Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke
Band:	53 (1962)
Heft:	25
Artikel:	Schaltfeste Aluminium-Elektrolyt-Kondensatoren
Autor:	Naef, G.
DOI:	https://doi.org/10.5169/seals-917000

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Schaltfeste Aluminium-Elektrolyt-Kondensatoren

Von G. Naef, Zürich

621.319.45 : 669.71

Es wird auf die spezifischen Unterschiede zwischen schaltfesten und nicht schaltfesten Kondensatoren hingewiesen. In einer theoretischen Betrachtung und an Hand einiger Beispiele wird gezeigt, wann ein Kondensator schaltfest ist, und welche Massnahmen getroffen werden müssen um schaltfest zu bauen.

1. Einleitung

Werden Aluminium-Elektrolyt-Kondensatoren häufigen Ladungen und Entladungen — im folgenden kurz «Schaltungen» genannt — ausgesetzt, wie z.B. in Photo-Blitzgeräten, in Relaisverzögerungs- und Funkenlösch-Schaltungen oder ähnlichen Stromkreisen, so zeigen gewisse Kondensatoren in Abhängigkeit von den erfolgten Schaltungen eine mehr oder weniger starke Abnahme ihrer Kapazität, vor allem, wenn die Entladezeiten sehr kurz gewählt sind oder wenn sie anschliessend an die Lade- und Entladevorgänge einer spannungslosen Lagerung ausgesetzt werden, einen unerwünschten Anstieg des Reststromes. Die dritte den Elektrolyt-Kondensator charakterisierende Grösse. der Verlustfaktor, wird durch diese Schaltungsvorgänge praktisch nicht beeinflusst. Kondensatoren, welche mit den erwähnten Erscheinungen behaftet sind, bezeichnet man als nicht schaltfest. Bleiben hingegen die Werte der Kapazität und auch des Reststromes unverändert oder in vernünftigen Grenzen, so spricht man von schaltfesten Kondensatoren. Typische Beispiele solcher Kapazitätsabnahmen und Reststromänderungen sind in den Fig. 1 und 2 gezeigt. Die Kapazität nimmt bei nicht schaltfesten Kondensatoren anfänglich pro Schaltung sehr stark ab, um dann einem Endwert zu-

1 schaltfester Kondensator: 2 nicht schaltfeste Kondensatoren

Bull. ASE 53(1962)25, 15 décembre

Il est question des différences spécifiques entre les condensateurs à capacité constante et ceux qui ne le sont pas. Une étude théorique et quelques exemples montrent quand un condensateur peut être considéré comme étant à capacité constante et quelles mesures sont à prendre pour en assurer la construction correcte.

zustreben. In den beiden vorliegenden Fällen beträgt dieser rund 40 % bzw. 60 % des Ausgangswertes. Nach der spannungslosen Lagerung von 224 Tagen bei Raumtemperatur anschliessend an eine Folge von rund 1000 Schaltungen ist der Reststrom eines nicht schaltfesten Kondensators auf den 50-fachen Wert des Ausgangswertes angestiegen, während sich der Reststrom eines Kondensators, der als schaltfest betrachtet werden darf, ebenfalls nach der gleichen Lagerzeit, kaum auf das 2,5-fache des Ausgangswertes vergrössert hat; dies entspricht praktisch einem Reststromanstieg, der bei spannungsloser Lagerung bei Raumtemperatur auch festgestellt wird, wenn die Kondensatoren keinen Schaltungen ausgesetzt waren.

Die beiden Arten von Schaltfestigkeit bzw. Nicht-Schaltfestigkeit sind voneinander vollkommen unabhängig. Ein Kondensator, der hinsichtlich Kapazität schaltfest ist, braucht nicht unbedingt auch hinsichtlich

Anstieg des Reststromes von schaltfesten und nichtschaltfesten Kondensatoren

während der spannungslosen Lagerung bei Raumtemperatur, wenn diese Kondensatoren direkt vor Beginn des Lagertestes einer grösseren Anzahl, z. B. 1000 sich folgenden Schaltungen ausgesetzt werden

- 1 schaltfester Kondensator; 2 nicht schaltfester Kondensator I_0 Reststrom zu Beginn der Lagerung, bzw. am Ende der Schaltfolge; I_t Reststrom nach der Lagerzeit t (Reststromwert =
 - 1-Minutenwert); I_t/I_0 Reststromverhältnis

(A 787) 1217

Reststrom schaltfest zu sein und umgekehrt. Die Schaltfestigkeit hinsichtlich Kapazität ist wie weiter unten gezeigt wird, eine Frage der Dimensionierung bzw. des Aufbaues der Kondensatoren, während Schaltfestigkeit hinsichtlich Reststrom durch die Qualität der aufgebrachten Oxydschicht gegeben ist, d. h. im ersten Fall handelt es sich um eine geometrische und im zweiten Fall um eine physikalische Angelegenheit.

In den folgenden zwei Abschnitten werden einerseits in einer theoretischen Betrachtung die Vorgänge im Kondensator bei Entladung im Hinblick auf Schaltfestigkeit bezüglich Kapazität beschrieben und anderseits an Hand von verschiedenen Untersuchungsergebnissen gezeigt, dass eine Schaltfestigkeit hinsichtlich Reststrom durch Anwendung einer geeigneten Formiermethode erreicht werden kann.

2. Kondensatoren, die im Zusammenhang mit der Kapazität schaltfest sind

Im Aluminium-Elektrolyt-Kondensator besteht die Anode und in den überwiegenden Fällen auch die Kathode aus einer glatten oder zwecks Oberflächenvergrösserung aus einer aufgerauhten bzw. geätzten Aluminium-Folie, wobei die Oberfläche der Anode mit einer auf elektrochemischem Wege in Formierbädern hergestellten Oxydschicht, Al_2O_3 , überzogen ist, deren Dicke von der Grösse der Formierspannung abhängt und für die Kapazität pro Flächeneinheit verantwortlich ist. Die Kathode wird normalerweise nicht formiert, sie besitzt aber trozdem eine Oxydschicht, welche sich unter dem Einfluss der Atmosphäre gebildet hat, die sog. Luftoxydschicht. Die Dicke dieser Schicht und die durch sie bedingte Kapazität pro Flächeneinheit entspricht einer Formierspannung von ca. 1...2 V.

Solange nun die an eine formierte Folie z. B. an eine in einem Kondensator eingebaute oder an eine zu Messzwecken in einen Elektrolyt getauchte, angelegte Spannung kleiner und von gleicher Polarität wie die bei der Formierung angewendete Spannung ist - die der Folie zugewandten Seiten der Oxydschicht positiv, die den Elektrolyt berührende Seite negativ 80 fliesst, weitgehend durch die Güte der Oxydschicht bedingt, ein mehr oder weniger kleiner bis sehr kleiner Strom, der sog. Reststrom. Die Oxydschicht vermag den Strom zu sperren. Wird jedoch ein Spannungswert, welcher über dem der Formierspannung liegt, gewählt, fliesst anfänglich ein grosser Strom, welcher mit der Zeit wieder kleinere Werte annimmt, d. h. die Folie wird weiter auf eine höhere Spannung formiert und es tritt wiederum eine Sperrwirkung auch für die erhöhte Spannung ein. Bei entgegengesetzt gepolter Spannung ist keine Sperrwirkung mehr zu verzeichnen, auch findet bei dieser Polarisation keine Oxydation mehr statt. Auf Grund dieser Erscheinungen kann der Elektrolyt-Kondensator durch das in Fig. 3 gezeigte Ersatzschema dargestellt werden. Darin bedeuten: C_A Kapazität der Anode, C_K Kapazität der Kathode. (Die Elektroden dieser Teilkondensatoren die durch den Elektrolyten gebildet werden sind durch gestrichelte Linien angedeutet.) Die an den Klemmen des Kondensators mit einer Wechselstrom-Brücke gemessene äussere Kapazität C ist der Wert, der sich aus der Serie-Schaltung von C_A und C_K ergibt.

$$C = \frac{C_A \ C_K}{C_A + C_K}$$

1218 (A 788)

 $\label{eq:constraint} \begin{array}{c} {\bf Ersatzschema\ eines\ Al-Elektrolyt-Kondensators}\\ C_{{}_{{}_{K}}} {\rm Kapazität\ der\ Anode;\ C_{{}_{K}}} {\rm Kapazität\ der\ Kathode;\ R\ Summe\ der\ Seriewiderstände;\ R_{{}_{A}} {\rm Anodenparallelwiderstand;\ R_{{}_{K}}} {\rm Kathodenparallelwiderstand;\ C\ äussere\ Kapazität \end{array}}$

Der Widerstand R umfasst sämtliche mit den Teilkapazitäten in Serie liegende Widerstände, wie die des Elektrolyten, der Elektroden, der Übergänge usw. Die Widerstände R_{κ} und R_{Λ} sind je nach der Polarität der Spannung und deren Grösse verschieden. Ist die Polarität so gewählt, dass die Oxydschicht als Sperre wirkt, ist der Widerstand verhältnismässig gross, im umgekehrten Fall sehr klein. Im Elektrolyt-Kondensator liegen die Oxydschichten von Anode und Kathode, wie auch im Schema angedeutet, einander gegenüber, demzufolge sind die Sperrwirkungen von Anode und Kathode einander entgegengesetzt. Das Laden und Entladen eines solchen Kondensators spielt sich wie folgt ab:

a) Laden eines Kondensators

Wird an den Kondensator eine Spannung U_0 , die kleiner ist als die Formierspannung der Anode, in der Weise angelegt, dass die Anode mit dem Pluspol der Stromquelle in Verbindung steht, so fliesst ein Ladestrom i_L , die Anode wird auf die Spannung U_0 aufgeladen. Zufolge der Sperrwirkung der Oxydschicht ist R_A sehr gross und der Reststrom vernachlässigbar klein. Die Kapazität C_K der Kathode beeinflusst den Ladevorgang praktisch nicht (keine Sperrwirkung der Kathode), der Widerstand R_K ist sehr klein.

b) Entladen eines Kondensators

Wird der nach a) geladene Kondensator kurzgeschlossen oder über einen Widerstand entladen, so fliesst ein Entladestrom i_E in umgekehrter Richtung zum Ladestrom i_L (siehe auch vereinfachtes Schema in Fig. 4). Die Kathode wird gegenüber dem Elektrolyten positiv und eine Sperrwirkung der Kathode ist zu beobachten. Es sind nun zwei Vorgänge zu berücksichtigen. Einerseits Aufladung des Kathoden-Kondensators und anderseits — sofern die Spannung über diesem Kondensator den Wert, welcher der Luftoxydschicht entspricht übersteigen möchte — Formierung der Kathode auf eine höhere Spannung, verbunden mit einer Abnahme der Kapazität pro Flächeneinheit.

Um das Prinzipielle dieser Vorgänge besser überblicken zu können, wird eine Schaltung gemäss Fig. 5 gewählt. In R sind wiederum sämtliche Seriewiderstände, wozu auch ein eventuell vorhandener Entladewiderstand gezählt wird, zusammengefasst.

Wird der auf die Spannung U_0 geladene Kondensator C_A durch Umlegen des Schalters S entladen, so steigt die Spannung über dem Kathoden-Kondensator

Richtungen der Lade- und Entladeströme im Elektrolyt-Kondensator

 $i_{\scriptscriptstyle L}$ Ladestrom; $i_{\scriptscriptstyle E}$ Entladestrom; $U_{\scriptscriptstyle 0}$ angelegte Ladespannung Weitere Bezeichnungen siehe Fig. 3

Bull. SEV 53(1962)25, 15. Dezember

Schaltschema des Stromkreises für Ladung und speziell Entladung des Elektrolyt-Kondensators

 C_A Kapazität der Anode; C_K Kapazität der Kathode; R Summen der Seriewiderstände inkl. Entladewiderstand; R_K Kathodenparallelwiderstand; S Schalter; U_0 Ladespannung

 C_K vorerst auf einen bestimmten Wert und sinkt dann wieder ab, ähnlich wie der in Fig. 6 gezeigte Spannungsverlauf. Für die vorliegende Betrachtung interessiert vor allem die maximal mögliche Spannung u_{K} . Bei gemäss Fig. 6 gewähltem Verhältnis von C_A zu C_K ändert sich diese maximale Spannung in Abhängigkeit von Verhältnis R/R_K entsprechend Fig. 7 (für andere Verhältnisse von C_A zu C_K verschiebt sich die Kurve nach links oder rechts, je nachdem ob das Verhältnis grösser oder kleiner geworden ist, der Charakter der Kurve bleibt jedoch erhalten). Für sehr kleine Werte von R, z. B. äusserer Widerstand Null bzw. vernachlässigbar klein, ist die resultierende Spannung, welche sich über C_{κ} einstellen möchte, durch die Parallelschaltung von Anoden- und Kathoden-Kapazität gegeben und beträgt:

$$U_r = U_o \frac{C_A}{C_A + C_K}$$

Die nach dieser Formel berechnete Spannung U_r wird aber nur dann über der Kathode auftreten, wenn sie kleiner ist als die der Oxydschicht entsprechende Formierspannung. Ist die Spannung U_r jedoch grösser als diese, so wird die Kathode weiter formiert, bis eine Schichtdicke erreicht ist, welche der Spannung U_r entspricht. Die Verhältnisse werden an Hand der graphischen Darstellung in Fig. 8 und drei Beispielen näher erläutert.

Die Kurven A und B sind Formierkurven (d. h. sie zeigen die Kapazität pro Flächeneinheit in Funktion der Formierspannung) einer glatten und einer stark aufgerauhten Folie, die als Kathoden eingesetzt werden.

Beispiel 1

Betriebsgleichspannung des Kondensators sei $U_0 = 250$ V, die Kapazität pro Flächeneinheit der im Kon-

bei Entladung des auf U_0 geladenen Anoden-Kondensators C_A , wenn $R = R_K = 1000 \ \Omega$, $C_A = 250 \ \mu\text{F}$ und $C_K = 1000 \ \mu\text{F}$ gewählt werden; t Zeit

Bull. ASE 53(1962)25, 15 décembre

densator eingebauten Anode $C_A = 0.04 \ \mu F/cm^2$ (im Diagramm von Fig. 8 durch Punkt K_1 markiert). Für diese Daten ist nun C_K in Funktion von U_r gemäss der erwähnten Beziehung als gestrichelte Kurve C in Fig. 8 eingetragen. Als Kathode ist eine glatte Folie eingesetzt, deren Kapazität in Funktion der Formierspannung durch Kurve A gegeben ist. Weiter ist angenommen, dass die Kathode nur mit der natürlichen Luftoxydschicht bedeckt ist, welche einer Formierspannung von ca. 2 V entspricht und deren Kapazität C_K pro Flächeneinheit rund 3,4 µF/cm² beträgt. Bei einer Entladung möchte sich nun gemäss Kurve C über der Kathode mit der Kapazität CK von 3,4 µF/cm² eine Spannung von 3 V einstellen. Da ihre Schichtdicke aber höchstens einer Formierspannung von 2 V entspricht, vermag sie auch höchstens 2 V zu sperren. Wie oben erwähnt, wird nun die Kathode etwas weiter formiert entsprechend der Formierkurve A, die Schicht wird etwas dicker und die Kapazität etwas kleiner. Dieser Vorgang wiederholt sich bei jeder weiteren Entladung, und zwar solange, bis eine Schichtdicke bzw. Kapazität C_{κ} erreicht ist, deren entsprechende Formierspannung gemäss Kurve A gleich ist der Spannung U_r gemäss Kurve C. Dies ist im Schnittpunkt P_1 der beiden Kurven A und C der Fall. Die Kapazität C_K hat sich dabei von 3,4 µF/cm² auf 0,45 µF/cm² verringert, wodurch die Kapazität C des Kondensators um rund 6 % abgenommen hat.

Beispiel 2

Betriebsgleichspannung des Kondensators sei $U_0 = 500$ V, die Kapazität pro Flächeneinheit der im Kondensator eingebauten Anode $C_A = 0,15 \ \mu F/cm^2$ (K_2 in Fig. 8). Für diese Daten ist C_K in Funktion von U_r als gestrichelte Kurve D in Fig. 8 eingetragen. Als Kathode wird eine geätzte Folie, deren Formierkurve durch Kurve B dargestellt ist, verwendet. Wird wieder angenommen, dass diese nur mit der natürlichen Luftoxydschicht bedeckt ist, welche einer Formierspannung von ca. 2 V entspricht und eine Kapazität von 48 μ F/cm² darstellt, so findet man bei der Entladung des Kondensators auf der Kurve D eine Spannung über der Kathode von $U_r = 1,4$ V. Da diese kleiner ist, als die scheinbare Formierspannung, findet keine weitere Formation der Kathode statt. Die Kapazität des Kondensators wird sich auch bei häufigen Entladungen nicht ändern.

Diagramm für graphische Bestimmung der Abnahme der Kathoden-Kapazität als Folge von raschen Entladungen Ausgezogene Kurven: Formierkurven. Kapazität der Folie von 1×1 cm Fläche in Funktion der Formierspannung U_t ; Kurve A: glatte Al-Folie; Kurve B: stark geätzte Al-Folie Gestrichelte Kurven: C_K in Funktion U_t , und zwar Kurve C für $U_0 = 250$ V, $C_A = 0.04 \ \mu F/cm^2$ und Kurve D für $U_0 = 500$ V, $C_A = 0.15 \ \mu F/cm^2$

Beispiel 3

Als Ausgangsdaten seien die gleichen wie in Beispiel 2 angenommen: $U_0 = 500 \text{ V}, C_A = 0.15 \ \mu\text{F/cm}^2, C_K \text{ in Abhängigkeit von } U_r$: Kurve D. Als Kathode sei dagegen eine glatte Folie, deren Kapazität in Funktion der Formierspannung durch die Kurve A wiedergegeben ist, verwendet. Es ist angenommen, dass auch sie anfänglich nur mit der Luftoxydschicht bedeckt ist, d. h. $C_K = 3.4 \ \mu F/cm^2$. Bei der Entladung möchte sich nun gemäss Kurve D über der Kathode mit der Kapazität C_K von 3,4 μ F/cm² eine Spannung von 22 V einstellen. Dies ist jedoch nicht möglich wegen der kleinen, nur 2 V betragenden Sperrspannung der Luftoxydschicht. Die Kathode wird wie im Beispiel 1 gezeigt, weiter formiert und bei fortgesetzten Entladungen solange, bis der Punkt P3 erreicht ist. Die Kathoden-Kapazität ist auf 0,032 μ F/cm² gesunken, die Kapazität C des Kondensators hat dabei um 82 % abgenommen.

Um zu vermeiden, dass bei wiederholten raschen Entladevorgängen die Kapazität C auf unerwünschte Werte sinkt, können auf Grund dieser Betrachtungen folgende Lösungen abgeleitet werden:

a) Der äussere Widerstand, z. B. der Entlade-Widerstand des Stromkreises bzw. das Verhältnis R/R_K (siehe auch Fig. 7) wird so gross gewählt, dass die über der Kathode während der Entladung mögliche Spannung $u_{K \max}$. die Sperrspannung der Oxydschicht nicht übersteigt.

b) Als Kathode wird eine formierte Folie eingesetzt, deren Formierspannung grösser ist als die bei der Entladung über der Kathode grösste mögliche Spannung (auf den Formierkurven sind Werte rechts der Punkte P zu wählen).

c) Die Kapazität der Kathode wird gegenüber derjenigen der Anode so gross gewählt, dass bei der Entladung die Spannung, welche zufolge der Parallelschaltung der beiden Kondensatoren über der Kathode entsteht, unterhalb dem Wert bleibt, welcher der entsprechenden Formierspannung der Oxydschicht gleichkommt.

Die Lösung a) lässt sich nicht verwirklichen, wenn die Bedingungen des betreffenden Stromkreises den benötigten grossen Wert des Entladewiderstandes nicht zulassen, z. B. in Photoblitzgeräten. Die Lösung b) bringt eine mehr oder weniger starke Volumenvergrösserung des Kondensators mit sich. Die Lösung c ist mit diesen Nachteilen nicht behaftet und ist anzustreben.

Aus den angeführten Beispielen ist ersichtlich, dass je nach Verhältnis der Kapazität pro Flächeneinheit von Anode zu Kathode die äussere Kapazität des Kondensators sich nicht, nur wenig oder stark ändern kann. Kondensatoren, welche die dritte Erscheinung zeigen, fallen auf alle Fälle in die Kategorie der nicht schaltfesten. Inwieweit eine kleine Kapazitätsabnahme stattfinden darf, damit der Kondensator noch als schaltfest angenommen werden kann, hängt z. T. weitgehend von den an den Stromkreis gestellten Forderungen ab, in welchem der Kondensator eingesetzt ist. Allgemein wird man jedoch als vernünftige Bedingung für Schaltfestigkeit eine Kapazitätsabnahme von max. 10 % annehmen dürfen, (in den Empfehlungen der CEI für Aluminium-Elektrolyt-Kondensatoren, Publikation 103, 1. Ausgabe 1959, mit Nachtrag Nr. 1 vom Juli 1961, sind hinsichtlich Schaltfestigkeit keine Angaben gemacht, weder in Bezug auf Bedingungen noch auf anzuwendende Stromkreise, um diese Eigenschaften prüfen zu können).

Die im vorliegenden Artikel erwähnten Kondensatoren wurden zwecks Prüfung auf Schaltfestigkeit während 55 s über eine 25-W-Lampe auf die Prüfspannung geladen und dann während 5 s über 3 Ω entladen. Der ganze Zyklus über 1 min ist nun die als schlechthin bezeichnete «Schaltung».

Auf Grund verschiedener entsprechend der vorliegenden Betrachtung durchgeführten graphischen Bestimmungen geht hervor, dass ein Kondensator als schaltfest angesehen werden darf, wenn Anode und Kathode die gleiche Folien-Qualität [glatte Anode und glatte Kathode, oder geätzte Anode und geätzte Kathode, deren Aufrauhungsgrad (Ätzfaktor) jedoch nicht kleiner sein darf als derjenige der Anode] oder wenn für Anode eine glatte und für die Kathode eine geätzte Folie verwendet wird. Ein Kondensator ist nicht schaltfest, wenn die Anode aus einer geätzten und die Kathode aus einer glatten Folie besteht. Inwiefern ein Kondensator mit einer stark geätzten Anode und einer leicht geätzten Kathode schaltfest ist, muss von Fall zu Fall geklärt werden, da die Schaltfestigkeit solcher Kondensatoren weitgehend durch das Verhältnis der Ätzfaktoren von Anode zu Kathode gegeben ist.

3. Kondensatoren, die im Zusammenhang mit dem Reststrom schaltfest sind

Bei den eingangs erwähnten Kondensatoren steigt der Reststrom wie aus den Kurven von Fig. 2 hervorgeht während der Lagerung bei Raumtemperatur, anschliessend an tausend Schaltungen anomal an. Beim Laden und Entladen, besonders wenn diese Vorgänge durch sehr kleine Zeitkonstanten charakterisiert sind, ist der Wickel und speziell die Oxydschicht, an welcher die elektrischen Ladungen gebunden sind, sehr raschen Kräfteänderungen ausgesetzt, welche die Oxydschicht, wenn sie nicht genügend widerstandsfähig ist, beschädigen. Solange der Kondensator an Spannung liegt, werden die geschwächten Stellen nachformiert (eine vollkommene Heilung der geschwächten Stellen wird mit dem Betriebselektrolyten jedoch kaum möglich sein). Ein anomaler Reststromanstieg wird nicht beobachtet. Bei der spannungslosen Lagerung kann der Elektrolyt jedoch durch diese schwachen Stellen die Schicht angreifen, zerstören, was zur bekannten Reststromvergrösserung führt.

Ein ähnliches Verhalten des Reststromes wird bei spannungsloser Lagerung unter erhöhter Temperatur beobachtet, auch wenn die Kondensatoren vor der La-

Reststromverhältnis I_{150}/I_0 eines 250-µF/500-V-Kondensators gebaut mit Anoden, die nach verschiedenen Methoden formiert wurden, in Abhängigkeit der Lagertemperatur t I_{150} Reststrom nach 180 Tagen spannungsloser Lagerung; I_0 Rests strom zu Beginn der Lagerzeit (Reststromwert = 1-Minutenwert) I ungenügend, mangelhaft formiert; 2 gut formiert gerung keinen Ladungen und Entladungen ausgesetzt waren. Bei erhöhter Temperatur nimmt bei den meisten heute gebräuchlichen Elektrolyten die Aggressivität derart zu, dass die Oxydschicht ihr nicht zu widerstehen vermag. Sie wird angegriffen und die Folge davon ist wieder ein Reststromanstieg.

Es ist nun gelungen, durch besondere Formiermethoden die Anoden mit einer mechanisch widerstandsfähigeren Schicht zu versehen, welche auch dem verstärkten Angriff eines aggressiveren Elektrolyten weitgehend widersteht. In Fig. 9 ist das Verhalten von Kondensatoren, gebaut mit Anoden, die nach gewöhnlichen und speziellen Verfahren formiert wurden, während der spannungslosen Lagerung in Funktion der Lagertemperatur einander gegenüber gestellt. Für das Verhalten der Kondensatoren bei spannungsloser Lagerung nach vorangehenden Schaltungen sei nochmals auf Fig. 2 verwiesen. Aus diesen Darstellungen geht die Überlegenheit der Kondensatoren mit nach speziellen Methoden formierten Anoden deutlich hervor.

4. Zusammenfassung

Die früher oft beobachtete Abnahme der Kapazität von Aluminium-Elektrolyt-Kondensatoren nach häufigen und vor allem raschen Entladungen kann durch entsprechende Dimensionierung der Kondensatoren, d. h. durch richtige Wahl der Kathoden verhindert werden. Auch ist es heute möglich, den hauptsächlich bei Hochvolt-Kondensatoren festgestellten übermässigen Reststrom-Anstieg während der spannungslosen Lagerung bei Raumtemperatur, nachdem die Kondensatoren einer grösseren Anzahl Ladungen und Entladungen ausgesetzt waren, dank spezieller Formier-Methode, in normalen Grenzen zu halten. Kondensatoren, ausgerüstet mit nach dieser Spezial-Methode formierten Anoden, zeigen auch während der spannungslosen Lagerung bei erhöhter Temperatur ein bezüglich Reststrom verbessertes Verhalten.

Adresse des Autors:

G. Naef, dipl. Ingenieur, Standard Telephon und Radio AG, Seestrasse 395, Zürich 38.

Selbstklebende Elektroisolationen

Von H. Haudenschild, Zürich

1. Einleitung

Selbstklebende Elektroisolationen, vielfach als Elektroklebebänder bezeichnet, dienen unter dieser Benennung in erster Linie als Hilfsmittel in der Elektrowicklerei. Neue verbesserte Trägermaterialien und Klebstoffe erheben Elektroklebebänder zu vollwertigen Elektroisolationen, die zur Vereinfachung ihrer Anwendung selbstklebend sind.

Herkömmliche Isolationsmaterialien, wie z. B. Papier oder Baumwolle werden im Zuge der Entwicklung mehr und mehr durch Kunststoff-Filme ersetzt.

Obschon das Angebot von Klebebändern sehr umfangreich ist, eignen sich längst nicht alle Klebebänder zur Verwendung als selbstklebende Elektroisolationen. Rein äusserlich betrachtet, besteht eine selbstklebende Elektroisolation, wie jedes Klebeband aus einem Trägermaterial und einem Klebstoff. Dies ist aber auch praktisch alles, was visuell von Klebeband zu Klebeband verglichen werden kann. Zur Herstellung von Elektroklebebändern können nur ausgesuchte Trägermaterialien und Klebstoffe verwendet werden. Trägermaterialien müssen chlorfrei sein und dürfen Chlor höchstens in gebundener Form enthalten, wie das z. B. bei Polyvinylchloridfolien der Fall ist. Papier- und Baumwollträger müssen mit wasserabstossenden Mitteln imprägniert werden, um ihre Feuchtigkeitsempfindlichkeit zu vermindern. Die verwendeten Klebstoffe dürfen keinen Schwefel enthalten, auch dann nicht, wenn es wärmehärtende Klebstoffe sind, da sonst die Gefahr einer chemischen Korrosion von Leitermaterialien, die in Berührung mit dem Klebstoff kommen, zu gross ist. Vom Trägermaterial hängt es ab, ob der ideale elektrolytische Korrosionsfaktor 1,0 oder

Bull. ASE 53(1962)25, 15 décembre

621.315.616.96-416