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Potential Distribution Above A Serrated Cathode

By E. Weber, New York

In certain applications it is desired to employ a cathode
surface of the serrated type as shown in Fig. 1. The poten-
tial distribution above the surface will be periodic in the
same manner as the cathode surface and will approximate
parallel planes at a certain height /2 which is determined by
the degree of undulation that one might tolerate.
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Fig. 1
Serrated Cathode Surface

a Half period of serration; b Depth of serration; 4 Height above the
serrated cathode where the equipotential lines are parallel and show
undulation smaller than tolerable; g Serration angle
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To find the potential distribution, we shall use the method
of conformal mapping and select for this purpose an ele-
mental strip of the periodic field structure as shown in
Fig. 2a. The linear section /—2 is an elemental part of the
cathode surface, an equipotential surface; and the lines
2—3" and 3"—1 represent the singular field lines emanating
from the singular points 2 and / of the cathode surface,
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Fig. 2

Mapping into the upper Half-plane

(a) z-plane: a Half periode of serration; jy Imaginary part of complex
variable z; x Real part of complex variable z; jb Depth of serration
in the complex z-plane
(b) w-plane; jv Imaginary part of complex variable w; u Real part
of complex variable w

respectively. Placing the origin of the complex z-plane into
point / and selecting its image in the w-plane again as origin,
we map conformally the strip of the z-plane into the upper
half w-plane Fig.2b by means of the Schwarz-Christoffel
mapping function [1]1). In this case, we can even select the
image of point 2 as we = 1 because the total polygonal
region has only three vertices. The correspondence of the
points and mapping coefficients is now as follows:

Vertex Points v = 1 2 374"
: . a —+ joo
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1) Refer to the Bibliography at the end of the article.
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The mapping function is thus defined by

& — Nwlatm-1)(1 — )i (1)

where we arbitrarily anticipate a standard form of integral
by modifying the second factor from the conventional
(w — 1) and accepting the burden in the constant N. The
integration leads to

z=N f Ww(ein-1) (1 — wy-afm dw - C )

which we can identify as the incomplete Beta function of
Euler

w
z=N f wlaz-1) (1 — wy-of= dw 3)
0

if we take advantage of the correspondence of the origins
in the z- and w-planes.

The constant N is readily found by establishing the
correspondence of the second vertex zs to w = 1, namely

1
n [0 4 x
m=a+ijb= Nf wisln-1) (1 — w)y-afm dw = N B (;,1_;)
0 4

where now the definite integral is the standard Beta function
of Euler [2; 3], also defined by

PP (12
B(%’l_%): (n)I‘(l() n):sirfoc ®)

if we utilize the recurrence formula for the Gamma function

™
sin wx

T)T(1—x) =

The constant N is thus from Eqns. (4) and (5)

sin «
T

N=

(a + jb) (6)

and we obtain the final solution for the mapping relation

sin «
z:

5 & 62
@+ B(5 1%, w) ©
essentially a special form of the incomplete Beta function
because of the interrelationship between the parameters.
For the numerical computation one must resort to appro-
priate series expansions. The simple linear transformation

i = el o el
ST¥e T i—w
ds ®
Y=ar
renders Eq. (3) in the form
t
dr
= xfr-1
z th/n e ©)
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which, for | 7| < 1, permits binominal expansion of the
second factor. Since the integrand is analytical for | 7| <1
-except at r = 0 which point must be excluded in any case
because it corresponds to w = 0, a vertex, we can integrate
term by term and obtain the final form

Z=Ntu[—1———t——{——tz——-——ﬁ——|— ]~|f|<1
14w 24p 34+p 7
(10)
« 1
HEr <72
From Eq. (8) we identify | 7| < 1 as equivalent to
|lw|<|w—1]|, or Re|w|<1/2 an

To obtain a solution valid for | 7| > 1, we integrate from
zs as reference point, which leads to

z w
fdz - Nf wletr-1 (1 — wy-s dw
z2 w=1 .
With zs from Eqns. (4) and (5), and the same linear trans-
formation of Eq. (8) we have

t
= T afm-2 _df_]
z N[sina+/’/” 11 1)s (2)

(o e]

The integrand is the same as in Eq.(9) except that we

divided numerator and denominator by 7 in order to now

permit expansion of the second factor for | 7| > 1. Again,

the integrand is analytical except at 1 = oo which point

must be excluded in any case because it corresponds to

w = 1, a vertex. Integrating then term by term we obtain

the final form

i 1 1

2= Nl —w [(1 ) PR p— v

bt}
G—we Y
where (13)

[#]>1and p == <1/2

which is valid for Re | w| > 1/2. Both series expansions
converge rather rapidly close to the vertices of the polygonal
region.

Having established the complete mapping relationship
between z and w (or r) planes, we must now solve for the
potential distribution in the w-plane. The complex potential
function describing the field surrounding the finite plane
strip 1—2 is given by [1] p. 340, see also p.298.

P=

=} o — .
27”cosh Cw—1) =@ +jy (14)

where @ is the electrostatic potential and » the flux function.
The equipotential surfaces are the family of confocal ellipses
with points / and 2 as foci; the flux lines or field lines are the
orthogonal family of confocal hyperbolae. The center of the
geometry is w = u = 1/2. Inversion of Eq. (14) and separa-
tion of real and imaginary parts gives

2u—1 = cosh @' cos v’ (15)
2v = sinh @’ sin y’

where the factor 2re/A was absorbed in the field functions
as indicated by the primes. If we put @ = 0, we must
conclude from Eq. (15)

1012 (A 621)

v=0, 2u—1=cosy’

so that 0 < u < 1 in order to give real values of ”; this
is then the strip of potential value zero. Should we want to
ascribe any arbitrary potential value @y to this strip, then
we need to add this constant to Eq. (14). The charge value
A per unit depth collected on the strip must be known, since
we have a single electrode surface.
We can eliminate ¢’ from Eq. (15) by use of the identity
cos? y’ + sin? ¢’ =1, and thus have
2u—1\2 2v
(cosh @’) T ( sinh @’
the equation of the ellipses, where the major axis 24 =
cosh @ and the minor axis 2B = sinh @" as in Fig. 3b.
Assuming different values of @', Eq. (16) defines individual
ellipses, giving the correlated values # and v and thus per-
mitting the transferrance to the z-plane by either Eq. (10)
or (13), depending on u = Re | w | = 1/2.

)2 =1 (16)
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Fig. 3

Correspondence of Equipotential Surfaces

(a) z-plane: @ Electrostatic potential; /1, h2 Height of points P’ and P”
respectively on the equipotential @ above the reference plane
(b) w-plane: 24 Major axis of the equipotential ellipses; 2B Minor
axis of the equipotential ellipses; m Distance of images of points P’
and P” respectively from the vertices O and w = 1 respectively

Of greatest interest is generally the rapidity with which
the undulation of the equipotential surfaces subsides, i. e.
how rapidly the heights of the extreme points /41 and /2 in
Fig. 3a become nearly equal. Inasmuch as the images of the
points P" and P” lie along the real axis of the u-plane, and
in fact at equal distances m from the vertices, we need only
consider the real values

u' =-—m, uw=1-+m
17
yo—m b ltm *L()
1l 4m’ T —m S

as the values to be used, respectively, in (10) for /; and in
Eq. (13).for h2. If we also observe
a-+jb = Va2 + b2, eiln/2-0)

we can write Eq. (6)
N:%Va2+b27 -Sinm'ei(ﬂl‘l—a):j%e-iu (18)

Introducing ¢’ from Eqns. (17) into (10), we have

b i@ e[ MY M2 ME ]
Z—j/l],—_]TEM [u+l+u+2—i—y.
for the computation of /1 for various values of m. Similarly,
we can bring Eq. (13) into the form
2" =a + jh2 = a + jb -+

—=1 —2 -3
+ % [M__+_M__+_A/[__+_”] (20)
T l—p  2—p  3—p
for the computation of A2 for the same values of m. Fig. 4
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gives the results of these computations against the angle
of the serration. As m increases, the significant level differ-
ence h2 — h1 decreases as one must expect. This undula-
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Fig. 4
Evaluation of Eq. [19] and [20] as a function of #
B Angle of serration; o = =/2 — g; h; Height of P’ above reference
plane; ks Height of P” above reference plane; a Half period of serra-
tion; m Distance of images of points P’ and P” from vertices;
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Ondulation of (h2 — hi)/a with M
(he — hi)Ja Measure of undulation (relative undulation); a« Half
period of serration; m Distance of images of points P’ and P” from
1+ m
m

vertices; M =

tion measure (h2 — h1)/a is also plotted in Fig. 5, directly
against M and Fig. 6 gives the most important section with
enlarged scales to permit more accurate interpolation for
larger values of m.
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We can now pose the question: At which height above
the base plane y = 0 will the undulation have decreased to
a selected small percentage of the half-period a of the
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Enlarged Picture of Fig. 5 for small values of M

serrated cathode. For this purpose Fig. 7 has been prepared
in which the distances /1/a and Az/a are plotted against the
difference (he — h1)/a. Selecting a value of 109, or (2 —
h1)/a = 0.10, we find that /2/a = 1.36 for the angle « =

3,0
\\
‘\
¥ \\\‘ x 'ﬁ
| \ ‘}6, 60°
b/a
-4:N|U \
« T
“ \ \\\i\\_s”‘\_
I \ \_}4, ase
& &\ ‘Qi
—
\\\\/\\“[ 3, 30°
b/a
B T ‘&\—\— —
I _b_/"_T_ o _:h}z,s, 180
OO 002 004 0,06 0,08 0,10 012

hy=

SEV29627 a

Fig. 7
hi/a and hs/a as functions of the relative undulation (/2 — hi)/a

f = 45°, or that we must stay at a height of 0.36a above
the tips of the serration. Since the latter measure might be
considered most significant, the dotted lines in Fig. 7 repre-
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sent the values b/a, i. e. the level of the peaks of the serra-
tion. The smaller the desired undulation, the larger must
be the distance above the serration peaks. For a maximum
undulation of 29, the necessary distance above the peaks
is of the same order as the half period a, varying in fact from
0.775a for B = 18° (w/x = 2.5) to 0.908a for B = 60°
(w/x = 6). This confirms the rule of thumb that the effect
of local field distortions extends about the same distance
as the principal geometric dimension of the field disturbing
structure. The actual potential distribution for o« = g =
45°, or /o« = 4 is shown in Fig. 8 together with the numeri-
cal values for m and the relative undulation (2 — h1)/a.

SEV29628

Fig. 8
Potential Distribution for « = f = 45°

The field vector E is rather readily evaluated as the
negative potential gradient. In the complex z-plane, we ob-
tain the complex value of E by [1]:

=)
- dz dw dz
where the asterisk indicates the conjugate complex number.
With Eqns. (14) and (1) and the special form (18) for N, this
leads to

@n

. AT w  \1/2-alm
B~ —jg ) @2)
Since a/m < 1/2, the field vector will approach zero value
as w — 0, and will approach infinity as w — 1, which is
obviously correct from physical principles. The general
forms in Eqns. (10) and (13) give the relationship between
w (or 1) and z, so that Eq. (22) can readily be evaluated at
any point of the z-plane.

Again, it will be most instructive to compute the field
strength variation along the two vertical field lines emerging
at the vertices and imaged as the field line sections of the
u-axis in Fig. 3b. For the left part, emanating from O,

we have w' = v’ = — m, so that (22) becomes

Ez’ = —j

)1/2—a/r: (23)

A ( m
2ae\m+1
Thus the field vector points vertically downward in Fig. 3a
as we expect it, and increases from the value zero at O to
a fixed value

A
0" J2a6

E 24

as m — oco. As a matter of fact. | Eo| is the field strength
value in the uniform field reached for all practical purposes
at the equipotential line in Fig. 8 for which the undulation
is of the order of 2% or less. Using Eq. (24), we get the
simple expression

1/2-a/r
EZ’/E():( m ) [T

m+ 1
Its value is plotted in Fig. 9 for two angles of serration in
the lower section of the graph marked min to indicate that
actually this field line starting from the valley depth of the
serration has the lowest field strength values in the entire
field structure.

— Maln-1/2 (25)
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Relative field strengths along maximum and minimum field lines (Plot
of Eq. 25) for two angles of serration)

E Field strength

For the right field line part of the z-axis in Fig. 3b we have

1/2-of
Ez”/EO — (ﬂ};l_;_].) o TC

= M 12-alm = Ey/E."  (26)
the reciprocal value to Eq. (25), which characterizes it as
the field line of maximum field strength values. Fig. 9 gives
the values for the same two angles of serration; as we
approach the location of the peaks of the serration, the
field strength values will, of course, go toward infinity.
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