Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 52 (1961)

Heft: 20

Rubrik: Energie-Erzeugung und -Verteilung : die Seiten des VSE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

rüstung mit Feuerlöschgeräten usw. können für den Entscheid mitbestimmend sein.

Die Transportversicherung kann anstelle eines ganzen Wagenparkes nur für einen bestimmten Lastwagen vereinbart werden, wobei die mit dem Autobetrieb beauftragten Stellen über diesen Wagen und dessen Transportversicherung orientiert sein müssen. Die Versicherungssumme im Sinne eines Grundbetrages kann für den Fall, dass der Wert des Transportgutes diesen übersteigt, entsprechend erhöht werden.

Wo nicht regelmässige, zu versichernde Transporte in Frage kommen, kann auch eine Einzeltransportversicherung von Fall zu Fall abgeschlossen werden.

e) Einbruch- und Diebstahlversicherung

Diese Delikt-Versicherung deckt Schäden, Verlust, Beschädigung oder Zerstörung an Sachen, die im Versicherungsvertrag bezeichnet werden müssen.

Die Versicherung gegen einfachen Diebstahl, also ohne Einbruch oder gewaltsames Aufbrechen zum Beispiel von Schubladen, Kassenschränken usw., bedarf der besonderen Vereinbarung. Sachen Dritter sind gegen solche Schäden ausdrücklich zusätzlich im Versicherungsvertrag aufzuführen.

Adresse des Autors:

M. Baumgartner, Vize-Direktor der Aare-Tessin A.-G. für Elektrizität, Olten.

Literatur

Der Energieversorgungsvertrag. Von L. Hose. Darmstadt, Fachverlag Dr. N. Stoytscheff, 1961. 8°, 207 S.

Es handelt sich bei der vorliegenden Arbeit um eine Dissertation, die der Rechtswissenschaftlichen Fakultät der Johann-Wolfgang-Goethe-Universität in Frankfurt am Main vorgelegt wurde. Hauptanliegen des Verfassers ist es, die Rechtsnatur des Energieversorgungsvertrages in Deutschland festzulegen. Hiemit steht nun allerdings ein Thema zur Diskussion, über das man in der Rechtsliteratur die verschiedensten Ansichten lesen kann. Der Verfasser hat daher zweifellos den richtigen Weg gewählt, wenn er seinen Überlegungen über die Natur des rechtlichen Verhältnisses zwischen dem Elektrizitätswerk und seinen Abnehmern die Beschreibung der Energieversorgung in technischer und wirtschaftlicher Hinsicht und die rechtliche Ausgestaltung des Vertragsverhältnisses durch die Allgemeinen Versorgungsbedingungen (im Gegensatz zur Schweiz bestehen in Deutschland bekanntlich allgemein verbindliche Versorgungsbedingungen) vorausschickt. In seinen rechtlichen Überlegungen kommt er dann zum Schluss, dass keine der Normen des besondern Teils der Schuldverhältnisse des deutschen Rechtes auf den Energieversorgungsvertrag passt und es sich demnach um ein Rechtsverhältnis eigener Art handelt. Es gibt nicht wenige Fälle, in denen die rechtliche Natur dieses Vertrages von Bedeutung ist. Leider untersucht der Verfasser anschliessend nur die Wirkungen des Vertragsverhältnisses im Konkurs- und Vergleichsverfahren des Abnehmers. Am Schluss der Arbeit folgt ein Abschnitt über die Energieversorgung im Spiegel des ausländischen Rechtes.

U.Flury

Wirtschaftliche Mitteilungen

Die Gefahr der gegenseitigen Beeinflussung von Netzkommandoanlagen in benachbarten Verteilnetzen

Von J. Pelpel, Montrouge

Zu diesem, im Bull. SEV Bd. 52(1961), Nr. 9, S. 355...357 veröffentlichten Artikel erhalten wir folgende Zuschrift:

Zusammenfassung

Der Verfasser dieser Zuschrift und J. Pelpel sind sich darin einig, dass es praktisch unmöglich ist, allein durch die Wahl einer speziellen Steuerfrequenz für jede Netzkommandoanlage gegenseitige Beeinflussungen auszuschliessen. Er stellt fest, dass die der Arbeit von J. Pelpel zugrunde gelegten Annahmen zu günstig für extrem tiefe Frequenzen gewählt sind und dass die aufgestellte Bedingung, welche gegenseitige Beeinflussungen ausschliessen soll, nicht für den allgemeinen Fall genügt. In Übereinstimmung mit einer früheren Publikation eines Mitarbeiters der EDF wird gezeigt, dass diese Bedingung durch eine dreimal schärfere Bedingung zu ersetzen ist, die in der Praxis kaum erfüllt ist. Da die Kopplungszelle für die Steuerfrequenz einen selektiven Kurzschluss der Mittelspannungssammelschiene darstellt, sind die gesteuerten Netze bei mittleren und höheren Frequenzen wirksam geschützt, und die diesbezüglichen Zweifel von J. Pelpel sind nach Ansicht des Verfassers unbegründet. In einer grossen Anzahl bedeutender Netze ist dieser Schutz praktisch erprobt und hat sich bewährt. Im weiteren zeigt der Verfasser der Zuschrift, dass eventuell auftretende gegenseitige Beeinflussungen bei einer Steuerfrequenz um 1000 Hz sich mit einem zwölfmal kleineren Aufwand eliminieren lassen als bei

Im erwähnten Artikel befasst sich der Autor mit einem Problem der Netzkommandotechnik, über das trotz seiner zunehmenden Wichtigkeit noch wenig publiziert wurde: Die Begrenzung des Aktionsradius der Netzkommandoimpulse auf das auszusteuernde Netz, um die Beeinflussung der Netzkommandoempfänger in den Nachbarnetzen zu vermeiden. Am Anfang der Netzkommandotechnik waren diese Anlagen noch weit zerstreut und das Problem der gegenseitigen Beeinflussungen hatte deshalb nur geringe praktische Bedeutung. Durch den immer umfangreicheren Einsatz dieser Steuerungen in den europäischen und überseeischen Ländern nimmt die Gefahr gegenseitiger Beeinflussungen ganz wesentlich zu. So wurde in der Anfangszeit z. B. in Neuseeland von den damaligen Herstellern diesem Problem wenig Beachtung geschenkt, was später zu einer ganz erheblichen Zahl von gegenseitigen Störungen führte. Dieses Land, das schon relativ früh Netzkommandoanlagen in Betrieb genommen hat, weist heute gewiss die grösste Dichte an solchen Anlagen auf.

Die einfachste Lösung, gegenseitige Störungen auszuschliessen, wäre die Zuteilung je einer besonderen Frequenz für jedes einzelne Netz. Das ist aber, wie auch der Autor ausführt, praktisch nicht realisierbar, da die Berücksichtigung der Ausbreitungsmöglichkeit der Tonfrequenzimpulse, der besonders ausgeprägten Harmonischen der 50-Hz-Spannung und der Selektivität der mit einem vernünftigen Aufwand zu bauenden Filter, die Anzahl der in der Netzkommandotechnik verwendbaren Frequenzen stark beschränkt. Es ist deshalb bei dem zu erwartenden starken Ausbau der Netzkommandoanlagen nicht möglich, allen Elektrizitätswerken, welche über ein Hochspannungs-Verbundnetz zusammenhängen, je eine besondere Frequenz zu reservieren; dies umsomehr als sich diese Verbundnetze immer mehr

Dem Problem der gegenseitigen Beeinflussung kann also nicht ausgewichen werden und man muss sich bei der Planung von Netzkommandoanlagen mit den Steuerenergieresten befassen, welche von jeder Sendeanlage über das übergeordnete Netz in das benachbarte Mittelspannungsnetz abfliessen. Es müssen von Anfang an die notwendigen Massnahmen geplant und angeordnet werden, um diese Steuerspannungsreste auf ein harmloses Mass zu beschränken, da es normalerweise kaum möglich ist, bei auftretenden Beeinflussungen sofortige Abhilfe zu schaffen.

TT

Die Wahl einer einzigen Steuerfrequenz und eines einzelnen Netzkommandosystems innerhalb der einzelnen Elektrizitätsversorgungsunternehmen hat sicher gewaltige Vorteile: Vereinfachung der Lagerhaltung, Vereinheitlichung des Materials, keine Probleme bei Grenzverschiebungen zwischen zwei speisenden Unterwerken.

Die Vereinheitlichung der Steuerfrequenz für mehrere Verteilgesellschaften bringt jedoch keine weiteren Vorteile. Die Redaktion der «Seiten des VSE» hat darauf hingewiesen 1), dass das Problem der Verschiebung der Grenzen zwischen benachbarten Elektrizitätswerken in der Schweiz praktisch nicht besteht und der Bau neuer Unterwerke Hoch/Mittelspannung, die gemeinsam die Netze dieser zwei Werke speisen, kommt kaum in Frage. Diese Feststellung ist auch weitgehend für alle anderen Länder gültig, in denen die Energieverteilung nicht verstaatlicht ist.

Es kann gewiss vorkommen, dass durch einen Betriebsausfall ein Teil des Netzes kurzzeitig, z. B. während einiger Stunden durch das Netz des Nachbarwerkes gespeist werden muss. Solche Schaltzustände sind jedoch sehr selten und werden schon aus Gründen der Energieverrechnung auf möglichst kurze Zeit beschränkt. Bei einer solchen Aushilfe sprechen nun die Netzkommandoempfänger des vorübergehend gespeisten Netzteiles an, sofern die beiden Netze dieselbe Steuerfrequenz haben. Ein vernünftiges Arbeiten dieser Empfänger setzt jedoch voraus, dass nicht nur die Kodierung (Impulszeitdiagramm), sondern auch die Zuteilung der Steuerbefehle an die einzelnen Impulse vereinheitlicht ist. Diese Vereinheitlichung dürfte jedoch in den seltensten Fällen zu verwirklichen sein.

In vielen Ländern, z. B. in der Schweiz, in der Bundesrepublik Deutschland und in Österreich, findet man vor allem folgenden Netzaufbau: Ein Überlandwerk (in der Schweiz meistens ein Kantonswerk) verteilt die Mittelspannungs- und die Niederspannungsenergie in einem bestimmten Gebiet. Grössere Gemeinden besitzen jedoch z. T. ein eigenes Elektrizitätswerk, welches die Energie in Mittelspannung vom Überlandwerk kauft, um sie in Niederspannung auf eigene Rechnung zu verteilen. Dadurch sind die Netze des Überlandwerkes und der Wiederverkäufergemeinden sehr stark ineinander verschachtelt. Die Wiederverkäufergemeinden wünschen nun in den meisten Fällen eine eigene Netzkommandoanlage und dadurch muss ihnen eine, vom Überlandwerk abweichende Steuerfrequenz zugeteilt werden. In diesen Fällen ist es deshalb unerlässlich, über mindestens zwei Steuerfrequenzen zu verfügen, da keine natürliche Sperre zwischen den Netzen vorhanden ist und sich Tonfrequenzimpulse nicht um Eigentumsgrenzen kümmern.

Die Vorteile, welche sich bei Verwendung einer einzigen Steuerfrequenz für die Hersteller von Netzkommandoanlagen ergeben, sind äusserst gering. Die verschiedenen 50-Hz-Spannungen, die stark abweichenden Ausrüstungen (Anzahl Hauptkontakte und Anschlussklemmen), die Verschiedenheit der Sprachen auf den Bezeichnungsschildern und all die Sonderwünsche zwingen den Fabrikanten auch bei einer einheitlichen Frequenz, die Netzkommandoempfänger kundenweise zu gruppieren.

III

J. Pelpel macht darauf aufmerksam, dass die Gefahr der gegenseitigen Beeinflussung vom Verhältnis zwischen Sendespannung und Empfängerempfindlichkeit abhängig ist. Er führt aus, dass das Verhältnis Sendespannung/Empfängerspannung am ungünstigsten Ort des Netzes von der verwendeten Steuerfrequenz abhängt und folgende Werte erreicht:

> 1,35 bei 175 Hz 2,5 bei 485 Hz 4,8 bei 1000 Hz

Diese Werte aus dem Artikel von F. Cahen und H. Prigent [1] 2), gelten für ein am Ende mit rein ohmscher Belastung abgeschlossenes Niederspannungsnetz, das bei 50 Hz einen Spannungsabfall von 10 % ergibt (Niederspannungsnetz bestehend aus Freileitungen mit einem einheitlichen Querschnitt von 100 mm²). Die gewählten Bedingungen sind speziell für die höheren Steuerfrequenzen ungünstig, während sie dagegen bei

H. Schmid [2] und W. Kruse [3] haben jedoch gezeigt, dass in den Netzen mit einem bedeutenden Lastanteil von Asynchronmotoren bei 175 Hz weit höhere Spannungsabfälle (50 % und mehr) zu erwarten sind.

Das ist sicher einer der Gründe, warum die Electricité de France den oberen Grenzwert der Empfängerempfindlichkeit von 1 % der 50-Hz-Spannung bei der ersten Empfängerspezifikation (Circulaire H 60) auf den Wert von 0,9 % abgeändert hat (Spezifikationsprojekt HR 4.039, Juli 1959). Dabei beträgt der Nennwert der 175-Hz-Sendespannung bei Einspeisung auf 15 kV 2,3 %. Ein Vergleich auf der Basis der oben aufgeführten Werte entspricht deshalb weder extremen noch durchschnittlichen Bedingungen für die einen oder anderen Steuerfrequenzen.

J. Pelpel führt aus, dass die von ihm aufgestellte Bedingung die Sendespannung müsse mindestens 5,3 mal grösser als die Ansprechspannung der Empfänger sein — bei den schweizerischen Netzkommandoanlagen, welche mit Frequenzen um 1000 Hz arbeiten, nur selten erfüllt werde. Diese Behauptung stimmt jedoch mit der Praxis nicht überein. Die grosse Mehrheit der in der Schweiz arbeitenden Netzkommandoanlagen mit einer Steuerfrequenz von 1050 Hz sind von der Firma Zellweger A.-G. gebaut worden. Die Sendespannung dieser Anlagen beträgt normalerweise $3~^0/_0~{
m der}~50\text{-Hz-Spannung},~{
m d.}~{
m h.}~{
m auf}~220~{
m V}~{
m bezogen}$ 6,6 V und die Empfänger-Ansprechspannung im Durchschnitt 1,25 V, so dass also doch das von J. Pelpel geforderte Verhältnis von 5,3 erreicht wird. Zudem haben die Empfänger dieses Systems die allgemein zu wenig beachtete Eigenschaft, dass ihre Ansprechspannung sehr konstant und von der Netzspannung unabhängig ist. Die Höhe der Ansprechspannung wird einzig durch die Zündspannung einer Glimmröhre bestimmt. Diese Schaltung schliesst das Gebiet des unsicheren Ansprechens gänzlich aus und unterscheidet sich daher grundsätzlich von anderen Systemen, bei denen mechanische Elemente die Ansprechgrenze bestim-

Im zweiten Teil seiner Arbeit stellt J. Pelpel die Bedingungen auf, nach denen bei sehr tiefen Frequenzen die Gefahr gegenseitiger Beeinflussung benachbarter Sendeanlagen ausgeschlossen sein sollten. Zu diesen Bedingungen und zu den Resultaten der Berechnung ist folgendes zu bemerken:

1. «Bei Serieeinspeisung ist $U'_p = U_p$ und die im benachbarten Netz auftretende Steuerspannung ist beinahe gleich gross wie im Verbindungsnetz.» Diese Annahme ist nur für extrem tiefe Frequenzen gültig und zudem nur unter der Voraussetzung, dass keine grösseren Kondensatorenbatterien am Ende einer längeren Niederspannungsleitung vorhanden sind. Solche Kondensatorenbatterien ergeben eine wesentliche Erhöhung des Steuerspannungspegels, eine Erhöhung, welche sich auch dann bemerkbar macht, wenn die den Empfängern zugeführte Steuerspannung nicht von der eigenen Anlage, sondern von der Nachbaranlage stammt. Die Anwendung von Kondensatorenbatterien für die Spannungstützung in überlasteten Niederspannungsnetzen, wie sie von P. Gaussens [4] vorgeschlagen wird, kann so eine 60 % ige Steuerspannungserhöhung bei 175 Hz hervorrufen.

2. Der Autor stützt seine Berechnung im weiteren auf die Annahme, dass die Impedanz des ausgesteuerten Netzes bei der Steuerfrequenz den gleichen Wert aufweist wie bei Netzfrequenz 50 Hz. Dies mag wohl für ein Netz mit vorwiegend ohmscher Belastung stimmen, oder wenn Kondensatorenbatterien die vorhandenen Asynchronmotoren kompensieren. Besteht jedoch ein bedeutender Anteil der Last aus nicht kompensierten Motoren oder aus einem im Vergleich zur Totallast nicht vernachlässigbaren Anteil von Synchronmaschinen (kleine, am Mittelspannungsnetz angeschlossene Kraftwerke oder Synchronkompensatoren), so fällt die Impedanz bei 175 Hz auf einen wesentlich tieferen Wert als bei 50 Hz. So beträgt z. B. in einem Netz, dessen Belastung aus 60 % nicht kompensierter Motoren und 40 % rein ohmscher Last besteht, die Impedanz bei 175 Hz nur 60 % der 50-Hz-Impedanz (siehe auch die Berechnungen von H. Kitten [5]).

3. Der Autor nimmt ferner an, dass die Impedanz des übergeordneten Netzes bei 175 Hz gleich dem Produkt der Kurzschlussimpedanz bei 50 Hz und dem Verhältnis der Frequenzen ist.

$$Z_{am, \, 175 \, \mathrm{Hz}} pprox Z_{CC, \, 50 \, \mathrm{Hz}} \cdot rac{f}{50} = rac{U^2}{P_{CC}} \cdot rac{f}{50}$$

Wie bei anderer Gelegenheit dargelegt [6], ist diese Annahme durchaus berechtigt für alle Fälle, bei denen die Kapazität des

¹) Bull. SEV, Bd. 52(1961), Nr. 9, S. 355 unten. ²) Siehe Literaturverzeichnis am Schluss des Artikels.

übergeordneten Netzes bei der gewählten Steuerfrequenz vernachlässigbar ist. Das ist jedoch auch bei 175 Hz bei weitem nicht immer der Fall.

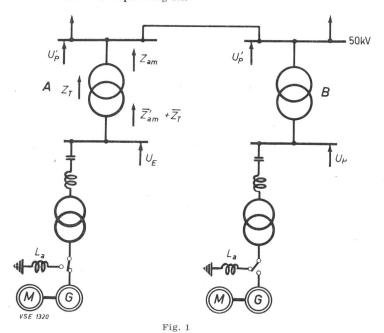
In diesem Zusammenhang ist erwähnenswert, dass z. B. in der Schweiz einige grössere Kondensatorenbatterien an das 50-kV-Netz angeschlossen sind. Diese Kondensatorenbatterien haben einen ganz beträchtlichen Einfluss auf die Impedanz des 50-kV-Netzes bei 175 Hz. Ebenso kann die Kapazität von Hochspannungskabeln von 50 kV an, ganz besonders jedoch bei 110, 150 und 220 kV, wesentliche Erhöhungen der 175-Hz-Impedanz des übergeordneten Netzes verursachen und dadurch die Gefahr gegenseitiger Beeinflussungen erhöhen. Die aufgeführte Näherungsformel darf deshalb nur mit grösster Vorsicht angewendet werden.

- 4. Wiederholt man die Berechnungen des Autors und trifft folgende Annahmen:
- Steuerspannungserhöhung in den Niederspannungsnetzen um einen Faktor 1,6
- Impedanz des gesteuerten Netzes bei 175 Hz gleich 60 $^{0}/_{0}$ der 50-Hz-Impedanz
- Kapazität des übergeordneten Netzes vernachlässigbar
- Sendespannung gleich 2,3 % der 50-Hz-Spannung (durch EDF spezifizierten Wert)
- Grenzspannung, unterhalb welcher die Empfänger auf keinen Fall ansprechen dürfen: 0,5 % der 50-Hz-Spannung,

so ergibt sich, dass bei einer Steuerfrequenz von 175 Hz die Kurzschlussleistung des übergeordneten Netzes das 37fache oder mehr der Leistung des gesteuerten Netzes betragen soll (und nicht wie J. Pelpel ausführt, das 10,5fache. In diesem Zusammenhang sei auch auf die Ausführungen von H. Prigent [7] (Mitarbeiter der EDF) verwiesen, der auf einen ähnlichen Faktor, nämlich 35 kommt.

Der Autor bemerkt, dass bei den ca. 100 durch die EDF installierten 175-Hz-Netzkommandoanlagen die gegenseitigen Beeinflussungen keinerlei Probleme aufwerfen. Es ist jedoch sicher berechtigt anzunehmen, dass man sich in gewissen Fällen nahe der Grenzen gegenseitiger Beeinflussung befindet, denn wie soll sonst die Tendenz der EDF erklärt werden, die Toleranz für die Ansprechspannung der Empfänger immer mehr einzuengen. So hat die EDF anfangs die Grenzspannung für das Nichtansprechen der Empfänger auf 0,5 % der 50-Hz-Spannung festgelegt (Zirkular H 60, August 1955), während sie in einer Spezifikation zur Lieferung von Netzkommandoempfängern (Zirkular HR 4.039 vom 10. Juli 1959) eine Grenzspannung von 0,6 % aufführt, mit der bezeichnenden Bemerkung, dieser Wert werde später auf 0,7 % erhöht. Ferner sei darauf hingewiesen, dass beinahe alle Artikel über die 175-Hz-Netzkommandotechnik, vor allem ein früherer Artikel von J. Pelpel [8] und die technische Spezifikation der EDF zur Lieferung von Einspeisetransformatoren und Kommandogeräten verschiedene Kunstgriffe aufzeigen, um gegenseitige Beeinflussungen zu eliminieren, wie Einspeisung in Gegenphase, zeitlich gestaffelte Einspeisungen auf verschiedene Sammelschienen, sowie Saugkreise im übergeordneten Netz. Es darf deshalb sicher angenommen werden, dass in der Praxis in vielen Fällen Bedingungen vorherrschen, die zum mindesten beinahe zur gegenseitigen Beeinflussung führen.

V


Eine Untersuchung des gleichen Problems im Frequenzband um 1000 Hz zeigt nun folgendes:

In Fig. 1 besitzen die beiden dargestellten Hoch/Mittelspannungsunterwerke je eine Netzkommandoanlage mit Paralleleinspeisung. Diese Unterwerke sind durch das gleiche Hochspannungsnetz gespeist und durch dieses miteinander verbunden. Speist nun die Sendeanlage des Unterwerkes A die Mittelspannungssammelschiene mit einer Spannung U_E , so wird auf der Hochspannungsseite ein Steuerspannungsrest U'_P gemessen, welcher durch den Spannungsteiler, bestehend aus der Totalimpedanz des übergeordneten Netzes (vom Unterwerk A aus gesehen) Z'_{am} und der Impedanz des Transformators Z_T gegeben ist. Obwohl es praktisch unmöglich ist, allgemeingültige Angaben über die Impedanz Z'_{am} zu machen (die Berechnung kann jedoch auf Grund des Netzschemas bei Berücksichtigung der verschiedenen möglichen Betriebszustände durchgeführt werden), so ist es offen

sichtlich, dass Z_T eine Induktivität ist, deren Impedanz mit der Frequenz zunimmt

$$Z_T = rac{U^2}{P_T} \cdot rac{f}{50} \, arepsilon_{CC}$$

wobei Z_T die Nennleistung des Transformators und ε_{CC} seine relative Kurzschluss-Spannung ist.

Gegenseitige Beeinflussung von zwei benachbarten Netzkommando-Sendern

A, B Unterwerke Hochspannung/Mittelspannung

G Netzkommando-Generatoren

M Antriebsmotoren

L, Absaugdrosseln

 $\overline{U_E}$ Spannung der Steuerbefehle auf der Mittelspannungs-Sammelschiene

 U_P^\prime Restspannung auf der Hochspannungs-Sammelschiene

 U_P Störspannung im benachbarten Netz

 Z_{am}^{T} Impedanz des Verbundnetzes für die Steuerfrequenz

 $Z_{\scriptscriptstyle T}$ Impedanz der Transformatoren

 Z^\prime_{am} Gesamtimpedanz des Verbundnetzes vom Unterwerk A aus gesehen

Der im übergeordneten Netz feststellbare Steuerspannungsrest ist deshalb

$$U'_P = U_E rac{\overline{Z'_{am}}}{\overline{igg[Z'_{am} + igz]_T}}$$

 Z_T nimmt bei steigender Frequenz zu, so dass um so weniger anzunehmen ist, dass U_P einen hohen Wert erreicht, je höher die Steuerfrequenz gewählt wird. Dies gilt jedoch nicht für den Einzelfall, wohl aber für die Gesamtheit der Netze. Dieser Spannungsrest U_P breitet sich im übergeordneten Netz aus und erreicht auch mehr oder weniger gedämpft die Hochspannungssammelschiene des Unterwerkes B (in gewissen Fällen kann dieser Spannungsrest durch Resonanzerscheinungen auch verstärkt werden).

Im Unterwerk B sind nun die 3 Phasen der Kopplungszelle in den Sendepausen durch Ruhekontakte des Impulsschützes über 3 kleine Drosselspulen L_a in Stern geschaltet. Diese Drosselspulen sind so gewählt, dass jede Phase genau auf die Steuerfrequenz abgestimmt ist und somit ein Impedanzminimum aufweist. Die Kopplungszelle ist dadurch für die Steuerfrequenz ein selektiver Kurzschluss und dieser verhindert praktisch, dass ein Spannungsrest gleicher Frequenz, welcher über den Transformator Hochspannung/Mittelspannung von der Sendeanlage A herkommt, sich im Mittelspannungsnetz B ausbreitet.

J. Pelpel fürchtet nun, dass diese Absaugung der Spannungsreste, welcher er einen nur theoretischen Vorteil zugesteht, oft illusorisch sei, da er annimmt, dass die von ihm aufgeführten Bedingungen in der Praxis nicht erfüllt werden.

Es ist deshalb notwendig, diese Bedingungen nachstehend etwas näher zu betrachten:

A. «Der Ankopplungskreis des Senders im Netz, in welchem die Spannung U_P gemessen wird, muss ganz genau auf die Steuerfrequenz des benachbarten Netzes abgestimmt sein. Wenn sich nämlich infolge von Temperaturänderungen eine Verstimmung einstellt, so kann der durch diesen Nebenschluss aufgenommene Strom in der Phasenlage vorwärts oder rückwärts verschoben werden. Es kann dann eine Resonanz auftreten und in diesem Falle könnte U_P grösser werden als U'_{P^*} .

J. Pelpel befürchtet somit, dass die Frequenzvariation der Sender (üblicherweise ohne Frequenzregelung) und die Variation der Kapazitäten und Induktivitäten zufolge Raumtemperaturänderung eine merkliche Erhöhung des Steuerspannungsrestes zur Folge hat. Dies ist jedoch keineswegs der Fall, sofern die Kapazitäten der Kondensatoren gross genug gewählt werden. Mit einer normal dimensionierten Kopplungszelle kann bei einer Frequenz um 1000 Hz zwischen den Spannungsresten des übergeordneten Netzes und des geschützten Mittelspannungsnetzes leicht ein Verhältnis von mindestens 5 erreicht werden. Das gilt für alle Frequenzen, welche innerhalb einer Bandbreite von 5 % um die Abstimmfrequenz der Kopplungszelle liegen. Abweichungen der Abstimmfrequenz in Funktion der Temperatur sind zudem äusserst gering, beträgt doch der Temperaturkoeffizient eines Papierkondensators mit Mineralölimprägnierung ca. 4 · 10-4 pro °C und derjenige der Abstimmspule (Luftspule) ca. 16 · 10-6 pro °C. Daraus geht hervor, dass für alle Umgebungstemperaturen zwischen 0° und 40°C die Abstimmfrequenz eines solchen Kreises nur um 0,8 % variieren kann.

Die Frequenzvariationen des Nachbarsenders haben ihre Ursache in der Netzfrequenzabweichung und in der Änderung des Schlupfes des Antriebsmotors des Tonfrequenzgenerators. Zufolge Verbundbetriebes der immer leistungsfähigeren Kraftwerksgruppen und zufolge der allgemeinen Einführung der Frequenz-Leistungsregelung werden die vorkommenden Abweichungen der Netzfrequenz immer kleiner, so dass $\pm 2.0/0$ als praktische Grenze sehr vorsichtig gewählt sein dürfte. Der Nennschlupf des Antriebsmotors der Umformergruppe ist klein und kann mit 0,6 % eingesetzt werden. Daraus ergibt sich, dass in der Praxis bei konstanter Netzfrequenz bei hohen und tiefen Belastungen die Steuerfrequenz um ± 0.2 % um ihren Mittelwert variiert. Es kann deshalb angenommen werden, dass die totale Breite der Steuerfrequenz und Abstimmabweichungen bei 5,2 % liegt. In unmittelbarer Nähe der Resonanzfrequenz f ist die Impedanz der Kopplungszelle, welche als Saugkreis wirkt, mit sehr guter Annäherung durch folgende Formel gegeben:

$$\overline{Z_R} = rac{1}{2 \, \pi f \, C} \Big(rac{1}{Q} \Big) + j \cdot 2 \, rac{\Delta f}{f}$$

Dabei bedeutet

C die Kapazität des Kopplungskondensators

Q die Kreisgüte des Kopplungskreises (ca. 80)

△f die Differenz zwischen der Frequenz des Störsignals und der Abstimmfrequenz des Kopplungskreises.

Der Absaugfaktor, d. h. das Verhältnis zwischen Steuerspannungsrest im übergeordneten Netz und dem Steuerspannungsrest in dem durch die Kopplungszelle geschützten Mittelspannungsnetz beträgt demnach

$$rac{U'_P}{U_P} = rac{\overline{Z_R} + \overline{Z_T}}{\overline{Z_R}}$$

Solange \mathbb{Z}_R erheblich kleiner ist als \mathbb{Z}_T ergibt sich folgende Annäherungsformel

$$\frac{U'_P}{U_P} \approx \frac{Z_T}{Z_R}$$

Wird nun berücksichtigt, dass Z_R um so kleiner wird, je höher die Frequenz und je höher die Kapazität des Kopplungskondensators gewählt werden, und dass Z_T proportional der Frequenz ist; so ergibt sich

$$\frac{U'_P}{U_P} \approx C f^2$$

Der Absaugfaktor ist somit dem Quadrat der Steuerfrequenz und der Kapazität des Kopplungskondensators proportional. Es ist deshalb viel leichter bei 1000 Hz oder höheren Frequenzen eine wirksame Absaugung zu verwirklichen als bei 500 Hz, bei welcher Frequenz die 4fache Kapazität nötig ist, was auch 4mal höhere Kosten als bei 1000 Hz erfordert. In diesem Zusammenhang muss darauf hingewiesen werden, dass es keine Kunstschaltung gibt, welche gestattet, bei gleicher Kopplungskapazität eine bessere Absaugung zu realisieren, wie es mit einem einfachen Serieresonanzkreis möglich ist. Kopplungszellen mit mehreren Schwingkreisen (Bandpassfilter) ermöglichen es wohl unter ganz bestimmten Voraussetzungen (ohmsche Belastung) beim Sendevorgang an Kapazität für die Kopplungskondensatoren zu sparen. Solche Kunstschaltungen nützen jedoch hinsichtlich der Wirksamkeit der Absaugung der Steuerspannungsreste nichts.

B. Die zweite von J. Pelpel aufgestellte Bedingung lautet: «Die Sender von benachbarten Netzen müssen einen eindeutig gegeneinander verschobenen Fahrplan für die Sendung von Steuerbefehlen haben oder sie müssen vollständig synchronisiert sein, weil der Sender in dem Moment, wo er mit dem Kopplungskreis verbunden wird, diesen verstimmt, so dass er seine Aufgabe als Nebenschluss in Resonanz nicht mehr erfüllen kann.»

Diese Bedingung ist für die Wirksamkeit der Absaugung aus zwei Gründen nicht notwendig:

- 1. Wird die Impedanz der Zusatzdrossel L_a (Schema Fig. 1) gleich gross gewählt wie die Streureaktanz des Generators, so ändert sich die Abstimmung nicht, ob nun gesendet wird oder nicht. Deshalb bleibt die Absaugung in allen Fällen wirksam, da sich der Absaugstrom während den Impulslücken in den Zusatzdrosseln und während den Sendeimpulsen im Generator schliesst. Dieses Verhalten wird durch sinngemässe Anwendung des Überlagerungsgesetzes der Ströme und Spannungen klar ersichtlich.
- 2. Selbst eine Verstimmung des Kreises während der Sendezeit ist praktisch bedeutungslos und bewirkt lediglich eine leichte Änderung der Steuerspannung, ohne Auslösung von Fehlschaltungen. Dieser Punkt wurde von O. Grob [9] ausführlich behandelt.

Entgegen der Auffassung von J. Pelpel, zeigen die obigen Ausführungen klar, dass bei Frequenzen um 1000 Hz die Absaugung von Steuerspannungsresten, die von benachbarten Netzkommandoanlagen stammen, sehr wirksam gemacht werden kann. Das ist durch die Praxis bestätigt und wird in folgenden Beispielen illustriert:

Zentralschweiz: 11 Sendeanlagen mit einer Steuerfrequenz

von 1050 Hz, alle über ein einziges 50-kV-Netz miteinander zusammen geschaltet.

Kanton Zürich: 5 Sendeanlagen 1050 Hz, 5 Sendeanlagen

750 Hz, durch ein 50-kV-Netz verbunden.

Antwerpen und

und andere mehr.

weitere Umgebung: 8 Sendeanlagen 1350 Hz, verbunden durch

ein 70-kV-Netz

Berlin: 14 Sendeanlagen 750 Hz, verbunden durch

ein 30-kV-Netz

Australien

Sydney: 9 Sendeanlagen 1050 Hz, verbunden durch

ein 33-kV-Netz

Newcastle: 13 Sendeanlagen 1050 Hz, verbunden

durch ein 33-kV-Netz

Brisbane: 13 Sendeanlagen 1050 Hz, verbunden

durch ein 33-kV-Netz

Bei all diesen Anlagen konnte dank der vorgehend erwähnten Absaugschaltung, und ohne dass Spezialmassnahmen notwendig waren, nie eine gegenseitige Beeinflussung festgestellt werden.

VI

Es ist darum offensichtlich, dass die theoretischen Überlegungen durch die Praxis in grossem Maßstab bestätigt wurden,

so dass auf die von J. Pelpel vorgeschlagenen systematischen Versuche wohl verzichtet werden kann.

Werden folgende Annahmen getroffen: Verhältnis zwischen Sendespannung und Ansprechspannung der Empfänger: 5,3; Absaugfaktor: 5; Spannungserhöhung im Netz zufolge Kondensatoren: Faktor 2 und ein Sicherheitskoeffizient von 1,4, so lautet die Bedingung für einen, von gegenseitigen Beeinflussungen freien Betrieb, bei höheren Steuerfrequenzen:

Der Steuerspannungsrest im übergeordneten Netz soll nicht höher als $^{1}/_{3}$ der Sendespannung bei 1000 Hz sein.

Bei 175 Hz und unter Berücksichtigung der am Anfang dieses Artikels aufgeführten Annahmen lauten sie:

Der Steuerspannungsrest im übergeordneten Netz soll nicht höher als 1/7 der Sendespannung sein.

Es scheint müssig darüber zu diskutieren, welche dieser beiden Bedingungen in Wirklichkeit öfters erfüllt wird. Nur die Analyse einer genügend grossen Anzahl praktischer Fälle kann eine Antwort auf diese Frage geben, die von untergeordneter Wichtigkeit ist. Wesentlich und von erheblicher praktischer Bedeutung ist jedoch die Kenntnis realisierbarer Abhilfe, sofern keine dieser Bedingungen erfüllt ist. Was nützt eine bis ins Detail gehende Diskussion über die Frage, ob von zwei Krankheiten die eine ansteckender sei als die andere, wenn die erstere nur durch schwerwiegende Amputation aufgehalten, die zweite aber auf einfache Weise durch eine Einspritzung geheilt werden kann?

Bei 175 Hz kann durch folgende zwei Methoden Abhilfe geschaffen werden: Aufspaltung des zu steuernden Netzes in 2 Teile, verbunden mit gegenphasiger Einspeisung der Tonfrequenzimpulse oder Einbau eines Absaugkreises im übergeordneten Netz (siehe Beschreibung J. Pelpel in [8]).

Die Nachteile der ersten Methode, die durch O. Grob [10] bereits ausführlich untersucht wurden, sind die folgenden:

Die gegenphasige Einspeisung zwingt zu schwerwiegenden Einschränkungen des Betriebes der Mittelspannungsnetze, da es ja unerlässlich ist, das Mittelspannungsnetz jedes Unterwerkes in zwei galvanisch nicht verbundene und möglichst symmetrische Teile aufzutrennen. Das hat in vielen Fällen eine Zunahme der Leerlaufverluste der Transformatoren oder sogar eine Erhöhung der Anzahl der installierten Transformatoren zur Folge. Die Kosten der zusätzlichen Verluste (Barwert bei Kapitalisierung) sind äusserst hoch.

Der Absaugkreis im übergeordneten Netz verlangt die Installation einer Hochspannungskondensatorbatterie von hoher Leistung und einen Satz Drosselspulen von beträchtlichen Dimensionen auf der Speiseseite des Serieeinspeisetransformators. Die Leistung der benötigten Kondensatorbatterie beträgt bei einer 175-Hz-Anlage mit Frequenz-Regulierung ca. 17 % der Spitzenleistung des Netzes und bei 198 Hz ohne Frequenz-Regulierung ca. 20 %. Die Kosten eines solchen Absaugkreises überschreiten bei weitem die Kosten einer Netzkommandoanlage, so dass diese Methode kaum in Frage kommt.

Die Eliminierung gegenseitiger Beeinflussungen ist bei einer Steuerfrequenz von ca. 1000 Hz offensichtlich viel einfacher. Müssen in den sehr seltenen Fällen doch einmal Spezialmassnahmen getroffen werden, so wird mit Vorteil im übergeordneten Netz ein Saugkreis eingebaut, der jedoch viel kleiner dimensioniert werden kann als bei 175 Hz. Bereits eine Kondensatorenbatterie mit einer Leistung von 1...1,5 % der Totalleistung der Hochspannungs-/Mittelspannungstransformatoren des ausgesteuerten Netzes genügt, um eine sichere Lösung des Problems zu erreichen.

Zum Beispiel wurden in zwei Fällen, wovon einer in Afrika und der andere in Neuseeland, von allem Anfang an je ein Absaugkreis im übergeordneten Netz vorgesehen, um untragbare Verluste von Steuerenergie in Richtung des übergeordneten Netzes zu vermeiden. Die Kosten dieser Saugkreise betrugen ca. 18 % des Totalpreises der Sendeanlagen.

Ist aus irgendwelchen Gründen die Anwendung des Saugkreises nicht möglich, so kann ein Sperrkreis auf der Mittelspannungsseite des Hochspannungs-/Mittelspannungstransformators eingebaut werden. Diese Methode ist, obwohl wirtschaftlich durchaus tragbar, jedoch kostspieliger als die Anwendung der Saugkreise. Die Kosten des Sperrkreises belaufen sich auf ca. $35~^0/_0$ der Sendeanlagekosten.

Schliesslich könnte die Methode der gegenphasigen Einspeisung ebensogut bei 1000 Hz und Paralleleinspeisung, als auch bei 175 Hz und Serieeinspeisung angewendet werden. Entsprechende Versuche ergaben die erwarteten Resultate.

Soweit bekannt, wurde jedoch diese Methode bei höheren Steuerfrequenzen in der Praxis nie angewendet, da sie gegenüber der oben beschriebenen Methode keine zusätzlichen Vorteile bietet, wohl aber die erwähnten Nachteile mit sich bringt.

All diese Überlegungen und die Erfahrungen in der Praxis zeigen eindeutig, dass eine gegenseitige Beeinflussung benachbarter Netzkommandoanlagen bei höheren Frequenzen (1000 Hz) viel leichter und mit viel kleinerem Aufwand eliminiert werden kann als bei extrem tiefen Frequenzen (175 Hz).

Schlussfolgerung

Die Schlussfolgerungen, die J. Pelpel aus seiner Arbeit über die Anwendung von tiefen Frequenzen zieht, sind zu optimistisch. Die vom Autor aufgestellte Bedingung, die Kurzschlussleistung des übergeodneten Netzes müsse 10,5 mal grösser sein als die Spitzenleistung des gesteuerten Netzes, um gegenseitige Beeinflussungen benachbarter Netzkommandoanlagen bei 175 Hz auszuschliessen, ist ungenügend. Das zeigt auch eine frühere Arbeit eines Mitarbeiters der EDF, der für diese Bedingung einen Faktor von 35 errechnet hat und dadurch mit den vorliegenden Ausführungen übereinstimmt.

Bei einer Frequenz von 1000 Hz schützt eine korrekt dimensionierte Kopplungszelle das Netz vollkommen gegen das Eintreten von Steuerspannungsresten von Nachbaranlagen, indem sie die Mittelspannungssammelschiene selektiv für die Steuerfrequenz kurzschliesst. Dies wurde theoretisch gezeigt und in der Praxis durch zahlreiche Netzkommandoanlagen bestätigt, die in Unterwerke eingebaut wurden, welche durch ein gemeinsames übergeordnetes Netz verbunden sind, z. B. im Kanton Zürich (5 Sendeanlagen für 1050 Hz und 5 für 750 Hz), Berlin (14 Sendeanlagen 750 Hz), Antwerpen (8 Sendeanlagen 1350 Hz), Zentralschweiz (CKW und EW Schwyz 11 Sendeanlagen 1050 Hz), Sydney (9 Sendeanlagen 1050 Hz), Brisbane und Newcastle (je 13 Sendeanlagen für 1050 Hz) usw. Dieser Schutz ist auch dann noch wirksam, wenn die im Betriebe vorkommenden Netzfrequenzabweichungen und Raumtemperaturänderungen überschritten werden.

Eventuell auftretende gegenseitige Beeinflussungen können bei 1000 Hz erheblich einfacher und billiger eliminiert werden als bei 175 Hz.

Zusammenfassend zeigen die vorliegenden Untersuchungen klar, dass das Problem der gegenseitigen Beeinflussung benachbarter Netzkommandoanlagen sich bei höheren Frequenzen viel leichter bewältigen lässt, als bei tiefen Frequenzen. Dieses Problem kann bei Frequenzen um 1000 Hz in allen Fällen wirtschaftlich und ohne die geringsten Beeinträchtigungen der Freizügigkeit im Betrieb der Netze gelöst werden.

Bibliographie

- [1] Cahen, F. und H. Prigent: Le nouveau système de télécommande centralisée à 175 hertz adopté par l'Electricité de France. Rev. gén. Electr. Bd. 64(1955), Nr. 10, S. 475...484.
- [2] Schmid, H.: Die wesentlichen Grundgedanken für den Aufbau eines Rundsteuersystems. Bull. SEV. Bd. 50(1959), Nr. 25, S. 1253...1258.
- [3] Kruse, W.: Stand der Rundsteuertechnik in der Bundesrepublik Deutschland. Elektr.-Wirtsch. Bd. 60(1961), Nr. 8, S. 264...269.
- [4] Gaussens, P.: Amélioration des conditions d'exploitation des réseaux de distribution d'énergie électrique par l'utilisation des condensateurs-shunt. Bull. Soc. franç. Electr. 7º série, Bd. IV(1954), Nr. 47, S. 675...699.
- [5] Kitten, H.: Zur Frage der Bestimmung einer optimalen Frequenz für Tonfrequenz-Rundsteueranlagen. E u. M. Bd. 75(1958), Nr. 15/16, S. 469...474; Nr. 17, S. 491...497; Nr. 19, S. 556...561.
- [6] Kniel, R.: Intervention lors de la discussion de la conférence de H. Prigent: La télécommande centralisée à 175 Hz de l'Electricité de France. Ses origines. Ses applications. Ses premières réalisations. Bull. Soc. franç. Electr. 7º série, Bd. VI(1956), Nr. 71, p. 727...738.
- [7] Prigent, H.: loc. cit.

[8] Pelpel, J.: La nouvelle télécommande centralisée à 175 hertz.

Le système Pulsadis. Rev. gén. Electr. Bd. 65(1956), Nr. 2, S. 69...79.

Grob, O.: Die Planung von Netzkommandoanlagen mit überlagerten tonfrequenten Steuerimpulsen für grosse und grösste Netze. E u. M. Bd. 73(1956), Nr. 13, S. 340...345.

Grob, O.: Prinzipielle Anforderungen an Netzkommandoanlagen

Grob, O.: Prinzipielle Anforderungen an Netzkommandoanla-gen für extrem tiefe Steuerfrequenzen. Bull. SEV Bd. 50(1959), Nr. 2, S. 41...47.

Wir möchten die interessante Auseinandersetzung über die Gefahr der gegenseitigen Beeinflussung von benachbarten Netzen mit Netzkommandoanlagen abschliessen, indem wir nachstehend die Antwort veröffentlichen, die uns Herr J. Pelpel, Paris, zu den vorstehenden Ausführungen von Herrn R. Kniel zugestellt hat. Für jeden Abschnitt der Antwort von J. Pelpel haben wir jeweils einleitend die entsprechende Stelle im Artikel von R. Kniel angegeben. Selbstverständlich überlassen wir Herrn Pelpel die volle Verantwortung für seine Ausführungen.

Bemerkung zu Kapitel III, Absatz 2

Bei einer Steuerfrequenz von 1000 Hz sind in einem Netz dann die ungünstigsten Bedingungen vorhanden, wenn sehr kleine, nicht kompensierte Kondensatoren eingebaut sind, deren Gesamtleistung grösser ist als 2 % der Leistung des Niederspannungstransformators. Indem wir eine rein ohmsche Belastung in Betracht zogen, wollten wir für unsere Untersuchung vergleichbare Bedingungen für die verschiedenen in Frage kommenden Frequenzen schaffen.

Bemerkung zu Kap. IV, Punkt 1

Die angenommene 1,6fache Spannungserhöhung ist nur in leerlaufenden Netzen oder in Netzen mit sehr schwacher Last zu befürchten. Bei tiefen Steuerfrequenzen besteht nur dann eine Gefahr, dass die in ein Netz ausgesandten Steuerbefehle auch Nachbarnetze beeinflussen, wenn das gesteuerte Netz stark belastet ist. Die Annahme, dass die Nachbarnetze im gleichen Zeitpunkt schwach belastet sein sollen, steht u.E. im Widerspruch zu den tatsächlichen Verhältnissen.

Bemerkung zu Kap. IV, Punkt 3

Der Fall, dass grosse Kondensatorenbatterien an das Primärnetz angeschlossen sind - wir haben ihn allerdings in den von uns untersuchten Netzen bisher noch nie angetroffen — ist bereits von H. Prigent 1) untersucht worden. Prigent zeigt, dass solche Kondensatorbatterien bei einer Steuerfrequenz von 175 Hz nur dann störend wirken könne, wenn die von ihnen bei 50 Hz erzeugte Spannungserhöhung bereits unzulässig ist.

Bemerkung zu Kap. IV, Punkt 4

Die von H. Prigent 2) angegebene Bedingung

$$\frac{P_{CC}}{P} \ge 35$$

ist notwendig, um für das Verhältnis $\frac{U_E}{U_P}$ einen Wert grösser als 10 zu erhalten. Dieses Verhältnis wird in dem betreffenden Bericht als Beispiel für die dort beschriebene Anlage von Nizza angeführt; es handelt sich aber nicht um einen unbedingt einzuhaltenden, allgemein gültigen Wert.

Dagegen ist es sehr wichtig, dass die Bedingung

$$rac{U_E}{U_P}>rac{U_E}{U_S}$$

eingehalten wird.

Wenn $\frac{U_E}{U_S}=3$ ist, so erfüllt der von H. Prigent angegebene

Wert genau die Bedingung
$$\frac{P_{CC}}{P} > 10,5$$

Bemerkung zu Kap. IV, letzter Absatz

Die Befehlssendungen in Phasenopposition sind nicht nur interessant, weil sie das Risiko der gegenseitigen Beeinflussung von benachbarten Netzen vermindern, sondern auch, weil sie bei den Sendeanlagen beträchtliche Materialeinsparungen ermöglichen. Die Befehlssendung in Phasenopposition ist ohne irgend einen Vorbehalt in Bezug auf die Betriebsbedingungen auch in Mittelspannungsnetzen möglich, die in Sektoren betrieben werden, um die Abschaltleistung der Schalter zu begrenzen.

Bemerkung zu Kap. VI. Abgestimmte Shunts als Sperren gegen $das\ Oberspannungsnetz$

Im 35-kV-Netz von Marseille, das durch ein 150-kV-Netz gespiesen wird, werden die Steuerbefehle in Netzsektoren von 70 MVA Leistung gegeben. Es hat sich dabei bereits bei der Projektierung als notwendig erwiesen, auf 175 Hz abgestimmte Shunts einzubauen, deren Kosten ungefähr 20 % der Kosten der Sendeanlagen betrugen.

Schlussfolgerungen

Ich möchte nachstehend diejenigen Punkte zusammenfassen, in denen ich mit Herrn R. Kniel vollständig übereinstimme.

- 1. Ich teile die Ansicht von Herrn Kniel über die Vorteile der Netzkommandoanlagen sowie über die Massnahmen, die zu treffen sind, um eine allgemeine Einführung dieser Anlagen zu ermöglichen.
- 2. Es ist von Vorteil, in verschiedenen Netzen, die der gleichen Unternehmung gehören, eine einheitliche Steuerfrequenz zu verwenden. Wenn man voraussetzt, dass die Probleme des Schutzes vor gegenseitiger Beeinflussung verschiedener Sender der gleichen Unternehmung gelöst sind, so besteht wahrscheinlich auch kein Grund gegen die Verwendung der gleichen Frequenz in den Netzen einer benachbarten Unternehmung.
- 3. Es ist notwendig, zwei verschiedene Steuerfrequenzen zu verwenden, wenn die Netze von Wiederverkäufergemeinden mit Netzkommandoanlagen ausgerüstet sind und wenn diese Gemeindenetze von einem regionalen Netz gespiesen werden, das selbst auch mit einer Netzkommandoanlage ausgerüstet ist. Derartige Anlagen sind in Westdeutschland erstellt worden, wobei die Gemeindenetze mit 210 Hz und das Regionalnetz mit 175 Hz gesteuert werden.
- 4. Falls die Frage der gegenseitigen Beeinflussung benachbarter Netze für alle möglichen Fälle und für alle in Frage kommenden Frequenzen sorgfältig geprüft wird, so kann bei zweckmässiger Dimensionierung der Ankoppelungskreise die Gefahr gegenseitiger Beeinflussung auch bei höheren Steuerfrequenzen vermieden werden; die angeführten Fälle von Afrika und Neuseeland sind, wie wir zugeben müssen, verhältnismässig selten.

Andererseits sind wir im Gegensatz zu Herrn Kniel der Auffassung, dass bei allen für 175 Hz Steuerfrequenz ausgeführten Anlagen die Bedingungen für das Verhältnis $\dfrac{P_{CC}}{P}$ derart sind, dass auch ohne besondere Vorsichtsmassnahmen keine Wahrscheinlichkeit für gegenseitige störende Beeinflussungen vorhanden ist.

Wir anerkennen zwar, dass wir im speziellen Falle von Marseille von Anfang an und solange dieses Netz nicht mit 220 kV gespiesen wurde, spezielle Shunts einbauen mussten, die ungefähr 20 % der Kosten der Sendeanlagen erforderten.

Nachdem die Vorteile der hohen und der tiefen Steuerfrequenzen an anderer Stelle ausführlich behandelt worden sind, glauben wir, dass eine tiefe Steuerfrequenz für private Unternehmungen, wie man sie in der Schweiz antrifft, ebenso gut geeignet ist wie für ein verstaatlichtes Landesnetz und dass die Gefahr der gegenseitigen Beeinflussung kein Grund sein kann, um von der Verwendung von tiefen Steuerfrequenzen abzuraten.

J. Pelpel

¹⁾ Prigent, H.: La télécommande centralisée à 175 Hz de l'Electricité de France, ses origines, ses applications, les premières réalisations. Bull. Soc. franç. Electr., 7. Serie, Bd. 6(1956), Nr. 71, S. 727...738. Siehe Diskussion, Beitrag von Herrn Kniel, S. 741 und Antwort von Herrn Prigent, S. 746, 1°.

2) Prigent, H.: loc. cit. Siehe: Installation de Nice, S. 736, und Antwort von Herrn Prigent in der Diskussion, S. 746, 2°.

Erzeugung und Abgabe elektrischer Energie durch die schweizerischen Elektrizitätswerke der Allgemeinversorgung

Mitgeteilt vom Eidgenössischen Amt für Energiewirtschaft und vom Verband Schweizerischer Elektrizitätswerke

Die Statistik umfasst die Erzeugung der Elektrizitätswerke für Stromabgabe an Dritte. Nicht inbegriffen ist also die Erzeugung der bahn- und industrieeigenen Kraftwerke für den eigenen Bedarf.

				E	ergieerz	eugung	und Bez	ug					Speicl	nerung			
Monat				Thermische Erzeugung		Bezug aus Bahn- und Industrie- Kraftwerken		Energie- einfuhr		Total Erzeugung und Bezug		Energieinhalt der Speicher am Monatsende		Änderung im Berichts- monat — Entnahme + Auffüllung			rgie- fuhr
	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60 1960/61 1959/60			1960/61	jahr	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61
			in Millionen kWh							%	in Millionen kW				h		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	1067	1587	21	1	39	47	291	39	1418	1674	+18,1	2672	3586	- 354	+ 8	175	332
November .	1002	1471	27	1	36	39	341	73	1406	1584	+12,7	2320	3347	-352	-239	129	250
Dezember	1045	1473	31	1	37	38	338	125	1451	1637	+12,8	1928	2756	- 392	591	122	221
Januar	1143	1426	21	3	40	40	233	168	1437	1637	+13,9	1513	1959	-415	- 797	108	197
Februar	1039	1259	26	4	32	32	272	121	1369	1416	+ 3,4	1085	1497	-428	-462	94	166
März	1184	1436	. 8	2	31	32	187	107	1410	1577	+11,8	716	964	— 369	— 533	124	228
April	1181	1475	0	1	30	37	127	42	1338	1555	+16,2	523	835	-193	-129	133	290
Mai	1433	1690	5	0	79	68	99	40	1616	1798	+11,3	1020	885	+ 497	+ 50	349	434
Juni	1650	1767	0	1	105	82	18	13	1773	1863	+ 5,1	2089	1971	+1069	+1086	486	500
Juli	1636	1809	1	1	88	78	9	14	1734	1902	+ 9,7	2809	2947	+ 720	+976	440	561
August	1683		0		94		15		1792			3437		+ 628		461	
September .	1630		1		66		33		1730			35784)		+ 141		413	
Jahr	15693		141		677		1963		18474							3034	
OktMärz .	6480	8652	134	12	215	228	1662	633	8491	9525	+12,2			-2310	-2614	752	1394
April-Juli	5900	6741	6	3	302	265	253	109	6461	7118	+10,2			+2093	+1983	1408	1785
				-													

					Verteil	lung der	Inlandal	gabe					Inlandabgabe						
Monat	Haus Gewe ui Landwii	erbe ad	Allge Indi	meine istrie	-meta	ochemie, Illurgie thermie	Elek	stro- sel¹)	Bah	nen	Verlus Verbi der Spe pump	auch eicher-	oh Elektro ur Speiche	ne okessel	Verän- derung gegen Vor-	Elektro	ad		
	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	jahr³) %	1959/60	1960/61		
		in Millionen kWh																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Oktober	604	650	230	237	184	199	5	21	66	68	154	167	1232	1310	+ 6,3	1243	1342		
November .	622	648	227	248	185	201	3	13	84	74	156	150	1257	1318	+ 4,9	1277	1334		
Dezember	655	706	223	247	182	206	3	10	95	79	171	168	1307	1403	+ 7,3	1329	1416		
Januar	663	716	218	255	183	218	4	10	95	77	166	164	1307	1427	+ 9,2	1329	1440		
Februar	617	615	219	229	193	191	4	9	88	70	154	136	1259	1238	-1,7	1275	1250		
März	627	650	232	252	204	218	4	14	75	64	144	151	1277	1333	+ 4,4	1286	1349		
April	568	597	208	232	224	214	6	24	61	61	138	137	1190	1235	+ 3,8	1205	1265		
Mai	570	614	215	241	214	229	26	57	61	55	181	168	1206	1293	+ 7,2	1267	1364		
Juni	539	587	214	243	205	205	63	69	60	59	206	200	1174	1248	+ 6,3	1287	1363		
Juli	559	580	207	225	203	196	68	77	68	69	189 (36)	194 (41)	1190	1223	+ 2,8	1294	1341		
August	570		205		217		82		70		187		1218			1331			
September .	597		223		218		52		63		164		1251			1317			
Jahr	7191		2621		2412		320		886		2010		14868			15440			
OktMärz .	3788	3985	1349	1468	1131	1233	23	77	503	432		936	7639	8029	+ 5,1	7739	8131		
April-Juli	2236	2378	844	941	846	844	163	227	250	244	714 (130)	699 (107)	4760	4999	+ 5,0	5053	5333		

¹⁾ Mit einer Anschlussleistung von 250 kW und mehr und mit brennstoffgefeuerter Ersatzanlage.

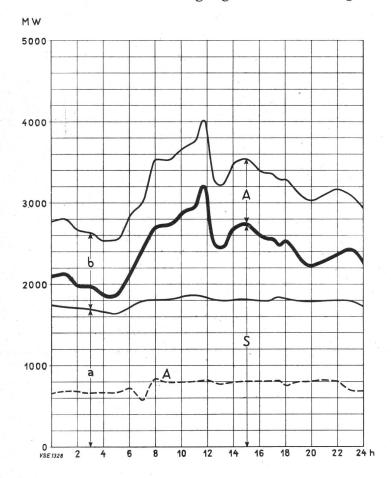
⁴) Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an.

³⁾ Kolonne 15 gegenüber Kolonne 14.

⁴⁾ Speichervermögen Ende September 1960: 3720 Millionen kWh.

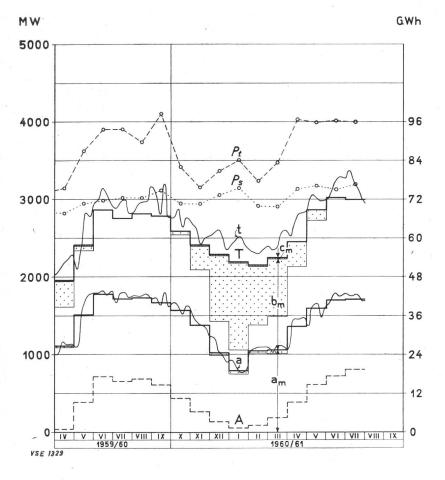
Gesamte Erzeugung und Verwendung elektrischer Energie in der Schweiz

Mitgeteilt vom Eidgenössischen Amt für Energiewirtschaft


Die nachstehenden Angaben beziehen sich sowohl auf die Erzeugung der Elektrizitätswerke der Allgemeinversorgung wie der bahn- und industrieeigenen Kraftwerke.

			Eı	1ergieerz	eugung	und Einí	uhr				Speich	erung					
Monat	Hydraulische Erzeugung			Thermische Erzeugung		Energie- einfuhr		Total Erzeugung und Einfuhr		Energieinhalt der Speicher am Monatsende		Änderung im Berichts- monat — Entnahme + Auffüllung		Energie- ausfuhr		Gesa Lan verbr	des-
	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	959/60 1960/61 jahr		1959/60	1960/61	1959/60	1960/61	1959/60	1960/61	1959/60	1960/61
			i	n Million	en kWh	n kWh			%	in Million				nen kWh	1		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	1300	1919	31	9	307	41	1638	1969	+20,2	2897	3940	- 387	+ 14	195	369	1443	1600
November .	1161	1724	38	10	362	80	1561	1814	+16,2	2517	3692	— 380	-248	134	275	1427	1539
Dezember	1193	1689	41	13	358	132	1592	1834	+15,2	2091	3042	-426	650	128	239	1464	1595
Januar	1281	1618	33	15	253	178	1567	1811	+15,6	1640	2176	- 451	-866	114	216	1453	1595
Februar	1158	1431	38	14	290	124	1486	1569	+ 5,6	1181	1656	- 459	-520	104	181	1382	1388
März	1345	1656	18	13	202	108	1565	1777	+13,5	769	1054	-412	-602	138	247	1427	1530
April	1396	1759	9	8	133	42	1538	1809	+17,6	563	907	- 206	-147	163	318	1375	1491
Mai	1781	2053	12	7	100	40	1893	2100	+10,9	1120	963	+ 557	+ 56	390	478	1503	1622
Juni	2064	2170	6	7	18	13	2088	2190	+ 4,9	2315	2164	+1195	+1201	535	548	1553	1642
Juli	2047	2227	6	7	9	14	2062	2248	+ 9,0	3099	3248	+ 784	+1084	498	613	1564	1635
August	2095		6		15		2116			3762		+ 663		525		1591	
September .	2005		8		33		2046			3926°)		+ 164		472		1574	
Jahr	18826		246		2080		21152							3396		17756	
OktMärz .	7438	10037	199	74	1772	663	9409	10774	+14,5			-2515	-2872	813	1527	8596	9247
April-Juli	7288	8209	33	29	260	109	7581	8347	+10,1			+2330	+2194	1586	1957	5995	6390

						Verte	ilung de	s gesamt	en Land	esverbra	uches					Lan verbr		
Monat		Haushalt, Gewerbe und Landwirtschaft		Allgemeine Industrie		Elektrochemie, -metallurgie und -thermie		Elektro- kessel¹)		Bahnen		Verluste		Verbrauch der Speicher- pumpen		ohne Elektrokessel und Speicher- pumpen		Verän- derung gegen Vor- jahr
1		1959/60	$9/60 \left 1960/61 \right 1959/60 1960/61 1960/$															
			in Millionen kWh														%	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Oktober	613	664	255	271	274	323	6	31	122	123	166	176	7	12	1430	1557	+ 8,9
	November .	634	663	257	283	234	285	4	21	123	119	157	165	18	3	1405	1515	+ 7,8
	Dezember	668	721	251	280	221	259	4	13	131	133	170	185	19	4	1441	1578	+ 9,5
	Januar	677	731	250	286	210	249	6	12	128	135	163	179	19	3	1428	1580	+10,6
1	Februar	630	630	249	261	209	215	5	12	120	120	156	147	13	3	1364	1373	+ 0,7
	März	639	665	266	286	234	262	6	20	122	129	155	166	5	2	1416	1508	+ 6,5
	April	580	611	237	265	278	305	11	38	112	117	147	148	10	7	1354	1446	+ 6,8
	Mai	581	629	245	275	324	333	38	74	112	121	166	174	37	16	1428	1532	. , . , .
1	Juni	551	601	243	279	330	332	80	84	116	125	178	174	55	47	1418	1511	+ 6,6
1	Juli	571	596	237	259	333	338	83	90	123	131	177	175	40	46	1441	1499	+ 4,0
1	August	584		236		338		100		122		179		32		1459		
	September .	610		256	-	332		67		121		173		15		1492		
-	Jahr	7338		2982		3317		410		1452		1987		270		17076		
	OktMärz .	3861	4074	1528	1667	1382	1593	31	109	746	759	967	1018	81	27	8484	9111	+ 7,4
	April-Juli	2283	2437	962	1078	1265	1308	212	286	463	494	668	671	142	116	5641	5988	+ 6,2


Mit einer Anschlussleistung von 250 kW und mehr und mit brennstoffgefeuerter Ersatzanlage.
 Speichervermögen Ende September 1960: 4080 Millionen kWh.

Gesamte Erzeugung und Verwendung elektrischer Energie in der Schweiz

4	Verfügbare Leistung, Mittwoch, den 19. Juli 1961	
1.	verlugbare Leistung, mittwoch, den 15. 5un 1501	мw
	Laufwerke auf Grund der Zuflüsse, Tagesmittel	1790
	Saisonspeicherwerke, 95 % der Ausbauleistung .	3590
	Thermische Werke, installierte Leistung	200
	Einfuhrüberschuss zur Zeit der Höchstleistung	_
	Total verfügbar	5580
2.	Aufgetretene Höchstleistungen, Mittwoch, den	
	19. Juli 1961	
	Gesamtverbrauch	4000
	Landesverbrauch	3200
	Ausfuhrüberschuss	840
2	Belastungsdiagramm, Mittwoch, den 19. Juli 1961	
υ.	(siehe nebenstehende Figur)	
	a Laufwerke (inkl. Werke mit Tages- und Woo	hen-
	speicher)	iicii-
	b Saisonspeicherwerke	
	c Thermische Werke	
	d Einfuhrüberschuss (keiner)	
	S + A Gesamtbelastung	
	S Landesverbrauch	
	A Ausfuhrüberschuss	

4.	Energieerzeugung und -verwendung					Mittwoch 19. Juli GWh	Samstag 22. Juli (Millionen	Sonntag 23. Juli kWh)
	Laufwerke					42,6	41,1	39,2
	Saisonspeicherwerke					32,8	26,1	17,9
	Thermische Werke		ř			0,3	0,2	0,1
	Einfuhrüberschuss				•			_
	Gesamtabgabe					75,7	67,4	57,2
	Landesverbrauch .				٠.	57,8	48,2	38,1
	Ausfuhrüberschuss	•	٠	•	•	17,9	19,2	19,1

1. Erzeugung an Mittwochen

- a Laufwerke
- t Gesamterzeugung und Einfuhrüberschuss
- 2. Mittlere tägliche Erzeugung in den einzelnen Monaten
 - $\mathbf{a_m}$ Laufwerke, wovon punktierter Teil aus Saisonspeicherwasser
 - b_m Speicherwerke, wovon punktierter Teil aus Saisonspeicherwasser
 - c_m Thermische Erzeugung
 - d_m Einfuhrüberschuss (keiner)

3. Mittlerer täglicher Verbrauch in den einzelnen Monaten

- T Gesamtverbrauch
- A Ausfuhrüberschuss
- T-A Landesverbrauch

4. Höchstleistungen am dritten Mittwoch jedes Monates

- P, Landesverbrauch
- P, Gesamtbelastung

Aus den Geschäftsberichten schweizerischer Elektrizitätswerke

(Diese Zusammenstellungen erfolgen zwanglos in Gruppen zu vieren und sollen nicht zu Vergleichen dienen)

Man kann auf Separatabzüge dieser Seite abonnieren

	der Sta	itätswerk adt Biel Biel	Elektriz	er- und itätswerk bon	du	Industriels Locle Locle	Elektrizitä	Werke Olten tsversorgung ten
	1960	1959	1960	1959	1960	1959	1960	1959
1. Energieproduktion kWh 2. Energiebezug kWh 3. Energieabgabe kWh 4. Gegenüber Vorjahr º/₀	2 362 800 109 386 000 103 320 000 7,75		54 607 500 53 557 904 + 9,7			$ \begin{vmatrix} 8 & 859 & 000 \\ 13 & 279 & 000 \\ 21 & 387 & 000 \\ +0.825 \end{vmatrix} $	69 496 000 67 418 000 + 7,3	
5. Davon Energie zu Abfallpreisen kWh	-,		_	-	86 520	90 610		-
11. Maximalbelastung kW 12. Gesamtanschlusswert kW	27 200 190 558 289 500	24 420 175 151 277 820	13 960 68 908 68 136	12 508 53 639 67 004	5 600 4 000	5 120 4 000 68 600	13 560 98 810 142 000	11 670 90 040 138 000
13. Lampen (kW	12 668 8 131	11 976 7 154	4 088 1 597	$4\ 020$ $1\ 442$		3 645 1 393	9 450 4 140	9 220 3 960
14. Kochherde kW	58 639 10 279	51 619	10 290	9 405	ı	9 750	25 000	23 800
15. Heisswasserspeicher (Zahl	30 774	9 663 29 293	1 455 2 487	$\begin{array}{c} 1402 \\ 2171 \end{array}$	_	3 703 4 822	5 130 12 070	4 930 11 540
16. Motoren $\ldots \ldots \begin{pmatrix} Zahl \\ kW \end{pmatrix}$	20 732 22 984	19 759 21 652	6 168 14 517	5 962 14 107		3 245 4 498	11 900 38 700	11 640 38 110
21. Zahl der Abonnemente 22. Mittl. Erlös p. kWh Rp./kWh	8,637	8,304	4 500 —	4 180			10 411 5,94	10 238 5,66
Aus der Bilanz:							×	
31. Aktienkapital Fr. 32. Obligationenkapital		7 858 603	=	_	=	_	=	_
34. Dotationskapital	9 044 261 - 1 730 167	8 445 648 — 2 059 254	4 069 583 290 000 209 293	3 873 136 — 208 577	590 000 1 057 400 1 216 000	590 000 955 000 920 000	1 827 456 	2 040 000 1 368 238
Aus Gewinn- und Verlustrechnung:								*
41. Betriebseinnahmen Fr. 42. Ertrag Wertschriften, Be-	7 155 296	6 852 648	3 065 978	2 737 774		2 175 000	4 005 789	3 557 294
teiligungen	73 9 884 335 142 2 552	73 9 884 319 024			56 700 — 26 400	$\frac{65\ 000}{31\ 500}$	3 289 33 471 850	2 924 33 020
45. Fiskalische Lasten	847 372 2 175 360			138791 122420			532 444	850 532 932
48. Energieankauf	3 168 833 635 994	2 906 470 619 966	2 115 984 489 623	1 938 587 404 715	619 700 293 000	551 500 254 000	2 067 833 737 282	1 923 189 410 658
50. Dividende	_	_	_		_	_	_	
52. Abgabe an öffentliche Kassen	2 361 356	1 609 047	38 000	_	367 200	312 500	585 604	574 290
Übersicht über Baukosten und Amortisationen	1	3				,	ž	
61. Baukosten bis Ende Berichtsjahr Fr. 62. Amortisationen Ende Ber	20 258 756	18 257 846	6 498 229	6 132 655			_	_
richtsjahr	11 214 495 9 044 261	9 812 198 8 445 648	2 428 646 4 069 583	2 259 520 3 873 135			1 827 456	2 040 000
kosten	45	46	62,6	63,1	_		_	-

Redaktion der «Seiten des VSE»: Sekretariat des Verbandes Schweizerischer Elektrizitätswerke, Bahnhofplatz 3, Zürich 1, Postadresse: Postfach Zürich 23, Telephon (051) 27 51 91, Postcheckkonto VIII 4355, Telegrammadresse: Electrunion Zürich.

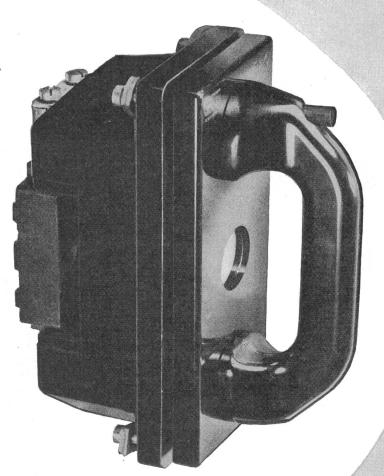
Redaktor: Ch. Morel, Ingenieur.

Sonderabdrucke dieser Seiten können beim Sektretariat des VSE einzeln und im Abonnement bezogen werden.

Sicherungs - Untersätze

Typ SN 1

Das Baukastensystem der neuen S&S-Sicherungsuntersätze ermöglicht die Ausführung aller Bauformen durch einfaches Zusammenfügen der Normalelemente


Untersatz Aufbautyp Bis 600 A mit Federkontakt 1000 A mit Schraubkontakt Untersätze verschiedener Grössen können durch Einbau von Unterlagen auf gleiche Einbauhöhe gebracht werden.

Berührungs- Auch bei herausgezogener Patrone sind dle Einbausicherungen berührungsgeschützt.

Deckplatte Ohne Patrone einsetzbar.

Einbautyp

Griff abnehmbar oder fest.

Solis

Neue Solis Schweizer Woche Dekoration

Benützen Sie die diesjährige Schweizer Woche (21. Okt. bis 4. Nov.) zu einem schönen SOLIS-Schaufenster. Prächtige Dekorationen stehen gratis zu Ihrer Verfügung. SOLIS-Apparate sind Ia Schweizer Fabrikat und bringen Ihnen nur zufriedene Kunden!

Abbildung:
Die neue Dekoration Nr. 27

SOLIS Apparatefabriken AG

Stüssistrasse 48-52

Zürich 6/42

Tel. (051) 261616 (6 Linien)

BAKO-ZWISCHEN VERTEILER

bieten Ihnen grosse Vorteile:

Beim montierten BAKO-ZWISCHENVERTEILER lassen sich zusätzliche Einführungen sehr leicht anbringen. Die Seitenwände können nach Wegnahme des Frontrahmens mühelos entfernt werden.

Für durchgehende Kabel ist im Verteiler eine Klemmbride angebracht.

BAKO-ZWISCHENVERTEILER sind durch Elektro-Grossisten erhältlich

Verlangen Sie bitte unsere praktische Montageanleitung

Baumann, Koelliker

AG FÜR ELEKTROTECHNISCHE INDUSTRIE SIHLSTR. 37 ZÜRICH 1 TEL. (051) 23 37 33