Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 54 (1963)

Heft: 11

Artikel: Nichtlineare Verzerrungen in Transistorverstärkern mit einer häufig

verwendeten Gegenkopplungsart

Autor: Blitzer, W.

DOI: https://doi.org/10.5169/seals-916485

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Nichtlineare Verzerrungen in Transistorverstärkern mit einer häufig verwendeten Gegenkopplungsart

Von W. Bitzer, Backnang

621.375.4:621.391.832.4

Von den von einer Transistorverstärkerstufe erzeugten nichtlinearen Verzerrungen werden u.a. berechnet: die Klirrdämpfungen der zweiten Harmonischen a_{k2} und der dritten Harmonischen a_{k3} sowie die Amplituden der von zwei Frequenzen erzeugten Differenz und Summenfrequenzen. Bei den Berechnungen werden insbesondere die Einflüsse eines Emittervorwiderstandes und einer an diesem abgenommenen und in einen verzerrungsfreien Vorverstärker eingeführten Gegenkopplungsspannung sowie grosser Arbeitswiderstände auf die nichtlinearen Verzerrungen berücksichtigt. Abschliessend werden einige Messwerte angegeben und mit den gerechneten Ergebnissen verglichen.

L'auteur traite du calcul des distorsions non linéaires produites par un étage d'amplification à transistors, notamment de celles du second harmonique a_{k2} et du troisième harmonique a_{k3} , ainsi que des amplitudes de la différence due à deux fréquences et des fréquences additionnelles. Pour ces calculs, il tient compte de l'influence d'une résistance en série avec l'émetteur et d'une tension de contre-réaction tirée de cette résistance et appliquée à un préamplificateur exempt de distorsion, ainsi que de l'influence de grandes résistances de travail sur les distorsions non linéaires. Pour terminer, il indique quelques valeurs mesurées et les compare avec les résultats des calculs.

1. Einleitung

Zur Berechnung der nichtlinearen Verzerrungen eines Transistors ist bei Zugrundelegung seines Hochfrequenzersatzschaltbildes das Verfahren der «fastlinearen Netzwerke» nach Feldtkeller und Wolman [1]¹) besonders gut brauchbar [2]. Das Ersatzschaltbild für den als Verstärker betriebenen Transistor muss, wenn es in einem weiten Frequenzbereich gültig sein soll, mindestens 7 Elemente enthalten, die alle nichtlinear sind [3]. Wie in einer früheren Arbeit [2] gezeigt wurde, ist bei gewissen vereinfachenden Annahmen hinsichtlich der Nichtlinearitäten dieser Elemente die Berechnung der 2. Harmonischen und der Kombinationsfrequenzen 1. Ordnung verhältnismässig leicht möglich. Dasselbe gilt für die höheren Harmonischen und die Kombinationsfrequenzen höherer Ordnung bei Frequenzen, bei denen die Kapazitäten des Ersatzschaltbildes vernachlässigt werden können.

In den folgenden Ausführungen werden nun diese Vereinfachungen nicht mehr getroffen. Weiter wird von vornherein ein endlicher Arbeitswiderstand im Kollektorkreis des Transistors berücksichtigt; schliesslich wird der Einfluss einer bestimmten Art von Gegenkopplung auf die nichtlinearen Verzerrungen des Transistors untersucht.

Den Berechnungen wird der in der Emitterschaltung betriebene Transistor zu Grunde gelegt. Jedoch sind die erhaltenen Ergebnisse auch für die Basisschaltung gültig.

2. Allgemeine Berechnung der 2. Harmonischen

Zur Berechnung der nichtlinearen Verzerrungen wird von dem Transistorersatzschaltbild nach Fig. 1 ausgegangen. In

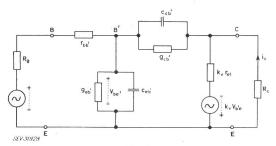


Fig. 1

Das der Rechnung zu Grunde gelegte Ersatzschaltbild des Transistors B Basisanschluss; B' «innerer Basispunkt»; C Kollektoranschluss; E Emitteranschluss; $c_{eb'}$ gesamte Emitterkapazität 1); $c_{cb'}$ Kollektorkapazität 1); i_C Kollektorwechselstrom;

 R_g Innenwiderstand der Signalquelle; R_c Arbeitswiderstand; $r_{bb'}$ Basisbahnwiderstand 1); r_{el} Emitterlängswiderstand 1); k_v Spannungsübersetzungsfaktor 1); $v_{b'e}$ Wechselspannung zwischen B' und E; $g_{eb'}$ Emitterquerleitwert 1); $g_{cb'}$ Kollektorquerleitwert 1)

1) Elemente des Transistorersatzschaltbildes [3]. Siehe Abschnitt 7.

diesem sind, ausser dem Basisbahnwiderstand $r_{bb'}$, dessen Nichtlinearität nur einen vernachlässigbar kleinen Einfluss auf die nichtlinearen Verzerrungen des Transistors ausübt, alle Schaltelemente, die den Transistor darstellen, als nichtlinear angenommen. Der Strom bzw. die Spannung an diesen nichtlinearen Schaltelementen wird, wie in [2] dargestellt, in Potenzreihen entwickelt und daraus werden dann nach dem Rechenverfahren mit «fastlinearen Netzwerken» [1] die in Fig. 2 eingezeichneten Ersatzquellen für die 2. Harmonische berechnet.

Hierin ist:

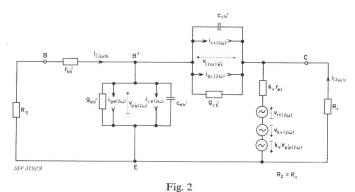
$$i_{ge\,(2\omega)} = -\frac{1}{4} \left[B_{2i} \, r_{el} + \left(\frac{B_{2i}}{k_v} - B_{2v} \right) R_2 - \frac{B_{2v}}{k_v} R_{2}^2 \right] \hat{I}_{(1\omega)c}^2 \cos 2\omega t$$
(1

 $i_{ce(2\omega)} =$

$$-\frac{\omega}{2} \left[B_{4i} \, r_{el} + \left(\frac{B_{4i}}{k_v} - B_{4v} \right) R_2 - \frac{B_{4v}}{k_v} R_2^2 \right] \, \hat{I}_{(1\omega)c}^2 \cos \left(2\omega \, t + \frac{\pi}{2} \right)$$
(2)

$$v_{rl\,(2\omega)} = \frac{1}{4} r_{el} \left(\frac{k_v}{I_C} + B_9 R_2 \right) \hat{I}_{(1\omega)c}^2 \cdot \cos 2\omega t \tag{3}$$

$$v_{kv\;(2\omega)} = \frac{1}{4} B_9 \left(r_{el} R_2 + \frac{R_2^2}{k_v} \right) \hat{I}_{(1\omega)c}^2 \cos 2\omega t$$
 (4)



Transistorersatzschaltbild mit eingezeichneten Quellen für die 2. Harmonische

 $i_{ge(2\omega)}$, $i_{ce(2\omega)}$, $i_{cc(2\omega)}$, $i_{gc(2\omega)}$ sind Einströmungen mit der doppelten Frequenz der Grundharmonischen, die jeweils von der Nichtlinearität des Elementes des Transistorersatzschaltbildes herrühren, bei dem sie

eingezeichnet sind Spannung der Frequenz 2w zwischen B' und E $vb'e(2\omega)$ auf die Kollektorseite übersetzte Spannung $v_{b'e(2\omega)}$ kv Vb'e(2ω) Quellenspannung der Frequenz 2ω, die von der Nicht $v_{kv(2\omega)}$ linearität von k_v herrührt dto. von der Nichtlinearität von k, rel herrührend $v_{ve}(2\omega)$ $i(2\omega)b$ Strom der Frequenz 2ω im Basiszweig Strom der Frequenz 2w im Kollektorzweig $i(2\omega)c$ Frequenz der Grundharmonischen w

Weitere Bezeichnungen s. Fig. 1.

¹⁾ Siehe Literatur am Schluss des Aufsatzes.

$$-\frac{V_{CE} B_7 R_2 + \frac{1}{2} (B_6 + B_7 I_C) R_2^2}{2 V_{CE} \sqrt{V_{CE}}} \omega \hat{I}_{(1\omega)c} \cdot \cos \left(2\omega t + \frac{\pi}{2}\right)$$
(5)

$$i_{gc}(2\omega) = -\frac{1}{4} (B_{5i} R_2 - B_{5v} R_2^2) \hat{I}_{(1\omega)c} \cdot \cos 2\omega t$$
 (6)

In den Gleichungen (1) bis (6) bedeuten:

 $\hat{I}_{(1\omega)c}$ Scheitelwert des im Kollektorzweig fliessenden Wechselstromanteils der (Nutz-)Frequenz ω.

$$r_{el} \approx \frac{26 \text{ mV}}{I_C}$$

Als Belastungswiderstand R2 des Transistors im Ausgangskreis ist hier der Widerstand R_c im Kollektorzweig einzusetzen: $R_2 = R_c$ (Fig. 1 und 2).

$$B_{2i} = \left(\frac{\partial g_{eb'}}{\partial i_C}\right)_{i_C = I_C; \ v_{CE} = V_{CE}} \tag{7}$$

$$B_{2v} = \left(\frac{\partial g_{eb'}}{\partial v_{CE}}\right)_{i_C = I_C; v_{CE} = V_{CE}}$$
(8)

$$B_{4i} = \left(\frac{\partial c_{eb'}}{\partial i_C}\right)_{i_C = I_C; \ r_{CE} = V_{CE}} \tag{9}$$

$$B_{4v} = \left(\frac{\partial c_{eb'}}{\partial v_{CE}}\right)_{i_C = I_C; \ v_{CE} = V_{CE}} \tag{10}$$

$$B_9 = \left(\frac{\partial k_v}{\partial \nu_{CE}}\right)_{v_{CE} = V_{CE}; i_C = I_C} \tag{11}$$

Wenn k_v bei dem betrachteten Transistor tatsächlich proportional zur Quadratwurzel der Kollektorspannung ist, wenn also gilt: $k_v = \text{konst.} \cdot \sqrt{v_{CE}}$, so kann B_9 ersetzt werden durch

$$B_9 = \frac{k_v}{2 V_{CE}}$$

wobei VCE die Kollektorspannung darstellt, bei der der Transistor betrieben wird und k_v bei dieser Spannung zu messen ist (siehe Abschnitt 7).

$$B_{5i} = \left(\frac{\partial g_{cb'}}{\partial i_C}\right)_{i_C = I_C; v_{CE} = V_{CE}} \tag{12}$$

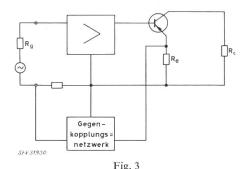
$$B_{5i} = \left(\frac{\partial g_{cb'}}{\partial i_C}\right)_{i_C = I_C; v_{CE} = V_{CE}}$$

$$B_{5v} = \left(\frac{\partial g_{cb'}}{\partial v_{CE}}\right)_{i_C = I_C; v_{CE} = V_{CE}}$$
(13)

$$B_6 = \sqrt{V_{CE}} (c_{cb'})_{I_C = 0} \tag{14}$$

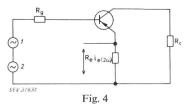
$$B_7 = \frac{c_{cb'}\sqrt{V_{CE}} - B_6}{I_C} \tag{15}$$

Auf die Ermittlung der in den vorstehenden Formeln vorkommenden Elemente des Ersatzschaltbildes wird im Abschnitt 7 kurz eingegangen.



Prinzip der Gegenkopplung

 R_e Emittervorwiderstand; R_g Innenwiderstand des Signalgenerators; R_c Arbeitswiderstand



Darstellung der Gegenkopplung durch eine Quellenspannung 1 Leerlaufspannung der Signalquelle; 2 Gegenkopplung, $kR_e i_{e(2\omega)}$ k durch das Gegenkopplungsnetzwerk (Fig. 3) bestimmte Konstante, $k \ge 0$

In den folgenden Berechnungen sollen gleich ein eine Gegenkopplung verursachender endlicher Emittervorwiderstand Re und eine zusätzliche vom Emitter über einen Vorverstärker auf die Basis wirkende Gegenkopplung berücksichtigt werden, da die so erhaltenen Ergebnisse diejenigen für verschwindenden Emittervorwiderstand und ohne zusätzliche Gegenkopplung mit einschliessen.

Die Verstärkerstufe könnte etwa wie in Fig. 3 dargestellt geschaltet sein, wobei der darin eingezeichnete Vorverstärker als verzerrungsfrei angenommen sei. Eine derartige Gegenkopplung vom Emitter zur Basis kann praktisch immer durch eine Quellenspannung wie in Fig. 4 im Basiskreis dargestellt werden.

Damit erhält man also bei Berücksichtigung eines endlichen Widerstandes in der Emitterzuleitung und einer Gegenkopplung in der beschriebenen Art aus Fig. 2 das in Fig. 5 dargestellte Ersatzschaltbild zur Berechnung der 2. Harmonischen.

Hier stellt die Quellenspannung $(\mu - 1) R_e (i_{(2\omega)c} + i_{(2\omega)b})$ in der beschriebenen Weise die zusätzliche Gegenkopplung (für die 2. Harmonische) dar. Wenn diese nicht vorhanden ist, ist $\mu = 1$ einzusetzen. Beträgt der Grad der zusätzlichen Gegenkopplung A Neper, so wird:

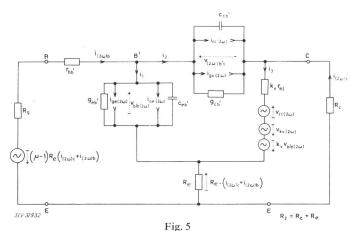
$$\mu = \frac{e^A - 1}{R_e S} + 1 \tag{16}$$

oder mit

$$S pprox rac{1}{r_{el} + R_e}$$

der «Steilheit» des Transistors mit Emittervorwiderstand wird

$$\mu \approx (e^A - 1) \frac{r_{el} + R_e}{R_e} + 1$$
 (17)



Wie Fig. 2, aber Emittervorwiderstand und zusätzliche Gegenkopplung berücksichtigt

μ Gegenkopplungsfaktor, definiert durch Gl. (16) bzw. Gl. (17), $\mu \geq 1$; R_e Emittervorwiderstand Weitere Bezeichnungen s. Fig. 1 und Fig. 2

Aus dem in Fig. 5 dargestellten Netzwerk ergibt sich nun der Oberwellenstrom im Basiszweig:

$$i_{(2\omega)b} = \frac{D_b}{D} \tag{18}$$

und im Kollektorzweig:

$$i_{(2\omega)c} = \frac{D_c}{D} \tag{19}$$

D, D_b und D_c sind hiebei die Determinanten des Gleichungssystems, das das Netzwerk in Fig. 5 beschreibt.

Unter den Voraussetzungen, die praktisch immer erfüllt sind:

$$R_e g_{eb'} \ll k_v$$
 $1 \ll k_v$
 $g_{eb'} > g_{cb'}$
 $\mu \ge 1$

erhält man:

schen im Kollektorstrom für die beiden Grenzfälle berechnen. Entsprechend Gl. (19) wird:

$$(i_{(2\omega)} c)_{\omega \to 0} = \frac{(D_c)_{\omega \to 0}}{(D)_{\omega \to 0}}$$
 (19a)

und

$$(i_{(2\omega)} c)_{\omega \to \infty} = \frac{(Dc)_{\omega \to \infty}}{(D)_{\omega \to \infty}}$$
(19b)

Auch $(i_{(2\omega)}c)_{\omega\to\infty}$ wird rein reell [hat also dieselbe Phasenlage zum Grundwellenstrom wie $(i_{(2\omega)}c)_{\omega\to0}$], da in der rechten Seite von Gl. (19b) sowohl Zähler als auch Nenner rein imaginär werden.

Aus den Gl. (19a) bzw. (19b) erhält man insbesondere auch die Scheitelwerte der betreffenden Ströme $(\hat{I}_{(2\omega)c})_{\omega\to 0}$ und $(\hat{I}_{(2\omega)c})_{\omega\to \infty}$, mit denen im folgenden vorzugsweise gerechnet wird. Diese können sowohl positives wie auch *negatives* Vorzeichen haben. Es ist:

$$i_{(2\omega)c} = \hat{I}_{(2\omega)c} \cdot \cos 2\omega t$$

$$D = \underline{k_v \left[\mu R_e + R_2 \left(g_{cb'} + j2\omega c_{cb'}\right) R_1\right] + \left[k_v r_{el} + R_2\right] \cdot \left[1 + \left(g_{eb'} + j2\omega c_{eb'}\right) R_1\right]} + \mu R_e \left(g_{eb'} + j2\omega c_{eb'}\right) \cdot \left(k_v r_{el} + R_2\right) + k_v R_2 \left(g_{cb'} + j2\omega c_{cb'}\right) \cdot \left[\mu R_e + r_{el} + r_{el} \left(g_{eb'} + j2\omega c_{eb'}\right) \cdot \left(R_1 + \mu R_e\right)\right]$$
(20)

$$D_{b} = (v_{kv(2\omega)} - v_{r1(2\omega)}) \cdot [R_{2} \cdot (g_{cb'} + j2\omega c_{cb'}) - \mu R_{e}(g_{eb'} + j2\omega c_{eb'})] + [R_{2} + k_{v}(\mu R_{e} + r_{el})] \cdot [i_{ge(2\omega)} + i_{ce(2\omega)} + i_{gc(2\omega)} + i_{g$$

$$D_{c} = \underbrace{(v_{kv(2\omega)} - v_{rl(2\omega)}) \cdot [1 + (g_{eb'} + j2\omega c_{eb'}) \cdot (R_{1} + \mu R_{e})] - (i_{ge(2\omega)} + i_{ce(2\omega)} + i_{gc(2\omega)} + i_{cc(2\omega)}) k_{v}(R_{1} + \mu R_{e})} + k_{v} r_{el} \Big\{ (i_{ge(2\omega)} + i_{ce(2\omega)}) \cdot (g_{cb'} + j2\omega c_{eb'}) \cdot [R_{1} + (\mu - 1) R_{e}] - (i_{gc(2\omega)} + i_{cc(2\omega)}) \cdot [1 + (g_{eb'} + j2\omega c_{eb'}) \cdot (R_{1} + \mu R_{e})] \Big\}$$
(22)

In den Gleichungen ist

$$R_1 = R_g + r_{bb'}$$

(Summe aus Generatorinnenwiderstand und Basisbahnwiderstand)

Als Belastungswiderstand R_2 des Transistors im Ausgangskreis ist jetzt die Summe aus dem eigentlichen Arbeitswiderstand R_c im Kollektorzweig und dem Emittervorwiderstand R_c einzusetzen:

$$R_2 = R_c + R_e$$
 (Fig. 4, 5)

Die nicht unterstrichenen Summanden in den Gl. (20) und (22) können normalerweise vernachlässigt werden.

Zur Auswertung der Gl. (18...22) werden zweckmässigerweise nur die beiden Grenzfälle $\omega \to 0$ und $\omega \to \infty$ betrachtet, da sich daraus dann die Amplituden des Oberwellenstromes für endliche Frequenzen mittels der anschliessend beschriebenen Vektordiagramme leicht ermitteln lassen.

Für $\omega \to 0$ werden in den Gl. (21) und (22) alle Summanden, die ω als Faktor enthalten, zu Null, also gemäss den Gl. (2) und (5) auch die Ausdrücke $i_{ce(2\omega)}$ und $i_{cc(2\omega)}$. Man erhält für $(D)_{\omega \to 0}$ aus Gl. (20), für $(D_b)_{\omega \to 0}$ aus Gl. (21) und für $(D_c)_{\omega \to 0}$ aus (Gl. 22) rein reelle Ausdrücke.

Für $\omega \to \infty$ werden alle Summanden, die ω *nicht* als Faktor enthalten, vernachlässigbar, insbesondere also auch gemäss den Gl. (1), (3), (4) und (6) die Ausdrücke $i_{ge(2\omega)}$, $v_{rl(2\omega)}$ und $v_{kv(2\omega)}$. Man erhält für $(D)_{\omega \to \infty}$, $(D_b)_{\omega \to \infty}$, und $(D_c)_{\omega \to \infty}$ rein imaginäre Ausdrücke [in der komplexen Schreibweise ist in Gl. (2) und (5) der Ausdruck $\cos(2\omega t + \pi/2)$ wegen der 90° -Phasenverschiebung durch j zu ersetzen].

Es lassen sich also ausser den entsprechenden Ausdrücken für den Basisoberwellenstrom die Amplituden der 2. Harmoni-

Bei kleinem Arbeitswiderstand ist $\hat{I}_{(2\omega)c}$ im allgemeinen negativ. Der Oberwellenstrom hat die in Fig. 6 angedeutete Phasenlage zum Grundwellenstrom (bei tiefen Frequenzen, also für $\varphi=0$). Endliche Phasenwinkel der 2. Harmonischen beziehen sich auf den in Fig. 6 durchgezogen gezeichneten Oberwellenstrom. Die Scheitelwerte der Oberwellenströme werden zweckmässigerweise auf das Quadrat der Grundwellenamplitude bezogen, da die so erhaltenen Grössen

$$\frac{(\hat{I}_{(2\omega)c})_{\omega\to 0}}{\hat{I}_{(1\omega)c}^2} \text{ bzw. } \frac{(\hat{I}_{(2\omega)c})_{\omega\to\infty}}{\hat{I}_{(1\omega)c}^2}$$

unabhängig von der Grösse der Aussteuerung werden. Wenn man nun noch den Phasenwinkel φ einführt:

$$\varphi = \arctan \frac{\left[c_{eb'} \left(k_{v} \, r_{el} + R_{2}\right) + k_{v} \, R_{2} \, c_{cb'}\right] \, R_{1} \, 2\omega}{k_{v} \left[\mu \, R_{e} + R_{2} \, g_{cb} R_{1}\right] + \left[k_{v} \, r_{el} + R_{2}\right] \cdot \left[1 + R_{1} \, g_{eb'}\right]}$$

$$\text{mit } R_{1} = R_{g} + r_{bb'}; \, R_{2} = R_{c} + R_{e}$$
(23)

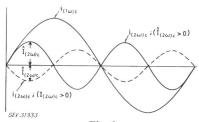


Fig. 6 Die Phasenlage der 2. Harmonischen in Bezug auf die Grundharmonische (für $\varphi=\mathbf{0}$)

 $i_{(1\omega)c}$ Grundharmonische des Kollektorwechselstromes i_c

 $i_{(2\omega)c}$ 2. Harmonische des Kollektorwechselstromes i_c

 $\hat{I}_{(2\omega)c}$ positiver bzw. negativer Scheitelwert der 2. Harmonischen des Kollektorwechselstromes i_c

φ Phasenwinkel (aus Gl. 23)

so lassen sich zur Bestimmung der Amplitude der 2. Harmonischen im Kollektorkreis die in den Fig. 7...9 dargestellten Vektordiagramme konstruieren.

Falls $|(\hat{I}_{(2\omega)c})_{\omega\to\infty}| > |(\hat{I}_{(2\omega)c})_{\omega\to0}|$ gilt [bei gleichem $\hat{I}_{(1\omega)c}$] und $(\hat{I}_{(2\omega)c})_{\omega\to\infty}$ und $(\hat{I}_{(2\omega)c})_{\omega\to0}$ gleiches Vorzeichen haben, erhält man das Vektordiagramm nach Fig. 7.

Wenn $|(\hat{I}_{(2\omega)}c)_{\omega\to\infty}| < |(\hat{I}_{(2\omega)}c)_{\omega\to0}|$ gilt [bei gleichem $\hat{I}_{(1\omega)}c$], aber beide weiterhin gleiches Vorzeichen haben, ergibt sich das in Fig. 8 dargestellte Vektordiagramm.

Wenn $(\hat{I}_{(2\omega)c})_{\omega\to\infty}$ und $(\hat{I}_{(2\omega)c})_{\omega\to0}$ einander entgegengesetzte Vorzeichen haben, im übrigen aber beliebige Beträge, so erhält man das in Fig. 9 dargestellte Bild.

In den Fig. 7...9 stellt die Strecke \overline{AB} das Ergebnis, die auf das Quadrat der Grundwellenamplitude bezogene Oberwellenamplitude im Kollektorkreis dar.

$$\overline{AB} = rac{\widehat{I}_{(2\omega)\,c}}{\widehat{I}_{(1\omega)c}^2}$$

Die aus diesen Vektordiagrammen erhaltenen Ergebnisse sind ungefähr bis zur halben f_T -Frequenz brauchbar.

3. Berechnung der 2. Harmonischen (Sonderfälle)

Für sehr grosse (zusätzliche) Gegenkopplung $(A \to \infty)$ geht auch $\mu \to \infty$. Dabei geht aber der Anteil der 2. Harmonischen im Kollektorstrom im allgemeinen *nicht asymptotisch gegen Null* ²), wie das z. B. bei einem Röhrenverstärker der Fall ist, solange kein Gitterstrom fliesst, sondern er strebt wegen des endlichen Basisstromes gegen einen Grenzwert, wie er sich aus Gl. (19) mit (20) und (22) für $\mu \to \infty$ ergibt. Für nicht zu hohe Frequenzen aus der Gl. (19a) für $\omega \to 0$:

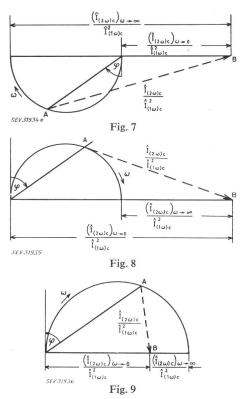


Fig. 7, 8 und 9 Vektordiagramme zur Ermittlung der 2. Harmonischen bei endlichen Frequenzen

 $\hat{I}_{(1\omega)c}$ Scheitelwert der Grundharmonischen im Kollektorstrom $\hat{I}_{(2\omega)c}$ Scheitelwert der 2. Harmonischen im Kollektorstrom $(\hat{I}_{(2\omega)c})_{\omega\to 0}$ dto. für $\omega\to 0$ ($\hat{I}_{(2\omega)c})_{\omega\to \infty}$ dto. für $\omega\to \infty$ Frequenz der Grundharmonischen φ Phasenwinkel aus Gl. (23)

$$(i_{(2\omega)c})_{\mu \to \infty} = \frac{(v_{kv(2\omega)} - r_{r1(2\omega)}) g_{eb'} - (i_{ge(2\omega)}) k_v + k_v r_{el} (i_{ge(2\omega)} g_{cb'} - i_{gc(2\omega)} g_{eb'})}{k_v + g_{eb} \left(r_{el} + \frac{R_2}{k_v}\right) + k_v g_{cb'} R_2 (1 + g_{eb'} r_{el})}$$
(24)

für $R_2 \to 0$ werden $v_{kv(2\omega)} = 0$ und $i_{gc(2\omega)} = 0$, und es wird dann:

$$(i_{(2\omega)}c)_{\mu\to\infty}; R_{2\to0}=$$

$$\frac{-v_{rl\,(2\omega)}g_{eb'}-k_v\cdot i_{ge\,(2\omega)}+k_v\,r_{el}\,g_{cb'}\cdot i_{ge\,(2\omega)}}{k_v+g_{eb'}\,r_{el}}\tag{25}$$

mit

$$B_9 = rac{k_v}{2 \, V_{CE}} \; ; \; B_2 = rac{g_{eb'}}{I_C}$$

also im Normalfall wird:

normalerweise vernachlässigbar klein]. Eine genauere Diskussion von Gl. (19) ergibt mit zunehmendem Arbeitswiderstand nacheinander die in Fig. 10 dargestellten Verläufe der Klirrdämpfung³) des Kollektorstromes über dem Gegenkopplungsgrad A.

Die tatsächlich an Transistoren in Abhängigkeit von der zusätzlichen Gegenkopplung und vom Arbeitswiderstand gemessenen Klirrdämpfungen stimmten recht gut mit den theoretischen Verläufen überein (s. Abschn. 8, Fig. 16), abgesehen

$$(\hat{I}_{(2\omega)c})_{\mu\to\infty; R_2\to 0} = \frac{-\frac{1}{4} r_{el} k_v - \frac{g_{eb'}}{I_C} + \frac{1}{4} r_{el} k_v \frac{g_{eb'}}{I_C} + r_{el} k_v g_{cb'} \frac{\hat{I}_{ge(2\omega)}}{\hat{I}_{(1\omega)c}^2}}{k_v + g_{eb'} r_{el}} \hat{I}_{(1\omega)c}^2 \approx 0$$
(26)

Bei verschwindend kleinem Arbeitswiderstand wird also im allgemeinen tatsächlich mit grösser werdender Gegenkopplung die Amplitude der 2. Harmonischen im Kollektorstrom gegen Null gehen [der letzte Summand im Zähler von Gl. (26) ist davon, dass die Maxima von a_{k2} bei den gemessenen Werten nicht sehr stark ausgeprägt waren. Bei höheren Frequenzen und wenn die zusätzliche Gegenkopplung einen Phasenwinkel aufweist, werden diese Maxima immer mehr abgeflacht und verschwinden schliesslich völlig.

Bei kleinem Arbeitswiderstand treten die Kurvenverläufe nach Fig. 10a nur auf, wenn die Stromverstärkung β_0 mit zu-

²⁾ Dies rührt daher, dass in der angenommenen Schaltung eine wesentliche Grundbedingung für die verzerrungsvermindernde Wirkung der Gegenkopplung verletzt wird. Die Gegenkopplungsspannung wird nicht von demselben Strom erzeugt wie die Ausgangsspannung; Gegenkopplungs- und Ausgangsspannung weisen deshalb nicht genau denselben Verlauf über der Zeit auf.

³⁾ Siehe hiezu auch Abschnitt 6.

nehmendem Kollektorgleichstrom grösser wird, wenn also $B_{2i} < g_{eb'}/I_C$ ist. Ist β von der Grösse des Kollektorstromes unabhängig, ist also

$$B_{2i} < rac{g_{eb'}}{I_C}$$

so ergibt sich für $R_2 = 0$ eine Proportionalität zwischen dem Gegenkopplungsgrad und der Klirrdämpfung a_{k2} . Dieser Verlauf ist in Fig. 10b gestrichelt dargestellt. Nimmt β mit grösser werdendem Kollektorgleichstrom ab, ist also

$$B_{2i}>rac{g_{eb'}}{I_C}$$

so treten mit von Null an grösser werdendem Arbeitswider-

Jede Vergrösserung des Generatorinnenwiderstandes, des Gegenkopplungsgrades oder des Emittervorwiderstandes bewirkt, dass der Arbeitswiderstand, bei dem das Maximum von a_{k2} auftritt, kleiner wird. Den stärksten Einfluss hat dabei eine Änderung des Generatorinnenwiderstandes.

Auch über dem Arbeitswiderstand dargestellt, ist das Maximum der Klirrdämpfung nur bei relativ niedrigen Frequenzen sehr ausgeprägt und wird mit zunehmender Frequenz immer flacher (s. Abschn. 8, Fig. 13). Aus Gl. (19) mit Gl. (20) und (22) erhält man durch Einsetzen der Gl. (1)...(6) jetzt unter Vernachlässigung der in den Gl. (20) und (22) nicht unterstrichenen Summanden für tiefe Frequenzen 4):

$$(\hat{I}_{(2\omega)c})_{\omega \to 0} = \frac{1}{4} \left\{ \frac{r_{el} (R_1 + \mu R_e) \cdot \left(B_{2i} - \frac{g_{eb'}}{I_C} \right) - \frac{r_{el}}{I_C} + R_2 (R_1 + \mu R_e) \cdot \left(\frac{B_{2i}}{k_v} - B_{2v} r_{el} + B_{5i} \right)}{+ \mu R_e + (1 + r_g g_{eb'}) \cdot \left(r_{el} + \frac{R_2}{k_v} \right) + R_2 g_{cb'} r_g} + \frac{R_2^2 \left[(R_1 + \mu R_e) \cdot \left(- \frac{B_{2v}}{k_v} - B_{5v} + B_9 \right) \frac{g_{eb'}}{k_v^2} \right]}{\mu R_e + (1 + r_g g_{eb'}) \cdot \left(r_{el} + \frac{R_2}{k_v} \right) + R_2 g_{cb'} r_g} \right\} = \hat{I}^2_{(1\omega)c}$$
(29)

stand nur die in Fig. 10b und 10c voll ausgezogenen Kurven auf.

Wenn die Klirrdämpfung a_{k2} immer (also für beliebig grosse Gegenkopplung) mit der Gegenkopplung gehen soll, so muss, auch wenn die zu Gl. (26) gemachten Voraussetzungen nicht erfüllt sind, gelten:

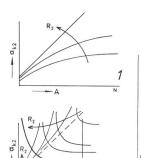
$$g_{eb'} = k_v \frac{i_{ge(2\omega)} + i_{gc(2\omega)}}{v_{kv(2\omega)} - v_{rl(2\omega)}}$$
(27)

Dies folgt aus Gl. (22) für $\mu \to \infty$ und $D_c = 0$.

Die Klirrdämpfung a_{k2} hat also über der Gegenkopplung ein Maximum, dessen Lage von der Grösse des Arbeitswiderstandes (und auch vom Generatorinnenwiderstand) abhängig ist. Man kann den Verlauf von a_{k2} natürlich auch über dem Arbeitswiderstand darstellen. Es ergibt sich wieder ein Maximum, dessen Lage von der Grösse der zusätzlichen Gegenkopplung μ , des Generatorinnenwiderstandes und von R_e abhängt (s. Abschn. 8, Fig. 13).

Wenn diese drei Grössen vernachlässigbar klein sind, tritt das Maximum von a_{k2} auf, wenn erfüllt ist:

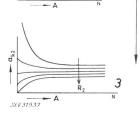
$$R_2 = \sqrt{2k_v r_{el} \frac{V_{CE}}{I_C}} \tag{28}$$



 $\begin{array}{c} {\rm Fig.~10} \\ {\rm Klirrd\"{a}mpfung~}a_{k2} {\rm ~als~} {\rm Funktion~} {\rm ~des} \\ {\rm Gegenkopplungsgrades~}A {\rm ~und~} {\rm ~des} \\ {\rm ~Arbeitswiderstandes~}R_2 \\ {\rm ~(vgl.~} {\rm Fig.~}16) \end{array}$

$$I$$
 nur für $B_{2i}<\frac{g_{eb'}}{I_c}$ (s. Text);
2 $0\leq R_2;\ 3\ R_2$ grösser als in Ziff. 2;

2 $0 \le R_2$; 3 R_2 grösser als in Ziff. 2; Pfeilrichtung des vertikalen Pfeiles R_2 bedeutet: R_2 nimmt zu



hier ist $R_1 = R_g + r_{bb'}$, zu setzen. $R_2 = R_c + R_e$. Für hohe Frequenzen erhält man so:

$$(\hat{I}_{(2\omega)c})_{\omega\to\infty} = \frac{\hat{I}_{(1\omega)c}^{2}}{4c_{eb'} \cdot \left(r_{el} + \frac{R_{2}}{k_{v}}\right) + 4R_{2}c_{cb'}} \cdot \left[r_{el}\left(B_{4i} - \frac{c_{eb'}}{I_{C}}\right) + R_{2}\left(-r_{el}B_{4v} + \frac{B_{4i}}{k_{v}} + \frac{B_{7}}{2\sqrt{V_{CE}}}\right) + R_{2}^{2}\left(-\frac{B_{4v}}{k_{v}} + \frac{B_{6} + B_{7}I_{C}}{4V_{CE}\sqrt{V_{CE}}} + \frac{B_{9}c_{eb'}}{k_{v}^{2}}\right)\right]$$

Für kleine Arbeitswiderstände ($R_2 = 0$ gesetzt!) vereinfachen sich die Gl. (29) und (30) sehr stark und man erhält so näherungsweise statt Gl. (29):

$$(\hat{I}_{(2\omega)c})_{\omega\to 0}; R_2 \leqslant k_v r_{el} = \frac{1}{4 I_C} \cdot \frac{(B_{2i} I_C - g_{eb'})(R_1 + \mu R_e) - 1}{\frac{\mu R_e}{r_{el}} + 1 + R_1 g_{eb'}} \hat{I}_{(1\omega)c}^2$$
(31)

Wenn die Stromverstärkung β nicht von der Grösse des Kollektorstromes abhängig ist, so gilt:

$$B_{2i} I_C = g_{eb'}$$

und Gl. (31) vereinfacht sich weiter:

$$(\hat{I}_{(2\omega)c})_{\omega\to 0}; R_2 \leqslant k_v r_{el} = \frac{-1}{4 I_C \left(\frac{\mu R_e}{r_{el}} + R_1 g_{eb'} + 1\right)} \hat{I}_{(1\omega)c}^2$$
(32)

In diesen Gleichungen ist $R_1 = R_g + r_{bb'}$, und $R_2 = R_c + R_e$ Aus Gl. (30) wird für $R_c \rightarrow 0$:

$$(\hat{I}_{(2\omega)c})_{\omega\to\infty}; R_2 \leqslant k_v r_{el} = \frac{1}{4} \frac{c_{eb'} - B_{4i} \hat{I}_C}{c_{eb'} I_C} \hat{I}_{(1\omega)c}^2$$
 (33)

4. Berechnung der Amplitude der (durch den quadratischen Teil der Kennlinie erzeugten) Summen- bzw. Differenzfrequenzströme

Die hergeleiteten Gleichungen gelten auch hiefür, nur wird für das Nutzsignal an Stelle von $\hat{I}_{(1\omega)c}$ cos ωt jetzt eingesetzt:

$$\hat{I}_{(\omega_1)c}\cos\omega_1t+\hat{I}_{(\omega_2)c}\cos\omega_2t$$

⁴⁾ Bei starkem Gegenkopplungsgrad und gleichzeitig grossem Arbeitswiderstand ist zu prüfen, ob im Nenner eventuell der ausführliche Ausdruck von Gl. (20) einzusetzen ist.

Um die Amplitude des Kollektorwechselstromes mit der Summe bzw. Differenz der beiden Nutzfrequenzen zu erhalten, ist dann in die Gl. (29) und (30) bzw. (31), (32), und (33) anstatt $\hat{I}_{(1\omega)c}^2$ einzusetzen:

$$2 \hat{I}_{(\omega_1) c} \hat{I}_{(\omega_2) c}$$

Die Gl. (29) bzw. (31) und (32), die bisher für $\omega \to 0$ galten, gelten nun für $(\omega_1 - \omega_2) \to 0$ und die Gl. (30) bzw. (33), die für $\omega \to \infty$ galten, gelten für $(\omega_1 - \omega_2) \to \infty$. Für endliche Differenz der beiden Frequenzen kann wieder eines der beschriebenen Vektordiagramme gezeichnet werden. Zur Berechnung des Winkels φ ist jetzt aber in Gl. (23) an Stelle von $2\omega = \omega_1 \pm \omega_2$ einzusetzen. (Positives Vorzeichen zur Berechnung der Amplitude des Summenfrequenzstromes, negatives Vorzeichen: Differenzfrequenz.)

5. Berechnung der 3. Harmonischen

Die Rechnung läuft prinzipiell ebenso, wie bei der Berechnung der 2. Harmonischen dargestellt, mit dem Unterschied, dass in die Potenzreihenentwicklungen, wie in [2] erläutert, die Summe aus Grundwelle und 2. Harmonischer einzusetzen ist. Die Rechnung hier im einzelnen darzustellen, würde den Rahmen dieses Aufsatzes sprengen. Dasselbe gilt auch für die Ergebnisse dieser Rechnung für den allgemeinen Fall (beliebig grosser Arbeitswiderstand). Die Formeln hiefür werden so umfangreich, dass es nicht zweckmässig und sinnvoll erscheint, sie hier anzugeben. Ausserdem stehen die hiezu erforderlichen Messwerte im allgemeinen nicht zur Verfügung bzw. sind nur unter grossen Schwierigkeiten zu ermitteln. Für kleinen Arbeitswiderstand ergibt sich aber auch hier eine sehr beträchtliche Vereinfachung des Ergebnisses. Man erhält nämlich:

$$(\hat{I}_{(3\omega)c})_{\omega \to 0, R_2 \leqslant k_v r_{el}} = \frac{3R_1^2 y^2 + (2x - 6)R_1 y + 3 - 2x}{24I_c^2 x^2} \hat{I}_{(1\omega)c}^3$$
(34)

mit

$$\begin{cases}
 x = 1 + \frac{\mu R_e}{r_{el}} + R_1 g_{eb'}^{5} \\
 y = B_{2i} I_C - g_{eb'} \\
 R_1 = R_g + r_{bb'} \\
 R_2 = R_c + R_e
 \end{cases}$$
(35)

Wenn die Stromverstärkung β als unabhängig vom Kollektorstrom angenommen werden kann, wird $B_2 I_C = g_{eb'}$, damit y = 0 und Gl. (34) vereinfacht sich weiter:

$$(\hat{I}_{(3\omega)c})_{\omega\to 0, R_{C\to 0}} = \frac{3-2x}{24 I_C^2 x^2} \hat{I}_{(1\omega)c}^3$$
 (36)

Aus Gl. (34) mit (35) ist abzuleiten, dass die Amplitude der 3. Harmonischen ein Minimum bekommt, wenn erfüllt ist:

$$B_{2i} I_C - g_{eb'} = \frac{1}{R_g + r_{bb'}}$$
 (37)

Normalerweise ist B_2 $I_C \leq g_{eb'}$, d. h. dieses Minimum ergibt sich bei $R_g \to \infty$ bzw. bei negativen Werten des Generatorinnenwiderstandes. Falls B_2 $I_C > g_{eb'}$ ist, wenn also die Stromverstärkung mit zunehmendem Kollektorstrom kleiner wird, tritt es bei endlich positiven Werten von $(R_g + r_{bb'})$ auf.

Im Gegensatz zu dem im folgenden beschriebenen ist dieses Minimum unabhängig von der Grösse der zusätzlichen Gegenkopplung bzw. von R_e .

Ein zweites Minimum tritt auf wenn erfüllt ist:

$$B_{2i}I_C - \frac{1}{3}g_{eb'} = \frac{1 - 2\frac{\mu R_e}{r_{el}}}{3(R_q + r_{bb'})}$$
(38)

Dieses Minimum tritt im allgemeinen bei durchaus realisierbaren Werten von μR_e bzw. R_g auf.

Falls die Stromverstärkung wieder als unabhängig von der Grösse des Kollektorstromes angenommen werden kann, vereinfacht sich Gl. (38) zu:

$$1 - 2 \mu \frac{R_e}{r_{el}} - 2 (R_g + r_{bb'}) g_{eb'} = 0$$
 (39)

Auch hier werden mit zunehmender Frequenz die Maxima der Klirrdämpfung immer weiter abgebaut.

Für die Amplitude der 3. Harmonischen bei extrem hohen Frequenzen und kleinem Arbeitswiderstand gilt:

$$(i_{(3\omega)c})_{\omega\to\infty} = \frac{1}{24 Lc^2} (3 z^2 - 4 z + 1) \hat{I}_{(1\omega)c}^3 \cos 3 \omega t \qquad (40)$$

mit
$$z = \frac{B_{4i} I_C}{c_{eb'}} \tag{41}$$

Gl. (40) mit (41) gilt unabhängig von der Grösse des Emittervorwiderstandes und der zusätzlichen Gegenkopplung, kann aber nur als Faustformel zur Ermittlung der Tendenz der Frequenzabhängigkeit der dritten Harmonischen dienen.

6. Berechnung der Klirrdämpfungen

In den vorangegangenen Gleichungen wurde immer nur der Scheitelwert des Oberwellenstromes bezogen auf das Quadrat bzw. die dritte Potenz des Grundwellenstromes angegeben. In der Praxis interessiert aber im allgemeinen die Klirrdämpfung in Neper bzw. in db. Im folgenden sollen deshalb die Gleichungen angegeben werden, die die benötigten Zusammenhänge herstellen.

Der Ausgangspegel werde in einer Schaltung nach Fig. 11 gemessen (Gleichstromversorgung des Transistors weggelassen). An den Klemmen a-b sei ein selektiver Pegelmesser angeschlossen mit dem Eingangswiderstand R_a (der Arbeitswiderstand R_c kann also, muss aber nicht, gleich R_a sein). Dann seien $P_{(1\omega)}, P_{(2\omega)} \ldots$ die (absoluten) Pegel der Spannungen mit den Frequenzen 1ω ; 2ω ... in Neper, die von diesem Pegelmesser angezeigt werden. Unter diesen Voraussetzungen ist dann:

$$a_{k2} = P_{(1\omega)c} - P_{(2\omega)c} = -\ln \frac{\hat{I}_{(2\omega)c}}{\hat{I}_{(1\omega)c}^2} + \ln \frac{R_a}{\sqrt{1,2}} - P_{(1\omega)c}$$
(42)

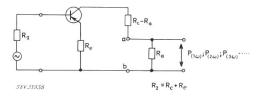
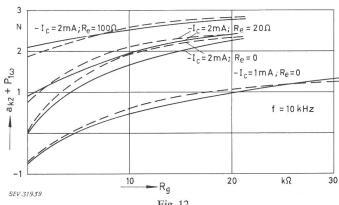


Fig. 11 Prinzipschaltung zur Messung der Klirrdämpfungen

- R_g Innenwiderstand der Signalquelle;
- R_a Eingangswiderstand des Pegelmessers;
- R_c Arbeitswiderstand im Kollektorkreis (vgl. Fig. 1);
- R_e Emittervorwiderstand (vgl. Fig. 3 bzw. Fig. 5)

⁵) μ wurde durch Gl. (16) bzw. (17) definiert.



 a_{k2} als Funktion des Generatorinnenwiderstandes R_n bei tiefer Frequenz für $R_2 \longrightarrow 0$, $R_c = 0$; $\mu = 1$

Aus Gl. (31) mit Gl. (42)

Klirrdämpfung der 2. Harmonischen [Neper]

Pegel [N] der Grundharmonischen am Pegelmesser $P_{1\omega}$ (vgl. Fig. 11)

Gegenkopplungsfaktor aus Gl. (16) bzw. (17); $\mu = 1$ μ bedeutet: hier ist nur die Eigengegenkopplung durch den Emittervorwiderstand Re wirksam

ausgezogene Kurven: gerechnet für $\omega \rightarrow 0$, gestrichelte: gemessen bei f = 10 kHz

(Der Ausdruck $a_{k2} + P_{(1\omega)}$ wird unabhängig von der Grösse von $P_{(1\omega)}$, da bei einer Vergrösserung von $P_{(1\omega)}$ a_{k2} um denselben Betrag kleiner

$$a_{k3} = P_{(1\omega)c} - P_{(3\omega)c} = -\ln\frac{\hat{I}_{(3\omega)c}}{\hat{I}_{(\omega)c}^3} + \ln\frac{R_a^2}{1,2} - 2P_{(1\omega)c}$$
 (43)

 $a_{k2}, a_{k3}, P_{(1\omega)c}, P_{(2\omega)c}, P_{(3\omega)c}$ in Neper; $\hat{I}_{(1\omega)c}, \hat{I}_{(2\omega)c}, \hat{I}_{(3\omega)c}$ in Ampère; R_a in Ohm.

7. Die zur Rechnung erforderlichen (Transistor-) Parameter und ihre Bestimmung

1.

$$r_{el} pprox rac{V_T}{I_C}$$
 ;

 $V_T = 26 \text{ mV}$ bei Raumtemperatur, Kollektorgleichstrom

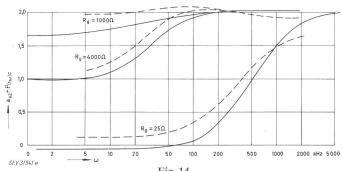
N $R_g = 10 k\Omega$ $R_e = 100\Omega$ (3kHz) $R_g = 25\Omega$ ger mit R_g=0 3 -ak2 + P10 (3 kHz) (10 kHz) $[R_e = 0\Omega]$ bei allen Kurven ist $I_c = 2 \text{ mA}$ 10 kΩ - Rc SEV 31940

Fig. 13 $a_{k2} \ \mbox{als Funktion des Arbeitswiderstandes} \ R_c \ \mbox{bei} \ \ \omega \longrightarrow 0$

 R_e , R_g Parameter Aus Gl. (29) mit Gl. (42)

Klirrdämpfung der 2. Harmonischen;

Pegel der Grundharmonischen am Pegelmesser Die Frequenzangaben an den gestrichelten Kurven bedeuten die Frequenzen, bei denen sie gemessen wurden. Die ausgezogenen Kurven wurden gerechnet für $\omega \rightarrow 0$



 ${\rm Fig.~14} \\ a_{k2} \ \ {\rm als~Funktion~der~Frequenz~der~Grundharmonischen}$ R_e und $R_c \approx 0$, $\mu = 1$

 R_g Parameter (Generatorinnenwiderstand) Aus Gl. (31), (33),

Pegel der Grundharmonischen am Pegelmesser

$$g_{eb'} = \frac{1}{\beta_0 r_{el}}$$

β₀ Stromverstärkungsfaktor gemessen in Emitterschaltung bei niedriger Frequenz

3.
$$c_{eb'} = \frac{1}{\omega} \operatorname{Im} \left[\frac{1}{(h_{11e})_{f < f_{\beta}} - r_{bb'}} \right] \approx c_{11e} =$$
$$= \frac{1}{\omega} \operatorname{Im} (y_{11e})_{f < f_{\beta}}$$

oder:

$$c_{eb'}=rac{g_{eb'}}{2\,\pi f_{eta}}=rac{1}{2\,\pi f_T\,r_{el}}$$

4.
$$g_{cb'} = R_e (h_{22b})_{f_u} - \frac{\alpha_{0'} g_{eb'}}{k_v} {}^{6}) {}^{7}$$

 f_T Transitfrequenz (Frequenz bei der theoretisch $\beta = 1$ wird)

$$\alpha_{0'} = \frac{1}{1 + r_{el} g_{eb'}}$$

5.
$$c_{cb'} = \frac{\operatorname{Im}(h_{12b})_{f \leqslant f_T}}{\omega r_{bb'}} - \frac{c_{eb'}}{k_v (1 + r_{el} g_{eb'})}$$

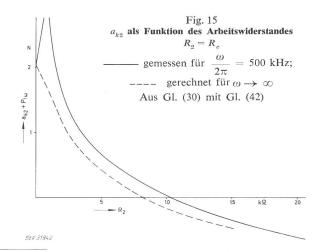
6.
$$r_{bb'} = \frac{1}{2\pi f_{y21e} c_{eb'}} = \frac{r_{el} f_T}{f_{y21e}}$$

 f_{y21e} Steilheitsgrenzfrequenz in Emitterschaltung

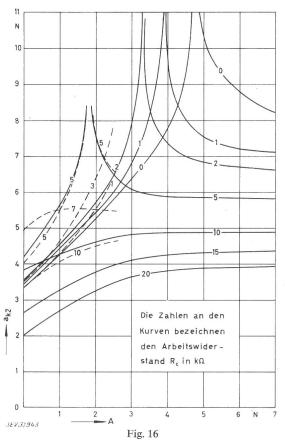
$$R_1 = R_g + r_{bb'}$$

 R_g Innenwiderstand des Signalgenerators $r_{bb'}$, rbb' Basisbahnwiderstand

8.
$$\frac{1}{k_v} = [(y_{22c})_{f_u} - g_{cb'}] r_{el} - \frac{r_{bb'} g_{cb'}}{1 + r_{bb'} g_{eb'}} \approx (y_{22e})_{f_u} r_{el}$$
 6)



 $^6)\ f_u$ tiefste Frequenz, bei der das Ersatzschaltbild nach Fig. 1 noch gilt (Mitlaufeffekt, [4]) $^7)$ Betreffend k_v siehe Ziff. 8.

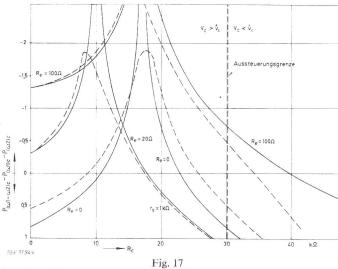


 a_{k2} als Funktion der zusätzlichen Gegenkopplung A [N] bei verschiedenen grossen Arbeitswiderständen $R_{\,c}$

Bezogen auf einen Pegel der Grundharmonischen von 0 [N] Grundharmonische f=3 kHz, $R_o=22$ Ω

8. Messergebnisse

Die erhaltenen Ergebnisse wurden messtechnisch nachgeprüft u. a. für einen Ge-pnp-Transistor AC 122 ($I_C=2\,\mathrm{mA},\ V_{CE}=10\,\mathrm{V}$).



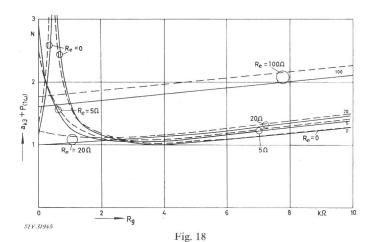
Pegel der Differenzfrequenz bezogen auf die Summe der Pegel der Grundharmonischen als Funktion des Arbeitswiderstandes für verschieden grosse Emitterwiderstände R_{α}

$$\mu = 1$$
, $R_g = 0$ bzw. 1 k Ω

Berechnet gemäss Abschnitt 3

 $P(\omega_1-\omega_2)c$ Pegel der Differenzfrequenz

 $P_{(\omega_1)c}$ Pegel der Grundharmonischen der Frequenz ω_1 $P_{(\omega_2)c}$ Pegel der Grundharmonischen der Frequenz ω_2



Klirrdämpfung a_{k3} der 3. Harmonischen als Funktion des Generatorinnenwiderstandes R_g bei verschieden grossen Emittervorwiderständen R_c für tiefe Frequenzen

 $P_{1\omega}$ Pegel der Grundharmonischen am Pegelmesser

Die in Abschnitt 6 angegebenen Parameter hatten bei dem betrachteten Transistor folgende Zahlenwerte:

$$r_{el} = rac{26 \, \mathrm{mV}}{2 \, \mathrm{mA}} = 13 \Omega; \qquad g_{eb'} = 0,5 \, \mathrm{mS} \; ;$$
 $c_{eb'} = 3,44 \, \mathrm{nF}; \qquad g_{cb'} = 0,138 \, \mu \mathrm{S};$ $c_{cb'} = 20 \, \mathrm{pF} \; ;$ $r_{bb'} = 147 \, \Omega; \qquad k_v = 2250 \; ;$

Die in Abschnitt 2 verwendeten Konstanten ergeben sich daraus aus Gl. (7...15) zu:

$$B_{2i} = 0,25 \; \mathrm{V}^{-1}; \qquad \qquad B_{2v} = -0,0107 \cdot 10^{-3} rac{\mathrm{A}}{\mathrm{V}^2};$$

$$B_{4i} = 1{,}526 \cdot 10^{-6} rac{\mathrm{F}}{\mathrm{A}} \; ; \qquad \qquad B_{4v} = -1 \cdot 10^{-10} rac{\mathrm{F}}{\mathrm{V}} \; ;$$

$$B_9 = 712 \,\mathrm{V}^{-\frac{1}{2}}$$
;

$$B_{5i} = 0,067 \cdot 10^{-3} \, \mathrm{V}^{-1}; \qquad \qquad B_{5v} = -0,0086 \cdot 10^{-6} \, rac{\mathrm{A}}{\mathrm{V}^2} \; ;$$

$$B_6 = 43,65 \cdot 10^{-12} \text{ V}^{-\frac{1}{2}} \text{As}; \qquad B_7 = 9,805 \cdot 10^{-9} \text{ V}^{-\frac{1}{2}} \text{s};$$

Die unter Zugrundelegung dieser Zahlenwerte berechneten Klirrdämpfungen sind in den Fig. 12...18 durchgezogen, die entsprechenden am Transistor gemessenen Werte gestrichelt dargestellt.

Literatur

- [1] R. Feldtkeller und W. Wolman: Fastlineare Netzwerke. Telegr.- und Fernsprechtechnik 20(1931) 6. S. 167...171, 8. S. 242...248.
- [2] W. Bitzer: Nichtlineare Verzerrungen von als Verstärker betriebenen Transistoren bei sinusförmiger Aussteuerung. Bull. SEV, 53(1962) 4, S. 139...146.
- [3] W. Benz: Die für die Übertragungstechnik charakteristischen Eigenschaften des Transistors und deren Verknüpfung. Frequenz, Bd. 15, Nr. 1 (Jan. 1961), S. 17...29.
- [4] O. Müller: Basisfeld, Multiplikationseffekt, Mitlaufeffekt, NTZ, 1962, H. 12.

Adresse des Autors:

W. Bitzer, dipl. Ingenieur, Telefunken GmbH., Backnang (Deutschland).