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BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitatswerke (VSE)

Das elektromagnetische Feld als kinematische Erscheinung

Von Th. Boveri, Baden

1.

Die Theorie der Elektrizitédt von Maxwell stiitzt sich, beson-
ders in ihrer modernen Form, auf die Theorie der Vektorfelder.
Die elektrische Ladung als skalare Grosse tritt dabei notge-
drungen etwas in den Hintergrund. Das stort nicht, solange
man den elektrischen Leitungsstrom und seine Ergidnzung in
rasch wechselnden Feldern, den elektrischen Verschiebungs-
strom als das fiir die Erregung des elektromagnetischen Feldes
primidr Gegebene annimmt. Aber gebiihrt diese Rolle nicht
eher der elektrischen Ladung, dem stets vorhandenen Bestand-
teil aller Materie? Ihre Bewegung erst ergibt den elektrischen
Leitungsstrom und ihr An- und Abschwellen ist die Quelle des
elektrischen Verschiebungsstromes. Die stets quellenfreie
Summe dieser beiden Strome, die eine von irgendeiner geschlos-
senen Kurve berandete Fliche durchstosst, ist gleich dem
Linienintegral der magnetischen Feldstérke ldngs dieser Kurve.
Es entsteht nun aber sofort die Frage, warum bewegte Ladung
ein elektromagnetisches Feld erzeugt, ruhende aber nicht. Es
scheint doch fast unvermeidlich, hier nichts als einen reinen
Bewegungseffekt zu sehen. Neuere theoretische Arbeiten be-
statigen diese Auffassung, z. B. diejenigen von Page [1]!) und
Dacos [2]. Sie fiihren das Auftreten des elektromagnetischen
Feldes auf die sog. Lorentz-Kontraktion des Raumes zurlick.
Die Tatsache, dass eine ziemlich abstrakte Begriffsbildung der
theoretischen Physik eine so enge Beziehung zur praktischen
Elektrotechnik, die unser ganzes Leben aufs stirkste beein-
flusst, aufweist, scheint dem Verfasser einer kurzen Darstellung
im Bulletin des SEV wiirdig, wobei er sich stark auf Dacos
stiitzt.

2.

Die Lorentz-Kontraktion des Raumes ist eine Folge der an
sich unserem Gefiihl etwas widerstrebenden Tatsache, dass die
kugelformige Ausbreitung des Lichtes mit der in allen Richtun-
gen konstanten Geschwindigkeit ¢ — 3 - 108 m/s erhalten
bleibt, wenn wir von einem beispielsweise rechtwinkligen Ko-
ordinatensystem .S mit dem Nullpunkt 0, in dem die Lichtquelle
ruht, zu einem relativ dazu mit der konstanten Geschwindig-
keit » bewegten S’ iibergehen. Die Konstanz von ¢ wurde durch
sehr genaue Versuche endgiiltig erhédrtet und von Einstein als
Postulat an die Spitze seiner Uberlegungen, die zur speziellen
Relativitdtstheorie fiihrten, gestellt. Man kann sich sogar fra-
gen, ob sie nicht eine notwendige Bedingung unserer Erkennt-
nis ist. Milne [3]und Page [1] leiten die Lorentz-Transformation,

1) Siehe Literatur am Schluss des Aufsatzes.
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die man beniitzen muss, um bei der Berechnung der Koordina-
ten in S” aus denen von S die kugelformige Ausbreitung des
Lichtes nicht zu zerstoren, unter minimalen Voraussetzungen
ab. Sie betrachten zwei punktférmige Beobachter P und P’, die
im Stande sind, Lichtsignale auszusenden, zu reflektieren und
zu empfangen. Misst P mit seiner Uhr die Zeit zwischen der
Aussendung und dem Wiederempfang eines von P’ reflektierten
Signals, so kann er daraus nicht nur der Reflexion an P’ einen
bestimmten Zeitpunkt auf seiner eigenen Uhr zuschreiben,
sondern auch die Distanz PP’ berechnen, sofern er eine be-
stimmte Signalgeschwindigkeit ¢ zu Grunde legt. Diese ist not-
wendigerweise konstant, da Variable, von denen sie abhdngen
konnte, fehlen. Ihr Zahlwert muss dann allerdings noch durch
Messung bestimmt werden.

Eine Ableitung der Formeln der Lorentz-Transformation
findet man in vielen Biichern. Wenn wir an dieser Stelle eine
solche wiederholen, geschieht es nicht nur wegen ihrer aus-
schlaggebenden Bedeutung fiir die ganze vorliegende Betrach-
tung, sondern weil nach Ansicht des Verfassers in den meisten
Darstellungen zu wenig betont wird, dass die Koordinate x’
in 8’ nicht nur in §” gemessen werden kann, sondern auch in S,
wobeli sich ein von x’ verschiedener Wert x; ergibt. Hierin liegt
gerade das Wesentliche des ganzen Gedankenganges (Fig. 1).

Es mogen also S und S” parallele Achsen haben, » in die
Richtung von x und x” zeigen und die Nullpunkte 0 und 0’ zur
Zeit t = 0 zusammenfallen, In diesem Moment werde ein Licht-
signal von 0 ausgesandt. Nach der Zeit ¢ erreiche es den Punkt
A auf der x-Achse mit der Abszisse x in S und x” in §’. Die
Konstanz der Lichtgeschwindigkeit liefert die erste physikali-

sche Bedingung:
X d

‘- 1 h t (1)

___>y’
A

vt . X =x-vt
el e
X
=V

L
0 o A

SEVI2I76 X’X

Fig. 1
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Hier muss man mit Einsfein dem System S’ eine besondere
Zeit t' zuschreiben, wiederum unserem natiirlichen Gefiihl
nicht entsprechend. Doch konnte ja hinterher die Rechnung
immer noch 7 = 1" ergeben.

Versetzen wir uns nun in das System S. Nach Ablauf der
Zeit t ist der Nullpunkt 0" um »¢ auf der x-Achse vorgeriickt
und der Punkt A4 hat daher von S aus gesehen in S” die Ab-
szisse x1 = x — v't, die ihm bei der klassischen Galilei-Trans-
formation auch von S’ aus gesehen zugeschrieben wird. Damit
kann man aber Gl. (1) nicht befriedigen ; man setzt daher etwas
allgemeiner:

X =ax; =o(x — v (2)
wo « einen nur von ¢ und » abhidngigen Malstabfaktor bedeu-
tet. Hier kann die Moglichkeit, dass hinterher « = 1 heraus-
kommen konnte, mit dem Ansatz versohnen.

GIl. (2) stellt schon die erste Formel der Lorentz-Transfor-
mation dar; die zweite ergibt die Zeit 7. Man gewinnt sie leicht
aus Gl. (1) und (2):

t = X - L(%,:yit) = A (_’_C_ i 1/'2)(_) = (f _— ”%) (3)
c c € c c

Es fehlt nun nur noch der Wert von x. Um ihn zu erhalten,
muss man eine weitere physikalische Uberlegung anstellen, die
ndmlich, dass alles, was fiir S gilt, auch fiir S’ zutreffen muss.
Versetzen wir uns also in das System S’, in dem wir x” und ¢
messen. Der Nullpunkt 0 hat nach der Zeit ¢ die Abszisse —vt’,
so dass wir von S’ aus gesechen dem Punkt A4 in S die Abszisse
x’1 = x” 4 v’ in S zuschreiben wiirden. Soll aber fiir die Mes-
sung in S selbst wieder derselbe MafBstabsfaktor «x giiltig sein,
so miissen wir in S fiir die Abszisse von A4 setzen:

x =o(x + o) “4)

Man beachte, dass dieser Ausdruck nicht aus Gl. (2) folgt,
sondern eine neue Beziehung darstellt, aus der sich nun eben
o ergibt. Setzt man ndmlich in GI. (4) x” aus GI. (2) und " aus
Gl. (3) und (1) ein, so bleibt als einzige Variable x librig, die
sich in allen Gliedern weghebt und die Beziehung:

1::&2(14#{§) — a2 (1 —p?) ]

b= — S

] l
g
tibrig lasst. Geht » von Null nach ¢, £ also von Null nach eins,
so uberstreicht f den Bereich von eins bis unendlich, steigt
allerdings zu Beginn nur sehr langsam an. Es muss z. B. ff schon
ungefdhr 0,45 sein, damit ~ auch nur etwa 1,1 wird. GI. (4)
gibt die inverse Beziehung zu Gl. (2). Die inverse zu Gl. (3)
finden wir leicht aus GI. (1):
x(x’ + ot t vx’ rx’

AN ol L1 (: + x) :“(H, x) ©

c c o c? c?

Es ist nun von ausschlaggebender Bedeutung, sich die Er-
scheinung der Lorentz-Kontraktion ganz klar zu machen, denn
alles Weitere folgt dann leicht aus ihr.

Erinnern wir uns also daran, dass wir in S eine Abszisse
x1 = x — v1 feststellten, die im System S’ amal grosser war.
Ebenso massen wir in S eine Abszisse x1” = x” + »t’, der in
S eine amal grossere entsprach. Allgemein gesprochen misst
man also in irgendeinem System Distanzen in der relativen
Bewegungsrichtung eines zweiten Systems xmal kleiner, als sie
in diesem bewegten System selbst gemessen wiirden, wenn wir
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uns in dieses begeben wiirden bzw. konnten und nicht um-
gekehrt, wie man aus oberflichlicher Betrachtung der Gl. (2)
und (4) schliessen mochte.

Wir benétigen auch noch das Additionstheorem der Ge-
schwindigkeiten. Es sei in S: x =0 fiir 1 = 0 und die konstante
Geschwindigkeit eines Punktes auf der x-Achse mit der Ab-
szisse Xx:

u=— @)

Im System .S” erscheint diese Geschwindigkeit als die Diffe-
renz zwischen u# und v, oder transformiert geschrieben:

y X a(x — vr) I v ®)

t vx vu
[0 (f —F) l - F
Diese beinahe magisch zu nennende Formel ergibt fiir u
und kleines » wie es sein muss:
W=u—v
fiir u = ¢ oder » = ¢ aber:
Ww=c¢ bzw. u = —c
Natiirlich hidtte man in GI. (8) im Zihler statt einer Diffe-
renz auch eine Summe erhalten konnen, wenn man statt von .S
von S’ ausgegangen wire.

(8a)

3.

Das elektrische Feld einer ruhenden Ladung Q ist allgemein
bekannt. Die Verschiebungslinien strahlen nach allen Rich-
tungen gleichmiissig aus. Man setzt ihre Zahl gleich Q, so dass
ihre Dichte im Abstand r: 0

4rr2

®

wird und die Feldstdarke in einem homogenen isotropen Me-
dium von der Dielektrizitdtskonstante &:
D
I (10)

€ 4rer2

Wir miissen nun annehmen, dass diese Feldlinien die Lo-
rentz-Kontraktion mitmachen. Dann erhalten wir etwa fiir die
Feldstarke die Transformations-Formeln:

Ex/ - Ex
Ey, = CXEy (11)
E; = «F,

Halten wir fest, dass E’ die Feldstidrke von einem bewegten
System aus gesehen ist, wenn wir im ruhenden E messen, oder
was auf dasselbe hinauskommt, die von einer in x-Richtung
bewegten Ladung O erzeugte.

Um nun die Verhdltnisse zwischen zwei je in x-Richtung
bewegten Ladungen Qi und Q2 abzukldren, brauchen wir drei
Koordinatensysteme mit parallelen Achsen S, S” und S”, die
sich gegeneinander in x-Richtung bewegen. Die Ladung Qi
ruhe in S” und habe die Geschwindigkeit 21 gegen S, die La-
dung Q2 ruhe in S” und habe die Geschwindigkeit 72 in S. Wir
definieren zweckmissig die Verhiltniszahlen:

V1
Pr=-_—
28]
p2=—
. (12)
P 'V'l = 312
1
Xo = =
TV — B2
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Fig. 2

Aus Fig. 2 kann man auch noch die Bedeutung von 0 und
r entnehmen. 7, ist der Einheitsvektor in Richtung . Wir
wollen die Verhiltnisse im leeren Raum von der Dielektri-
zitdtskonstante &0 und der magnetischen Permeabilitéit o be-
trachten. Es ist:

4mc? [ m
H
Ho = 4w - 1071 [_,] (13)
m
Mo €0 c2 =1

Es sei nun E die von der Ladung Q1 erzeugte Feldstirke,
d. h.:

47’.’}‘281)7 L
In Fig. 2 geht die Papierebene durch die beiden Ladungen
01 und Q-; die z-Achse steht senkrecht darauf. Wir benotigen
E; nicht. Fiir Ey, die uns interessierende, von der Lorentz-
Kontraktion betroffene Komponente erhalten wir auf Grund
unserer Annahmen im System S” den statischen Wert, also:

Ey sin ©

(15)

- ;lﬁrzso
Um nun die Wirkung von E;” auf Q2 festzustellen, miissen

wir E,” nach S” transformieren, weil ja Q2 in diesem System

ruht und wir zunichst nur die auf ruhende Ladungen wirken-

den Krifte kennen. Die in der GI. (12) ausgedriickte Geschwin-

digkeit von S” gegeniiber S’ ist:

B2 — p1

fr2= ——

1 — f1pe
auf Grund der relativistischen Zusammensetzung der Ge-
schwindigkeiten nach GI. (8). Daher ist die gesuchte Beziehung:
2 Ey

V=B

Man iiberlege, dass die Wurzel im Nenner stehen muss,
weil :

(16)

Ey 17

Ey” o5 Ey/ (173)

sein soll.

Was wir aber letzten Endes brauchen ist £,, denn nur im
System S bewegen sich beide Ladungen, sind also elektrodyna-
mische Wirkungen zu erwarten. Wir hitten an sich schreiben
konnen:

’
Ey‘ B 3
= a1 Ey

Ey — —% (18
YT i )
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doch wire dies nichts anderes gewesen als die Lorentz-transfor-
mierte y-Komponente E,” der elektrostatischen Feldstiarke E’,
die sich von E,’ selbst kaum unterschieden hitte, da «i1, wie
auch ~» sehr nahe an 1 liegen. Interessanterweise bewegen sich
die Elektronen in unseren technischen Stromleitern wegen ihrer
dichten Packung nidmlich nur mit Geschwindigkeiten von der
Grossenordnung Hundertstel Zentimeter pro Sekunde. Des-
wegen und auch weil die Geschwindigkeit f2 auf diese Weise
gar nicht in den Ausdruck ecingegangen wire, hitte GI. (18)
die gesuchte elektrodynamische Kraft nicht ergeben konnen.
Anders wird die Lage, wenn wir Ey aus E,” transformieren:
I 1—p32
Ey = Ey' V1—82* = E/ VVI——:?%
Um diesen Ausdruck vollig zu verstehen, muss man sich
klar machen, dass E,” die Komponente Ey in S bedeutet, so
wie sie von S” aus gesehen wird, nicht umgekehrt. Denn es ist
ja dasselbe E,” auch das Bild in $” von E,’. Die zweckméssige
Behandlung des Ausdruckes Gl. (19) besteht darin, dass man
die statische Feldstirke nach Gl. (18) einfiihrt und den iibrig
bleibenden Rest als dynamische interpretiert, geméiss

(19)

Ey - Ey,s + Eyd = X1 Ey’ + Eyd (20)

Einige leichte Zwischenrechnungen liefern aus Gl. (19) und
Gl. (16):
Ey — Ey's1 (1 —f1 f2)

und somit nach Gl. (20):

@n

Eyd = — Eyl Cxllglﬁz R Ey/ ﬂl /32 (213')

Auf Grund der weiter oben angestellten Uberlegung haben
wir in Gl. (21a) ;= 1 gesetzt, was uns keineswegs zwingt, die
p zu vernachlissigen, sondern lediglich ihre Quadrate. Die
Vernachldssigung der f selbst wiirde trotz ihrer Kleinheit die
ganze Elektrodynamik zum Verschwinden bringen, ist also
offensichtlich physikalisch nicht zuldssig. Das kommt daher,
dass der elektrische Strom ausserordentlich grosse elektrische
Ladungen transportiert, die aber elektrostatisch nicht in Er-
scheinung treten, da jedes negative Elektron, welches sein
Stammatom verldsst, sofort durch ein nachfliessendes ersetzt
wird. Die sog. Raumladung ist daher Null. In der Elektro-
dynamik kommt es aber, wie wir gleich sehen werden, nicht
auf die Raumladung, sondern auf das Produkt jeder einzelnen
Ladung, sei sie negativ oder positiv, mit ihrer Geschwindigkeit
an. Ladungen entgegengesetzten Vorzeichens kompensieren
sich nicht, wenn sie entgegengesetzte Geschwindigkeiten haben
und die Raumladung spielt keine Rolle.

4.

Berechnen wir als erstes und grundlegendes Beispiel die
Anziehungskraft zwischen zwei parallelen Leitern der sehr
grossen Linge / im Abstande a. Das negative Vorzeichen in
Gl. (21a) deutet schon an, dass es sich bei iibereinstimmender
Stromrichtung um Anziehung handeln wird. Die Kraft zwi-
schen den beiden Ladungen Q; und Q- ist nach Fig. 2:

01 02

Fya = Q2 Eya = — —
4 €0

p1 P2 sin O =

Q1020102 sin @

= — uo ———————
4rr?

Man beachte die dritte der Gleichungen (13). Es treten in
Gl. (22) die eben erwidhnten Produkte der einzelnen Ladungen

(22)
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und ihrer betreffenden Geschwindigkeiten, die wir als aus-
schlaggebend erkannten, im Zihler in Erscheinung.

Um nun die Stromstidrken einzufiihren, bezeichnen wir mit
dh und dl> Lingenelemente der beiden Leiter und mit Q1" und
Q’s die Ladungen pro Lingeneinheit (Ladungsbelige). Dann
konnen wir mit den Stromstirken i; und iz schreiben:

Ovvi =i
Q' vs = iy

Die Kraft des ganzen Leiters 1 auf ein Element d/» wird

(23)

6=0
1 12 d/z sin @
aF, = 28
4r Fa
O=m

d/;

woraus man mittels @ = » - sin O findet:

1102

dFy = —HOZ

dls

na
Die Integration nach d/s besteht wegen der grossen Leiter-
linge in nichts anderem als dem Ersatz von d/2 durch /, also:

I'11'2l
Fy = — no

2ra @

ein allgemein bekannter Ausdruck der Fernwirkungstheorie.
Faraday und Maxwell haben die Nahewirkungstheorie bevor-
zugt. In ihrem Sinne und in Anlehnung an die Verhiltnisse in
einer elektrischen Maschine koénnen wir Fy auch schreiben
etwa als Produkt von / iz, und einem Vektor der magnetischen
Induktion vom Betrage B wirkend am Orte von is und erzeugt
von ii. Es wire dann: ]
B = puoH = — po l—l

2ra (25)

H ist die magnetische Feldstirke, die B erzeugt. Das Linien-
integr_a.ll von H ldngs eines Kreises vom Radius a ist, sofern B
und H senkrecht auf der Ebene der beiden Stromleiter stehen,
der Grosse nach: )

2ma =i (26)

In Anbetracht der definitionsgemiss angenommenen Rich-
tung von B und H kénnen wir die Kraft zwischen den beiden
Leitern als Vektorprodukt schreiben:

Fa=i2Al X B 27)

Al ist der Vektor vom Betrage A/ in Richtung der beiden
Stromleiter. Sein Betrag braucht hier nicht mehr als sehr gross,
sondern darf sogar beliebig klein angenommen werden, da sich
GIl. (27) im Sinne der Nahewirkungstheorie auf eine bestimmte
Stelle des Feldes bezieht. Diese Gleichung beriicksichtigt auto-
matisch das Vorzeichen in Gl. (24), wenn der positive Umlaufs-
sinn von H in Rechtsschraubenbeziehung zur Durchflutung
nach GI. (26) steht. Dasselbe gilt fiir die vektorielle Schreib-

weise von Gl. (22):
i = o 94;?;5; x [a' X r,]

denn es zeigt 71 % v in die Richtung der positiven z-Achse

(22a)

und daher 72 ¥ |71 % v | in die Richtung der negativen y-

Achse, entsprechend der anziehenden Kraft zwischen den bei-
den gleichsinnig bewegten Ladungen.

Wir kénnen in den letzten Ausdruck auch den durch Q.
elektrostatisch erzeugten Verschiebungsvektor D einfiihren,
fiir den GI. (14) ergibt:

540 (A 382)

= DD
D =-""—n 14
47r2 l (14a)
Damit schreibt sich Gl. (22a):
Fa = po Q2 D2 X [51 X B] (22b)
und hierin diirfen wir nun mit:
H=10vxD (28)
setzen: N _
Fa = poQave X H = 0202 X B (22¢)

denn fiir GI. (27) kann man ja nach GI. (23) auch schreiben:

Fd = Q2 V2 Al x B = Qz?j; x B (22d)

wenn Q: die Ladung eines Leitungsstiickes von der kurzen
Linge Al ist. Da in Gl. (22¢) die Ladung Qs als Faktor vor-
kommt, konnen wir mittels Division durch Q2 auch eine ent-
sprechende Feldstéirke einfiithren:

Eqa—=10s X B (29)
und haben damit diejenige Form des Induktionsgesetzes ge-
wonnen, mit der man in elektrischen Maschinen die EMK
eines einzelnen Wicklungsstabes berechnen kann. Hieraus er-
mittelt man dann leicht die fiir eine geschlossene Leiterschleife
geltende Form, indem man sich durch Hinzufiigung eines zwei-
ten Stabes, eine vollstindige Spule gebildet denkt und etwa
den ersten Stab mit der Geschwindigkeit v2 senkrecht zu den
Induktionslinien bewegt, die ihrerseits auf ihm senkrecht stehen
mogen, wiahrend die zweite Spulenseite festgehalten werden
moge. Man findet dann das Linienintegral von Eq entlang der
ganzen Spule gleich der zeitlichen Abnahme des durch sie hin-
durchtretenden Induktionsflusses. Ganz analog folgt dann aus
Gl. (28) die gleichlautende Beziehung bei Ersatz von Ea durch
H und von B durch D. Zur Anderung des Flusses von D tritt
lediglich noch gemiss GI. (26) der eventuelle Leitungsstrom
hinzu. Aufkldarung bedarf nur noch die Frage des Vorzeichens,
indem das Linienintegral von H, gleich der Zunahme, nicht der
Abnahme des durch die Kurve tretenden Flusses von D ist.
Diese Diskrepanz erledigt sich durch folgende Uberlegung:

In GI. (29) bedeutet vs die Geschwindigkeit des betrachteten
Feldpunktes, des sog. Aufpunktes, in einem in S feststehenden
Feld. Mit dieser Geschwindigkeit wire im Modell der Wick-
lungsstab durch das Magnetfeld hindurch zu bewegen. In
GI. (28) hingegen tritt statt v die Geschwindigkeit 71 auf. Diese
bedeutet die Geschwindigkeit der D erzeugenden Ladung, des
sog. Quellpunktes. Im Modell wire unser Stab, der nun als
Magnetstab vorzustellen wire, festzuhalten und das Feld von
D wiirde iiber ihn mit der Geschwindigkeit ”n hinweggleiten.
Bei gleichem Vorzeichen von 71 und 72 haben also die Relativ
bewegungen in den beiden Fillen entgegengesetzten Sinn.

Die GI. (28) und (29) sind nichts anderes als Integralformen
der Maxwellschen Differentialgleichungen, die damit als Folge
der Lorentz-Kontraktion nachgewiesen sind.
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