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Vergleich dreier elektronischer Rechenmethoden
für die Lösung gewöhnlicher Differentialgleichungssysteme

Von H. G. Bürgin, Zollikerberg
518.5 : 517.91

Systeme gewöhnlicher Differentialgleichungen können mit
Hilfe von Analogierechengeräten, digitalen Allzweckrechnern
oder digitalen Differentialanalysatoren (DDA) gelöst werden. Der
erste Teil dieser Arbeit beschreibt den DDA, seine Wirkungsweise

wird anhand der Differentialgleichung y' — — y erklärt.
Der Zusammenhang zwischen Rechengenauigkeit und Skalierung
wird diskutiert. Gemeinsame Merkmale von Analogierechenanlagen
und DDA sowie prinzipielle Unterschiede zwischen diesen beiden
Rechenmaschinentypen werden erklärt. Der zweite Teil zeigt, wie
ein einfaches Problem aus der mechanischen Schwingungslehre
mit allen drei Rechenmethoden gelöst werden kann. Schliesslich
werden die drei Methoden in Bezug auf Rechengeschwindigkeit,
Rechengenauigkeit und Programmierungsaufwand miteinander
verglichen.

1. Einleitung

Die mathematische Formulierung vieler technischer
Probleme (z. B. elektrische und mechanische
Schwingungsprobleme) führt auf Systeme gewöhnlicher
Differentialgleichungen, die sehr oft nichtlinear sind. Zur
Lösung dieser Differentialgleichungen können drei
Typen von elektronischen Rechenmaschinen eingesetzt
werden. Zwei davon, die Analogierechenmaschine und
der digitale Allzweckrechner, sind allgemein bekannt,
der dritte Typ, der digitale Differentialanalysator (im
folgenden kurz DDA genannt), soll hier in seiner
Funktionsweise kurz beschrieben werden.

In einem zweiten Teil wird gezeigt, wie ein Problem
aus der mechanischen Schwingungslehre mit jeder dieser

drei Methoden gelöst werden kann und welches die
Vor- und Nachteile der verschiedenen Verfahren sind.

2. Der digitale Differentialanalysator

2.1 Historische Entwicklung
Digitale Differentialanalysatoren sind seit etwas

mehr als zehn Jahren bekannt. Sie wurden entwickelt,
weil einerseits die Genauigkeit elektronischer
Analogierechengeräte bei der Behandlung nichtlinearer
Regelkreise, wie sie vor allem bei Problemen der Steuerung
von Fernlenkwaffen und Raketen auftreten, oft nicht
ausreicht und weil anderseits die Programmierung
solcher Probleme auf digitalen Allzweckrechnern, welche
im allgemeinen die geforderte Genauigkeit liefern,
kompliziert und zeitraubend ist bzw. weil vor allem
die Rechenzeiten bei der Verwendung von numerischen
Methoden für die Lösung komplizierter
Differentialgleichungssysteme etwas zu lang werden.

Der erste DDA, die «MADDIDA» der Northrop
Aircraft, erschien vor elf Jahren auf dem Markt. Es
scheint, dass dieser erste DDA nicht ganz befriedigend
arbeitete, teilweise wegen ungenügenden Toleranzen in
den Komponenten (wodurch Fehlrechnungen entstanden),

teilweise wegen der rein dualen Daten-Ein- und
Ausgabe, wodurch ein rationelles Arbeiten erschwert
wurde [l]1). Es folgten dann eine Reihe weiterer
verbesserter Fabrikate, so z. B. 1954 der D-12 der Bendix
Aviation Corp. In Europa ist ein D-12 im elektronischen
Rechenzentrum der Universität Neapel, welches unter
der Leitung von Prof. Savastano steht, in Betrieb. Es
folgte ein DDA der Computer Research Corp. (CRC

J) Siehe Literatur am Schluss des Aufsatzes.

Les systèmes d'équations différentielles ordinaires peuvent
être résolus à l'aide de calculateurs analogiques, de calculateurs
numériques d'emploi général ou d'analyseurs différentiels
numériques (ADN). Dans la première partie de cet article, l'auteur
décrit l'ADN, dont il explique le fonctionnement pour l'équation
différentielle y' — — y, puis il discute de la relation entre la
précision du calcul et la mise en échelles. Il indique quelles sont les
caractéristiques communes aux calculateurs analogiques et à
l'ADN, ainsi que les différences de principes entre ces types de
machines à calculer. Dans la deuxième partie, il montre comment
un simple problème d'oscillations mécaniques peut être résolu
selon les trois méthodes de calcul. Pour terminer, ces trois
méthodes sont comparées entre elles, des points de vue de la rapidité

et de la précision du calcul, ainsi que du travail de
programmation.

105). Packard Bell entwickelte das volltransistorisierte
Modell «TRICE» und im vergangenen Jahr schliesslich
beendigte das Royal Aircraft Establishment, Farn-
borough, England die Entwicklungen an einem eigenen
DDA, dem CORSAIR [2], Diese Zusammenstellung
von DDA-Modellen ist keineswegs vollständig, sie will
lediglich darauf hinweisen, dass seit dem Erscheinen
des «MADDIDA» der DDA ständig weiterentwickelt
und fabriziert wird.

Unter den DDA nimmt der Bendix DA-1 insofern
eine besondere Stellung ein, als er nicht ein selbständiges

Rechengerät, sondern ein Zusatzgerät zum Bendix
Magnettrommelrechner G-15 ist und nur mit dem G-15
zusammengekoppelt betrieben werden kann.

2.2 Prinzip und Wirkungsweise des DDA
Das Grundelement des DDA bildet der Integrator.

Ein Integrator kann vorerst als black-box aufgefasst
werden (Fig. 1). Demnach besitzt jeder Integrator zwei
Eingänge, einen ersten für die Inkremente der
unabhängigen Integrationsvariablen dx, einen zweiten für
Inkremente der abhängigen Integrationsvariablen dy,
sowie einen Ausgang, der die Inkremente dz liefert. Im

dy

dx

Fig. 1

Der Integrator als «Black-Box»
Der Inhalt des Integrators ist y. Eingänge zum Integrator bilden

die beiden Grössen dx und dy. Der Ausgang ist dz

Integrator gespeichert ist der momentane Wert der
Integrationsvariablen, also y. Zwischen diesen Grössen
sollen folgende Beziehungen erfüllt sein:

y y0 + S dy (1)

dz k y dx (2)

Integratoren, die Gl. (1) und (2) erfüllen, sind schon
lange bekannt, dazu gehört z. B. der Scheibenintegrator

von Bush, der vor etwa 30 Jahren am MIT gebaut
wurde [3], Fig. 2 zeigt die Prinzipskizze eines Scheiben-
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integrators; Eingänge dieses Integrators sind der
Drehwinkel der vertikalen Welle und der Abstand der
vertikalen Scheibe vom Zentrum. Ausgangsgrösse ist der
Drehwinkel z der horizontalen Welle. Man sieht leicht,
dass Gl. (2) erfüllt ist, wenn man

K

setzt.

y_

dy, dy2dy3...dy„

AI/
Y- Register

dx- Eingang

R-Register
az

K - Regi ster

K dz

dj
dx

— y (3)

mit der Anfangsbedingung y(0) yo-
Diese Differentialgleichung benötigt zu ihrer Lösung

einen einzigen Integrator. Fig. 4a zeigt das
Schaltschema für die Lösung dieser Gleichung mit den beim
DDA gebräuchlichen Symbolen. Wie man sofort aus
Fig. 4a ablesen kann, gilt :

Im Gegensatz zum mechanischen Integrator von
Bush, der in die Klasse der analogen Geräte gehört,
erfolgt beim DDA die Integration numerisch, die Inkre-
mente dx, dy und dz sind diskrete Zahlen. Im Prinzip

dy dz -y dx (4)

Fig. 2

Scheibenintegrator nach Bush
Zwischen den Drehwinkeln der
vertikalen und der horizontalen
Welle gilt folgende Gleichung:

ydx Jcd z

besteht beim DDA ein Integrator aus drei Registern,
wie dies in Fig. 3 dargestellt ist. Das erste, üblicherweise

mit Y-Register bezeichnet, akkumuliert
algebraisch die dy-Eingangsinkremente. Im zweiten
Register, dem R-Register, wird jedesmal, wenn der
Integrator einen dx-Eingangsimpuls erhält, der momentane

Inhalt des Y-Registers zum bereits vorhandenen
Inhalt des R-Registers addiert. Überschreitet dabei der
Inhalt des R-Registers den Wert +1, so gibt das
R-Register einen Ausgangsimpuls dz von der Grösse
1 dz ab und behält als neuen Inhalt des R-Registers nur
noch den Rest. Wird bei der Addition des Inhaltes des

Y-Registers zum Inhalt des R-Registers dessen Wert
kleiner als Null, so gibt es einen Ausgangsimpuls von
der Grösse —1 dz ab. Auch bei dieser Operation bleibt
der Rest im R-Register erhalten.

dy - Eingänge

womit Gl. (3) erfüllt ist. Für die vorliegende Aufgabe
muss im Y-Register des Integrators zur Zeit t 0 der
Anfangswert von y, also yo gespeichert sein.

Fig. 4b zeigt nochmals dieselbe Schaltung, jetzt ist
aber der Integrator als ein Gebilde aus einzelnen
Registern dargestellt. Ein im DDA selbst enthaltener
Generator liefert in zeitlich konstanten Abständen
(beim DA-1 zirka alle 30 ms) einen Impuls, welcher als

dx-Eingangsimpuls verwendet wird. Im Y-Register ist

dz -1 y dx

Integrator

dy - Eingangsimpuls

Y-Register U.OOOOO

dx - Eingangsimpuls

R-Register +0,5 0 0 0 0

SEV30U9 jj K-Register

Fig. 4

Schaltung des DDA zur Lösung der Differentialgleichung
y' —v\ y(o> +1

a Prinzipschema; b Registerinhalte zur Zeit t 0

der Anfangswert yo gespeichert, im besprochenen Falle
soll yo 1 sein. Das R-Register enthält zu Reginn der
Rechnung den Wert 0,5; es wird sich weiter unten
zeigen, welchen Zweck diese Zahl erfüllt.

Funktionsverlauf bei der Integration der Differentialgleichung
y' —y bei einer Skalierung von dy 0,1

Tabelle I

sf"os" Ausgang
Fig. 3

Prinzipieller Aufbau des Integrators in einem DDA
Im Y-Register werden die dp-Eingänge algebraisch summiert. Ein
dx-Impuls bewirkt die Addition des Y-Registers zum Inhalt des
R-Registers. Überfluss im R-Register gibt den Impuls ± dz,
welcher mit dem Wert K multipliziert die Ausgangsgrösse Kdz liefert

Am leichtesten wird die Arbeitsweise eines DDA-
Integrators verständlich, wenn man sich an Hand
eines numerischen Beispieles jeden Schritt bei der
Lösung einer Differentialgleichung überlegt. Sehr gut
eignet sich dazu die Differentialgleichung

Zahl der
Integrationsschritte

1

2

3

4
5

6

7

8

9

10

11

12

Inhalt
des

Y-Registers
Y

1,0

0,9
0,8
0,7
0,7
0,6
0,5
0,5
0,4
0,4
0,3
0,3
0,3

Inhalt
des

R-Registers
R

0,5
0,5
0,4
0,2
0,9
0,6
0,2
0,7
0,2
0,6
0

0,3
0,6

Wert des
Ausgangimpulses

— 0,1

— 0,1

— 0,1
0

— 0,1

— 0,1
o

— 0,1
0

— 0,1
0

0
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Tabelle I gibt den zeitlichen Ablauf des

Reebenvorganges wieder, in der ersten Kolonne findet man die
Zahl der Integrationsschritte, in der zweiten die nach
dem n-ten Schritt sich im Y-Register befindende Zahl;
die dritte Kolonne enthält den Wert des R-Registers
zwischen dem n-ten und dem n-|-l-ten Integrationsschritt,

die vierte schliesslich zeigt, ob nach dem n-ten
Schritt der Integrator einen Ausgangsimpuls
abgegeben hat (d. h. ob bei der Addition des Y-Registers
zum R-Register in diesem ein Überfluss entstanden
ist).

Kurve a in Fig. 5 zeigt den Verlauf der Funktion
y i(x) entsprechend den in Tabelle I berechneten
Werten. Wäre zur Zeit t 0 im R-Register anstatt
0,5 der Wert 0 gestanden, so hätte die Funktion
y f (x) am Anfang der Lösung stärker vom richtigen
Wert abgewichen; da bei Reginn einer Rechnung der
Inhalt des R-Registers zu- oder abnehmen kann, ist es

sinnvoll, am Anfang seinen Wert in die Mitte des
Rereiches, nämlich auf 0,5 zu stellen.

zeichnet. Damit ist angedeutet, dass ein dy-Eingangs-
impuls den Wert 0,1 haben soll. Es steht dem Renützer
eines DDA frei, dem Eingangsimpuls einen beliebigen
Wert 10_;ï zuzuordnen, wobei x beim DA—1 eine ganze
Zahl zwischen 1 und 7 sein kann. Es ist leicht
einzusehen, dass die Genauigkeit der Lösung von dieser
Skalierung der dy-Eingänge abhängt, je kleiner die dy
skaliert sind, umso genauer wird die Lösung. So kann
man im letzten Beispiel dy zehn mal kleiner wählen,
also 0,01; die dy-Eingänge wären jetzt an der
zweiten Stelle nach dem Komma aufzusummieren.
Ein drr-Inkrement besitzt dann noch die Grösse 0,01.
Kurve 6 in Fig. 5 zeigt den Verlauf vony(x) bei dieser
neuen Skalierung. Man sieht, dass die Rechnung in
diesem Falle zehn mal genauer ist, dass aber für die
Durchrechnung der Lösung zehn mal mehr Rechenschritte

notwendig werden (vgl. Tabelle II). Es folgt
daraus der wichtige Schluss für die Skalierung des
DDA:

Funktionsverlauf bei der Integration der Differentialgleichung
lierung von dy 0,01

Tabelle II

0 0,2 0,4 0,6
SSV306S0 X

Fig. 5

Funktionsverlauf der Lösung nach der in Fig. 4 gezeigten Schaltung
a Skalierung: dy 0,1; dx 0,1

b Skalierung: dy 0,01; dx 0,01

Die Integratoren können auch in einer zweiten
Operationsart verwendet werden, als sog.
Entscheidungselemente. Ein solches Element gibt dann und nur
dann einen Ausgangsimpuls ab, wenn im Y-Register
eine von Null verschiedene Grösse gespeichert ist und
ein dir-Impuls an den Integrator gelangt. Es gilt dann:

ds sign y (für y =j= 0)
und

ds 0 (für y 0)

Jeder Integrator kann einen einzigen da-Eingang
empfangen, er kann hingegen beliebig viele dy-Eingänge

verarbeiten. Der Ausgang jedes Integrators kann
als dx- oder dy-Eingang in jedem beliebigen andern
Integrator verwendet werden. Daraus geht hervor,
dass nicht alle Integratoren die gleiche unabhängige
Integrationsvariable haben müssen (bei rein elektronischen

Analogierechenanlagen ist dies notwendigerweise

immer die Zeit), sondern dass als unabhängige
Integrationsvariable ein behebiger Ausgang eines
andern Integrators verwendet werden kann. Dank
dieser Eigenschaft lassen sich auf dem DDA eine Reihe
mathematischer Funktionen sehr elegant erzeugen
(z. B. der Logarithmus). Eine grosse Anzahl von Schal-
tungsmöglichkeiten zur Funktionserzeugung gibt Forbes

[4].
2.3 Skalierung

In Fig. 4b wurde der dy-Eingang beim Y-Register
über die erste Stelle nach dem Dezimalkomma ge-

y' — y bei einer

Zahl der Inhalt
Integrationsdes

schritte Y-Registers
n Y

0 1,00

1 0,99
2 0,98
3 0,97
4 0,96
5 0,95
6 0,94
7 0,93
8 0,92
9 0,91

10 0,90
11 0,90
12 0,89

Inhalt
des

R-Registers
R

Wert des
Ausgangimpulse

Kdz

0,50
0,50 — 0,01
0,49 — 0,01
0,47 — 0,01
0,44 — 0,01
0,40 — 0,01
0,35 — 0,01
0,29 — 0,01
0,22 — 0,01
0,14 — 0,01
0,05 — 0,01
0,95 0

0,85 — 0,01

Einem dy-Inkrement kann ein beliebiger Wert
zugeordnet werden. Grosse Werte für die dy ergeben
grobe Approximation des Funktionsverlaufes in wenigen

Rechenschritten (Kurve a in Fig. 5) ; kleinere
Werte für dy ergeben entsprechend bessere Approximation

der Lösungsfunktion und benötigen mehr
Integrationsschritte (Kurve b in Fig. 5).

Da beim DDA die Rechenzeit genau proportional
zur Anzahl der Integrationsschritte ist, folgt, dass die
Rechenzeit sich umgekehrt proportional zur erreichten
Genauigkeit verhält. Beim Skalieren legt also der Be-
nützer die Genauigkeit der Lösung und die Rechenzeit
fest.

3. Vergleich des DDA mit dem Analogrechner

Einen wesentlichen Anstoss zur Entwicklung des
DDA gab die Tatsache, dass man den Ingenieuren ein
Gerät zur Verfügung stellen wollte, das die gleiche
Leichtigkeit der Programmierung und vor allem die
selbe Anschaulichkeit wie ein Analogierechengerät
bieten, aber den Nachteil der geringen Genauigkeit
nicht aufweisen sollte. Es liegt deshalb nahe, die
verschiedenen gemeinsamen Merkmale des DDA und des

Analogrechners zusammenzustellen.
Beide Geräte haben als Grundelement den

Integrator, daneben Konstantenmultiplikatoren und
Addierglieder. Das hat zur Folge, dass das Rechenschema
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beim DDA und beim Analogrechner für viele Aufgaben
genau gleich aufgebaut ist. Bei beiden Rechenmethoden
können zum Beispiel Blockschaltbilder von
Regelkreisen direkt auf die Rechenmaschine übertragen
werden, wodurch eine äusserst übersichtliche
Programmierung zustande kommt.

Ein zweites gemeinsames Merkmal beider
Rechenmethoden ist die Art der Skalierung. Genau wie beim
Analogrechner ist es auch beim DDA notwendig, so zu
skalieren, dass alle Integratoren möglichst voll
ausgesteuert werden; nur so erreicht man die grösst-
mögliche Genauigkeit. Vor allem beim Skalieren des
DDA kommen einem Erfahrungen, die man beim
Arbeiten mit Analogierechenmaschinen gewonnen hat,
zugute.

Sowohl beim Analogrechner wie auch beim DDA
müssen vor Beginn einer Rechnung in allen Integratoren

die entsprechenden Anfangsbedingungen gesetzt
werden; bei beiden Methoden kann die Rechnung zu
einer beliebigen Zeit angehalten werden, um beispielsweise

gewisse Konstanten zu ändern; die Rechnung
kann nachher am selben Ort mit den neuen Konstanten
weitergeführt werden.

Schliesslich liefern beide Methoden das Resultat in
Form von registrierten Kurven, die Lösungen werden
dadurch anschaulich, bei einigen Modellen von DDA
werden die Resultate zusätzlich auch in Tabellenform
ausgeschrieben2).

Neben diesen gemeinsamen Merkmalen gibt es auch
einige grundsätzliche Verschiedenheiten zwischen DDA
und elektronischen Analogierechengeräten. Wohl der
wichtigste Unterschied liegt in der Natur der
unabhängigen Variablen àx. Diese ist beim elektronischen
Analogrechner (falls er ohne jede mechanische
Komponente arbeitet) naturgemäss immer die Zeit, sie kann
beim DDA beliebige Werte annehmen, sie kann sogar
negativ werden. Dadurch wird der Anwendungsbereich

des DDA wesentlich grösser als derjenige des
Analogrechners.

Ein zweiter wichtiger Unterschied zwischen DDA
und Analogrechner liegt darin, dass bei diesem die
Rechengenauigkeit durch die Komponentengenauigkeit

beschränkt ist, und dass daran durch den Be-
nützer nichts geändert werden kann, während es beim
DDA möglich ist, die Genauigkeit innerhalb gewisser
Grenzen dem Problem anzupassen.

4. Illustratives Beispiel
aus der mechanischen Schwingungslehre

4.1 Physikalisches Problem
An Hand eines einfachen Beispieles aus der

mechanischen Schwingungslehre soll im folgenden gezeigt
werden, wie die drei Rechenmethoden angewendet
werden können. Das hier behandelte Problem führt
auf lineare Differentialgleichungen, die auch elementar
analytisch gelöst werden könnten, doch soll mit Nachdruck

darauf hingewiesen werden, dass für alle drei
elektronischen Rechenmethoden eine Linearität des
Problems keineswegs gefordert ist. Während bei
Berechnung von Hand für lineare Probleme vielfach eine
analytische Lösung gefunden werden kann, deren
numerische Auswertung keinen allzugrossen Aufwand
braucht, ist bei nichtlinearen Problemen eine analy-

Durch Zusatzgeräte können heute auch die Ergebnisse von
Digitalrechenmaschinen in Kurvenform erhalten werden.

tische Lösung in den wenigsten Fällen möglich. Bei den
elektronischen Rechenmethoden wird der Aufwand
wohl etwas grösser, wenn die Differentialgleichungen
nichtlinear sind, doch ist in den meisten Fällen die
Lösung dadurch nicht prinzipiell schwieriger zu finden.

Fig. 6

Lineares Zweimassensystem
beim Uberfahren

eines Einzelhindernisses
Das Zweimassensystem fährt
mit konstanter Geschwindigkeit
in Richtung x über ein einzel¬

nes Hindernis z0 (x)

Weitere Bezeichnungen
siehe im Text

Es soll hier berechnet werden, welche Bewegung ein
Eisenbahnwagen, der über ein einzelnes Hindernis
fährt, ausführt. Interessiert man sich nur für die
Bewegungen in vertikaler Richtung, so kann ein
Drehgestell-Eisenbahnwagen stark vereinfacht durch ein
Zweimassensystem, wie es in Fig. 6 dargestellt ist,
nachgebildet werden. Die Masse mi stellt das Drehgestell
dar, die Masse ni2 den Wagenkasten. Das Drehgestell
ist mittels der Feder Fi auf der Radachse A abgestützt,
über die Feder F2 der Wagenkasten auf dem
Drehgestell. Parallel zu diesen zwei Federn wirken die
geschwindigkeitsproportionalen hydraulischen Stoss-
dämpfer D\ und D2.

Dieses lineare System soll sich mit konstanter
Geschwindigkeit in der Richtung x bewegen, sein
Fusspunkt, die Radachse, soll dabei ein einmaliges Hindernis

von der Form

20= % H (1 — cos m t) (5)

überfahren, und zwar so, dass kein Absprung der
Radachse von der Schiene erfolge. Die Hindernisform nach
Gl. (5) wurde gewählt, weil bei ihr die Unebenheit
sowie ihre erste Ableitung an beiden Enden gleich Null
sind. Die Bewegungsdifferentialgleichungen lauten:

zi + di (ii —io) + Kd2{zi — 22) + n (zi—z0) +
-\-kv2 (zi — 22) 0 (6)

Z2 + d2 (22 il) + J»2 (22 — 21) =0
wobei

vi cijmi
di — ki/mi
k mz/mi

bedeuten.

V2 — c2/m2

d2 — kzlm2

Für 20 soll gelten:

20 0,005 (1 — cos 1001)
t 2 n/100

Die angegebenen Differentialgleichungen sollen für
verschiedene Werte der Konstanten gelöst werden,
beispielsweise lauten diese Werte für einen Zweitklass-
Wagen der Schweizerischen Bundesbahnen [5]:

vi 1086 s-2

di 55,7 s-1

* 5,57

V2 143 s-2

d2 9,6 s-l

18 (A18) Bull. SEV 53(1962)1, 13. Januar



4.2 Die Lösung mit dem Analogierechengerät

Das Schaltschema für die Lösung des
Differentialgleichungssystems (6) auf dem Analogrechner ist in
Fig. 7 dargestellt. Man kann daraus ersehen, dass für
die Lösung dieser Aufgabe insgesamt 5 Integratoren,
10 Umkehr- und Addierverstärker und 7
Koeffizientenpotentiometer gebraucht werden. Von den 5 Integratoren

dienen vier zur Integration der beiden abhängi-

Fig. 7

Schaltung des Analogierechners
zur Lösung des Differentialgleichungssystems (6)

Eingangsgrösse ist die Unebenheitsfunktion z0 (t)
Fotentiometereinstellungen: Pt d7/100 0,557; P2 KdJIOO 0,535;

p„ jyio ooo 0,109; pt Kvj\m 0,797; p- dj100 0,010;

P„ r2/100 0,143; P, Je 0,995

Weitere Bezeichnungen siehe im Text

Eingänge der Störfunktion in den Integrator 1

aufgetrennt werden.

Die vier Intagratoren Nr. 3, 5, 8 und 10 integrieren
die abhängigen Variablen 21 und z%. In den beiden
Integratoren Nr. 6 und 11 werden die Inkremente d2i und
dz<2 zu 21 und 22 aufsummiert; die Integratoren Nr. 4,
7, 9 und 12 sind als Konstantenmultiplikatoren
geschaltet.

I i 0,2 0,4 ^6^ 0,8 1,0 1,2 1,4 s

.-2ms
r-i
J 1,5

0,4 0,6
^

0,8 1,0 1,2 1,4 s

t 2,5-10-

0,2 t 0,8 1,0 1,2 1,4 s

Fig. 8

Mit dem Analogierechengerät erhaltene Lösungskurven
Von oben nach unten sind dargestellt: Verlauf der Unebenheit,
Beschleunigung, Geschwindigkeit und Auslenkung der Masse m„

gen Variablen, der fünfte Integrator wird in der
Schaltung zur angenäherten Differentiation von 20
gebraucht. Diese hier angewendete Schaltung erlaubt, die
exakte Differentiation, die physikalisch unmöglich ist,
durch eine angenäherte Differentiation zu ersetzen. Die
Störfunktion zo(t) wird in einer externen Schaltung
erzeugt. In Fig. 8 sind die mit dem Analogierechengerät
erhaltenen Lösungskurven aufgezeichnet.

4.3 Die Lösung mit dem DDA
Fig. 9 zeigt das Schaltschema für die Lösung der

Differentialgleichungen (6) mit dem DDA. Auch die
Störfunktion wird hier auf dem DDA erzeugt; in der
rechten Hälfte der Fig. 9 ist dargestellt, wie durch
Lösen der Differentialgleichung

y .y
mit geeigneten Anfangsbedingungen die Störfunktion
von der Zeit t 0 bis zur Zeit t 27t/100 s erzeugt
wird. Nach Ablauf der Zeit t — 2 71/IOO s müssen die

Die Art und Weise, wie dieses Schaltschema auf dem
DDA realisiert wird, hängt vom Typ des DDA ab.
Beim Bendix DA-1 erfolgt die gesamte Programmierung

durch numerisch codierte Befehle, welche mit der
Schreibmaschine dem Computer übermittelt werden,
beim CORSAIR wird der Schaltplan, gleich wie bei
einem Analogierechengerät, auf einem Steckbrett mittels

Drahtverbindungen gestöpselt.
Die Resultate liefert der Bendix DA-1 in Form von

Tabellen, in welchen man mit der Schreibmaschine
jeweils nach einer programmierten Anzahl von
Integrationsschritten den Inhalt der Y-Register beliebiger
Integratoren herausschreiben kann. Man hat weiter die
Möglichkeit, eine der Variablen in Funktion einer
beliebigen andern Variablen mittels eines
Kurvenzeichners aufzuzeichnen.

Die Skalierung des DDA für diese Aufgabe erfolgte
derart, dass die Resultate sicher auf drei bedeutsame
Dezimalstellen genau werden. Dies erforderte für die
unabhängige Variable dx eine Skalierung von:

dt
'di,Eâ

¥UFF

-109.2

XZ3-

dt
/dz,

-9,6

dz,

794 1

Hj

V dfco:

uty—T——j

dfcosul)

£
543

d (sinot
• 100 2

f5,43 d(cos &>t)
oa

j—i 27,8 d(sinüt)

Stört unktion

Fig. 9

Schaltschema zur Lösung des

Differentialgleichungssystems (7)

auf dem DDA

Die Integratoren auf der linken
Hälfte dienen zur Integration der
Differentialgleichungen, diejenigen
auf der rechten Hälfte zur Erzeu¬

gung der Störfunktion
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dx dt 2-16

Bis der DDA die Lösung bis zum Moment des Endes
des Hindernisses gerechnet hat, braucht er

2 re/100
n —

'- 4118
2-16

Integrationsschritte; da der DA-1 pro Sekunde 34
Integrationsschritte ausführt, dauert die Rechenzeit bis
zum Ende des Hindernisses zirka 121 s.

4.4 Lösung mit der digitalen Allzweckrechenmaschine

Wohl jedem Benutzer einer digitalen
Rechenmaschine steht eine Programmbibliothek zur Verfügung,

und es ist anzunehmen, dass er darin mindestens
ein Programm für die Lösung gewöhnlicher Differen-
tialgleichungssysteme zweiter Ordnung findet (z. B.
ein Programm nach dem Verfahren Runge-Kutta).
Somit reduziert sich die Programmierungsaufgabe auf

Tabelle III
t Z1 Z2 Z1 Z2

[ms] [mm] [mm] [mm/s] [mm/s

3.1416 .0133 .0001 12.4460 .1280
6.2832 .0985 .0015 44.4210 .9532
9.4248 .3043 .0073 87.8130 2.9565

12.5660 .6539 .0216 134.6700 6.3788
15.7080 1.1464 .0489 177.6500 11.2290
18.8500 1.7596 .0934 210.5100 17.3040
21.9910 2.4537 .1585 228.5200 24.2300
25.1330 3.1769 .2460 228.7800 31.5060
28.2740 3.8717 .3562 210.4600 38.5680
31.4160 4.4811 .4875 174.7300 44.8470
34.5580 4.9546 .6366 124.6600 49.8320
37.6990 5.2541 .7988 64.8010 53.1250
40.8410 5.3574 .9684 .7928 54.4810
43.9820 5.2611 1.1391 - 61.2730 53.8340
47.1240 4.9806 1.3047 - 115.4400 51.3070
50.2660 4.5494 1.4598 - 156.5000 47.1990
53.4070 4.0151 1.6001 - 180.4800 41.9610
56.5490 3.4355 1.7229 - 185.0900 36.1440
59.6900 2.8728 1.8272 - 169.8800 30.3560
62.8320 2.3872 1.9143 - 136.3800 25.1950

die Programmierung der rechten Seiten der
Differentialgleichungen. Mit einiger Erfahrung wird es einem
auch leicht fallen, einen vernünftigen Wert für die
Schrittweite h zu finden, derart, dass die Genauigkeit
hinreichend gut und die Rechenzeit vernünftig kurz
wird. Vielleicht steht sogar ein Programm zur
Verfügung, das die Schrittweite ständig kontrolliert und
dem Verlauf der Lösungsfunktion anpasst. Tabelle III
zeigt die mit dem Bendix G-15-Computer berechnete

Flg. 10

Mit dem digitalen Allzweckrechner und einem Kurvenzeichner
erhaltene Lösungskurven

oben ist die Auslenkung der Masse m2 aufgetragen
Kurve a mit einem Dämpfer Dv Kurve b ohne Dämpfer D1

unten ist der Verlauf der Unebenheit aufgetragen

20 < A 20) •

Lösung mittels dem Verfahren Runge-Kutta. Auch eine
graphische Registrierung der Resultate mit dem
Graph-Plotter ist beim G-15 möglich, dies erspart
einem das mühselige Aufzeichnen von Funktionsverläufen

aus Tabellen. Fig. 10 zeigt die mit dem
Graph-Plotter automatisch registrierte Lösung ; für die
Kurve b wurde der Dämpfer Di im mechanischen
System weggelassen3).

5. Vergleich aller drei Rechenmethoden

Zum Schluss sollen die drei Methoden in Bezug auf
a) Rechengeschwindigkeit
b) Rechengenauigkeit
c) Programmierungsaufwand

kurz gegeneinander abgewogen werden.

5.1 Rechengeschwindigkeit
In Bezug auf die Rechengeschwindigkeit ist der

elektronische Analogrechner den beiden andern Methoden

überlegen. Beim Analogrechner ist die
Rechengeschwindigkeit für das hier behandelte Beispiel praktisch

einzig durch die Zeit, welche aufgewendet werden
muss, um das Resultat zu registrieren, beschränkt.

Für den DDA hängt die Rechengeschwindigkeit von
der geforderten Genauigkeit ab. Für eine Genauigkeit
von 3 bedeutsamen Dezimalstellen beträgt der
Zeitbedarf beim DA-1 120 s, beim CORSAIR würde er
etwa 10 s.

Für die Rechenzeit bei digitalen Rechenmaschinen
sollen drei charakteristische Fälle betrachtet werden:

1. Lösung mit Magnettrommelrechner älterer Bauart (z. B.
Bendix G-15, 1956) in einem interpretativen Programmiersystem
mit Gleitkomma (Intercom beim G-15):
20 Integrationsschritte à 150 Operationen à 0,125 s:

T 375 s

2. Lösung mit gleicher Maschine wie unter 1., aber in optimaler
Maschinensprache und mit Festkomma:
20 Integrationsschritte à 150 Operationen à 0,0125 s:

T 37,5 s

3. Lösung mit modernem, schnellem Kernspeicherrechner
(zum Beispiel Bendix G-20):
20 Integrationsschritte à 150 Operationen à 40 ps:

T 0,12 s

Die Rechenzeit bei digitalen Rechenmaschinen kann
also, je nach dem verwendeten Typ und dem
Programmiersystem, in sehr weiten Grenzen variieren.

Handelt es sich um die Lösung komplizierterer
Differentialgleichungssysteme, so kann sich das Verhältnis
der Rechenzeiten noch etwas zu Gunsten des DDA
ändern, denn beim DA-1 wird ja auf alle Fälle pro
Trommelumdrehung jeder der 108 Integratoren ein-
und nur einmal prozessiert, die Rechenzeit ist somit
nicht abhängig von der Zahl der verwendeten Integratoren;

im Gegensatz dazu nimmt beim Runge-Kutta-
Verfahren, bei welchem pro Integrationsschritt alle
rechten Seiten der Differentialgleichungen viermal
berechnet werden müssen, die Rechenzeit mit der
Komplexheit eines Problems stark zu.

5.2 Genauigkeit
Beim Analogrechner ist die Genauigkeit der Lösung

weitgehend durch die Komponentengenauigkeit des

3) Die Berechnungen mit dem G-15 sowie mit dem DA-1 wur-
den im Rechenzentrum der Omni Ray AG in Zürich durchgeführt.
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Rechengerätes bestimmt. Diese liegt für elektronische
Analogrechner heute in der Grössenordnung von 10-4
und dürfte auch in Zukunft kaum wesentlich
verbessert werden können.

Beim DDA kann man innerhalb der durch die
Wortlänge des DDA gegebenen Grenzen die Genauigkeit

mittels der Skalierung festlegen.
Die grösste Genauigkeit liefert der digitale Allzweckrechner.

Hier hängt die Genauigkeit der Lösung von
der Wortlänge des Computers sowie von der gewählten
Schrittlänge ab.

5.3 Programmierungsaufwand
Beim Programmierungsaufwand haben sich die

Verhältnisse innerhalb der letzten Jahre grundlegend
geändert. War noch vor wenigen Jahren für die Lösung
von gewöhnlichen Differentialgleichungssystemen der
Programmierungsaufwand für den elektronischen
Analogrechner am geringsten, derjenige für digitale
Rechenmaschinen am grössten, so kann man heute
wohl annehmen, dass durch die enormen Fortschritte in

der automatischen Programmierung digitaler
Rechenmaschinen der Programmierungsaufwand für diesen
Maschinentyp am kleinsten wird. Für die Lösung von
Differentialgleichungssystemen liegt meistens ein
Bibliotheksprogramm vor. Es müssen dann nur noch die
rechten Seiten der Gleichungen, beispielsweise in
ALGOL, programmiert werden.
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Wellenleiter
Publikation des Internationalen Elektrotechnischen Wörterbuches (2. Ausgabe),

herausgegeben von der CEI 621.372.8

Die Commission Electrotechnique Internationale hat im letzten
Sommer das Kapitel «Wellenleiter» der 2. Auflage des
Internationalen Elektrotechnischen Wörterbuches herausgegeben [1] i).
Diese Publikationen, welche 46 Seiten im Format A4 umfasst,
enthält Definitionen von 130 Ausdrücken in englischer und
französischer Sprache, die in der Wellenleitertechnik und in der
Technik der Mikrowellenantennen am gebräuchlichsten sind,
sowie die entsprechenden Übersetzungen dieser Ausdrücke in
deutscher, spanischer, italienischer, holländischer, polnischer
und schwedischer Sprache. Ein alphabetisches Sachregister,
welches in den 8 verwendeten Sprachen abgefasst ist, erlaubt es, den
gesuchten Ausdruck oder dessen Übersetzung in einer dieser
Sprachen mit Leichtigkeit zu finden.

Kein Wörterbuch kann perfekt sein, wenn man die unendlichen

Feinheiten der Sprache und den im allgemeinen
beschränkten zur Verfügung stehenden Umfang berücksichtigt. Im
betreffenden Fall wurde die Schwierigkeit, ein möglichst exaktes
Werk zu schaffen, durch die relative Neuheit und die rasche
Entwicklung des Gebietes, welches bearbeitet werden sollte, noch
erhöht. Trotzdem und dank der Anstrengungen der Spezialisten
verschiedener Länder, kann das erreichte Ergebnis als sehr gut
bezeichnet werden.

Die Arbeit wurde ziemlich genau vor 10 Jahren aufgenommen

und ein durch das Nationalkomitee von Grossbritannien
ausgearbeiteter erster Entwurf in französischer und englischer
Fassung im Monat März 1952 den Nationalkomitees unterbreitet
[Dokument l(Secrétariat)219]. Die Prüfung dieses Dokumentes
wurde in der Schweiz durch das Fachkollegium 1 (Wörterbuch)
des Schweiz. Elektrotechnischen Komitees (CES) einer kleinen
Arbeitsgruppe von Spezialisten anvertraut, welche in einer
Stellungnahme dem CES im September 1952 zahlreiche Bemerkungen

und Vorschläge vorlegte [1 (Suisse) 111]. Einer der wesentlichen

Diskussionspunkte bestand in der Definition der verschiedenen

«Schwingungsmoden» in den Wellenleitern. Die, verschiedenen

Ländern angehörenden Verfasser haben in der Tat, gestützt
auf die Abbildung entweder des elektrischen oder des magnetischen

Feldes, verschiedene Bezeichnungen für die selben
Schwingungsmethoden eingeführt. Es gehörte nicht zur Aufgabe des

Fachkollegiums 1, eine Wahl vorzunehmen und gewisse Bezeichnungen

abzuschaffen, sondern sie alle zu definieren. Dies hat
dazu geführt, mehrere gleichwertige Bezeichnungen für den
gleichen Modus zu geben. Als Beispiel sei der «mode magnétique
transversal» erwähnt, welcher im französischen ebenfalls Mode

') Siehe Literatur am Schluss des Aufsatzes.

TH, Mode TM; Mode E genannt wird. Klare, vollständige und
eindeutige Definitionen für die verschiedenen Schwingungsmoden

zu finden war schwierig und gab zu Diskussionen An-
lass. Ohne Zweifel werden jedoch die Gruppierungen der
verschiedenen Bezeichnungen für die Schwingungsmoden und die
entsprechenden Definitionen, die sich schliesslich ergaben, all
denjenigen eine wertvolle Hilfe sein, welche Arbeiten über dieses
Gebiet lesen oder publizieren. Es ist zu hoffen, dass sich mit der
Zeit die eine oder andere Variante behaupten wird und dass es

möglich wird, in einer zukünftigen Ausgabe gewisse Varianten
auszuschliessen.

Im Anschluss an eine, am 17. Mai 1955 in Brüssel
stattgefundene Sitzung, an welcher die Delegierten der verschiedenen
Länder teilnahmen, welche seinerzeit zum Grunddokument
Bemerkungen vorgelegt hatten, wurden diese geprüft. Als Folge
konnte ein zweiter, wesentlich verbesserter Entwurf den
Nationalkomitees unterbreitet [1(62)(Secrétariat)257] und unter
Beachtung der 6-Monate-Regel auf Dezember 1955 zur Annahme
empfohlen werden. Das CES, wie auch andere Nationalkomitees
der CEI, machten noch einige Bemerkungen zu diesem Dokument

[1(62)(Suisse)128]. Das Sekretariatskomitee berücksichtigte
sie, indem es im Februar 1958 eine 3. Fassung [1(62) (Secré-
tariat)264] herausgab, die unter Beachtung der 2-Monate-Regel
zur Annahme empfohlen wurde. Wiederum brachte die Arbeitsgruppe

des Fachkollegiums 1 des CES Verbesserungsvorschläge
vor, welche zum Teil in der endgültigen Ausgabe berücksichtigt
worden sind.

Parallel zu ihrer Arbeit bei der Ausarbeitung des Inhaltes
des französisch-englischen Dokumentes, hat das CES ebenfalls
an der deutschen Fassung mitgearbeitet. Als die Arbeit im Jahre
1952 angefangen wurde und Deutschland und Österreich ihren
Platz in der CEI noch nicht wieder eingenommen hatten, be-
scliloss das CES, dass die Dokumente des Wörterbuches in der
Schweiz auf deutsch übersetzt werden sollten. So wurde der erste
Entwurf von Klauser, Ingenieur der Albiswerke AG, in
hervorragender Weise übersetzt. Das ursprüngliche Dokument erfuhr
leider nachträglich wesentliche Änderungen, so dass der erwartete

Nutzen der vorgenommenen grossen Übersetzungsarbeit zum
Teil ausblieb. Vermutlich ist es überhaupt das einzige Dokument
des Wörterbuches, welches vollständig übersetzt wurde.

Die schweizerischen Experten der deutschen Sprache haben
später, zusammen mit jenen aus Deutschland und Österreich, nur
an der deutschen Übersetzung der Ausdrücke mitgearbeitet. Sie
setzten sich ein, damit die in der Schweiz benützten Ausdrücke
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