruck völlig zu verstehen, muss man sich

klar machen, dass Ev" die Komponente Ey in 5 bedeutet, so

wie sie von S" aus gesehen wird, nicht umgekehrt. Denn es ist

ja dasselbe Ey" auch das Bild in S" von Ey. Die zweckmässige
Behandlung des Ausdruckes Gl. (19) besteht darin, dass man
die statische Feldstärke nach Gl. (18) einführt und den übrig
bleibenden Rest als dynamische interpretiert, gemäss

(13)

erzeugte Feldstärke,

Ey — Eys + Eyd — Ey L Eyd (20)

Einige leichte Zwischenrechnungen liefern aus Gl. (19) und
Gl. (16):

Ey=Ey\M( l-ßißz) (21)

und somit nach Gl. (20):

(14) Eyd — Ey' Oiißlßi <=£> — Ey' ßi ßi (21a)

In Fig. 2 geht die Papierebene durch die beiden Ladungen
Qi und Qo ; die z-Achse steht senkrecht darauf. Wir benötigen
Ez nicht. Für Ey, die uns interessierende, von der Lorentz-
Kontraktion betroffene Komponente erhalten wir auf Grund
unserer Annahmen im System S' den statischen Wert, also :

öi
(15)

47rr%o

Um nun die Wirkung von Ey' auf Qz festzustellen, müssen

wir Ey' nach S" transformieren, weil ja Qz in diesem System
ruht und wir zunächst nur die auf ruhende Ladungen wirkenden

Kräfte kennen. Die in der Gl. (12) ausgedrückte Geschwindigkeit

von S" gegenüber S' ist:

Auf Grund der weiter oben angestellten Überlegung haben

wir in Gl. (21a) v i — 1 gesetzt, was uns keineswegs zwingt, die

ß zu vernachlässigen, sondern lediglich ihre Quadrate. Die
Vernachlässigung der ß selbst würde trotz ihrer Kleinheit die

ganze Elektrodynamik zum Verschwinden bringen, ist also

offensichtlich physikalisch nicht zulässig. Das kommt daher,
dass der elektrische Strom ausserordentlich grosse elektrische

Ladungen transportiert, die aber elektrostatisch nicht in
Erscheinung treten, da jedes negative Elektron, welches sein

Stammatom verlässt, sofort durch ein nachfliessendes ersetzt
wird. Die sog. Raumladung ist daher Null. In der
Elektrodynamik kommt es aber, wie wir gleich sehen werden, nicht
auf die Raumladung, sondern auf das Produkt jeder einzelnen

Ladung, sei sie negativ oder positiv, mit ihrer Geschwindigkeit
an. Ladungen entgegengesetzten Vorzeichens kompensieren
sich nicht, wenn sie entgegengesetzte Geschwindigkeiten haben

und die Raumladung spielt keine Rolle.

4.
Berechnen wir als erstes und grundlegendes Beispiel die

Anziehungskraft zwischen zwei parallelen Leitern der sehr

grossen Länge / im Abstände a. Das negative Vorzeichen in

Gl. (21a) deutet schon an, dass es sich bei übereinstimmender
Stromrichtung um Anziehung handeln wird. Die Kraft
zwischen den beiden Ladungen Qi und Qz ist nach Fig. 2:

Eyd — Qi Eyd
Qi Qz

- -- ~ßi ßi sin 0 :

4îtr-eo

— p o
ßi Qi Vi Vi sin 0

4irr'2
(22)

Man beachte die dritte der Gleichungen (13). Es treten in
Gl. (22) die eben erwähnten Produkte der einzelnen Ladungen

Bull. ASE 54(1963)14. 13 juillet (A 381) 539



und ihrer betreffenden Geschwindigkeiten, die wir als

ausschlaggebend erkannten, im Zähler in Erscheinung.
Um nun die Stromstärken einzuführen, bezeichnen wir mit

dh und dk Längenelemente der beiden Leiter und mit Qi und
0'2 die Ladungen pro Längeneinheit (Ladungsbeläge). Dann
können wir mit den Stromstärken ii und k schreiben:

Qi vi ii
Qi V2 72

Die Kraft des ganzen Leiters 1 auf ein Element dk wird

(23)

dFy Ho

0 — 0

ii i2 d/2 r sin 0
4TZ 'I' dh

woraus man mittels a r sin 0 findet :

dFy — fl0 — d/2
Ina

Die Integration nach d/2 besteht wegen der grossen Leiterlänge

in nichts anderem als dem Ersatz von d/2 durch /, also :

Vy — flo -
ii ii /

2t-a
(24)

ein allgemein bekannter Ausdruck der Fernwirkungstheorie.
Faraday und Maxwell haben die Nahewirkungstheorie bevorzugt.

In ihrem Sinne und in Anlehnung an die Verhältnisse in
einer elektrischen Maschine können wir Fy auch schreiben
etwa als Produkt von / k, und einem Vektor der magnetischen
Induktion vom Betrage B wirkend am Orte von k und erzeugt
von ii. Es wäre dann:

/i
B fio H Ho Ina

H - 11

2 na

2 na
2 na

Fa Fo —— V2 X
4nr* [u X tyj

D (14a)

(22b)

setzen :

(25)

FI ist die magnetische Feldstärke, die B erzeugt. Das
Linienintegral von H längs eines Kreises vom Radius a ist, sofern B
und H senkrecht auf der Ebene der beiden Stromleiter stehen,
der Grösse nach:

ii
(26)

In Anbetracht der definitionsgemäss angenommenen Richtung

von B und H können wir die Kraft zwischen den beiden
Leitern als Vektorprodukt schreiben:

Fa 72 AI xB (27)
A/ ist der Vektor vom Betrage AI in Richtung der beiden

Stromleiter. Sein Betrag braucht hier nicht mehr als sehr gross,
sondern darf sogar beliebig klein angenommen werden, da sich
Gl. (27) im Sinne der Nahewirkungstheorie auf eine bestimmte
Stelle des Feldes bezieht. Diese Gleichung berücksichtigt
automatisch das Vorzeichen in Gl. (24), wenn der positive Umlaufssinn

von H in Rechtsschraubenbeziehung zur Durchflutung
nach Gl. (26) steht. Dasselbe gilt für die vektorielle Schreibweise

von Gl. (22):
Q1 02

(22a)

denn es zeigt /,'i x vr in die Richtung der positiven r-Achse

und daher z'2 X |^>i x jyj in die Richtung der negativen y-

Achse, entsprechend der anziehenden Kraft zwischen den beiden

gleichsinnig bewegten Ladungen.
Wir können in den letzten Ausdruck auch den durch 0i

elektrostatisch erzeugten Verschiebungsvektor D einführen,
für den Gl. (14) ergibt:

4 TT/'-

Damit schreibt sich Gl. (22a):

Fa no 02 ~Vz x \vi / Z>J

und hierin dürfen wir nun mit:

H vi x D (28)

Fa Ho Qz Vi x H Qi v-z X B (22c)

denn für Gl. (27) kann man ja nach Gl. (23) auch schreiben:

Fa Qi v-z AI x B Qz v2 X B (22d)

wenn 02 die Ladung eines Leitungsstückes von der kurzen
Länge AI ist. Da in Gl. (22c) die Ladung 02 als Faktor
vorkommt, können wir mittels Division durch 02 auch eine
entsprechende Feldstärke einführen :

Ed. vi X B (29)

und haben damit diejenige Form des Induktionsgesetzes
gewonnen, mit der man in elektrischen Maschinen die EMK
eines einzelnen Wicklungsstabes berechnen kann. Hieraus
ermittelt man dann leicht die für eine geschlossene Leiterschleife
geltende Form, indem man sich durch Hinzufügung eines zweiten

Stabes, eine vollständige Spule gebildet denkt und etwa
den ersten Stab mit der Geschwindigkeit Vi senkrecht zu den

Induktionslinien bewegt, die ihrerseits auf ihm senkrecht stehen

mögen, während die zweite Spulenseite festgehalten werden
möge. Man findet dann das Linienintegral von Ea entlang der

ganzen Spule gleich der zeitlichen Abnahme des durch sie

hindurchtretenden Induktionsflusses. Ganz analog folgt dann aus
Gl. (28) die gleichlautende Beziehung bei Ersatz von Ea durch
H und von B durch D. Zur Änderung des Flusses von D tritt
lediglich noch gemäss Gl. (26) der eventuelle Leitungsstrom
hinzu. Aufklärung bedarf nur noch die Frage des Vorzeichens,
indem das Linienintegral von H gleich der Zunahme, nicht der
Abnahme des durch die Kurve tretenden Flusses von D ist.
Diese Diskrepanz erledigt sich durch folgende Überlegung:

In Gl. (29) bedeutet v-z die Geschwindigkeit des betrachteten
Feldpunktes, des sog. Aufpunktes, in einem in S feststehenden

Feld. Mit dieser Geschwindigkeit wäre im Modell der
Wicklungsstab durch das Magnetfeld hindurch zu bewegen. In
Gl. (28) hingegen tritt statt v-z die Geschwindigkeit Vi auf. Diese
bedeutet die Geschwindigkeit der D erzeugenden Ladung, des

sog. Quellpunktes. Im Modell wäre unser Stab, der nun als

Magnetstab vorzustellen wäre, festzuhalten und das Feld von
D würde über ihn mit der Geschwindigkeit z'i hinweggleiten.
Bei gleichem Vorzeichen von Vi und Vz haben also die Relativ
bewegungen in den beiden Fällen entgegengesetzten Sinn.

Die Gl. (28) und (29) sind nichts anderes als Integralformen
der Maxwellschen Differentialgleichungen, die damit als Folge
der Lorentz-Kontraktion nachgewiesen sind.

Literatur
[1] Tage, L.: Electrodynamics. New York: Van Nostrand, 2. Abdruck

1945.
[2] Dacos, F.: Conception actelle de l'électricité théorique. Paris:

Dunod 1957.
[3] Milne, E. AGravitation Without Relativity, «Einstein». Evanstan

III., 1949.

Milne, E. AKinematic Relativity. Oxford: Clarendon Press 1948.

Adresse des Autors:
Dr. h. c. Th. Boveri, Delegierter des Verwaltungsrates der AG Brown,
Boveri & Cie., Baden (AG).

540 (A 382) Bull. SEV 54(1963)14, 13. Juli


	Das elektromagnetische Feld als kinematische Erscheinung

