Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins				
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke				
Band:	51 (1960)				
Heft:	20				
Artikel:	Ein neuer elektro-optischer Entfernungsmesser mit einer Genauigkeit 1:10				
Autor:	Karolus, A. / Helmberger, J.				
DOI:	https://doi.org/10.5169/seals-917081				

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 10.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Frequenz des Quarzoszillators wird über eine variable Reaktanz (Semicap) mit einer Frequenz von 30 Hz moduliert, wobei der Hub etwa der Halbwertbreite der Spektrallinie entspricht. Am Ausgang des Cs-Resonators entsteht dann eine Wechselspannung, deren Fourierzerlegung die Modulationsfrequenz und deren Harmonische enthält. Bei genauer Abstimmung auf das Zentrum der Resonanz verschwindet die 30-Hz-Komponente, während deren Phasenlage das Vorzeichen einer allfälligen Verstimmung ergibt. Ein symmetrischer Vibrator (Chopper) arbeitet als phasenempfindlicher Detektor. Er wandelt die Wechselspannung in Gleichstromstösse um, die über einen Filter mit Ausgleichnetzwerk wiederum dem Modulator zugeführt werden und so die Mittelfrequenz des Quarzoszillators auf die Resonanz des Caesiums einregeln. Da diese Regelung im Prinzip eine einfache Positionsregelung ist, bleibt ein Restfehler $\Delta f =$ $\Delta f_0 / G$ bestehen, der durch die Abweichung Δf_0 des freilaufenden Oszillators und die Regelverstärkung G bestimmt ist. Es muss deshalb die Abweichung Δf_0 von Zeit zu Zeit durch Aufbrechen des Regelkreises nachkontrolliert werden. Für G = 100 entspricht einer Abdrift $\Delta f_0 = 10^{-9}$ ein Restfehler von 10-11. Da der Interpolationsoszillator von Hand auf $\pm 5 \cdot 10^{-10}$ genau auf die Linie vorabgestimmt werden kann und eine Abdrift von 10-9 mindestens eine Stunde dauert, ist eine genügende Genauigkeit gesichert.

Die Entwicklung und Konstruktion solcher Frequenzmeßsysteme birgt eine Fülle von Einzelheiten in sich, auf die im hier gegebenen Rahmen nicht eingegangen werden kann. Die Vielfalt der kleinen Probleme ist dadurch gegeben, dass Signale mit fast allen technisch verwendeten Frequenzen vorkommen, so dass die Methoden der ganzen Hochfrequenztechnik in der einen oder anderen Form zur Anwendung gelangen.

Literatur

- Bonanomi, J., J. De Prins, J. Herrmann und P. Kartaschoff: Stabilité d'étalons de fréquence à NH₃. Helv. Phys. Acta Bd. 30 (1957), Nr. 4, S. 288...290.
- [2] Bonanomi, J., J. De Prins, J. Herrmann und P. Kartaschoff: Améliorations d'un maser à NH₃. Helv. Phys. Acta Bd. 30 (1957), Nr. 6, S. 492...494.
- [3] Bonanomi, J., J. De Prins, J. Herrmann und P. Kartaschoff: Maser oscillant sur la ligne J=3, K=2 de NH₃. Helv. Phys. Acta Bd. 31 (1958), Nr. 4, S. 285...287.
- [4] Bonanomi, J., J. Herrmann, J. De Prins und P. Kartaschoff: Twin Cavity for NH₃ Masers. Rev. sci. Instrum. Bd. 28 (1957), Nr. 11, S. 879...881.
- [5] Prins, J. De und P. Kartaschoff: Die Technik der atomaren Frequenz- und Zeitbestimmung. Techn. Mitt. PTT Bd. 37 (1959), Nr. 1, S. 10...14.
- [6] Mainberger, W. A.: Primary Frequency Standard Using Resonant Cesium. Electronics Bd. 31 (1958), Nr. 45, S. 80...85.
- [7] Peter, M. und M. W. P. Strandberg: Phase Stabilization of Microwave Oscillators. Proc. IRE Bd. 43 (1955), Nr. 7, S. 869...873.
- [8] Kartaschoff, P.: Klystron stabilisé en phase. ZAMP Bd. 9a (1958), Nr. 3, S. 297...299.

Adresse des Autors:

P. Kartaschoff, dipl. Elektroingenieur ETH, Laboratoire Suisse de Recherches Horlogères, Neuchâtel.

Ein neuer elektro-optischer Entfernungsmesser mit einer Genauigkeit 1:10⁴

Von A. Karolus, Zollikon und J. Helmberger, Freiburg i. Br.

526.021.7

Messanordnung

Eine schematische Darstellung der Messanordnung zeigt Fig. 1¹). Die Intensität eines von der Glühlampe L ausgehenden Lichtbündels wird mit Hilfe des Modulators Msinusförmig gesteuert. Ein Strahlenteiler S (Glasplatte) lenkt einen kleinen Teil des Lichtes ($\approx 8\%$) auf den Vergleichsempfänger E₁, während der Hauptteil über die Sendeoptik auf die Meßstrecke gelangt. An deren Ende wird er von einem Planspiegel reflektiert, läuft die Meßstrecke zurück und erreicht über die Empfangsoptik den Messempfänger E₂. Zu diesem Weg benötigt das Licht eine Zeit:

$$t = \frac{2l}{c}$$

wenn l Länge der Meßstrecke und c Gruppengeschwindigkeit des Lichtes.

Das Licht hat beim Austritt aus der Sendeoptik eine zeitabhängige Intensität S_1 , die durch

$$S_1 = S_0 \sin \left(\omega t\right) = S_0 \sin \left(2 \pi \frac{\mathrm{t}}{T}\right)$$

beschrieben werden kann. 1/T = f Modulationsfrequenz, S_0 Amplitude der Lichtintensität³).

²) Siehe Literatur am Schluss des Aufsatzes.

Nach der Zeit Δt tritt das Messlicht in die Empfangsoptik ein und besitzt dort die Intensität

$$S_2 = S_0 * \sin \left[\omega \left(t + \frac{2l}{c} \right) \right] = S_0 * \sin \left[2 \pi \left(\frac{t}{T} + \frac{2l}{cT} \right) \right]$$

deren Amplitude S₀* wegen der Lichtverluste auf der Mess-

L Lichtquelle; M Modulator; S Strahlenteiler; PHM Phasenmesser; G Graufilter; E_1 Empfänger für Vergleichslicht; E_2 Empfänger für Messlicht

¹) Eine Zusammenstellung verschiedener elektrooptischer Verfahren zur Entfernungsmessung findet sich in [1] und [2]²).

³) Diesem «Wechsellicht» ist ein «Gleichlichtanteil» überlagert, dessen Grösse vom Modulationsgrad des Lichtes abhängt, und der bei einer unverzerrten Sinusmodulation mindestens So/2 beträgt. Die folgenden Überlegungen beschäftigen sich nur mit periodisch veränderlichen Grössen. Der Gleichlichtanteil kann dabei unbeachtet bleiben.

strecke im allgemeinen viel kleiner sein wird als S_0 . Wesentlich ist, dass der Phasenunterschied zwischen S_1 und S_2 der Länge der Meßstrecke proportional ist.

Misst man über den Vergleichsempfänger E_1 die Phase des ausgesandten Lichtes und stellt man die Phase des ankommenden Lichtes mit Hilfe des Messempfängers E_2 fest, so kann man nach Umwandlung der optischen Messgrössen in elektrische, am elektronischen Phasenmesser PHM diesen Phasenunterschied ablesen.

Benötigt das Licht zum Durchlaufen der doppelten Messstrecke 2l (= Lichtweg s) weniger als eine Periode der Modulationsfrequenz ($\Delta t < T$), so bleibt der Ausdruck für S₂ eindeutig. Man spricht von Messungen in 1. Ordnung. Ist die Meßstrecke so gross, dass die Laufzeit des Lichtes:

beträgt, wobei

 $\Delta t = n T + \tau$ $0 \leq \tau < T$ $n \geq 0 \qquad \text{ganzzahlig,}$

so findet die Messung in $(n+1)^{\text{ter}}$ Ordnung statt. Die Zahl *n* muss dann durch eine zusätzliche Ordnungsbestimmung ermittelt werden, während τ , wie vorher, aus der Phasenmessung gewonnen wird.

Aus der Bestimmung von n und τ ergibt sich die Länge der Meßstrecke zu

$$l = rac{1}{2} \left(n \ T + \tau
ight) c = \left(n + rac{ au}{T}
ight) rac{\lambda}{2}$$

wenn die Modulationswellenlänge $\lambda = \frac{2 \pi c}{\omega} = \frac{c}{f}$

Messfrequenz

Beim Bau eines Entfernungsmessers ist der Messbereich sowie die zu fordernde Genauigkeit vorgegeben. Das hier beschriebene Gerät wurde für Entfernungen von 0,3...6,0km ausgelegt und sollte in diesem Bereich einen Fehler von $5 \cdot 10^{-4}$ nicht überschreiten. Diesen Bedingungen war bei der Wahl der Messfrequenz Rechnung zu tragen.

Aus der oben angeführten Beziehung für l ist zu ersehen, dass Fehler in der Bestimmung von τ besonders stark in das Messergebnis eingehen, wenn n klein ist. Auftretende Phasenfehler und Ungenauigkeiten in der Phasenmessung wirken sich daher bei Messungen in 1. Ordnung auf die erreichbare Genauigkeit wesentlich stärker aus als bei Messungen in höherer Ordnung.

Bei einer Frequenz von $f_1 = 8$ MHz, $\lambda_1 = c/f_1 = 37,5$ m und dem angegebenen Messbereich 0,3...6,0 km ergibt sich:

$$n_{min} = \frac{2 \cdot 300 \text{ m}}{37,5 \text{ m}} = 16$$

 $n_{max} = \frac{2 \cdot 6000 \text{ m}}{37,5 \text{ m}} = 320$

Die Ordnungsbestimmung erfordert aber bereits einen grösseren Aufwand.

Entfernungsmessung und Phasenstruktur des Messlichtes

Wegen der endlichen Grösse der Lichtquelle und der ebenfalls beschränkten Brennweite der Sendeoptik, verlässt das Licht den Sendespiegel nicht parallel. Die Divergenz des Lichtbündels führt dazu, dass von einer bestimmten Entfernung an der Gegenspiegel mit seiner reflektierenden Fläche nicht mehr den ganzen Querschnitt des Lichtbündels erfassen kann. Ebenso gelangt das vom Spiegel reflektierte Licht nicht mehr vollständig in die Empfangsoptik. Die sich hieraus ergebenden Beschneidungen des Lichtbündels bewirken bei homogener Modulationsphase des Lichtes lediglich einen Lichtverlust, der bei der Auslegung des Gerätes beachtet werden muss. Erfolgt die Helligkeitssteuerung nicht mehr an allen Stellen seines Querschnitts gleichmässig, so besitzt es eine Phasenstruktur, d. h. die einzelnen Teillichtbündel haben im allgemeinen voneinander abweichende Phasenwerte.

Die Bezugsphase wird über den Strahlenteiler S und den Vergleichs-Empfänger E_1 gewonnen. Da auf diesem Vergleichsweg der volle Querschnitt des Lichtbündels übertragen wird, ist sie ein Mittelwert aus den Einzelphasen aller Flächenelemente des Querschnittes, bewertet mit deren jeweiliger Helligkeit.

Fehlen jetzt im Messlicht einige dieser Teilphasen, so wird der Mittelwert im allgemeinen verändert erscheinen. Die gemessene Phasendifferenz hängt damit nicht mehr allein von der Meßstrecke, sondern auch von der zufälligen Art der Beschneidung ab. Für die Entfernungsmessung bedeutet dies einen echten Fehler, der unter der zulässigen Fehlergrenze gehalten werden muss.

Bei kurzen Meßstrecken bewirkt eine Beschneidung des Messlichtes bei der vorliegenden Optik immer eine Ausschaltung von Teilphasen und damit im allgemeinen Messfehler. Bei grösseren Meßstrecken erscheint die Sendeoptik, vom Gegenspiegel aus betrachtet, voll ausgeleuchtet. Das Licht, welches auf den Gegenspiegel auftrifft, stammt dann an jedem Punkt weitgehend gleichmässig von allen Flächenelementen des Bündelquerschnittes im Modulator. Eine Beschneidung an dieser Stelle ändert die phasenmässige Zusammensetzung des Lichtes daher nicht.

Modulator

1. Kerr-Zelle

Zur Bestimmung der Lichtgeschwindigkeit aus bekannter Meßstrecke und Frequenz ist mehrfach zur Modulation des Lichtes die Kerr-Zelle benützt worden [3; 4; 5]. Da das hier beschriebene Verfahren der Entfernungsmessung eine Umkehrung der Methode der *c*-Bestimmung darstellt, liegt es nahe, die Kerr-Zelle auch für die vorliegende Aufgabe zu verwenden (*Bergstrand* u. a.). Einige ins Gewicht fallende Nachteile liessen jedoch eine andere Anordnung als besser geeignet erscheinen.

Bei den gebräuchlichen Lichtmodulatoren mittels Kerr-Effekt verliert man durch den vor der Zelle liegenden Polarisator mindestens 50% des Lichtes. Hinzu kommen Verluste durch unvollständige Polarisation und durch Licht-Absorption in der Kerr-Flüssigkeit (meist Nitrobenzol), die eine Lichtausnützung von bestenfalls 40% bei vollständiger Durchsteuerung, bei Beschränkung auf den linearen Bereich der Kerr-Kennlinie aber nur von 30...25% ermöglichen.

Zur Steuerung der Kerr-Zelle benötigt man neben einer Gleichvorspannung in der Grössenordnung 5...10 kV, Wechselspannungsamplituden von 1...2 kV je nach dem Plattenabstand der Zelle und der Länge der Elektroden. Bei fester Frequenz lassen sich diese Wechselspannungen durch Einstimmen der Zelle in den Ausgangskreis gut erreichen. Im Gebiet um 10 MHz sind jedoch die dielektrischen Verluste des verwendeten Nitrobenzols bereits beträchtlich gross (tg $\delta \approx 2 \cdot 10^{-3}$), so dass die benötigten Steuerleistungen stark ansteigen. In der Zelle selbst führen diese Verluste zu einer erheblichen Erwärmung der Flüssigkeit, die wiederum den Verlustfaktor des Nitrobenzols erhöht, die Kerr-Konstante dagegen verkleinert. In der von *Hüttel* verwendeten Kerr-Zelle wurden deshalb die Elektroden gekühlt und die ganze Zelle in einen Thermostaten eingebaut.

In jeder Kerr-Zelle ergeben sich durch thermische und elektrische Schichtung in der Zelle Unterschiede in der Phasenlage der einzelnen Teillichtbündel untereinander. *Hüttel* blendete jeweils etwa 1/5 des Gesamtlichtes aus und gibt für die Unterschiede in den Phasenlagen Wegunterschiede von 0,25% der Wellenlänge an. Da die Messung in 2. Ordnung erfolgte, entspricht dem eine Phasendifferenz von $2 \cdot 0,25\% \cdot 360^\circ = 1,8^\circ$. Nach neueren Messungen können die Phasenunterschiede des Lichtes bis 10° erreichen, falls das Nitrobenzol nicht sorgfältig durch Destillation im Vakuum gereinigt wurde.

2. Ultraschall-Zelle mit zwei gegenläufigen Wellen

Um Lichtverluste und Steuerspannungen klein zu halten, wurde die Abbeugung des Lichtes an zwei gegenläufigen Ultraschall-Wellen in CCl₄ zur Steuerung der Lichtintensität benützt. Man benötigt hiezu eine Hochfrequenzspannung der halben Modulationsfrequenz mit einem Effektivwert von 60...80 V. Den Modulator zeigt Fig. 2. Als Lichtdarauf eine von rechts einfallende ebene Schallwelle. Die beiden Wellen haben die gleiche Frequenz f_Q . Sie gehen von seitlich angebrachten Ultraschall-Quarzen aus, laufen als einander folgende Verdichtungen und Verdünnungen der Flüssigkeit senkrecht zur Lichtrichtung aber streng parallel zueinander durch die Zelle und werden an den jeweils gegenüberliegenden Enden von Absorbern aus Schaumgummi aufgenommen. Zwei derart angeordnete

Schallwellen wirken auf ein Lichtbündel ähnlich wie ein optisches Gitter, welches mit der Frequenz

$$f_M = 2f_Q$$

entsteht und verschwindet [6; 7].

Bringt man in den telezentrischen Strahlengang hinter der Ultraschall-Zelle eine zweite Linse, so wird die Lichtquelle in die Brennebene dieses Systems abgebildet. Dort erscheint jetzt periodisch mit der Modulationsfrequenz f_M

quelle dient der Faden einer kleinen Sofittenlampe, von dem der Höhe nach ein etwa 1 mm grosses Stück ausgeblendet wird. Eine Linse bildet den Faden telezentrisch ab, wodurch ein Bündel nahezu paralleler Lichtstrahlen entsteht, welches durch die mit CCl_4 gefüllte Zelle geleitet wird. Dort durchquert es zunächst eine von links kommende und unmittelbar eine Aufspaltung des ursprünglich einfachen Bildes in eine Reihe von Beugungsbildern, die sich symmetrisch um die «nullte Ordnung» gruppieren (Fraunhofersche Beugung).

Eine Spaltblende fängt die Beugungsbilder höherer Ordnung auf und gestattet nur der nullten Ordnung den Durchtritt. Bei fehlender Aufspaltung gelangt dagegen das gesamte durch die Ultraschall-Zelle fallende Licht auch durch den Spalt. Das Lichtbündel hinter der Blende ist in seiner Intensität mit der Frequenz f_M moduliert. Der Modulations-

Fig. 4 Ultraschallzelle Innenansicht

lung die Zelle auf einer, durch ein Kontaktthermometer kontrollierten Temperatur gehalten (Fig. 4). Die zeitabhängige Änderung der Phasenstruktur verschwand dabei weitgehend (Fig. 5). Es war jedoch nicht möglich, drei übereinander ausgeblendete Lichtbündel auf den gleichen Phasenwert zu bringen. Erst eine Abänderung der Quarzauflage brachte hier eine Verbesserung. Je geringer die Auflagefläche der Ultraschall-Quarze gemacht wurde, um so mehr näherten sich die einzelnen Phasenwerte einander an. Die besten Ergebnisse lieferte die aus Fig. 6 ersichtliche Auflagerung, mit der die Werte in Fig. 7 gemessen wurden. Man kann danach annehmen, dass die Quarzplättchen bei früheren Aufkittungen jeweils etwas verspannt waren und dadurch nicht homogen genug schwingen konnten.

Zu den Messungen in Fig. 3, 5 und 7 ist zu bemerken, dass die Ausblendung mit Hilfe einer Rechteckblende 14×14 mm aus einem Lichtbündel von 70 mm Durchmesser in etwa 1 m Entfernung von der Ultraschallzelle vorgenommen wurde. Von den drei auf Fig. 3 sichtbaren quadratischen Fenstern ist jeweils nur eines geöffnet. Der Kreis zeigt

grad ändert sich mit der angelegten Spannung; er beträgt in der vorliegenden Ausführung $\approx 40\%$.

In einer früheren Arbeit [8] wurde ausführlich auf die hohen Anforderungen an die Parallelstellung der Quarze hingewiesen, die einzuhalten sind, wenn eine vertikale Phasenstruktur des Lichtbündels vermieden werden soll. Die richtige Justierung der Quarze kontrolliert man zweckmässig direkt durch eine Phasenmessung übereinander liegender Teilbündel.

Selbst bei einmal festgelegter Parallelität bleibt aber der Phasenunterschied zwischen den ausgeblendeten Teilbündeln keineswegs 0 oder wenigstens konstant (Fig. 3). Messungen ergaben, dass alle Änderungen der Temperatur innerhalb der Zelle die Phasenstruktur stark beeinflussen, da sich mit der Erwärmung die Schallgeschwindigkeit in der Flüssigkeit ändert.

Um möglichst gleichmässige Temperaturverteilung in der Zelle zu erreichen, wurde die Wärmekapazität des Zellengehäuses erhöht und ausserdem durch eine Heizwickdie Abmessungen des Lichtbündels. Die ausgeblendete Fläche beträgt etwa 5% des Bündelquerschnittes.

Fig. 6 Ultraschallzelle Deckel mit eingesetzten Ultraschallquarzen

Empfänger

In den beiden Empfängern E_1 und E_2 , die vollkommen gleichartig aufgebaut sind, trifft das intensitätsmodulierte Licht auf die Kathode je eines Photomultipliers (Typ *Dumont* 6291) und ruft dort einen Elektronenstrom der Modulationsfrequenz hervor. Dieser wird an den folgenden Dynoden verstärkt und durch Mischung mit einer Überlagerungsfrequenz f_U an der 2. Dynode auf 2000 Hz transponiert. Das NF-Signal trifft an der Anode auf einen abgestimmten Kreis und wird von dort (im Messweg nach 100facher Nachverstärkung) dem Phasenmesser zugeführt. die ankommende Sinusspannung. Anschliessend findet ein symmetrische Beschneidung der Amplitude an zwei vorgespannten Dioden statt. Die beiden nachfolgenden Verstärker-Begrenzer-Einheiten erhalten somit ein Signal mit nahezu konstanter Amplitude, das sie zu Rechtecken mit hoher Flankensteilheit verarbeiten. Der Nulldurchgang der Signalspannung von negativen zu positiven Werten, also die vordere Flanke des Rechteckes, liefert über eine Differenzierstufe den Steuerimpuls für die bistabile Kippstufe.

Führt man die Impulse des Vergleichssignals stets dem System A der bistabilen Kippstufe, die Impulse des Mess-

Die Amplitude des Vergleichslichtes hängt nicht von der Messentfernung ab. Um auch über den Messweg ein im Mittel stets annähernd gleich grosses Signal zu bekommen, ist dem Mess-Empfänger ein kontinuierlich veränderliches Graufilter vorgeschaltet, mit dem das Licht bei kurzen Messstrecken abgeschwächt wird.

Die Verstärkung in den Photomultiplier wurde verhältnismässig niedrig gehalten, um zu verhindern, dass das in den Empfangsspiegel gelangende Tageslicht eine Überlastung des dort liegenden Sekundäremissionsvervielfachers herbeiführt. Dem Messmultiplier wurde ein zweistufiger Niederfrequenz-Verstärker nachgeschaltet. Die Betriebsspannung der beiden Photomultiplier ist über Glimmröhren des Typs 85 A2 stabilisiert. Die ersten 8 Dynoden erhalten ihre Gleichspannung von einem für beide Sekundäremissionsvervielfacher gemeinsamen Spannungsteiler, während die letzten beiden Dynoden, paarweise parallel geschaltet, ihres höheren Stromverbrauches wegen, direkt aus der Glimmröhrenkette versorgt werden. Damit sind die Voraussetzungen für ein gleichartiges Verhalten beider Empfänger geschaffen.

Phasenmesser

Nachdem Vergleichs- und Messlicht in den Empfängern bereits eine Frequenztransponierung auf 2000 Hz erfahren haben, kann die Messung des Phasenunterschiedes bei Niederfrequenz durchgeführt werden. Sie erfolgt nach einem in [9] beschriebenen Verfahren an einer bistabilen Kippstufe (Fig. 8). Mess- und Vergleichssignal werden zwei getrennten Kanälen zugeführt, die vollkommen gleichartig aufgebaut sind. Am Eingang misst ein Röhrenvoltmeter signals aber stets dem System B zu, so übernimmt System A beim Nulldurchgang des Vergleichssignals die Stromführung und gibt sie beim Nulldurchgang des Messlichtes an das System B ab. Wegen des symmetrischen Aufbaus sind die Anodenstromamplituden der beiden Systeme gleich.

Grundsätzlicher Aufbau des Phasenmessers

Ist der zeitliche Abstand der aufeinanderfolgenden Nulldurchgänge Δt_{NF} , so erhält man die gesuchte Phasendifferenz aus

$$x = \frac{\Delta t_{NF}}{T_{NF}} = \frac{I_A}{I_A + I_B}$$

wobei

 I_A Mittelwert des Gleichstromes durch System A I_B Mittelwert des Gleichstromes durch System B T_{NF} NF – Periodendauer = 0,5 ms

Der Strom I_A wird durch ein Drehspuleninstrument in der Kathode von System A gemessen. Bei geeigneter

Eichung kann der Phasenunterschied unmittelbar abgelesen werden.

Die unvermeidbaren Schwankungen des Meßsignals durch atmosphärische Einflüsse dürfen keine Störung des Messvorganges hervorrufen. Bei richtigem Abgleich bewirken Amplitudenänderungen der Eingangsspannungen im Verhältnis 1:2 Phasenfehler $< 0,45^{\circ}$ also <1,25 ‰. Kurzzeitige Schwankungen werden durch die Trägheit des Anzeigeinstrumentes eliminiert.

Das Instrument selbst besitzt die Klassengenauigkeit 0,5 und ist auf vierfache Empfindlichkeit dehnbar, so dass Vollausschlag bereits bei Phasendifferenzen von 90° erreicht werden kann. Durch zwei Umschalter ist es möglich, jeden Phasenwert zwischen 0° und 360° in den Bereich 0° bis 90° zu überführen. Auf diese Weise wird eine Anzeige von 1 Skalenteil für 0,6° erreicht, die für die Phasenmessung im vorliegenden Fall ausreicht.

Ordnungsbestimmung

Zur Festlegung von n wird die Entfernungsmessung mit einer Hilfsfrequenz f_2 wiederholt. Für den Lichtweg s kann man dann schreiben

$$s = 2l = n_1 \lambda_1 + x_1 \lambda_1 \qquad (\text{Messung mit } f_1)$$

$$s = n_2 \lambda_2 + x_2 \lambda_2 \qquad (\text{Messung mit } f_2)$$

wobei

$$egin{aligned} \lambda_1 = & rac{c}{f_1}; & x_1 = rac{ au_1}{T_1} = rac{arphi_1}{360^\circ}; & 0 \leq x_1, \;\; x_2 < 1 \ \lambda_2 = & rac{c}{f_2}; & x_2 = rac{ au_2}{T_2} = rac{arphi_2}{360^\circ} \end{aligned}$$

Wird f_2 so gewählt, dass

$$n_{max} \lambda_2 = (n_{max} + 1) \lambda_1$$

 $(\lambda_2 > \lambda_1)$

a) $n_1 = n_2$

höchste Ordnungszahl $n_{max} = s_{max}/\lambda_1$

so gilt entweder

oder

a)

b) $n_1 = n_2 + 1$

$$n_1 = n_2 = n_1$$

$$s = n \lambda_1 + x_1 \lambda_1 = n \lambda_2 + x_2 \lambda_2$$

$$rac{\lambda_{2} + x_{1} \lambda_{1}}{-\lambda_{1} + \lambda_{2}} = rac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} (x_{1} - x_{2}) - x_{2} = n_{max} (x_{1} - x_{2}) - x_{2}$$

wegen

egen
$$\lambda_2 > \lambda_1$$
 ist $x_1 > x_2$
b) $n_1 = n_2 + 1 = n + 1; n_2 = n$

$$s = (n + 1) \lambda_1 + x_1 \lambda_1 = n \lambda_2 + x_2 \lambda_2$$
$$n\lambda_1 + (1 + x_1) \lambda_1 = n \lambda_2 + x_2 \lambda_2$$

$$n = \frac{\lambda_1}{\lambda_2 - \lambda_1} (1 + x_1 - x_2) - x_2 = n_{max} (1 + x_1 - x_2) - x_2$$

Es lässt sich zeigen, dass hier stets $x_1 < x_2$ ist.

Die beiden angeführten Fälle sind damit stets eindeutig gekennzeichnet:

a) $x_1 > x_2 \rightarrow n_1 = n_2$

b)
$$x_1 < x_2 \rightarrow n_1 = n_2 + 1$$

 $x_1 = x_2$ tritt nur auf für s = 0 und $s = s_{max}$. Beide Fälle sind oben ausgeschlossen worden.

Zur n-Bestimmung benützt man praktisch die Beziehung

$$n = n_{max} (x_1 - x_2) - x_2$$

unverändert, wenn $(x_1 - x_2) > 0$. Wird $(x_1 - x_2) < 0$, so tritt an die Stelle von x_1 der Ausdruck ($x_1 + 1$). Hiemit werden beide Möglichkeiten erfasst.

Fig. 9 zeigt anschaulich, wie die beiden Fälle zustande kommen.

Anforderungen an die Messgenauigkeit

1. Die eigentliche Streckenmessung

Aus $s = n_1 \lambda_1 + x_1 \lambda_1$ ergibt sich für bekanntes *n* für den relativen Fehler der Meßstrecke:

$$\left|\frac{\Delta s}{s}\right| = \frac{|\Delta x_1| \cdot \lambda_1}{n \lambda_1 + x_1 \lambda_1} = \frac{|\Delta x_1|}{n + x_1}$$
$$|\Delta x_1| = \left|\frac{\Delta s}{s}\right| (n + x_1)$$

Für festes $\left|\frac{\Delta s}{s}\right|$ ist zu fordern, dass

$$|\Delta x_1| < \left|\frac{\Delta s}{s}\right| \cdot n$$

$$\operatorname{Für}\left(\frac{\Delta s}{s}\right)_{max} = 5 \cdot 10^{-4} \text{ und } n_{min} = 16 \text{ ergibt sich}$$
$$|\Delta x_1| < 5 \cdot 10^{-4} \cdot 16 = 8 \%$$

Bei vorgegebenem zulässigen Streckenmessfehler 2 steigt der für x_1 zulässige Fehler proportional mit n. Die Anforderungen an die Genauigkeit der x_1 -Bestimmung folgen also aus der kleinsten Ordnungszahl.

2. Ordnungsbestimmung mit einer Hilfsfrequenz

Soll die Ordnungszahl mit einer Hilfsfrequenz f_2 festgelegt werden, so dürfen bei der Bestimmung von x_1 und x2 die Fehler maximal so gross werden, dass die Bedingung von $|\Delta n| < 0,5$ eingehalten wird.

$$\Delta n = n_{max} \Delta x_1 - (n_{max} + 1) \Delta x_2$$

Da x_1 und x_2 auf gleichartige Weise bestimmt werden kann man für beide Werte Fehler in der gleichen Grössenordnung ansetzen:

$$|\Delta x_1| = |\Delta x_2| = |\Delta x|$$
$$|\Delta n| \le (2n_{max} + 1) \cdot |\Delta x| < 0.5$$
$$\Delta x < \frac{0.5}{2 n_{max} + 1}$$

Bei $n_{max} = 320$ ist:

$$|\Delta x| < \frac{1}{1282} = 0,78\%$$

Zu diesem Wert ist zu bemerken, dass hier der wenig wahrscheinliche Fall eingeschlossen ist, bei dem Δx_1 und Δx_2 verschiedenes Vorzeichen haben. Praktisch ist es so, dass die Differenz $(x_1 - x_2)$ mit einem Fehler < 1,56%gemessen werden muss. Gleichsinnige Fehler kompensieren sich weitgehend.

3. Ordnungsbestimmung mit 2 Hilfsfrequenzen

Angesichts der Phasenfehler im Modulator ist die Forderung $|\Delta x| < 0.78\%$ sehr hoch. Sie kann wesentlich herabgesetzt werden, wenn man zur Ordnungsbestimmung noch eine zweite Hilfsfrequenz f_3 verwendet.

Im vorliegenden Fall wurde:

$$f_3 = rac{17}{18} f_1 = rac{17}{18} \cdot 8 \; \mathrm{MHz} = 7,556 \; \mathrm{MHz}$$
 $\lambda_3 = rac{18}{17} \lambda_1$

gewählt.

Die Bestimmung der Ordnungszahl erfolgt analog zur Ableitung bei f_2 aus

$$n_3 = \frac{\lambda_1}{\lambda_1 - \lambda_3} (x_1 - x_3) - x_3$$

wobei für $(x_1 - x_3) < 0$ wiederum x_1 durch $(x_1 + 1)$ zu ersetzen ist.

Nach der getroffenen Wahl von λ_3 erhält man als Maximalwert von n_3

$$n_{3max} = \frac{\lambda_1}{\lambda_3 - \lambda_1} = 17$$

Wird *n* grösser als 17, so springt n_3 auf 0, um dann wieder bis 17 anzusteigen. Die gesuchte Ordnungszahl *n* ergibt sich aus

 $n = 18 N + n_3$ N = 0, 1, 2, 3...17

Für n_3 ist als grösster Fehler $|\Delta n_3| < 0.5$ zulässig.

$$\Delta n_3 = n_{3max} \Delta x_1 - (n_{3max}+1) \Delta x_3$$

Setzt man

$$|\Delta x_1| = |\Delta x_3| = |\Delta x$$

so wird $|\Delta n_3| \leq (2 n_{3max} + 1) \cdot |\Delta x| < 0.5$

$$|\Delta x| < rac{0.5}{2 \, n_{3 \, max} + 1}$$

Bei $n_{3max} = 17$ wird:

$$|\Delta x| < \frac{1}{70} = 14,3\%$$

Die Schlussbemerkung zum Abschnitt 2 gilt sinngemäss auch hier; die Differenz $(x_1 - x_3)$ muss also mit einem Fehler < 28,6% gemessen werden.

Die vorher angeführte Messung mit f_2 braucht jetzt nur noch die Zahl N zu liefern. Hiefür dürfen Fehler von $|\Delta n| < 18/2$ zugelassen werden, was bedeutet, dass

$$|\Delta (x_1 - x_2)| < \frac{18}{2 \cdot 320} = 28,1\%$$

sein muss.

Für $|\Delta x|$ ergibt sich entsprechend:

$$|\Delta x| < \frac{18}{1282} \approx 14\%$$

Man sieht, dass bei einem Fehler der Phasenmessung < 14 % sowohl die Zahl *N*, wie auch die Grösse n_3 mit in jedem Fall ausreichender Genauigkeit bestimmt werden können. Lediglich x_1 muss bei dieser Art der Auswertung für Meßstrecken zwischen 300 und 525 mmit einer grösseren Genauigkeit gemessen werden.

Steueroszillatoren

Die drei zur Streckenmessung benötigten Modulationsfrequenzen des Lichtes:

$$f_1 = 8,000 \text{ MHz}$$

 $f_2 = 7,556 \text{ MHz}$
 $f_3 = 7,975 \text{ MHz}$

stammen, neben den drei jeweils um 2000 Hz kleineren Überlagerungsfrequenzen, aus dem Oszillatorteil, der sechs Steuerquarze in einem gemeinsamen Thermostaten enthält. Die relativen Frequenzänderungen aller Quarze bleiben über mehrere Stunden unter $1 \cdot 10^{-6}$. Die Steueroszillatoren schwingen dabei auf der Hälfte der angegebenen Modulationsfrequenz, da der Lichtmodulator selber eine Frequenzverdopplung bewirkt. Sämtliche Schwingstufen werden aus einer Gleichspannung von 14 V gespeist und verbrauchen zusammen etwa 2 mA Anodenstrom. Von ihnen ist jeweils ein Paar über Trennstufen an die beiden Ausgangsverstärker geschaltet, die ihrerseits auf abgestimmte Kreise arbeiten und dort Sinusspannungen von ≈ 85 V erzeugen.

Messung

Um interne Phasenverschiebungen im Messgerät zu eliminieren, welche sich gegebenenfalls mit Temperatur, Versorgungsspannung, Röhrenalterung und Laufzeiten in *beiden* Multiplier usw. ändern könnten, wird die Entfernungsbestimmung als Differenzmessung durchgeführt.

Man misst zunächst den Phasenwert für die ferne Strecke $(\rightarrow x_{r_L})$ und subtrahiert davon den Phasenwert für einen im Messkopf des Gerätes eingebauten optischen Kurzschlussweg, welcher hiefür in den Weg des Messlichtes gebracht wird und dieses über zwei unter 45° montierte Spiegel auf den Messempfänger E₂ lenkt $(\rightarrow x_{r_K})$.

 $x_{\nu} = x_{\nu_L} - x_{\nu_K}$ $\nu = 1, 2, 3$ je nach der Modulationsfrequenz

Dies wird für die drei Frequenzen f_{ν} durchgeführt und man erhält x_1 , x_2 und x_3 , aus denen N, n_3 und damit l zu berechnen sind. Die Auswertung selbst geschieht in der Praxis mit Hilfe eines vorgedruckten Messformulars und mit vorbereiteten Tabellen in wenigen Minuten.

Entwicklungsmuster und Probemessungen

Bei dem vorliegenden Messgerät gliedert sich die gesamte Apparatur in drei Teile:

Der Messkopf enthält die Sende- und die Empfangsoptik, als Lichtquelle eine Glühlampe (von ≈ 4 W), ferner die Empfänger für Vergleichs- und Messlicht.

In einer getrennten Einheit (Fig. 10) sind Oszillatoren, Phasenmesser und Energieversorgung untergebracht.

Fig. 10 Ansicht des elektronischen Teiles des Entfernungsmessers

Der Gegenspiegel bildet die Gegenstation, die keine elektronischen Bauteile benötigt. Abbildungen von Messkopf und Gegenspiegel finden sich in [2] und [10].

Als Energiequellen dienen eine 6V- und eine 12V-Batterie. Mit diesem Gerät wurden Probemessungen über vier verschiedene Entfernungen durchgeführt, die im einzelnen Ergebnisse nach Tab. I lieferten:

					rabene
Tag	Strecke	Gemessene Strecke	Zahl der Messungen	Mittlere	Maximale
				Abweichungen	
		m			m
19. 12. 1959	1	1019,43	8	0,10	0,14
20. 12. 1959	1	1019,46	3	0,04	0,08
12. 2.1960	2	576,69	5	0,05	0,09
12. 2.1960	3	480,59	5	0,08	0,22
23. 2.1960	3	480,79	5	0,05	0,16
12. 2.1960	-4	384,63	5	0,06	0,13
23. 3.1960	4	385,52	5	0,04	0,10

Die erhaltenen Resultate für die vier Strecken stimmen mit den aus Messtisch-Blättern entnommenen Werten überein. Das Gerät wird später über exakt ausgemessene Strekken nachgeprüft werden. Aus den in Tab. I angegebenen Abweichungen ist zu ersehen, dass alle maximalen Fehler unter $5 \cdot 10^{-4}$ liegen, wie bei der Auslegung des Gerätes beabsichtigt. Die Mittelwerte der Abweichungen betragen etwa $1 \cdot 10^{-4}$.

Nach den mit diesem Gerät gewonnenen Erfahrungen kann erwartet werden, dass sich die Messgenauigkeit noch verbessern, vor allem aber der elektrische Aufwand wesentlich verkleinern lässt.

Zusammenfassung

Ein elektrooptischer Entfernungsmesser für Strecken von 0,3...6,0 km und mit einem relativen Fehler von $< 5 \cdot 10^{-4}$ wird beschrieben. Das Gerät arbeitet mit einer festen Modulationsfrequenz von 8 MHz und kontinuierlicher Phasenmessung. Zur Ermittlung der Ordnungszahl sind zwei weitere Festfrequenzen von 7,556 MHz und 7,975 MHz vorgesehen. Ordnungszahlbestimmung und zulässige Phasenfehler werden diskutiert.

Probemessungen zeigen die Einsatzfähigkeit des Instrumentes; sie erbrachten auf Meßstrecken von 356...1070 m mittlere Fehler um $1 \cdot 10^{-4}$.

Literatur

- [1] Karolus, A.: Die physikalischen Grundlagen der elektrooptischen Entfernungsmessung. Bd. –(1958), Nr. 92. Bayerische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse. Abhandlungen, Neue Folge, Heft 92. München: Beck 1958.
- [2] Hildebrand, K., und G. Seiffert: Streckenmessung mittels modulierter Lichtstrahlung. Z. Instrum.-Kde. Bd. 67(1959), Nr. 3, S. 52...59.
- [3] Karolus, A., und O. Mi'telstädt: Die Bestimmung der Lichtgeschwindigkeit unter Verwendung des elektrooptischen Kerreffektes. Phys. Z. Bd. 29(1928), Nr. 19, S. 698...702.
- [4] Hüttel, A.: Eine Methode zur Bestimmung der Lichtgeschwindigkeit unter Anwendung des Kerreffektes und einer Photozelle als phasenabhängigen Gleichrichter. Ann. Phys. Bd. 37(1940). Nr. 5/6, S. 365...402.
- [5] Bergstrand, E.: Determination of the Velocity of Light in «Handbuch der Physik», Hg.: S. Flügge; Berlin: Springer 1956. Bd. 24: Grundlagen der Optik, S. 1...43.
- [6] Bär, R.: Über Lichtmodulation durch fortschreitende Schallwellen. Helv. Phys. Acta, Bd. 9(1936), Nr. 8, S. 654.
 Bär, R.: Über stroboskopische Erscheinungen beim Durchgang des Lichtes durch zwei Ultraschallwellen. Helv. Phys. Acta Bd. 9(1936), Nr. 8, S. 678...688.
- [7] Giacomini, A.: Sulla modulazione della luce a radiofrequenza mediante ultrasuoni. Atti del congresso internazionale per il cinquantenario della scoperta Marconiana della radio. Roma 28 settembre...5 ottobre 1947; Rom: 1948. S. 302...311.
- [8] Karolus, A., und D. Fries: Eine neue Anordnung zur Bestimmung der Lichtgeschwindigkeit. Ann. Phys. Bd. 4(1959), Nr. 1/5, S. 269...282.
- [9] Kretzmer, E. R.: Measuring Phase at Audio and Ultrasonic Frequencies. Electronics Bd. 22(1949), Nr. 10, S. 114...118.
- [10] Hildebrand, K.: Das elektro-optische Distanzmessgerät der Askania-Werke A.-G. Deutsche Geodätische Kommission der Bayrischen Akademie der Wissenschaften. Reihe A: Höhere Geodäsie, Nr. 28: Geodätische Entfernungsmessung, Teil I: Lichtelektrische und elektronische Entfernungsmessung. München: 1958. S. 45...53.

Adresse der Autoren:

Tabelle T

Prof. Dr. A. Karolus, Wybüelstrasse 3, Zollikon (ZH), und Dipl-Ing. J. Helmberger, Hermann-Herder-Strasse 7, Freiburg i. Br. (Deutschland).