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Effect of Upper Side Bands in Traveling Wave Parametric Amplifiers

By A. Dayem, Murray Hill

1. Introduction

The traveling wave type parametric amplifier has been
analyzed by Tien and Suhl [1]') and others [2...6] who con-
sidered that the circuit carries only signal, idler, and pump
frequencies. It has also been studied by Roe and Boyd [3]
using a nondispersive infinitely wide-band transmission line.
The effect of higher side bands on parametric amplification,
however, is not fully understood.

In this paper parametric circuits containing a succes-
sively increasing number of upper side bands are studied. It
will be shown that the parametric circuit is capable of four
different types of behavior, or four different states, depend-
ing upon the number of side bands it carries. Thus, if the
circuit carries 4n—1 side bands, an exponentially growing
mode which is synchro'nous with the pump wave is obtained.
The 3-frequency case described previously [1—6] belongs
to this group (r=1). Circuits which carry 4» side bands do
not possess a growing mode but have, instead, a nongrow-
ing synchronous mode in which only the even side bands are
present. When the number of side bands is further in-
creased by one, i.e. 4n + 1, gain becomes possible but the
growing mode here has a sinusoidally varying amplitude.
Finally, for circuits carrying 4n + 2 side bands there is a
nongrowing synchronous mode in which only the odd side
bands are present.

Excitation of the different modes of the circuit by an in-
put at any side band frequency also is discussed. The grow-
ing mode, in particular, can be excited with an appreciable
amplitude only if the input is at either the signal or the
idler frequencies. Upper side bands are coupled weakly to
the growing mode. Consequently the noise performance of
the circuit does not deteriorate appreciably because of their
presence.

In the last section of this paper the solution of the non-
degenerate case is obtained for an infinitely wide-band
parameztric circuit. As in the degenerate case, power sup-
plied by the pump to the system goes into increasing the
side band amplitudes and no exponential gain is present.

2. Parametric Propagating Circuits of Limited
Bandwidth

The equivalent circuit shown in Fig. 1 has been described
by Tien and Suhl [1] and others [2...6]. It represents a uni-
form transmission line embedded in a m=dium having a
nonlinear dielectric constant. When energized by a pump
wave the line capacitance is assumed to be given by

C:Co(1+%§eie+%£e-i9) )
where

—wt—fz )

1) Refer to the Bibliography at the end of the article.
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and o and f are the frequency and the phase constant of the
pump wave. The modulation constant & depends on the
pump amplitude and the properties of the medium. A
signal of frequency w1 = «w is applied at the input. Its
amplitude is assumed small compared to that of the pump
so thet its effect on the line capacitance can be neglected.
The propagation along the line can be described, therefore,
by the equation

2y 2(CV)

22 Lo A2

(3
where V' = V{(z, 1) is the voltage, Lo and Co are the induct-
ance and the unperturbed capacitance per unit length, and

f=w l/LoCo

2.1 The infinite series solution

It is obvious that the solution of Eq. (3) should contain all
side bands of frequencies nw -+ mwi. However, the signal
may be assumad small enough compared with the pump so
that the side bands o -+ mw: with m>1, resulting from
multiple mixing with the signal, can be neglected. Hence one
may write the solution of Eq. (3) in the form

o0
Vi, ) = Z (Va(z)el -2 1 c.c) o
n=—o0
assuming that the line is perfectly terminated at all frequen-
cies. (c.c. means complex conjugate.) Substituting Eqns. (4)
and (1) in Eq. (3) and equating terms of equal frequencies,
one obtains

2y, . 1 °
ddzzn —2j(n—x) B dc;/zn T Em— )28 (V-1 + Vas1)

)

for —co <n <o

The complex conjugate of Eq. (5) holds for V,*. Since we
are primarily interested in growing modes which generally
dVy

dz
tive in Eq. (5) may be neglected and we get a double infinite

set of differential equations of the first order, namely
dVa
dy

satisfy the condition that l ) < |B V|, the second deriva-

:-j%éﬁ(m——&')(Vn—l + Va+1)
)

for —oo <n<< oo

This set possesses solutions of the form exp (%Eﬁéz)),

which reduce it to the double infinite set of algebraic
equations

CVn :—J(n—“)(Vn—l + Vn+1)

for — oo <nm << oo.

@)

For any finite range of n equations Eq. (7) can be solved for
¢ and the corresponding amplitudes.

2.2 Four different states for a parametric circuit

The wave solution Eq. (4) contains an infinite number of
side bands. In a practical circuit, however, dispersion and
cutoff characteristics may limit the number of side bands
which contribute to the parametric interaction. An adequate
description of the practical case may be obtained by con-
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sidering an idealized low-pass filter which possesses no
dispersion at any frequency lower than its cutoff frequency
we. Such a filter may be represented by Eq. (7) if all side
bands of frequencies greater than w. are neglected. This
leads to the finite set of equations

Veur—iM~+o)Vepm+1=0
Va+jin—)(Vn-1+ Var1) =0—M +1=n=< N—1
Wy +j(N—a) Vn_1=0 ®)

Here M and N are positive integers given successively by
one of the following pairs of values:

1. the3-fcasewith M =0, N =1
2. the4-fcasewith M =0, N =2
3. the 5-fcasewith M = 1, N = 2 .. .etc.

The phrase “n—fcase” denotes the case where z side bands
(including pump, signal, and idler) lie within the pass band
of the circuit.

The set of homogeneous equations (8) have nontrivial
solutions if the determinant of the coefficients vanishes.
This leads to a characteristic equation of the form

(K A1 K2 4 ALK 2L 4 4 Agpp =0 (9)
when K = M + N + 1 is even, and

C{EE-1 - Ay CE-3 4 .+ ALTE2L-1 |+ A(g-1)2} =0

(%9a)
when K is odd. The coefficients 4 are all real and can be
expressed in the general form

N1
A, = Z (i — o) (i — 2 = T) s
n=—M
Ni1+2
Z (12 — o) (g — & & 1) ... (10)
na=ni1+2
N—1
(np—ox)y(np, —o + 1)

nr=nr-1+2

where Ny = N—2L + 1.

First apply Descartes’ rule of signs [7] to determine
whether the characteristic equation has any real positive
roots. A detailed study of Eq. (10) shows that A is always
positive for all values of L #7. The coefficient Ak/2 is nega-
tive when M =2pand N=2p + 1 (p =0,1,2,...) and is
positive otherwise. From Descartes’ rule it follows that
Eq. (92) has no real positive roots for any values of M and
N while Eq. (9) has one real positive root, if

M =2pand N =2p + 1 (11)

This result is in agreement with the well-known fact that
exponential gain is possible in a parametric circuit which
carries only signal, idler, and pump frequencies. This 3-f
case is obtained from Eq. (11) for p = 0. The next case
which possesses a similar growing mode is the 7—f case
corresponding to p = 1 in Eq. (11). Thus, the same be-
havior repeats itself when four more side bands are added.
However, the addition of one more side band to any of the
cases represented by Eq. (11) leads us to those given by

M=2p,N=2p+2 (12)
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Here the characteristic equation is given by Eq. (9a) which
possesses no real positive roots and thus a different type of
behavior is obtained. Eq. (9a) also represents those cases
given by

M=2p+1landN=2p+3 (13)
which contain three more side bands than the cases given
by Eq. (11) for the same values of p. It is to be noted that
Eq. (9a) has a zero root which, if substituted in Eq. (8),
gives

Vw = 0 for odd values of n (14)
for those cases given by Eq. (12), and
Vn = 0 for even values of n (15)

for those given by Eq. (13). No further information is direct-
ly available from the characteristic equation and one has to
resort to numerical methods to determine the nature of the
other modes of the circuit. '

The numerical solution of equations (9) and (9a) gives
the following two results:

1. Eq. (9) has 2 pairs of complex conjugate roots for cases
satisfying

M =2p+land N =2p +2. - (16)

2. All remaining roots of either Eq. (9) or (9a) occur as

purely imaginary conjugate pairs.

Léz  Lbz

I 1 = 11

z=0 b— 1 PERFECT
SEVE9636 TERMINATION

Fig. 1
Distributed parametric circuit

The above discussion clearly demonstrates that the para-
metric circuit is capable of four different types of behavior
which repeat themselves sequentially as the number of side
bands is increased. For ease of future reference we may
identify them by the following four “‘states™:

State 1 (M =2p,N=2p +1):

includes the 3—f, 7—f, and 11-f,... cases and possesses
a growing and a decaying mode varying as e*d», where ¢ is
real positive and

p=rEfz a7

Both modes are synchronous with the pump wave.
State 2 (M =2p,N =2p+2):
includes the 4-f, 8-f, 12—f, ... cases and possesses a
constant amplitude synchronous mode satisfying Eq. (14).
State 3 (M=2p+1,N=2p + 2):
includes the 5-f, 9-f, 13-/, ...
growing modes varying as

cases. It possesses two

edptiyp

i.e. one slower and the other faster than the pump. They may
be combined in a growing wave of periodically varying
amplitude of the form

e Cos y@
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State 3 obviously possesses the corresponding decaying

modes
e dptiye

State4(M =2p + 1, N =2p + 3):

includes the 6-f, 10-f, 14-f,... cases and possesses a
constant amplitude synchronous mode satisfying Eq. (15).

in addition to the modes mentioned above, the parametric
circuit possesses propagating modes which occur in pairs
and vary like exp (4 jyig), i.e. one faster and the other
slower than pump. Each pair can be combined in a wave of
periodically varying amplitude.

1.0
S~~o ISTATE (3) IMAGINARY PART
0.5
e — STATE (1)
1 STATE (3) REAL PART
| 2 3 4 5 6 7
SEV29637 —bp
Fig. 2

£ vs. p for the growing modes with « = 0.7

The real root of State I and the complex root of State 3
are shown in Fig. 2 as a function of p. It is seen that the gain
decreases in State / and increases in State 3 with increasing
P, i.e. as the number of side bands carried by the circuit is

0.5

TG

0.1

N

(0] 0.l

SEV29638

0.2 03 04 05 06 07 08 09 10
et © 4
Fig. 3
{ vs. « for the growing modes

increased. Fig. 3 shows the same roots as functions of «. The
maximum gain in either state is achieved when « = 1/2.
We notice also that the gain in State 3 does not extend over
the whole range of «.

1056 (A 665)

The imaginary roots show an interesting pattern when
plotted against p as in Fig. 4. Notice that the roots starting
atp = pi decrease with slowing rate for p >pi. However, it is
evident from Fig. 2 and 4 that the convergence of the
series solution is rather slow and no conclusions can be
drawn about the behavior as p —oo.

20
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(3)< 1
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? m{ks\\
. ; STATE E:E&\\\s:i:
‘L (2){\\\\
(|){\\\>
© STATE(4){\\§§\::
BN ——
5|t (I){\\E\.\\;}
(4){\\\\\::
(2){\§\:\\\ — ————
(l){\\\_
gﬁm-h\\ =
(2) +——
&4
0 | 2 3 a4 5 6 7
SEV29639 —»p

Fig. 4
Imaginary roots for the four states with « = 0.7

2.3 Relative amplitudes

Denote the K roots of the characteristic equation by
1, &o, ..., Cx. Each root defines a possible mode of the
parametric circuit. Each mode, in turn, is composed of a
specific linear combination of the K side bands considered.
The relative amplitudes of these side bands are determined
for the i th mode by substituting ; in Eq. (8) and solving for

_ Vi
Voi

Wlth Aoi — 1

(18)

ani

Here the first subscript refers to the side band frequency and
the second refers to the mode.

Two examples of the relative amplitudes are shown in
Fig. 5 and 6. They belong to the growing mode of State /
for « = 0.3 and « = 0.7 respectively. One observes that
the amplitude distributions in Fig. 5 and 6 are not identical
although the corresponding values of « indicate identical
side band frequencies and identical modes. The explanation
of this difference can be seen easily from Eq. (8). It suffices
here to remark that the two distributions would be identical
if the roles of signal and idler were interchanged. It can be
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seen that some of the upper side bands have amplitudes
greater than the signal amplitude. In fact, one may gain
4 db if the output is taken at any side band of frequency
(2n 4+ 1)w—w rather than at the signal. Thus the growing
mode of State / also may be used with advantage as a
frequency up-converter.

— S . [ ‘
w |
] ;
a|o ‘
&
1.oRY
o
3
= o
"
0.5
l ‘ I ‘ [ L
o] | 4 3 4 B 6 7 8 g 10
SEV29640 —N

Fig. §
Relative amplitudes of the growing mode in state / with ~ = 0.3

Similar relative amplitude distributions are obtained for
the other modes of all the states. For the sake of brevity
they will not be included in this paper.

1.0
0.9Hi
-
0.8}2
0.7
0.6
0.5
<
[ 0.4
0.3

0.2

0.l | I
l [ | L
| 2 3 4 5 6 i 8 9 10

SEv2g641 —N

PUMP-\S1GNAL]

Fig. 6
Relative amplitudes of the growing mode in state / with « = 0.7

2.4 Boundary conditions and excitation of
different modes

The complete solution describing the behavior of a para-
metric circuit can be written as a linear combination of all
the possible modes. Using Eqns. (4) and (18) one gets

k N
U; etip
i=1 n=——»M

Viz, 1) = dpieitn-o)0 4 c.c. (19)

The mode amplitudes U; are constants to be determined
from the boundary condition.

Let the boundary conditions be defined at z = 0 by the
equation

N
V(0,1) — Z Pacili—sor + c.c. (20)
n=—M

Putting z = 0 in Eq. (19) and equating it with Eq. (20), one
obtains the K boundary equations

Bull. ASE t. 51(1960), n° 20, 8 octobre

k

Py, = Z ani U

i=1 @1
for —M<n<N

as well as the complex conjugate set of Eq. (21). It is obvious

that either set is sufficient for determining the K complex

unknowns Uj;.

We wish here to emphasize that throughout this analysis
the complex notation has been used to denote real quanti-
ties. The roots obtained turned out in general as imaginary
conjugate pairs. Reference to Eqns. (8) and (18) shows that
the relative amplitudes corresponding to one root are,
except for a difference in sign, identical with those of the
conjugate root. The same holds for the real positive and
negative roots of State /. Similarly, the amplitudes U; and
Ui, 1 of a pair of conjugate modes are identical except for a
sign difference. Thus, in the following discussion one may
use Uzir1 to describe a pair of modes corresponding to the
pair of roots {ai+1 and Caiyo.

10°F
- u, Uz
[ P —
- —
107'E
B Uz, Uy I
//
» //
10_2 F g
E u51 UG //
//
‘0_35 //
< B Uz, Ug
[ B //
10 4E 4 ——
- “9:”:0/ /
i Uy, U, /
T L/

0] | 2 3 4q 5

SEv29642 e p

[0)]
~

Fig. 7
Mode amplitudes A4 vs. p for state / with « = 0.3

The first point of interest in this section is to find the
degree of excitation of each mode by an input at the signal
frequency only. In other words, one wishes to find U; which
satisfy the input condition

22)
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The results for State / are summarized in Fig. 7, which
shows the mode amplitudes against p foroe = 0.3. Atp =0
(the 3—f case) only the growing and decaying modes are
present and each has an amplitude equal to one-half. One
finds that U gradually decreases as p is increased, and
reaches a value of 0.4 at p = 7. Thus the addition of 24
upper side bands which give rise to 24 additional modes has
resulted in a slight decrease in U; (less than 2 db). It is
obvious from Fig. 7 that all the other modes possess very
small amplitudes (10 db or more below U;) when excited by
an input at signal frequency. It may be concluded that the
presence of the upper side bands and their associating modes
has little effect on the behavior of State / as a parametric
amplifier.

IOO
[ ’ AN
- { ) (lI-a)w
- 0)
| of v
~— pd
= 7 — aw
b / n=0
B u/,“/
IO-l n=-2(2+aq)w
— |
- /
i L = T~ pe-4
B (3) > (4+a)w
u
/'/6 | 3
B (_2)/u|/ e .
U
i | // — \ e 5
9 T~ N 5-a)w
< i (-4) \
1 U /
(I+a)w n=-]
/ (2-a)w, n =2
=2
10 : 41) u®
: (3+taq)w, n=-3
- u,“” ;
B (4-a)w, n=4
u|(-3) | ;
0 ‘ L
0.l 0.2 0.3 04 05 06 07 0.8 09
SEV29643
[~ 4
Fig. 8
Amplitudes of the growing mode U;™ excited by input at frequency
|n—oa|w

The above remarks point out an important fact which has
been verified by the numerical computations. If one adds
one more side band a new mode is produced and the pro-
perties of the old modes will be modified slightly. Input
power at the frequency of the newly added side band will go
mainly into exciting the new mode. Only a small fraction of
this input power will go into exciting the old modes. This
fact will prove to be quite important in determining the
noise behavior of the parametric amplifier.

The second point of interest in this section is the degree
of excitation of the growing mode due to an input at any of

1058 (A 667)

the side band frequencies. Thus, we wish to find U pro-
duced by an input at a frequency (r — «)w, i.e., which
satisfied the input equations

k

1 = Zari U, ™

":1 (23)
k

0 — Z ani U@ (7‘)’

i=1

forn +# r

The results are shown in Fig. 8. It is seen that the growing
mode acquires a very small amplitude when excited by any
upper side band. Further, it is noticed that the idler excites
the growing mode with an amplitude slightly lower or
slightly higher than that due to the signal depending on
whether the idler frequency is higher or lower than the
signal frequency. The growing mode amplitude excited by
the signal decreases as the signal frequency increases. These
remarks will be referred to later when discussing the noise
figure.
2.5 Noise Considerations

Since the growing mode will predominate a short distance
away from the input plane, one may neglect all the other
modes of the circuit when calculating the amplifier noise
figure. Thus, an input at a frequency (r-«)w will excite
the growing mode with an amplitude U; () which can be

db
10.
- |
|
1.0
B 1
i /
W | /
|
- ‘ t !
\ \
| [
ol : 1
0.1 02 03 04 05 06 07 08 09 1.0
SEV29644 a

Fig. 9
Signal noise figure Fvs. o

obtained from Eq. (23). Assuming that each side band
contains the same amount of noise power at the input plane,
the noise figure at the signal frequency is given by

N

Y 1w

r=—M

F=""Tgyoz—

(24)
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Similarly, the noise figure at a frequency (n — x)w is
N

N
Z | U1 | 2 Z | Uy | 2

r=—M r=—M
FO = — o~ P

The signal to noise figure F plotted against « is shown in
Fig. 9 where the solid curve is for the 3-f case (where
F=1 + wi/ws) and the dashed curve is for the 23-f
case. For any intermediate case the noise figure curve will
lie in the space between the solid and dashed curves. We
observe immediately that the addition of 20 higher side
bands produces but a small change in the noise figure. The
noise figures of the individual side bands are shown in Fig.
10. As expected, the idler noise figure is of the same magni-
tude as that of the signal while the noise figures of the upper
side bands are of higher order.

60
db
\ /\F(4)
50
N //‘
2 \F(-33
" /
40
: F) pl-N— /F(S)
o N\ )/
\\\_{//
\\ /// \F(z,)
20 N Z’é
L S | R f(2)
I
o] <
~_ F(0)
\\><// | ~F
// \\4
(o} 0.l 0.2 0.3 04 05 06 07 08 09
SEVZS645 a
Fig. 10

Noise figures F(7) at frequency | n — «| o

The noise behavior shown in Fig. 9 and 10 is explained
easily by the facts discussed in the previous section. It was
pointed out that an input power at either the signal or idler
frequencies will go mainly into exciting the growing mode
even when the circuit possesses a great number of modes.
On the other hand, the growing mode receives only a small
portion of the input power if the excitation is at an upper
side band frequency.

3. Propagating Circuits of Infinite Band-Width

It was pointed out in Section 2 that the infinite series
solution cannot be used to describe the behavior when the
circuit band-width becomes infinite. An alternative method
has been described by Roe and Boyd [3] and applied to the
degenerate case where « = 1/2. In this section the same
method will be extended to the nondegenerate case.

Let the voltage be expanded in powers of & in the form

V:F(X,G) ‘FEH(X,@) _}—--- (26)

Bull. ASE t. 51(1960), n° 20, 8 octobre

where
0 = ot — pzand x = &z 27
Assuming the capacitance to be given by
C=0Co(1 +é&sinb) (28)
the wave equation (3) in terms of the new variables gives
V[0 . OF
- [5’9‘ (Fsin®) + 2 E] —0 (29)
and . .
R . H F
= [a—é (H'sin 0) - 2 b;] =25 (30)
The solution of (29), subject to the initial condition
F(0,0) = sin «f 31
is found to be
Pl O = . sinx T - (32)
cosh 5 ~+ sinh 5 cos 0
where T'(x, 0) is given by
T i 0
tan 5 =& 2 tan 5 (33)

Equations (32) and (33), combined for o« = 1/2 will give
equation (9) in reference [5]. Since all the interesting in-
formation is contained in the leading function F [3], the
solution of Eq. (30) will not be considered here.

a=1/3 12 23

%71’

—

=1k 3/4

5/4 M 27t
} } b

14 W gt
—— B

SEV29646 b

Fig. 11
Voltage at large values of x

The function F is plotted against «f in Fig. 11a and 11b
for large x and different values of «. One finds that the
sinusoidal input voltage of Eq. (31) is transformed at large
values of z into a train of sharp pulses. These pulses occur
when 0 is an odd multiple of =, i.e., one pulse per pump
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cycle independently of the value of . It is interesting to note
that such a circuit may be used to produce a train of pulses
of very small width and high repetition rate and the pulses

1.0 |
=0

N/ e
\m 7

7
74

09

\

0.5 /
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]

e
Q\

\\\\\\
=
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0

SEV29647

-
=

Fig. 12
Harmonic content 4 vs. x for « = 0.3
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Fig. 13
Harmonic content 4 vs. n for o« = 0.7
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may be position modulated by frequency modulating the
pump.

To get the harmonic content of F, put 7 = 6 4 ¢ in (32)
and (33) to get

F = sin «B(G(x, 0°) cos xp) + cos x0(G(x, 6’) sin xp)  (32a)

and
® _ (I —e*?)sin®
2 (A + e %2 — (1 —e=*/2)cos &

where 0’ = 6 — w and

tan (33a)

-1
G(x,0) = (cosh % —sinh % cos 0’)
In Eq. (32a) sin «f is multiplying an even function of 6’

while cos «f is multiplying an odd function. Thus the
Fourier expansion of F can be written in the form

(o ) (o]
f=sin b Z an cos n” + cos «0 Z bnsinn =
0 0

_ Z(._,l)n [_b% sin (z + 2) 0 + °" > sin (n_a)e]
g (32b)

where

aop = %f G(x, 0’) cos ap d¢’
0
_ ,
an = % f G(x, 0) cos 16’ cos wp d6° (34)
0

T
by = % f G(x, 0’) sin 16’ sin xp d6’
0

It is worthwhile noting that F contains only components of
frequencies (n-+o«)w which makes it similar in form to the
infinite series solution expressed in equation (4). It is to be
expected that the function H as well as the higher order
terms in the expansion (26) will contain components of
frequencies (n+mx)w. Although these functions might
contribute small corrections to the terms included in (32b),
it seems that no important information is lost if they are
neglected.

The amplitudes (b + an)/2 and (bn — an)/2 were ob-
tained by numerical integration of equations (34) and are
shown in Fig. 12 and 13 for « = 0.7 and 0.3 respectively.
Here, as in the degenerate case, energy supplied by the
pump does not produce exponential gain but rather pro-
duces a wave whose harmonic content becomes richer as it
propagates along the transmission line. Again it is noticed
that the amplitudes of the different side bands are higher,
the smaller the value of «. This bears some similarity to the
results shown in Fig. 5 and 6.
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Theoretische Betrachtungen
iiber den Einsatz eines parametrischen Verstirkers bei Radio-Teleskopen
Von W. Druey, Winterthur, und H. Rickenbach, Ziirich

1. Verfahren fiir die Ermittlung der von einem schwarzen
Strahler herriihrenden Strahlungsintensitit

Definition einer dquivalenten Antennentemperatur

Eine Antenne mit der Absorptionsfliche 4 und dem
Wirkungsgrad #n gibt bei Ausrichtung auf einen punkt-
formigen, unendlich weit entfernten schwarzen Strahler
innerhalb eines relativ schmalen Frequenzbandes B an einen
angepassten Verbraucher die Nutzleistung Py ab:

Py=nABS’
S’ Strahlungsintensitidt pro Hz Bandbreite

Ein anstelle der Antenne eingesetzter Widerstand R
wiirde bei Anpassung die Rauschleistung Pr:

Pr=kTB

abgeben. Damit Pr = Py wird, muss der Widerstand R4

die Temperatur
nAS’

k

besitzen. T4 wird im folgenden die dquivalente Antennen-
temperatur oder kurz Antennentemperatur genannt. Sie ist
ein Mass fiir die empfangene Strahlungsleistung.

Ta

Die von der Antenne abgegebene Nutz-Rauschleistung
wird durch die Zuleitung zur MeBstelle um den Faktor a
verringert, und die Zuleitung steuert entsprechend ihrer
Temperatur 77, und dem Leistungsabschwichungsfaktor a
ein zusitzliches Rauschen bei, so dass die an der MeBstelle
auftretende Rauschleistung einer Temperatur 74" ent-
spricht. T4’ berechnet sich zu:

Td =aTa+ (1 —a)TL

Differenzmessverfahren nach Dicke

Beim Differenzmessverfahren nach Dicke wird, wie Fig. 1
zeigt, der Empfingereingang periodisch zwischen Antennen-
zuleitung und einer Rauschquelle bekannter Leistung um-
getastet, so dass am Ausgang des Zwischenfrequenzver-
starkers ein rechteckformig moduliertes Rauschen auftritt.
Betrigt die Temperatur der durch einen Widerstand gebil-
deten Rauschquelle Tx und kommt durch den Empfénger
eine der Temperatur Tr entsprechende Rauschleistung hin-
zu, so dndert die Rauschleistung am ZF-Ausgang zwischen
den Werten

Pa=k[Ts +Te]B-gE (1)
Px =k[Tk + Tel B gE )

und
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g ist der Leistungsgewinnfaktor und B die Bandbreite des
Empfiangerhochfrequenzteiles. Tz ist die Temperatur, wel-
che ein am Eingang des Empfingers befindlicher angepasster
Widerstand besitzen miisste, um die im Empfinger ent-
stehende Rauschleistung zu simulieren.

Antenne

" Mischer |— ZF-Verstirker [— Gleicthri_chfer
A ! : |

Selektiver
NF-Verstarker

l

Phasen-

abt
Gleichrichter

Anzeige-
Instrument
Fig. 1

Differenzmessverfahren nach Dicke
Ry Rauschquelle, z. B. Kohleschichtwiderstand

Oszillator

Umtast -
Steuerung

SEV 29504

Das modulierte Rauschen wird mittels eines linearen
Gleichrichters gleichgerichtet. Die entstehende «Gleich»-
Spannung dndert periodisch zwischen Werten, die /P4 und
VITK proportional sind. Dem nachfolgenden Niederfre-
quenzteil wird somit eine Rechteckspannung geliefert,
deren Amplitude proportional

VTa +Te—V Tk + Tk (3)

ist. Mittels eines NF-Bandfilters wird aus der Rechteck-
spannung die Komponente mit der Grundfrequenz heraus-
gesiebt. Ein Endverstdrker fithrt das nun sinusférmige
Signal einem phasenabhéngigen Gleichrichter zu, so dass
am Ausgang der Empfangsanlage eine Gleichspannung ent-
steht, welche fiir 74" > Tk positiv und fiir T4 < Tx nega-
tiv ist.

2. Problemstellung

Die Strahlungsintensititen, welche noch gemessen wer-
den sollen, entsprechen vielfach dquivalenten Antennen-
temperaturen von nur einigen °K. Demgegeniiber liegt die
Rauschtemperatur eines Empfiangers mit Mischstufe am
Eingang bei etwa Tz = 1300 °K.

Der Einfluss dieses hohen Eigenrauschens wird zwar
durch die Anwendung des Differenzverfahrens erheblich
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