Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 53 (1962)

Heft: 24

Rubrik: Mitteilungen SEV

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

HEINRICH ZOELLY

1862-1937

Unsere Wasserkraftquellen gehen zur Neige, und immer neuere Pläne für grosse thermische Anlagen entstehen. Bald werden auch in der Schweiz grosse Dampfturbinen in Betrieb gesetzt werden müssen.

Dieses Jahr jährt sich zum 100. Mal der Geburtstag von Dr. Heinrich Zoelly. Am 11. April 1862 als Sohn eines deutschen Kaufmanns in Mexiko geboren, kam er mit seinen Eltern 1865 nach Zürich. Als Zwanzigjähriger diplomierte er am Eidg. Polytechnikum und trat nach Auslandspraxis 1886 bei Escher Wyss als Ingenieur ein. Diesem Unternehmen blieb er bis 1931 treu und lieh ihm seine ganze Kraft, sein ganzes, mit Phantasie und Mut gepaartes praktisches und theoretisches Können. Seine technische Leistung trug ihm 1912 den Ehrendoktor der ETH ein.

Um 1900 setzte er ein mit seinen Studien über Dampfturbinen, bei denen er von den bei Wasserturbinen erprobten Formen ausging. In engem Kontakt mit Prof. Stodola wurden dann neue Formen mit axialer Beaufschlagung entwickelt, und 1903 lief die erste Zoelly-Turbine, eine mehrstufige Aktionsturbine von 370 kW Leistung, die trotz niedrigem Dampfdruck und niedriger Temperatur einen thermodynamischen Wirkungsgrad von 62 % erreichte.

Die Zoelly-Turbine konnte sich daher neben zahlreichen etwa zu gleicher Zeit entstandenen ausländischen Turbinen (Parson in England, Rateau in Frankreich, Lasche in Deutschland, Curtis in USA, Laval in Schweden) behaupten. Escher Wyss, die bis dahin Kolbendampfmaschinen gebaut hatten, wagten es 1913, diesen Fabri-

kationszweig ganz aufzugeben und sich endgültig und ausschliesslich dem Turbinenbau zu verschreiben. Es lag nahe und war verlockend, die Dampfturbine auch für den Lokomotivantrieb anzuwenden. Zoelly gelang es, in jahrelanger Entwicklungsarbeit betriebstüchtige Dampfturbinen-Lokomotiven zu entwickeln (1926 Zoelly - SLM, später 1930 Krupp - Zoelly). Die dann einsetzende Elektrifizierung und auch der Dieselmotor haben in der Folge einer allgemeinen Einführung im Wege gestanden.

Zoelly, der dank seiner Vielseitigkeit auch auf anderen Gebieten viel geleistet hat, starb am 30. März 1937 in seiner ihm zur Heimat gewordenen Stadt Zürich.

H. W.

Technische Mitteilungen — Communications de nature technique

Das Pumpspeicherwerk der Technischen Hochschule in München

621.311.21 : 621.221.4 : 378.962 (43-2.6)
Im März 1962 wurde im neuen Hochspannungsinstitut der Technischen Hochschule in München ein kleines Pumpspeicherwerk von 6 kVA Nennleistung in Betrieb genommen. Es handelt sich dabei um eine nach modernsten Gesichtspunkten ausgelegte

Kraftwerkanlage bestehend aus Maschinensatz, Schalttafel und Steuerpult, mit welcher die in einem Kraftwerk vorkommenden wichtigsten Betriebsfälle mit ihren möglichen Übergängen vorgeführt werden können. Mit Ausnahme einer simulierten Fallhöhe von 60 m ist die Anlage in jeder Hinsicht wirklichkeitsgetreu ausgeführt und mit Bauelementen ausgestattet worden, wie sie auch sonst in der Kraftwerktechnik Verwendung finden.

Stadtnetz

F

Stadtnetz

Schen

În Fig. 1 ist ein Schema der Pumpspeicheranlage dargestellt. Der auf einem Wasserbehälter aufgebaute Maschinensatz (Fig. 2) von rund 2 m Länge besteht aus einer kleinen Peltonturbine T, der die aus dem Behälter entnommene Betriebswassermenge von 11 Lit./s durch eine motorisch angetriebene Pumpe P zugeführt wird. Das Oberteil des Turbinengehäuses besteht aus Plexiglas, wodurch eine stroboskopische Beobachtung der Strahlführung ermöglicht wird. Für die Drehzahlkonstanthaltung auf 1500 U./min wurde an den Maschinensatz ein kleiner mechanischer Regler mit

Fig. 1 Schema der Pumpspeicheranlage T Peltonturbine; GD^2 Zusatzschwungmoment; K magnetische Kupplung; SP Speicherpumpe; E Energievernichter; P Betriebswasserpumpe

SEV 31521

Behälter

Fig. 2 Maschinensatz der Anlage

einer mittleren Statik von 6 % angebaut, dessen Kennlinie mit Hilfe eines elektrisch steuerbaren Drehzahlverstellmotors auf den gewünschten Lastzustand eingestellt werden kann. Der mit der Turbine direkt gekuppelte Synchronmotor hat eine Nennleistung von 6 kVA bei einer möglichen Blindleistungseinstellung von 6 kVar Abgabe bis zu 6 kVar Aufnahme. Zum Zweck einer besseren Regulierfähigkeit des Maschinensatzes wurde in den Generator ein Zusatzschwungmoment von 3,7 kg/m² eingebaut. Bei Pumpbetrieb kann über eine elektrisch betätigbare Kupplung K die Speicherpumpe SP angekuppelt werden, die aus dem Behälter angesaugtes Betriebswasser über einen Energievernichter E in diesen zurückfördert. Eine kleine Hilfspumpe gestattet, die Speicherpumpe zu entlüften. Der Generator lässt sich auf eine fünffeldrige Schalttafel mit Doppelsammelschiene und Kuppelfeld schalten. Die Tafel umfasst ein Generatorfeld, ein Synchronisierungsfeld, einen Stadtnetzabzweig sowie zwei Feldteilungen zum Verbraucheranschluss. Das Generatorfeld enthält neben den üblichen Anzeigeinstrumenten einen automatischen Spannungsregler nach dem Wälzprinzip. Das Synchronisierungsfeld ist wahlweise für Handbetrieb oder Automatik eingerichtet. Der Verbraucherabzweig besteht aus einem Ohmschen Widerstand, einer Drosselspule und einem Kondensator mit jeweils getrennter Steuerbarkeit, so dass innerhalb des vorgegebenen Leistungsbereiches jeder gewünschte Belastungszustand einstellbar ist. Sämtliche Instrumente sind der besseren Übersicht wegen in Centraxbauform mit 250°-Teilung und gelber Schrift auf schwarzem Grund ausgeführt.

Zur Bedienung der ganzen Anlage d'ent ein kleines Steuerpult mit aufgesetztem Blindschaltbild und allen zur Betriebsführung wichtigen Steuerelementen.

In Anlehnung an die Praxis lassen sich mit der so ausgestatteten Kraftwerkanlage die folgenden 5 Betriebszustände einstellen: Inselbetrieb, Phasenschieberbetrieb, Turbinenbetrieb, Pumpbetrieb sowie hydraulischer Kurzschluss. In sehr einprägsamer Weise sind die möglichen Übergänge von einem Betriebszustand in einen anderen vorführbar, wie beisp elsweise der Übergang von Turbinenbetrieb auf Pumpbetrieb und weiter auf hydraulischen Kurzschluss oder auch umgekehrt. Für die Umstellung von Turbinen- auf Pumpbetrieb über den Stillstand des Maschinensatzes ist ein Zeitaufwand von etwa 4 min erforderlich. Daneben kann auch das Verhalten von Turbine und Generator bei Lastabwurf und bei erwünschter Blindstromkompensation am Verbraucher untersucht werden.

Während einer längeren Erprobungszeit hat sich die Anlage in jeder Hinsicht bestens bewährt. H.Prinz

Kurznachrichten über die Atomenergie

Am 8. Oktober 1962 wurde in Wien ein internationales Symposium über die Beseitigung von hochradioaktivem Atommüll eröffnet. 130 Wissenschafter aus 19 Ländern nahmen daran teil.

Das Ziel bestand darin, atomtechnische Arbeiten und damit die Energieerzeugung aus der Kernumwandlung ohne übermässige Kostensteigerung so sicher wie möglich zu gestalten. Auf dem Wiener Symposium wurden vor allem die technischen Probleme und Möglichkeiten besprochen, deren Verständnis dazu beitragen wird, das beste und geeignetste Verfahren zu bestimmen. Auch über die gegenwärtig üblichen Verfahren, vor allem in Ländern, die auf diesem Gebiet am weitesten fortgeschritten sind, wurde auf der Tagung ein Überblick gegeben. Der Informationsaustausch zwischen den Sachverständigen hat ihnen nicht nur erleichtert, ihre Verfahren neu zu bewerten, sondern wird auch für jene Länder, die im Begriffe sind, Atomenergieprogramme durchzuführen oder zu planen, eine wertvolle Anleitung darstellen.

Bisher wurden derartige Abfälle meist in unterirdischen Behältern aus Stahl oder aus Stahlbeton gelagert, nach einer vorherigen Behandlung, um sie lagerfähig zu machen. In den USA werden zur Zeit über 26·106 Liter hochradioaktiver Atommüll in Behältern aufbewahrt. Die Radioaktivität einiger Abfallstoffe kann jedoch die Lebensdauer selbst der festesten Behälter überdauern — weshalb nach einer Methode geforscht wird, die Abfälle in undurchdringlichen Materialen (z. B. Glas) so zu fixieren, dass sie selbst nach dem Zerfall der Behälter nicht ins Freie dringen können.

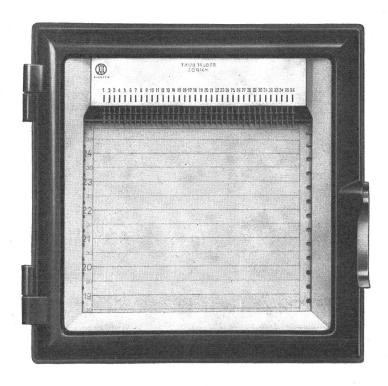
Was die Fixierung anbelangt, so wurden hauptsächlich zwei Möglichkeiten vorgeschlagen:

- Kalzinierung, d.h. Erhitzung der flüssigen Abfälle, bis diese in solide Oxyde übergehen,
- Vitrifikation, d.h. Fixierung und Bindung des Abfalles in Glas.

Allgemein wurde die Ansicht vertreten, dass die Bildung fester Oxyde wohl einen grossen Schritt zur Immobilmachung der Abfälle darstelle, dass dies aber immer noch keine dauernde Lösung sei, weil sich die in Oxyden gebundenden radioaktiven Substanzen wieder frei machen und dadurch möglicherweise in die Umgebung gelangen können. Auf der anderen Seite wäre die Fixierung in Glas praktisch eine Dauerlösung.

Es wurde anerkannt, dass die Wahl des geeigneten Verfahrens unter anderem vom geologischen Aufbau des jeweiligen Landes abhänge. Wenn zum Beispiel, so wie in den USA, der Atommüll in natürlichen Salzlagern aufbewahrt werden kann, ist die dauernde Fixierung des Abfalls in einer unauslaugbaren Substanz nicht so wichtig wie unter normalen Umständen, weil die Wasserundurchlässigkeit der Salzschichten genügend Schutz gegen das Entweichen des Atommülls bietet. Wo solche günstige geologische Bedingungen nicht vorhanden sind, ist die Notwendigkeit der dauernden Fixierung viel dringender.

Der Preis der elektrischen Energie, der aus Kernkraft erzeugt wird, ist in langsamem aber stetigem Sinken begriffen. Dank technischen Verbesserungen haben sich mit jeder neuen Generation von Reaktoren gleichen Typs und Grösse die Produktionskosten für Energie aus Kernkraft verringert. Beweise hiefür lieferten das britische Atomenergie-Programm (Hinckley Point — Sizewell), die Siedewasserreaktoren der USA (Dresden — Bodega Bay) und die französischen EdF-Reaktoren.


Auch die Uranpreise — für natürliches und für angereichertes Uran — sind in den letzten Jahren gesunken, was ebenfalls zu allgemeinen Kostensenkungen beigetragen hat. Wichtig ist ferner der erhöhte Abbrand sowie die vielversprechenden Ausnützungsfaktoren (über 90 %), die bisher erreicht werden konnten.

Dieser Fortschritt ist natürlich von grossem Interesse für die Entwicklungsländer. In vielen Teilen der Welt ist der Preis des konventionellen Brennstoffes hauptsächlich wegen der Transportkosten ausserordentlich hoch. Hier sei daran zu erinnern, dass sogar Natururan pro Gewichtseinheit 10 000mal mehr Kalorien ergibt als Kohle und 6000mal mehr als Erdöl. Unter solchen Umständen könnten selbst mittelgrosse Reaktoren für die Entwicklung neuer Industriezweige rentabel sein, so z. B. für die Aufbereitung von Mineralien oder für das Pumpen und Destillieren von Wasser.

Fortsetzung auf Seite 1201 — Suite voir page 1201

MODERNE BETRIEBSÜBERWACHUNG

SIGNALSCHREIBER

144×144 mm Frontrahmen 100 mm Schreibbreite max. 12 Kontrollstellen

144 × 144 mm Frontrahmen 100 mm Schreibbreite max. 24 Kontrollstellen 240×240 mm Frontrahmen 150 mm Schreibbreite max. 36 Kontrollstellen

Funktionsweise:

Jede Abweichung vom Normalbetriebszustand an der Kontrollstelle bewirkt ohne Verzögerung einen Unterbruch der Schreibspur des zugehörigen Schreibstiftes. Der Unterbruch dauert so lange an, bis an der Kontrollstelle wieder der Normalzustand eintritt. Die genaue Zeitdauer der Störung kann auf dem Diagrammstreifen abgelesen werden.

Anwendungsbeispiele:

Zentrale Überwachung von automatischen Anlagen und Maschinen (z. B. Werkzeugmaschinen, Produktionsmaschinen, Verpackungsmaschinen, Pumpen, Dampf- und Gasturbinen).

Überwachung von Sicherungsorganen (z.B. Distanzschutzrelais, Brand-Warnanlagen).

Kontrolle von Schaltvorgängen in Hochspannungsanlagen, von Schalterstellungen bei Stufenschaltern und der Belastung von Telephonwählern.

Zeitregistrierung bei Apparaten und Maschinen mit intermittierendem Betrieb, sowie bei intermittierend aufzeichnenden Registriergeräten (z. B. Störungsschreiber).

Wir beraten Sie bei Ihren Kontrollproblemen und erstellen die Schaltpläne. Verlangen Sie den unverbindlichen Besuch unseres Reiseingenieurs.

TRÜB, TÄUBER · ZÜRICH

Ab 1. Dezember bis Weihnachten

steht Ihnen der

Telephon-Eildienst

(051) 26 16 16 (6 Linien)

von 7.30 h bis 12.00 h und 13.30 h bis 19.00 h Samstag bis 16.00 h zur Verfügung

> Ergänzen Sie am Abend die entstandenen Lücken im SOLIS-Assortiment mit einem telefonischen Auftrag nach 18.00 h (reduzierte Taxe) Wir bedienen Sie SOFORT und mit der gewohnten Sorgfalt

SOLIS Apparatefabriken

Spezialschaltuhr DH5 für Oelfeuerungen

Unabhängigkeit - Komfort - Heizölersparnis

5 verschiedene Heizprogramme

wählbar mit Handschalter

Beginn und Ende jeder Heizperiode mit Schiebeindexen individuell einstellbar

Präzisionsankeruhrwerk

automatischer Uhraufzug

31/2 oder 6 Tage Gangreserve

Ausführliche Unterlagen durch

Tel. (037) 7 31 61

Saia AG Murten