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Vergleich dreier elektronischer Rechenmethoden

fiir die Losung gewohnlicher Differentialgleichungssysteme

Von H. G. Biirgin, Zollikerberg

Systeme gewdéhnlicher Differentialgleichungen konnen mit
Hilfe von Analogierechengeriiten, digitalen Allzweckrechnern
oder digitalen Differentialanalysatoren (DDA) gelést werden. Der
erste Teil dieser Arbeit beschreibt den DDA, seine Wirkungs-
weise wird anhand der Differentialgleichung y' = — vy erklirt.
Der Zusammenhang zwischen Rechengenauigkeit und Skalierung
wird diskutiert. Gemeinsame Merkmale von Analogierechenanlagen
und DDA sowie prinzipielle Unterschiede zwischen diesen beiden
Rechenmaschinentypen werden erklirt. Der zweite Teil zeigt, wie
ein einfaches Problem aus der mechanischen Schwingungslehre
mit allen drei Rechenmethoden gelost werden kann. Schliesslich
werden die drei Methoden in Bezug auf Rechengeschwindigkeit,
Rechengenauigkeit und Programmierungsaufwand miteinander
verglichen.

1. Einleitung

Die mathematische Formulierung vieler technischer
Probleme (z. B. elektrische und mechanische Schwin-
gungsprobleme) fiithrt auf Systeme gewhnlicher Dif-
ferentialgleichungen, die sehr oft nichtlinear sind. Zur
Losung dieser Differentialgleichungen konnen drei
Typen von elektronischen Rechenmaschinen eingesetzt
werden. Zwei davon, die Analogierechenmaschine und
der digitale Allzweckrechner, sind allgemein bekannt,
der dritte Typ, der digitale Differentialanalysator (im
folgenden kurz DDA genannt), soll hier in seiner
Funktionsweise kurz beschrieben werden.

In einem zweiten Teil wird gezeigt, wie ein Problem
aus der mechanischen Schwingungslehre mit jeder die-
ser drei Methoden gelst werden kann und welches die
Vor- und Nachteile der verschiedenen Verfahren sind.

2. Der digitale Differentialanalysator

2.1 Historische Entwicklung

Digitale Differentialanalysatoren sind seit etwas
mehr als zehn Jahren bekannt. Sie wurden entwickelt,
weil einerseits die Genauigkeit elektronischer Analogie-
rechengerite bei der Behandlung nichtlinearer Regel-
kreise, wie sie vor allem bei Problemen der Steuerung
von Fernlenkwaffen und Raketen auftreten, oft nicht
ausreicht und weil anderseits die Programmierung sol-
cher Probleme auf digitalen Allzweckrechnern, welche
im allgemeinen die geforderte Genauigkeit liefern,
kompliziert und zeitraubend ist bzw. weil vor allem
die Rechenzeiten bei der Verwendung von numerischen
Methoden fiir die Losung komplizierter Differential-
gleichungssysteme etwas zu lang werden.

Der erste DDA, die «xMADDIDA» der Northrop
Aircraft, erschien vor elf Jahren auf dem Markt. Es
scheint, dass dieser erste DDA nicht ganz befriedigend
arbeitete, teilweise wegen ungeniigenden Toleranzen in
den Komponenten (wodurch Fehlrechnungen entstan-
den), teilweise wegen der rein dualen Daten-Ein- und
Ausgabe, wodurch ein rationelles Arbeiten erschwert
wurde [1]1). Es folgten dann eine Reihe weiterer ver-
besserter Fabrikate, so z. B. 1954 der D-12 der Bendix
Aviation Corp. In Europa ist ein D-12 im elektronischen
Rechenzentrum der Universitidt Neapel, welches unter
der Leitung von Prof. Savastano steht, in Betrieb. Es
folgte ein DDA der Computer Research Corp. (CRC

1) Siehe Literatur am Schluss des Aufsatzes.
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Les systémes d’équations différentielles ordinaires peuvent
éire résolus a Uaide de calculateurs analogiques, de calculateurs
numériques d’emploi général ou d’analyseurs différentiels numé-
riques (ADN). Dans la premiére partie de cet article, auteur
décrit ADN, dont il explique le fonctionnement pour I'équation
différentielle y' = — v, puis il discute de la relation entre la pré-
cision du calcul et la mise en échelles. Il indique quelles sont les
caractéristiques communes aux calculateurs analogiques et a
UADN, ainsi que les différences de principes entre ces types de
machines a calculer. Dans la deuxiéme partie, il montre comment
un simple probleme d’oscillations mécaniques peut étre résolu
selon les trois méthodes de calcul. Pour terminer, ces trois mé-
thodes sont comparées entre elles, des points de vue de la rapi-
dité et de la précision du calcul, ainsi que du travail de pro-

grammation.

105). Packard Bell entwickelte das volltransistorisierte
Modell «TRICE» und im vergangenen Jahr schliesslich
beendigte das Royal Aircraft Establishment, Farn-
borough, England die Entwicklungen an einem eigenen
DDA, dem CORSAIR [2]. Diese Zusammenstellung
von DDA-Modellen ist keineswegs vollstindig, sie will
lediglich darauf hinweisen, dass seit dem Erscheinen
des « MADDIDA» der DDA stindig weiterentwickelt

und fabriziert wird.

Unter den DDA nimmt der Bendix DA-1 insofern
eine besondere Stellung ein, als er nicht ein selbstén-
diges Rechengerit, sondern ein Zusatzgerit zum Bendix
Magnettrommelrechner G-15 ist und nur mit dem G-15
zusammengekoppelt betrieben werden kann.

2.2 Prinzip und Wirkungsweise des DDA

Das Grundelement des DDA bildet der Integrator.
Ein Integrator kann vorerst als black-box aufgefasst
werden (Fig. 1). Demnach besitzt jeder Integrator zwei
Einginge, einen ersten fiir die Inkremente der unab-
hingigen Integrationsvariablen dx, einen zweiten fiir
Inkremente der abhiingigen Integrationsvariablen dy,
sowie einen Ausgang, der die Inkremente dz liefert. Im

dz
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Fig. 1
Der Integrator als «Black-Box»

Der Inhalt des Integrators ist y. Eingédnge zum Integrator bilden
die beiden Gréssen dx und dy. Der Ausgang ist dz

Integrator gespeichert ist der momentane Wert der
Integrationsvariablen, also y. Zwischen diesen Gréssen
sollen folgende Beziehungen erfiillt sein:

y=2y0+ Zdy 1)

dz =Fkydx 2)

Integratoren, die Gl. (1) und (2) erfiillen, sind schon
lange bekannt, dazu gehort z. B. der Scheibenintegra-

tor von Bush, der vor etwa 30 Jahren am MIT gebaut
wurde [3]. Fig. 2 zeigt die Prinzipskizze eines Scheiben-
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integrators; Einginge dieses Integrators sind der Dreh-
winkel der vertikalen Welle und der Abstand der verti-
kalen Scheibe vom Zentrum. Ausgangsgrosse ist der
Drehwinkel z der horizontalen Welle. Man sieht leicht,
dass Gl. (2) erfiillt ist, wenn man

e

k

setzt.

Im Gegensatz zum mechanischen Integrator von
Bush, der in die Klasse der analogen Geriite gehort, er-
folgt beim DDA die Integration numerisch, die Inkre-
mente dx, dy und dz sind diskrete Zahlen. Im Prinzip

Fig. 2
Scheibenintegrator nach Bush
Zwischen den Drehwinkeln der
vertikalen und der horizontalen
Welle gilt folgende Gleichung:
ydx = kdz

dx SEV30647

besteht beim DDA ein Integrator aus drei Registern,
wie dies in Fig. 3 dargestellt ist. Das erste, iiblicher-
weise mit Y-Register bezeichnet, akkumuliert alge-
braisch die dy-Eingangsinkremente. Im zweiten Re-
gister, dem R-Register, wird jedesmal, wenn der Inte-
grator einen dx-Eingangsimpuls erhilt, der momen-
tane Inhalt des Y-Registers zum bereits vorhandenen
Inhalt des R-Registers addiert. Uberschreitet dabei der
Inhalt des R-Registers den Wert +1, so gibt das
R-Register einen Ausgangsimpuls dz von der Grisse
1 dz ab und behilt als neuen Inhalt des R-Registers nur
noch den Rest. Wird bei der Addition des Inhaltes des
Y-Registers zum Inhalt des R-Registers dessen Wert
kleiner als Null, so gibt es einen Ausgangsimpuls von
der Grosse —1 dz ab. Auch bei dieser Operation bleibt
der Rest im R-Register erhalten.

dy - Eingange

dy, dy,dy, -dy,

N

dx- Eingang

dz Kdz
I R-Register HK- Register}——~
SLraneie Ausgang
Fig. 3

Prinzipieller Aufbau des Integrators in einem DDA

Im Y-Register werden die dy-Eingédnge algebraisch summiert. Ein
dx-Impuls bewirkt die Addition des Y-Registers zum Inhalt des
R-Registers. Uberfluss im R-Register gibt den Impuls + dz, wel-
cher mit dem Wert K multipliziert die Ausgangsgrosse Kdz liefert

Am leichtesten wird die Arbeitsweise eines DDA-
Integrators verstindlich, wenn man sich an Hand
eines numerischen Beispieles jeden Schritt bei der
Lésung einer Differentialgleichung iiberlegt. Sehr gut
eignet sich dazu die Differentialgleichung

16 (A 16)

d
T = —y 3)
dx

mit der Anfangsbedingung y(0) = y,.

Diese Differentialgleichung benétigt zu ihrer Losung
einen einzigen Integrator. Fig. 4a zeigt das Schalt-
schema fiir die Losung dieser Gleichung mit den beim
DDA gebriuchlichen Symbolen. Wie man sofort aus
Fig. 4a ablesen kann, gilt:

dy =dz = —ydx (4)

womit Gl (3) erfillt ist. Fir die vorliegende Aufgabe
muss im Y-Register des Integrators zur Zeit t = 0 der
Anfangswert von y, also yo gespeichert sein.

Fig. 4b zeigt nochmals dieselbe Schaltung, jetzt ist
aber der Integrator als ein Gebilde aus einzelnen Re-
gistern dargestellt. Ein im DDA selbst enthaltener
Generator liefert in zeitlich konstanten Abstinden
(beim DA-1 zirka alle 30 ms) einen Impuls, welcher als
dx-Eingangsimpuls verwendet wird. Im Y-Register ist

dy - Eingangsimpuls

Y - Register Hmmmm

dx - Eingangs-

impuls l
. dz T
R - Register j0,50000 1,Jo[0]o]o]o

SEV30649 b

Kdz

K- Register
Fig. 4
Schaltung des DDA zur Losung der Differentialgleichung

Yy =—y; y0) = +1
a Prinzipschema; b Registerinhalte zur Zeit t =0

der Anfangswert y( gespeichert, im besprochenen Falle
soll yo = 1 sein. Das R-Register enthilt zu Beginn der
Rechnung den Wert 0,5; es wird sich weiter unten
zeigen, welchen Zweck diese Zahl erfiillt.

Funktionsverlauf bei der Integration der Differentialgleichung

y’ = — y bei einer Skalierung von dy = 0,1
Tabelle I
Zahl d Inhal Inhal
Inteagrutieo:ls- ndeas ‘ r:ie: t & Wert. desl
schritte Y-Registers R-Registers usgangimpuises
n Y R Kdz
0 1,0 ‘ 0,5
1 0,9 0,5 —0,1
9 0.8 0,4 — 0,1
3 0.7 0,2 —0,
4 0.7 0,9 0
5 0 | 06 —0,1
6 0.5 ' 0,2 —0,1
7 0.5 D7 0
8 094 0,2 ‘ —0,1
9 0.4 ‘ 0.5 ‘ 0
Y | 0 —0,1
10 0,3 ‘ ’
12 0,3 “ )
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Tabelle I gibt den zeitlichen Ablauf des Rechen-
vorganges wieder, in der ersten Kolonne findet man die
Zahl der Integrationsschritte, in der zweiten die nach
dem n-ten Schritt sich im Y-Register befindende Zahl;
die dritte Kolonne enthilt den Wert des R-Registers
zwischen dem n-ten und dem n--1-ten Integrations-
schritt, die vierte schliesslich zeigt, ob nach dem n-ten
Schritt der Integrator einen Ausgangsimpuls abge-
geben hat (d. h. ob bei der Addition des Y-Registers
zum R-Register in diesem ein Uberfluss entstanden
ist).

Kurve a in Fig. 5 zeigt den Verlauf der Funktion
y = f(x) entsprechend den in Tabelle I berechneten
Werten. Wire zur Zeit ¢t = 0 im R-Register anstatt
0,5 der Wert 0 gestanden, so hitte die Funktion
y = f(x) am Anfang der Losung stidrker vom richtigen
Wert abgewichen; da bei Beginn einer Rechnung der
Inhalt des R-Registers zu- oder abnehmen kann, ist es
sinnvoll, am Anfang seinen Wert in die Mitte des Be-
reiches, nimlich auf 0,5 zu stellen.

1,04

0 1

1 1 1 1 1

1
02 04 06 08 10 12 14

0

0
SEV30650

—X

. Fig. 5

Funktionsverlauf der Losung nach der in Fig. 4 gezeigten Schaltung
a Skalierung: dy = 0,1; dx =0,1

b Skalierung: dy = 0,01; dx = 0,01

Die Integratoren kénnen auch in einer zweiten
Operationsart verwendet werden, als sog. Entschei-
dungselemente. Ein solches Element gibt dann und nur
dann einen Ausgangsimpuls ab, wenn im Y-Register
eine von Null verschiedene Grosse gespeichert ist und
ein dx-Impuls an den Integrator gelangt. Es gilt dann:

dz = sign y (fiur y & 0)
und

dz=10 (firy = 0)

Jeder Integrator kann einen einzigen dx-Eingang
empfangen, er kann hingegen beliebig viele dy-Ein-
ginge verarbeiten. Der Ausgang jedes Integrators kann
als dx- oder dy-Eingang in jedem beliebigen andern
Integrator verwendet werden. Daraus geht hervor,
dass nicht alle Integratoren die gleiche unabhingige
Integrationsvariable haben miissen (bei rein elektro-
nischen Analogierechenanlagen ist dies notwendiger-
weise immer die Zeit), sondern dass als unabhingige
Integrationsvariable ein beliebiger Ausgang eines
andern Integrators verwendet werden kann. Dank
dieser Eigenschaft lassen sich auf dem DDA eine Reihe
mathematischer Funktionen sehr elegant erzeugen
(z. B. der Logarithmus). Eine grosse Anzahl von Schal-
tungsmdoglichkeiten zur Funktionserzeugung gibt For-
bes [4].

2.3 Skalierung

In Fig. 4b wurde der dy-Eingang beim Y-Register

iiber die erste Stelle nach dem Dezimalkomma ge-
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zeichnet. Damit ist angedeutet, dass ein dy-Eingangs-
impuls den Wert 0,1 haben soll. Es steht dem Beniitzer
eines DDA frei, dem Eingangsimpuls einen beliebigen
Wert 10-2 zuzuordnen, wobei x beim DA—1 eine ganze
Zahl zwischen 1 und 7 sein kann. Es ist leicht einzu-
sehen, dass die Genauigkeit der Losung von dieser
Skalierung der dy-Eingénge abhingt, je kleiner die dy
skaliert sind, umso genauer wird die Losung. So kann
man im letzten Beispiel dy zehn mal kleiner wihlen,
also 0,01; die dy-Einginge wiren jetzt an der
zweiten Stelle nach dem Komma aufzusummieren.
Ein dx-Inkrement besitzt dann noch die Grésse 0,01.
Kurve b in Fig. 5 zeigt den Verlauf von y(x) bei dieser
neuen Skalierung. Man sieht, dass die Rechnung in
diesem Falle zehn mal genauer ist, dass aber fiir die
Durchrechnung der Losung zehn mal mehr Rechen-
schritte notwendig werden (vgl. Tabelle II). Es folgt
daraus der wichtige Schluss fiir die Skalierung des
DDA:

Funktionsverlauf bei der Integration der Differentialgleichung

y’ = — y bei einer Skalierung von dy = 0,01
Tabelle II
Zahl d Inhal Inhal
Inteagrati?;)s- I:le: t ?ie: ¢ A WEI't. de:ﬂ
schritte Y-Registers R-Registers usgangimpulses
n Y R K dz
0 1,00 0,50
i 0,99 0,50 — 0,01
0,49 — 0,01
2 0,98
0,47 —0,01
3 0,97
0,44 —0,01
4 0,96
0,40 —0,01
5 0,95
0,35 — 0,01
6 0,94
0,29 — 0,01
7 0,93
0,22 —0,01
8 0,92
0,14 —0,01
9 0,91
0,05 —0,01
10 0,90
0,95 0
n S 0,85 0,01
12 0,89 ’ s

Einem dy-Inkrement kann ein beliebiger Wert zu-
geordnet werden. Grosse Werte fiir die dy ergeben
grobe Approximation des Funktionsverlaufes in weni-
gen Rechenschritten (Kurve e in Fig. 5); kleinere
Werte fiir dy ergeben entsprechend bessere Approxi-
mation der Lodsungsfunktion und bendtigen mehr
Integrationsschritte (Kurve b in Fig. 5).

Da beim DDA die Rechenzeit genau proportional
zur Anzahl der Integrationsschritte ist, folgt, dass die
Rechenzeit sich umgekehrt proportional zur erreichten
Genauigkeit verhilt. Beim Skalieren legt also der Be-
niitzer die Genauigkeit der Losung und die Rechenzeit
fest.

3. Vergleich des DDA mit dem Analogrechner

Einen wesentlichen Anstoss zur Entwicklung des
DDA gab die Tatsache, dass man den Ingenieuren ein
Gerdt zur Verfiigung stellen wollte, das die gleiche
Leichtigkeit der Programmierung und vor allem die
selbe Anschaulichkeit wie ein Analogierechengerit
bieten, aber den Nachteil der geringen Genauigkeit
nicht aufweisen sollte. Es liegt deshalb nahe, die ver-
schiedenen gemeinsamen Merkmale des DDA und des
Analogrechners zusammenzustellen.

Beide Gerite haben als Grundelement den Inte-
grator, daneben Konstantenmultiplikatoren und Ad-
dierglieder. Das hat zur Folge, dass das Rechenschema
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beim DDA und beim Analogrechner fiir viele Aufgaben
genau gleich aufgebaut ist. Bei beiden Rechenmethoden
konnen zum Beispiel Blockschaltbilder von Regel-
kreisen direkt auf die Rechenmaschine iibertragen
werden, wodurch eine #usserst iibersichtliche Pro-
grammierung zustande kommt.

Ein zweites gemeinsames Merkmal beider Rechen-
methoden ist die Art der Skalierung. Genau wie beim
Analogrechner ist es auch beim DDA notwendig, so zu
skalieren, dass alle Integratoren méglichst voll aus-

gesteuert werden; nur so erreicht man die grosst--

mogliche Genauigkeit. Vor allem beim Skalieren des
DDA kommen einem Erfahrungen, die man beim
Arbeiten mit Analogierechenmaschinen gewonnen hat,
zugute.

Sowohl beim Analogrechner wie auch beim DDA
miissen vor Beginn einer Rechnung in allen Integra-
toren die entsprechenden Anfangsbedingungen gesetzt
werden; bei beiden Methoden kann die Rechnung zu
einer beliebigen Zeit angehalten werden, um beispiels-
weise gewisse Konstanten zu dndern; die Rechnung
kann nachher am selben Ort mit den neuen Konstanten
weitergefiithrt werden.

Schliesslich liefern beide Methoden das Resultat in
Form von registrierten Kurven, die Losungen werden
dadurch anschaulich, bei einigen Modellen von DDA
werden die Resultate zusitzlich auch in Tabellenform
ausgeschrieben?).

Neben diesen gemeinsamen Merkmalen gibt es auch
einige grundsitzliche Verschiedenheiten zwischen DDA
und elektronischen Analogierechengeriten. Wohl der
wichtigste Unterschied liegt in der Natur der unab-
hiangigen Variablen dx. Diese ist beim elektronischen
Analogrechner (falls er ohne jede mechanische Kom-
ponente arbeitet) naturgemiss immer die Zeit, sie kann
beim DDA beliebige Werte annehmen, sie kann sogar
negativ werden. Dadurch wird der Anwendungs-
bereich des DDA wesentlich grosser als derjenige des
Analogrechners.

Ein zweiter wichtiger Unterschied zwischen DDA
und Analogrechner liegt darin, dass bei diesem die
Rechengenauigkeit durch die Komponentengenauig-
keit beschrinkt ist, und dass daran durch den Be-
niitzer nichts geindert werden kann, wihrend es beim
DDA méglich ist, die Genauigkeit innerhalb gewisser

Grenzen dem Problem anzupassen.

4. TMustratives Beispiel
aus der mechanischen Schwingungslehre

4.1 Physikalisches Problem

An Hand eines einfachen Beispieles aus der mecha-
nischen Schwingungslehre soll im folgenden gezeigt
werden, wie die drei Rechenmethoden angewendet
werden kénnen. Das hier behandelte Problem fiihrt
auf lineare Differentialgleichungen, die auch elementar
analytisch gelost werden konnten, doch soll mit Nach-
druck darauf hingewiesen werden, dass fiir alle drei
elektronischen Rechenmethoden eine Linearitit des
Problems keineswegs gefordert ist. Wihrend bei Be-
rechnung von Hand fiir lineare Probleme vielfach eine
analytische Loésung gefunden werden kann, deren
numerische Auswertung keinen allzugrossen Aufwand
braucht, ist bei nichtlinearen Problemen eine analy-

?) Durch’ Zusatzgerdte konnen heute auch die Ergebnisse von
Digitalrechenmaschinen in Kurvenform erhalten werden.

18 (A18)

tische Losung in den wenigsten Fillen moglich. Bei den
elektronischen Rechenmethoden wird der Aufwand
wohl etwas grosser, wenn die Differentialgleichungen
nichtlinear sind, doch ist in den meisten Fillen die
Lésung dadurch nicht prinzipiell schwieriger zu finden.

Fig. 6
Lineares Zweimassensystem
beim Uberfahren
eines Einzelhindernisses
Das Zweimassensystem féhrt
mit konstanter Geschwindigkeit
in Richtung x liber ein einzel-
nes Hindernis z; (x)

Weitere Bezeichnungen
siehe im Text

3
SEV3065!

Es soll hier berechnet werden, welche Bewegung ein
Eisenbahnwagen, der iiber ein einzelnes Hindernis
fahrt, ausfiihrt. Interessiert man sich nur fiir die Be-
wegungen in vertikaler Richtung, so kann ein Dreh-
gestell-Eisenbahnwagen stark vereinfacht durch ein
Zweimassensystem, wie es in Fig. 6 dargestelltist, nach-
gebildet werden. Die Masse m; stellt das Drehgestell
dar, die Masse ma den Wagenkasten. Das Drehgestell
ist mittels der Feder F'; auf der Radachse A4 abgestiitzt,
iiber die Feder Fy der Wagenkasten auf dem Dreh-
gestell. Parallel zu diesen zwei Federn wirken die
geschwindigkeitsproportionalen hydraulischen Stoss-
dimpfer D; und Ds. v

Dieses lineare System soll sich mit konstanter Ge-
schwindigkeit in der Richtung x bewegen, sein Fuss-
punkt, die Radachse, soll dabei ein einmaliges Hinder-

nis von der Form
t=2m

z0=1/2H(l—coswt)\m (5)

wt=20

iiberfahren, und zwar so, dass kein Absprung der Rad-
achse von der Schiene erfolge. Die Hindernisform nach
Gl. (5) wurde gewihlt, weil bei ihr die Unebenheit
sowie ihre erste Ableitung an beiden Enden gleich Null
sind. Die Bewegungsdifferentialgleichungen lauten:

21+ dy (81 — 30) + rc da (81— 52) + »1 (31— 20) +
- K1J2(21~—zz) =0 (6)
23+ da (32— 21) + va(s2—21) =0

wobei
vy = c1/my ve = cg/mgy
diy = kijmy dy = kg[mg
Kk = mg[my

bedeuten.

Fiir zg soll gelten:

20 = 0,005 (1 — cos 100¢)

t = 2 77/100

t=0

Die angegebenen Differentialgleichungen sollen fiir
verschiedene Werte der Konstanten gelost werden,
beispielsweise lauten diese Werte fiir einen Zweitklass-

Wagen der Schweizerischen Bundesbahnen [5]:

V] = 1086 s-2 Ve = 143 s-2
dy = 55,7 sl dy = 9,651
k = 5,57

Bull. SEV 53(1962)1, 13. Januar



4.2 Die Lisung mit dem Analogierechengerd

Das Schaltschema fiir die Losung des Differential-
gleichungssystems (6) auf dem Analogrechner ist in
Fig. 7 dargestellt. Man kann daraus ersehen, dass fiir
die Losung dieser Aufgabe insgesamt 5 Integratoren,
10 Umkehr- und Addierverstirker und 7 Koeflizienten-
potentiometer gebraucht werden. Von den 5 Integra-
toren dienen vier zur Integration der beiden abhingi-
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Fig. 7
Schaltung des Analogierechners
zur Losung des Differentialgleichungssystems (6)

Eingangsgrisse ist die Unebenheitsfunktion z, (t)
Potentiometereinstellungen: P, = d,/100 = 0,557; P, = %d,/100 = 0,535;
Pg = »,/10 000 = 0,109; P, = %¥,/1000 = 0,797; P; = d,/100 = 0,010;

Py = 7,/100 = 0,143; P, = k = 0,995

Weitere Bezeichnungen siehe im Text

gen Variablen, der fiinfte Integrator wird in der
Schaltung zur angeniherten Differentiation von zo ge-
braucht. Diese hier angewendete Schaltung erlaubt, die
exakte Differentiation, die physikalisch unméglich ist,
durch eine angeniherte Differentiation zu ersetzen. Die
Storfunktion zo(f) wird in einer externen Schaltung er-
zeugt. In Fig. 8 sind die mit dem Analogierechengerit
erhaltenen Losungskurven aufgezeichnet.

4.3 Die Lisung mit dem DDA

Fig. 9 zeigt das Schaltschema fiir die Losung der
Differentialgleichungen (6) mit dem DDA. Auch die
Storfunktion wird hier auf dem DDA erzeugt; in der
rechten Hilfte der Fig. 9 ist dargestellt, wie durch
Losen der Differentialgleichung

y=—a?y

mit geeigneten Anfangsbedingungen die Stérfunktion
von der Zeit t = 0 bis zur Zeit t = 2 /100 s erzeugt
wird. Nach Ablauf der Zeit 1 = 2 7/100 s miissen die

dt

dt

13 d(coswt)
W

Einginge der Storfunktion in den Integrator 1 auf-
getrennt werden.

Die vier Intogratoren Nr. 3, 5, 8 und 10 integrieren
die abhéngigen Variablen z; und z. In den beiden Inte-
gratoren Nr. 6 und 11 werden die Inkremente dz; und
dzz zu z; und zs aufsummiert; die Integratoren Nr. 4,
7, 9 und 12 sind als Konstantenmultiplikatoren ge-
schaltet.
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Fig. 8
Mit dem Analogierechengerit erhaltene Losungskurven
Von oben nach unten sind dargestellt: Verlauf der Unebenheit,
Beschleunigung, Geschwindigkeit und Auslenkung der Masse m,

Die Art und Weise, wie dieses Schaltschema auf dem
DDA realisiert wird, hingt vom Typ des DDA ab.
Beim Bendix DA-1 erfolgt die gesamte Programmie-
rung durch numerisch codierte Befehle, welche mit der
Schreibmaschine dem Computer iibermittelt werden,
beim CORSAIR wird der Schaltplan, gleich wie bei
einem Analogierechengerit, auf einem Steckbrett mit-
tels Drahtverbindungen gestopselt.

Die Resultate liefert der Bendix DA-1 in Form von
Tabellen, in welchen man mit der Schreibmaschine
jeweils nach einer programmierten Anzahl von Inte-
grationsschritten den Inhalt der Y-Register beliebiger
Integratoren herausschreiben kann. Man hat weiter die
Méglichkeit, eine der Variablen in Funktion einer be-
liebigen andern Variablen mittels eines Kurven-
zeichners aufzuzeichnen.

Die Skalierung des DDA fiir diese Aufgabe erfolgte
derart, dass die Resultate sicher auf drei bedeutsame
Dezimalstellen genau werden. Dies erforderte fiir die
unabhiingige Variable dx eine Skalierung von:

14
wcoswt

15

543

9 ld(sinat)
- 100 Fig. 9
Schaltschema zur Losung des
—lIlﬁ’EEog') Differentialgleichungssystems (7)
auf dem DDA
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16 27,8 d(sinat)
27,8 ! a

Die Integratoren auf der linken
Hélfte dienen zur Integration der
Stérf unktion Differentialgleichungen, diejenigen
- auf der rechten Hilfte zur Erzeu-

gung der Stdérfunktion
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dx = dt = 216

Bis der DDA die Lésung bis zum Moment des Endes
des Hindernisses gerechnet hat, braucht er
2 1t/100

n=———=4118
2-16

Integrationsschritte; da der DA-1 pro Sekunde 34 Inte-
grationsschritte ausfithrt, dauert die Rechenzeit bis
zum Ende des Hindernisses zirka 121 s.

4.4 Lésung mit der digitalen Allzweckrechenmaschine

Wohl jedem Beniitzer einer digitalen Rechen-
maschine steht eine Programmbibliothek zur Verfii-
gung, und esist anzunehmen, dass er darin mindestens
ein Programm fiir die Losung gewdhnlicher Differen-
tialgleichungssysteme zweiter Ordnung findet (z. B.
ein Programm nach dem Verfahren Runge-Kutta).
Somit reduziert sich die Programmierungsaufgabe auf

Tabelle III

t zl 22 21 22
(ms] (mm] (mn) (mn/s]  [nn/s]
3.1416 0133 .0001 12.4460 .1280
6.2832 .0985 .0015 44,4210 .9532
9.4248 .3043 .0073 87.8130 2.9565
12,5660 .6539 .0216 *134.6700 6.3788
15.7080 1.1464 .0489 177.6500 11.2290
18,8500 1.7596 .0934 210.5100 17.3040
21.9910 2.4537 .1585 228.5200 24,2300
25.1330 3.1769 .2460 228.7800 31.5060
28.2740 3.8717 3562 210.4600 38.5680
31.4160 4.4811 4875 174.7300 44,8470
34,5580 4,9546 6366 124,6600 49,8320
37.6990 5.2541 .7988 64.8010 53.1250
40,8410 5.3574 +9684 «7928 54,4810
43,9820 5.2611 1.1391 - 61,2730 53.8340
47.1240 4,9806 1.3047 - 115.4400 51.3070
50.2660 4,549 1.4598 - 156.5000 47.1990
53.4070 4,0151 1.6001 - 180.4800 41,9610
56.5490 3.4355 1.7229 - 185.0900 36.1440
59,6900 2.8728 1.8272 - 169.8800 30.3560
62.8320 2.3872 1.9143 - 136.3800 25.1950

die Programmierung der rechten Seiten der Differen-
tialgleichungen. Mit einiger Erfahrung wird es einem
auch leicht fallen, einen verniinftigen Wert fir die
Schrittweite h zu finden, derart, dass die Genauigkeit
hinreichend gut und die Rechenzeit verniinftig kurz
wird. Vielleicht steht sogar ein Programm zur Ver-
figung, das die Schrittweite stindig kontrolliert und
dem Verlauf der Losungsfunktion anpasst. Tabelle 111
zeigt die mit dem Bendix G-15-Computer berechnete

mm|
2r b
« a
N
Lt A\
0 + ; ; 4 >
0 02 04 06 08 10s
mm t
10
N
tsh
0 L L
0 02s ¢ SEV30655
Fig. 10

Mit dem digitalen Allzweckrechner und einem Kurvenzeichner
erhalftene Losungskurven
oben ist die Auslenkung der Masse m, aufgetragen
Kurve a mit einem Dédmpfer D,, Kurve b ohne Ddmpfer D,
unten ist der Verlauf der Unebenheit aufgetragen

20 (A20) -

Losung mittels dem Verfahren Runge-Kutta. Auch eine
graphische Registrierung der Resultate mit dem
Graph-Plotter ist beim G-15 méglich, dies erspart
einem das miihselige Aufzeichnen von Funktions-
verldufen aus Tabellen. Fig. 10 zeigt die mit dem
Graph-Plotter automatisch registrierte Losung; fiir die
Kurve b wurde der Dimpfer D; im mechanischen
System weggelassen 3).

5. Vergleich aller drei Rechenmethoden
Zum Schluss sollen die drei Methoden in Bezug auf

a) Rechengeschwindigkeit
b) Rechengenauigkeit

¢) Programmierungsaufwand
kurz gegeneinander abgewogen werden.

5.1 Rechengeschwindigkeit

In Bezug auf die Rechengeschwindigkeit ist der
elektronische Analogrechner den beiden andern Metho-
den iiberlegen. Beim Analogrechner ist die Rechen-
geschwindigkeit fir das hier behandelte Beispiel prak-
tisch einzig durch die Zeit, welche aufgewendet werden
muss, um das Resultat zu registrieren, beschrinkt.

Fiir den DDA hingt die Rechengeschwindigkeit von
der geforderten Genauigkeit ab. Fiir eine Genauigkeit
von 3 bedeutsamen Dezimalstellen betrigt der Zeit-
bedarf beim DA-1 120 s, beim CORSAIR wiirde er
etwa 10 s.

Fiir die Rechenzeit bei digitalen Rechenmaschinen
sollen drei charakteristische Fille betrachtet werden:

1. Losung mit Magnettrommelrechner ilterer Bauart (z. B.
Bendix G-15, 1956) in einem interpretativen Programmiersystem
mit Gleitkomma (Intercom beim G-15):

20 Integrationsschritte a 150 Operationen a 0,125 s:
T =375s

2. Losung mit gleicher Maschine wie unter 1., aber in optimaler
Maschinensprache und mit Festkomma:
20 Integrationsschritte a 150 Operationen a 0,0125 s:
T=375s

3. Losurg mit modernem, schnellem Kernspeicherrechner
(zum Beispiel Bendix G-20):
20 Integrationsschritte a 150 Operationen a 40 us:
T=012s

Die Rechenzeit bei digitalen Rechenmaschinen kann
also, je nach dem verwendeten Typ und dem Pro-
grammiersystem, in sehr weiten Grenzen variieren.

Handelt es sich um die Losung komplizierterer Dif-
ferentialgleichungssysteme, so kann sich das Verhéltnis
der Rechenzeiten noch etwas zu Gunsten des DDA
indern, denn beim DA-1 wird ja auf alle Fille pro
Trommelumdrehung jeder der 108 Integratoren ein-
und nur einmal prozessiert, die Rechenzeit ist somit
nicht abhingig von der Zahl der verwendeten Integra-
toren; im Gegensatz dazu nimmt beim Runge-Kutta-
Verfahren, bei welchem pro Integrationsschritt alle
rechten Seiten der Differentialgleichungen viermal be-
rechnet werden miissen, die Rechenzeit mit der Kom-
plexheit eines Problems stark zu.

5.2 Genauigkeit

Beim Analogrechner ist die Genauigkeit der Losung
weitgehend durch die Komponentengenauigkeit des

%) Die Berechnungen mit dem G-15 sowie mit dem DA-1 wur-
den im Rechenzentrum der Omni Ray AG in Ziirich durchgefiihrt.
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Rechengerites bestimmt. Diese liegt fiir elektronische
Analogrechner heute in der Grossenordnung von 10—4
und diirfte auch in Zukunft kaum wesentlich ver-
bessert werden kénnen.

Beim DDA kann man innerhalb der durch die
Wortlinge des DDA gegebenen Grenzen die Genauig-
keit mittels der Skalierung festlegen.

Die grosste Genauigkeit liefert der digitale Allzweck-
rechner. Hier hingt die Genauigkeit der Losung von
der Wortlidnge des Computers sowie von der gewihlten
Schrittlange ab.

.

5.3 Programmierungsaufwand

Beim Programmierungsaufwand haben sich die Ver-
hiltnisse innerhalb der letzten Jahre grundlegend ge-
dndert. War noch vor wenigen Jahren fiir die Losung
von gewohnlichen Differentialgleichungssystemen der
Programmierungsaufwand fiir den elektronischen
Analogrechner am geringsten, derjenige fiir digitale
Rechenmaschinen am grossten, so kann man heute
wohl annehmen, dass durch die enormen Fortschritte in

der automatischen Programmierung digitaler Rechen-
maschinen der Programmierungsaufwand fiir diesen
Maschinentyp am kleinsten wird. Fiir die Lésung von
Differentialgleichungssystemen liegt meistens ein Bi-
bliotheksprogramm vor. Es miissen dann nur noch die
rechten Seiten der Gleichungen, beispielsweise in
ALGOL, programmiert werden.
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Wellenleiter
Publikation des Internationalen Elektrotechnischen Worterbuches (2. Ausgabe),

herausgegeben von der CEI

Die Commission Electrotechnique Internationale hat im letzten
Sommer das Kapitel «Wellenleiter» der 2. Auflage des Interna-
tionalen Elektrotechnischen Worterbuches herausgegeben [1]1).
Diese Publikationen, welche 46 Seiten im Format A4 umfasst, ent-
hilt Definitionen von 130 Ausdriicken in englischer und fran-
zosischer Sprache, die in der Wellenleitertechnik und in der
Technik der Mikrowellenantennen am gebriuchlichsten sind, so-
wie die entsprechenden Ubersetzungen dieser Ausdriicke in
deutscher, spanischer, italienischer, hollindischer, polnischer
und schwedischer Sprache. Ein alphabetisches Sachregister, wel-
ches in den 8 verwendeten Sprachen abgefasst ist, erlaubt es, den
gesuchten Ausdruck oder dessen Ubersetzung in einer dieser
Sprachen mit Leichtigkeit zu finden.

Kein Wérterbuch kann perfekt sein, wenn man die unend-
lichen Feinheiten der Sprache und den im allgemeinen be-
schrinkten zur Verfiigung stehenden Umfang beriicksichtigt. Im
betreffenden Fall wurde die Schwierigkeit, ein moglichst exaktes
Werk zu schaffen, durch die relative Neuheit und die rasche
Entwicklung des Gebietes, welches bearbeitet werden sollte, noch
erhoht. Trotzdem und dank der Anstrengungen der Spezialisten
verschiedener Linder, kann das erreichte Ergebnis als sehr gut
bezeichnet werden.

Die Arbeit wurde ziemlich genau vor 10 Jahren aufgenom-
men und ein durch das Nationalkomitee von Grossbritannien
ausgearbeiteter erster Entwurf in franzosischer und englischer
Fassung im Monat Mirz 1952 den Nationalkomitees unterbreitet
[Dokument 1(Secrétariat)219]. Die Priifung dieses Dokumentes
wurde in der Schweiz durch das Fachkollegium 1 (Worterbuch)
des Schweiz. Elektrotechnischen Komitees (CES) einer kleinen
Arbeitsgruppe von Spezialisten anvertraut, welche in einer Stel-
lungnahme dem CES im September 1952 zahlreiche Bemerkun-
gen und Vorschlige vorlegte [1(Suisse)111]. Einer der wesent-
lichen Diskussionspunkte bestand in der Definition der verschie-
denen «Schwingungsmoden» in den Wellenleitern. Die, verschie-
denen Landern angehorenden Verfasser haben in der Tat, gestiitzt
auf die Abbildung entweder des elektrischen oder des magneti-
schen Feldes, verschiedene Bezeichnungen fiir die selben Schwin-
gungsmethoden eingefiihrt. Es gehorte nicht zur Aufgabe des
Fachkollegiums 1, eine Wahl vorzunehmen und gewisse Bezeich-
nungen abzuschaffen, sondern sie alle zu definieren. Dies hat
dazu gefiihrt, mehrere gleichwertige Bezeichnungen fiir den
gleichen Modus zu geben. Als Beispiel sei der «<mode magnétique
transversal> erwihnt, welcher im franzosischen ebenfalls Mode

1) Siehe Literatur am Schluss des Aufsatzes.
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TH, Mode TM; Mode E genannt wird. Klare, vollstindige und
eindeutige Definitionen fiir die verschiedenen Schwingungs-
moden zu finden war schwierig und gab zu Diskussionen An-
lass. Ohne Zweifel werden jedoch die Gruppierungen der ver-
schiedenen Bezeichnungen fiir die Schwingungsmoden und die
entsprechenden Definitionen, die sich schliesslich ergaben, all
denjenigen eine wertvolle Hilfe sein, welche Arbeiten iiber dieses
Gebiet lesen oder publizieren. Es ist zu hoffen, dass sich mit der
Zeit die eine oder andere Variante behaupten wird und dass es
moglich wird, in einer zukiinftigen Ausgabe gewisse Varianten
auszuschliessen.

Im Anschluss an eine, am 17. Mai 1955 in Briissel stattge-
fundene Sitzung, an welcher die Delegierten der verschiedenen
Linder teilnahmen, welche seinerzeit zum Grunddokument Be-
merkungen vorgelegt hatten, wurden diese gepriift. Als Folge
konnte ein zweiter, wesentlich verbesserter Entwurf den Natio-
nalkomitees unterbreitet [1(62)(Secrétariat)257] und unter Be-
achtung der 6-Monate-Regel auf Dezember 1955 zur Annahme
empfohlen werden. Das CES, wie auch andere Nationalkomitees
der CEI, machten noch einige Bemerkungen zu diesem Doku-
ment [1(62) (Suisse)128]. Das Sekretariatskomitee beriicksichtigte
sie, indem es im Februar 1958 eine 3. Fassung [1(62)(Secré-
tariat)264] herausgab, die unter Beachtung der 2-Monate-Regel
zur Annahme empfohlen wurde. Wiederum brachte die Arbeits-
gruppe des Fachkollegiums 1 des CES Verbesserungsvorschlige
vor, welche zum Teil in der endgiiltigen Ausgabe beriicksichtigt
worden sind.

Parallel zu ihrer Arbeit bei der Ausarbeitung des Inhaltes
des franzosisch-englischen Dokumentes, hat das CES ebenfalls
an der deutschen Fassung mitgearbeitet. Als die Arbeit im Jahre
1952 angefangen wurde und Deutschland und Osterreich ihren
Platz in der CEI noch nicht wieder eingenommen hatten, be-
schloss das CES, dass die Dokumente des Worterbuches in der
Schweiz auf deutsch iibersetzt werden sollten. So wurde der erste
Entwurf von Klauser, Ingenieur der Albiswerke AG, in hervor-
ragender Weise iibersetzt. Das urspriingliche Dokument erfuhr
leider nachtriiglich wesentliche Anderungen, so dass der erwar-
tete Nutzen der vorgenommenen grossen Ubersetzungsarbeit zum
Teil ausblieb. Vermutlich ist es iiberhaupt das einzige Dokument
des Worterbuches, welches vollstindig iibersetzt wurde.

Die schweizerischen Experten der deutschen Sprache haben
spiter, zusammen mit jenen aus Deutschland und Osterreich, nur
an der deutschen Ubersetzung der Ausdriicke mitgearbeitet. Sie
setzten sich ein, damit die in der Schweiz beniitzten Ausdriicke
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