Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 51 (1960)

Heft: 3

Rubrik: Energie-Erzeugung und -Verteilung : die Seiten des VSE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Aufteilung der 48 Zeitreihen auf 96 Viertelstunden eines Tages ist nicht fest vorgenommen, sondern kann vom Betriebsleiter nach den örtlichen Bedürfnissen gewählt werden. Damit ist es möglich, dass während bestimmter Tageszeiten eine Zeitraffung (z. B. alle 15 min eine Sendung) und während anderer Tageszeiten eine Dehnung erfolgt (z. B. Abstand zwischen zwei Sendungen 3 h).

Bei der Konstruktion des Koordinatenwählers wurde einerseits das ebenfalls schon Ende der dreissiger Jahre für Heizungsregulierungen konstruierte Programmschalttableau weiterentwickelt und andererseits die von den Telephoniekreuzwählern bekannte Technik, Schaltstangen magnetisch zu betätigen, für die Steuerung der Zeitreihen grundsätzlich übernommen, jedoch der Schaltstangenmechanismus den Bedürfnissen der Elektrizitätswerke angepasst, d.h. eine äusserst robuste Konstruktion entworfen, die auch in nichtbedienten Stationen, deren Temperatur auf 3...4 °C absinken kann, einwandfrei arbeitet. Die Befehlsreihen sind als durchlaufende, vergoldete Klaviersaitendrähte ausgebildet, wobei zu jedem Doppelbefehl ein Einschalt- und ein Ausschaltdraht gehört, die in einer vorderen und hinteren Ebene angeordnet sind. Die Klaviersaitendrähte sind ihrerseits an die Ein- bzw. Ausschaltspulen der Kipprelais, die als speicherndes Register wirken, angeschlossen. Bei der Durchgabe der Sendungen werden die Kontaktstellungen dieser Kipprelais vom synchron laufenden Sendewähler abgetastet, wodurch das Impuls-Intervall-Sendeprogramm entsteht.

Ausser dem automatisch ablaufenden Programm des Koordinatenwählers sind eine Reihe von Befehlen als eigentliche Handbefehle für Alarm- oder interne Betriebszwecke oder andere, nur in Ausnahmefällen zu schaltende Kommandos vorgesehen, die den Wünschen der Betriebsleiter angepasst werden können. Einrichtungen für den Anschluss eines Feuerwehralarmtableau in der Feuerwehrzentrale, für die Steuerung der Strassen-, Treppenhaus- und Schaufensterbeleuchtungen — astronomisch oder mittels einer Photozelle — gehören zur Standardausrüstung einer Schalttafel mit Koordinatenwähler.

Netzkommandoanlagen, die mit den beschriebenen Konstruktionselementen ausgerüstet sind, ermöglichen eine rationellere Betriebsführung und differenziertere tarifliche Massnahmen, welche die Wirtschaftlichkeit der bestehenden Einrichtungen der Elektrizitätswerke zum Nutzen der Energiekonsumenten wie -produzenten beträchtlich erhöhen werden

Adresse des Autors: G. Isay, dipl. Ing. ETH, c/o Fr. Sauter AG, Basel.

Verbandsmitteilungen

Die Arbeiten der Kommission des VSE zum Studium der Imprägnier- und Nachbehandlungsverfahren für Holzmasten

Die Kommission zum Studium der Imprägnier- und Nachbehandlungsverfahren für Holzmasten und ihr Arbeitsausschuss liessen sich in zwei Sitzungen Ende Oktober und anfangs Dezember über die neuesten Ergebnisse der verschiedenen im Gang befindlichen Untersuchungen orientieren und besprachen aktuelle Fragen der Stangenimprägnierung.

Im Vordergrund standen Fragen der Imprägnierung mit dem neuen UA-Reform-Salz. Die Bodenuntersuchungen auf der Imprägnieranstalt Willisau ergaben, dass dank der günstigen Bodenverhältnisse (12...13 Meter mächtige lehmige Erdschicht) bisher keine Verschmutzung des Grundwassers eingetreten ist. Bei Bodenproben, die in einer Tiefe von einem Meter entnommen wurden, konnte kein säurelösliches Chrom, Arsen oder Fluor mehr nachgewiesen werden. Es ist also zu verantworten, dass auf diesem Imprägnierplatz mit UA-Reform im Boucherieverfahren gearbeitet wird. Immerhin wird es notwendig sein, die Untersuchungen periodisch zu wiederholen. Aus den Untersuchungsergebnissen in Willisau dürfen auch keine Rückschlüsse über die Verhältnisse auf andern Imprägnierplätzen gezogen werden. Es ist also notwendig, auf allen Imprägnieranstalten, auf denen mit den neuen Salzen im Boucherieverfahren gearbeitet werden soll, solche Untersuchungen durchzuführen.

Die Imprägnieranstalt Willisau hat im Jahre 1959 ausschliesslich und die Société Romande pour l'imprégnation de bois teilweise mit UA-Reform im Saftverdrängungsverfahren imprägniert. Mit den gleichen Schutzmitteln arbeitete die Imprägnieranstalt Seen bei Winterthur im Trog und im Kessel, nachdem sie vorher bereits mit alten UA-Salzen imprägniert hatte. Nach Auffassung der Kommission wird sich das UA-Reform, sofern sich die bisherigen guten Resultate mit diesem Salz in der Praxis bestätigen, was anzunehmen ist, auch in unserem Lande allgemein durchsetzen. Die Untersuchungsergebnisse der Kommission decken sich im übrigen mit denjenigen der deutschen Elektrizitätswerke und der deutschen Bundespost, die von 1960 an nur noch mit UA-Reform imprägnierte Stangen abnehmen werden. Um die erforderlichen praktischen Erfahrungen zu sammeln, wird es zweckmässig sein, im Jahre 1960 auf denjenigen Imprägnierplätzen unseres Landes, die bereits letztes Jahr mit UA-Reform imprägniert haben, mit diesem Salz weiter zu arbeiten. Es ergeht daher der Appell an die Stangenbezüger, bei den in Frage kommenden Imprägnierbetrieben ausschliesslich mit UA-Reform behandelte Stangen abzunehmen.

Zur Einbringung des Schutzmittels in die Stangen kommt ausser dem Boucherieverfahren, soweit sich dieses verantworten lässt, in erster Linie die Imprägnierung im Trog (Trogsaugverfahren oder Trogsaugdruckverfahren) oder im Kessel in Frage. Die Kommission wird nun durch Versuche im Laufe dieses Winters abklären, welche qualitativen Unterschiede zwischen Stangen mit Behandlung nach diesen Verfahren bestehen. Fest steht, dass die Verteilung der Salze im Mast und die aufgenommene Salzmenge je nach dem angewendeten Verfahren verschieden ist. Beim Osmoseverfahren z. B. schwankt die Salzkonzentration zwischen 4,5...6 kg/m³, während für das Kesselverfahren in Deutschland 4,5 kg/m³ vorgeschrieben werden. Beim Saftverdrängungsverfahren ergeben sich demgegenüber nach den praktischen Versuchen in Willisau 7...8 kg/m³, wobei die Salzkonzentration in der Bodenzone etwa 10 kg/m³ erreicht. Dies war auch der Grund, weshalb die Kommission empfohlen hatte, bei UA-Reform-Stangen nach dem Boucherieverfahren auf einen Doppelstockschutz zu verzichten.

Was die Preise für die Imprägnierung mit UA-Reform anbelangt, wurde festgestellt, dass der Zuschlag von 15 % seinerzeit provisorisch, d.h. nur mit Gültigkeit für das Jahr 1959, festgelegt wurde. Die Annahmen, die der Berechnung dieses Zuschlages zugrunde lagen, haben sich in der Zwischenzeit als richtig erwiesen. Auf der Imprägnieranstalt Willisau ergaben sich, bei Verwendung von UA-Reform, das rund 3½ mal teurer ist als Kupfersulfat, bei der Imprägnierung Mehrkosten in der Grössenordnung von etwa 27...28 Franken pro m³ Holz, was einen Aufschlag gegenüber Kupfersulfatstangen von rund 13 % rechtfertigt. Die Behauptung, ein wesentlicher Teil des Zuschlages von 15 % sei als Preis für die 12 jährige Garantie zu betrachten, ist also unzutreffend.

Die Kommission hat sich zum Grundsatz gemacht, nur solche Salze zur Verwendung zu empfehlen, die sich auf Grund eingehender Prüfung bewährt haben. Die Prüfung von Basilit UAS zeigte, dass dieses chemisch identisch mit dem UA-Reform ist und somit ebenfalls empfohlen werden kann. Von der Verwendung noch nicht geprüfter Salze oder dem Mischen von verschiedenen Schutzmitteln kann nicht genug gewarnt werden.

Im Zusammenhang mit der Diskussion über die Notwendigkeit eines Doppelstockschutzes wurde die Frage aufgeworfen, ob nach der allgemeinen Erfahrung die Fäulnis der Stangen mehrheitlich von innen oder aussen einsetzt. In diesem Punkte gehen die Feststellungen der Werke z. T. stark auseinander. Es wurde deshalb beschlossen, diese Frage gründlich abzuklären.

Nach einer Standdauer von einem halben Jahr wurden an drei Stangen im Versuchsfeld Starkenbach, die mit WolmanSchaumstoffbandagen versehen waren, die Eindringtiefen ermittelt. Ihre Feststellung erfolgte durch Bohrproben auf Bodenhöhe und 20 cm unter der Bodenoberfläche an der Nordost- und Südwestseite der Stangen. Auf der Südwestseite schwankten die ermittelten Werte (je Mittelwert aus 4 Bohrungen) auf Bodenhöhe zwischen 16 und 22 Millimetern und 20 cm unter Boden zwischen 29 und 37 Millimetern. Auf der Nordwestseite lauten die ermittelten Zahlen 32...33, bzw. 29... 40 Millimeter.

Die Untersuchungen mit Bolidensalz auf den Imprägnieranstalten Dagmersellen und Uster zeigen, dass die Imprägnierung mit diesen Salzen im Saftverdrängungsverfahren möglich ist, wenn auch eine etwas längere Imprägnierdauer als beim Kupfersulfat und beim UA-Reform in Kauf genommen werden muss. Beim Herstellen der Lösung erwies es sich als notwendig, die einzelnen Salzkomponenten (Kupfersulfat und

Bolidensalz BIS) getrennt aufzulösen und erst dann zu mischen. Die Grenzwerte des Bolidensalzes scheinen höher zu liegen als beim UA-Reform.

In nächster Zeit sollen folgende neue Versuche durchgeführt werden:

- Imprägnierversuche mit trockenem Holz im Kessel.
- Vergleichende Versuche mit UA-Reform nach dem Saftverdrängungs-, Trogsaug-, Trogsaugdruck-, Osmose- und Kesselsaugverfahren.
- Untersuchung der Zusammensetzung der im Sommer 1959 verwendeten Imprägnierlösungen auf den Gehalt an vorhandenen Wirkstoffen.
- Studium einer möglichst billigen und zweckmässigen Mastenlagerung.

Hf.

Aus dem Kraftwerkbau

Stand der Bauarbeiten bei den Misoxer Kraftwerken

Gemäss dem generellen Bauprojekt werden die Wasserkräfte des Misox und des oberen Calancatales in einer Werkgruppe genutzt, die fünf Kraftwerke umfasst. Es sind dies die drei Hauptkraftwerke Pian San Giacomo, Soazza und Roveredo, die auf einer Strecke von 33 km ein Gefälle von rund 1860 m erschliessen, und die zwei Nebenkraftwerke Isola und Valbella.

Am Kraftwerk Soazza wurden die Bauarbeiten im Sommer 1957, am Kraftwerk Isola im Sommer 1958 und am Kraftwerk Valbella im Frühjahr 1959 in Angriff genommen. Bis Ende 1959 sind auf den Baustellen der Misoxer Kraftwerke bei einem maximalen Arbeiterbestand von 700 Mann insgesamt 3 Millionen Arbeitsstunden geleistet worden. Auf allen Baustellen schreiten die Arbeiten programmgemäss fort.

Das zum Kraftwerk Soazza gehörende Ausgleichsbecken Corina von $120~000~{\rm m}^3$ Inhalt ist fertig betoniert. Im $10~{\rm km}$ langen

Druckstollen Spina-Ara stehen die Betonierungsarbeiten vor dem Abschluss. Die Panzerrohre im Druckschacht sind einbetoniert. Die Kavernenzentrale Soazza ist soweit fertiggestellt, dass mit der Montage der 1. Maschinengruppe anfangs Dezember 1959 begonnen werden konnte.

Die Staumauer Isola mit einer Kubatur von 70 000 m³ ist mit Ausnahme der Fugeninjektionen fertiggestellt. Im Druckstollen sind die Betonierungsarbeiten im Gange und die Druckschachtpanzerung ist einbetoniert. Die Maschinenkaverne Spina ist soweit ausgebaut, dass die Maschinenmontage beginnen kann.

Die im Sommer 1959 begonnenen Ausbrucharbeiten für den 6 km langen Stollen des Kraftwerkes Valbella machen befriedigende Fortschritte. Der Druckschacht ist bereits fertig ausgebrochen.

Der Bau der 220-kV-Leitungen Soazza-Sils i. D. und Soazza-Mese (Italien) sowie der Schaltanlagen Soazza und Spina ist im Gange.

Literatur

Die volkswirtschaftliche Bedeutung zweckmässiger Massnahmen zur Erzielung von Einsparungen auf dem Gebiete der Raumheizung. Von Heinrich Lier. Zürich, Schweizerisches Nationalkomitee der Weltkraftkonferenz, 1959; 4°, 11 S. — Preis: brosch. Fr. 1.80.

Dieser in Nr. 4 (1959) der Schweizerischen Blätter für Heizung und Lüftung und als Sonderdruck 1) erschienene, von H. Lier, Präsident des Fachausschusses für Raumheizung des Schweizerischen Nationalkomitees der Weltkraftkonferenz, verfasste Bericht behandelt die Probleme der Raumheizung unter besonderer Berücksichtigung des Energiebedarfes und der Möglichkeiten von Energieeinsparungen.

Einleitend wird darauf hingewiesen, dass im Jahre 1957 für die Raumheizung in der Schweiz rund 600 Millionen Franken aufgewendet wurden, woraus für jedermann verständlich sein dürfte, dass einer Verringerung dieser Ausgaben — selbstverständlich unter Aufrechterhaltung einer hygienisch einwandfreien Heizung der Wohnräume — eine grosse volkswirtschaftliche Bedeutung zukommt.

Im 1. Kapitel wird alsdann anhand von Zahlenangaben über den Energiebedarf für Raumheizzwecke gezeigt, dass heute und wohl auch noch für längere Zeit die vom Ausland bezogenen festen und flüssigen Brennstoffe die wichtigste Energiequelle darstellen. Die elektrische Energie, das Stadtgas und auch die einheimischen Brennstoffe decken dagegen nur einen relativ kleinen Teil des Gesamtbedarfes.

Im II. Kapitel werden die Heizsysteme für Raumheizungen (Einzelofen- und Zentralheizungen) übersichtlich zusammengestellt. Der Leser wird darauf aufmerksam gemacht, dass die Wahl des den jeweiligen Verhältnissen am besten angepassten

Heizsystems auf Grund sorgfältiger Prüfungen, an denen sich der Bauherr, der Architekt und der Heizungsfachmann beteiligen, zu erfolgen habe.

Im III. Kapitel tritt der Verfasser auf die besonders dem Nichtfachmann meist nicht vertrauten, für die Benützer der zu beheizenden Räume aber sehr wichtigen physiologischen Erkenntnisse, welche den Wärmebedarf für die Raumheizung wesentlich beeinflussen, ein. Es ist sehr zu wünschen, dass diesen Erkenntnissen bei der Einrichtung und beim Betrieb der Heizungsanlagen sinngemäss Rechnung getragen wird.

Im wichtigen und deshalb umfangreichsten IV. Kapitel werden die Bedingungen zur Erzielung einer energiesparenden Raumheizung sehr übersichtlich dargestellt. Der Verfasser behandelt in diesem Zusammenhang Fragen der Baugestaltung, der Baukonstruktion, der Bauqualität und der Projektierung von Heizungsinstallationen, sowie betriebliche Probleme, wie die Wahl und Ausnützung der verschiedenen Brennstoffe, die Auslegung der Kesselheizfläche und ihre Aufteilung, die Heizwasserverteilung und schliesslich die Heizwartung.

Mit Nachdruck wird darauf hingewiesen, dass die wärmetechnischen Eigenschaften eines Gebäudes durch die Raumdisposition, die Konstruktionsweise, die Materialwahl und die Materialverbindung vorbestimmt sind. Es ist deshalb im Hinblick auf die Kosten zur Deckung des Wärmebedarfes nicht gleichgültig, wie disponiert und gebaut wird. Selbstverständlich sind die Zweckbestimmung der Räume und die klimatischen Verhältnisse zu berücksichtigen. Der Verfasser erörtert ferner die Auswirkungen von Fehldispositionen einerseits und von baulichen und betrieblichen Verbesserungen andererseits. Interesse verdienen auch die Angaben über die Betriebsergebnisse in der Siedlung «Maienried» und in öffentlichen Gebäuden der Stadt Winterthur.

Im V. Kapitel werden ergänzende Mitteilungen über Zentralund Fernheizungsanlagen gemacht.

¹) Der Sonderabdruck kann beim Sekretariat des Schweizerischen Nationalkomitees der Weltkraftkonferenz, Bahnhofplatz 3, Zürich, bezogen werden.

In den Schlussbetrachtungen wird nochmals darauf hingewiesen, dass es im Interesse unseres Landes liege, alles zu unternehmen, um den Brennstoffverbrauch für Raumheizzwecke in einem volkswirtschaftlich tragbaren Rahmen zu halten, ohne auf einen hygienisch und gesundheitlich einwandfreien, vernünftigen Wohnkomfort verzichten zu müssen. Die Befolgung der im Aufsatz aufgezeigten Massnahmen und eine fruchtbringende Zusammenarbeit aller in Betracht kommenden Kreise, wie Behörden, Verwaltungen, Architekten, Heizungsfachleute, Liegenschaftenbesitzer und Wärmekonsumenten kann viel dazu beitragen, dieses Ziel zu erreichen. Der in allgemein verständlicher Form gehaltene und sachlich abgefasste Bericht sollte schon deshalb von weiten Kreisen beachtet und nutzbringend ausgewertet werden.

P. Schläpfer

Statistiques de base de l'énergie pour les pays de l'OECE 1950...1958. Paris, OECE, 1959; Auslieferung: Payot, Genève; 4°, 79 S., 64 Tab. — Preis: brosch. Fr. 6.—. Im ersten Teil dieser Publikation, welche kürzlich von der

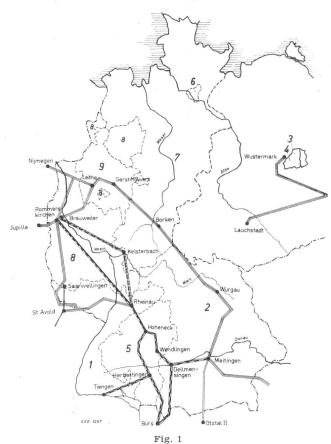
Im ersten Teil dieser Publikation, welche kürzlich von der Statistischen Abteilung der OECE herausgegeben wurde, sind für die Jahre 1950...1958 detaillierte Angaben über die Produktion und über die Verwendung der einzelnen Rohenergieträger (Kohle, Erdöl, Erdgas, Elektrische Energie aus Wasserkraftwerken) sowie der Zwischenenergieträger (elektrische Energie aus thermischen Kraftwerken, Koks, Gas, Erdölderivate usw.) im gesamten Wirtschaftsgebiet der OECE enthalten. Der zweite Teil der Veröffentlichung gibt in tabellarischen Form eine Übersicht über die Produktion und Verwendung der oben genannten Energieträger in den einzelnen OECE-Länder und zwar für die Jahre 1957 und 1958.

Wirtschaftliche Mitteilungen

Entwicklung des Verbundbetriebes in der deutschen Stromversorgung

621.311.161(43-15)

Die im Jahre 1948 gegründete Deutsche Verbundgesellschaft (DVG) veröffentlichte anlässlich ihres zehnjährigen Bestehens eine reich illustrierte Jubiläumsschrift, in welcher aktuelle Probleme der Energieerzeugung und -verteilung, insbesondere des Verbundbetriebes, eingehend erörtert werden.


In der DVG, einer Vereinigung von privatwirtschaftlich arbeitenden Unternehmungen, sind diejenigen Werke der öffentlichen Stromversorgung zusammengeschlossen, die ihren Sitz in der Bundesrepublik oder in West-Berlin haben und sich auf Grund ihrer Erzeugungsmöglichkeiten in Verbindung mit umfassenden und leistungsfähigen Netzen an der Förderung und Ausdehnung des Verbundbetriebes beteiligen können und wollen. Ihre Arbeitsgebiete, einschliesslich der ihrer Tochtergesellschaften, erstrecken sich nahezu auf das ganze Bundesgebiet. Die Verbundunternehmungen stellen fast 80 % der in der öffentlichen Stromversorgung verteilten elektrischen Energie bereit.

Die Planung für den Ausbau der Kraftwerke ist Sache der einzelnen Verbundunternehmungen, denen das Wachstum des Strombedarfs in ihrem eigenen Arbeitsgebiet sowie die Verteilung und Eigenart der Belastung und die örtlichen Möglichkeiten für den Kraftwerkbau jeweils am besten bekannt sind. Die Zusammenarbeit untereinander und die Untersuchungen der DVG-Geschäftsführung erleichtern den Mitgliedern die Übersicht darüber, wie sich die eigenen Bauvorhaben in den Rahmen der öffentlichen Versorgung und in den Verbundbetrieb mit den andern DVG-Mitgliedern einfügen, und wie ein vorübergehender oder örtlicher Mangel beziehungsweise Überschuss an Kraftwerkleistung über das Verbundnetz ausgeglichen werden kann.

Sogleich nach Gründung der DVG wurden Besprechungen über den weiteren Ausbau des Verbundnetzes zwischen den DVG-Mitgliedern aufgenommen und die Grundlinien für ein 380-kV-Netz festgelegt.

Von der Arbeit, die in der Zwischenzeit geleistet worden ist, kann an dieser Stelle nur das Wichtigste hervorgehoben werden (Fig. 1). Ein Strang der bestehenden grossen Nord-Süd-Verbindung der Rheinisch-Westfälischen Elektrizitätswerk (RWE) Brauweiler-Kelsterbach-Rheinau wurde auf 300 kV umgestellt, zusätzlich dazu eine vollständig neue 380-kV-Leitung Rommerskirchen-Hoheneck errichtet, von der ein Strang mit 380 kV und der andere vorläufig mit 220 kV arbeitet. Für die Nord-Süd-Transporte steht demzufolge zur Zeit ein Transportquerschnitt mit einer natürlichen Leistung von etwa 1700 MW zur Verfügung. Ausserdem sind die 220-kV-Verbindungen zwischen Nord- und Südbaden sowie zwischen der Preussischen Elektrizitäts-Aktiengesellschaft (Preag), der Vereinigten Elektrizitätswerke Westfalen AG (VEW) und der RWE ganz, die zwischen Hamburg und Preag etwa zu zwei Drittel fertiggestellt. Von den geplanten 380-kV-Leitungen haben RWE, Energie-Versorgung Schwaben AG (EVS) und Bayernwerk die Leitungen Hoheneck-Wendlingen-Dellmensingen-Meitingen und Dellmensingen-Bundesgrenze (-Bürs) errichtet, die vorerst mit 220 kV betrieben werden. Der Nordabschnitt Rommerskirchen-Leithe-Gersteinwerk des 380-kV-Ringes ist im Bau. Insgesamt hat von 1958 auf Ende 1958 das 110-kV-Netz von 11 500 auf 18 550 km Stranglänge und das Netz für 220 kV und höhere Spannungen von 4000 auf 7250 km Stranglänge zugenommen.

Was schliesslich die Entwicklung des Verbundbetriebes betrifft, so war schon zur Gründungszeit der DVG vorauszu-

Das deutsche Höchstspannungsnetz

Versorgungsgebiete der DVG-Mitglieder:

- 1 Badenwerk AG
- 2 Bayernwerk AG
- 3 Berliner Kraft- und Licht(Bewag)-AG
- 4 Elektrowerke AG
- 5 Energie-Versorgung Schwaben AG
- 6 Hamburgische Electricitäts-Werke AG
- 7 Preussische Elektrizitäts-Aktiengesellschaft 8 Rheinisch-Westfälisches Elektrizitätswerk AG
- 9 Vereinigte Elektrizitätswerke Westfalen AG
 - Leitungen des Verbundnetzes:

Lettungen des Verbandnetz

- 1 Strang 380 kV in Betrieb
- 1 Strang 380 kV geplant oder im Bau
- 1 Strang 220 kV in Betrieb
 - 1 Strang 300 kV in Betrieb

Mit Ausnahme der Leitung Brauweiler—Kelsterbach—Rheinau handelt es sich um Leitungen mit 380-kV-Masten

sehen, dass die Energieflüsse im Verbundnetz mit fortschreitender Entwicklung trotz der ständigen Verstärkung der regional verteilten, verbrauchsnahen Steinkohlenkraftwerke rasch steigen würden. Besonders beachtlich ist, dass 1952 von Norden nach Süden etwa in Höhe der Mainlinie ein Fluss mit einer Leistung von rund 700 MW transportiert werden musste, dass diese Leistung schon 1957, also vor Inbetriebnahme der 380-kV-Verbindung unter häufiger Überlastung der Leitungen auf etwa das Doppelte angestiegen war und 1958 sogar während der Nachtzeit etwa 1500 MW erreichte.

Der dritte Teil der Studie befasst sich mit den Aufgaben und Problemen der Verbundwirtschaft im nächsten Jahrzehnt. Auf Grund der Tatsache, dass in der Bundesrepublik auch im Jahre 1970 aller Voraussicht nach mehr als drei Viertel der elektrischen Energie in Wärmekraftwerken mit klassischen Brennstoffen erzeugt werden muss, ist kaum anzunehmen, dass sich die räumliche Verteilung der Kraftwerke gegenüber dem jetzigen Zustand wesentlich ändern wird. Es erscheint vielmehr sehr wahrscheinlich, dass auch in Zukunft Werke mit ausgesprochenem Grundlastcharakter, Spitzenkraftwerke und solche mit anpassungsfähigen Eigenschaften an den verschiedensten Stellen im ganzen Bundesgebiet vorhanden sein werden, und dass dem Verbundnetz nach wie vor die Aufgabe zufallen wird, diese Kraftwerke so miteinander in Verbindung zu bringen, dass sie sich alle gegenseitig ergänzen und möglichst wirtschaftlich eingesetzt werden können. Für diese Entwicklung sind durch Errichtung und Inbetriebnahme der oben erwähnten Höchstspannungsleitungen die nötigen Voraussetzungen bereits geschaffen. Durch Ausbau des geplanten 380-kV-Netzes kann jeder Anforderung entsprochen werden, die durch die Errichtung von grossen Laufwerken, Speicherwerken und Kernkraftwerken oder durch den verstärkten Zusammenschluss mit den Netzen benachbarter Länder entstehen wird. Wenngleich Entwicklungsarbeiten in andern Ländern (z. B. USA und UdSSR) in Richtung auf noch höhere Betriebsspannungen im Gange sind, lassen es nach Ansicht des Verfassers technische und wirtschaftliche Überlegungen nicht als notwendig oder zweckmässig erscheinen, dem deutschen 380-kV-Netz im kommenden Jahrzehnt noch eine höhere Spannungsebene mit Drehstrom- oder vielleicht Gleichstrom-Höchstspannungsübertragung zu überlagern.

Die Versicherung von Atomrisiken in der Schweiz

Aus der Beilage zum Bulletin Nr. 1 der Schweizerischen Vereinigung für Atomenergie entnehmen wir auszugsweise die folgenden Ausführungen über die Versicherung von Atomrisiken in der Schweiz:

Im Jahre 1957 wurde als einer der ersten Atompools in Europa der Schweizer Atompool gegründet. Mitglieder sind sozusagen alle in der Schweiz arbeitenden Unfall-, Haftpflichtund Sachversicherungs-Gesellschaften. Als Zweck des Pools wird in den Statuten «die gemeinsame Tragung von aus der friedlichen Verwendung von Atomenergie erwachsenden Risiken» genannt. In erster Linie sollen in der Schweiz betriebene Reaktoranlagen versichert werden, doch könnten auf dem Wege der Rückversicherung ausländischer Pools auch ausländische Risiken übernommen werden. Es wurden eine Haftpflicht-, eine Feuer- und eine Auslandabteilung errichtet; die Vorarbeiten für die Schaffung einer Unfallabteilung sind im Gange. Die Haftpflichtsektion versichert die gesetzliche Haftpflicht der Atomanlageinhaber gegenüber Drittpersonen innerhalb und ausserhalb des Reaktorareals. Die Feuersektion deckt die wertvollen Reaktoranlagen gegen Feuer, sowie gegen Durchbrennen und radioaktive Verseuchung, während in Unfallsektion Unfallversicherungen von beruflich in Atomanlagen beschäftigten Personen eingebracht werden sollen.

Der Versicherungsbedarf für Reaktoren ist sehr hoch. Zu den je nach Grösse des Reaktors einige Dutzend bis einige hundert Millionen Franken betragenden Sachwerten kommen Haftpflicht-Versicherungssummen hinzu, die sich nach dem schweizerischen Atomgesetz auf Fr. 40 000 000 je Anlage belaufen. Von grösster risikotechnischer Bedeutung ist die Tatsache, dass eine Reaktorenkatastrophe eine Kumulierung der Versicherungsdeckungen der Haftpflicht, Sach- und eventuell Unfallbranchen zur Folge haben kann. Die Selbstbehaltskapazität des Schweizer Atompools, d.h. die Versicherungsdeckung, die dieser ohne Rückversicherung bei ausländischen Pools zur Verfügung stellen kann, beträgt für inländische Risiken in Haftpflicht Fr. 12 000 000.— und in Sachschaden

Fr. 14 000 000.— je Anlage. Diese Kapazität reicht jedoch zur Befriedigung des Versicherungsbedürfnisses für grössere Reaktoranlagen nicht aus. Die übrigen europäischen Atompools befinden sich in einer ähnlichen Situation, so dass nur durch eine gegenseitige Rückversicherung von Pool zu Pool die erforderlichen hohen Versicherungssummen bereitgestellt werden können.

Unverbindliche mittlere Marktpreise

je am 20. eines Monats

Metalle

		Januar	Vormonat	Vorjahr
Kupfer (Wire bars) 1).	sFr./100 kg	315.—	317.50	285.—
Banka/Billiton-Zinn 2) .	sFr./100 kg	967.—	961.—	945.—
Blei 1)	sFr./100 kg	92.50	92.50	95.—
Zink 1)	sFr./100 kg	121.50	118.50	94.—
Stabeisen, Formeisen 3)	sFr./100 kg	58.50	56.50	51.50
5-mm-Bleche 3)	sFr./100 kg	56.—	56.—	49.—
		1	1 1	

- 1) Preise franko Waggon Basel, verzollt, bei Mindestmengen von 50 t.
- t) Preise fianko Waggon Basel, verzollt, bei Mindestmengen von 5 t.
- 1) Preise franko Grenze, verzollt, bei Mindestmengen von 20 t.

Flüssige Brenn- und Treibstoffe

		Januar	Vormonat	Vorjahr	
Reinbenzin/Blei-					
benzin 1)	sFr./100 lt.	37.—	37.—	39.50	
Dieselöl für strassenmo-					
torische Zwecke ²)	sFr / 100 kg	34.75	35.15	35.85	
Heizöl Spezial 2)	sFr./100 kg	14.85	14.85	16.80	
Heizöl leicht 2)	sFr./100 kg	14.15	14.15	16.10	
Industrie-Heizöl mittel (III) ²)	sFr./100 kg	10.80	10.80	12.80	
Industrie-Heizöl schwer (V) ²)	sFr./100 kg	9.70	9.70	11.40	

1) Konsumenten-Zisternenpreise franko Schweizergrenze Basel, verzollt, inkl. WUST, bei Bezug in einzelnen Bahnkesselwagen von ca. 15 t. 2) Konsumenten-Zisternenpreise (Industrie). franko

*) Konsumenten-Zisternenpreise (Industrie), franko Schweizergrenze Buchs, St. Margrethen, Basel, Genf, verzollt, exkl. WUST, bei Bezug in einzelnen Bahnkesselwagen von ca 15 t. Für Bezug in Chiasso, Pino und Iselle reduzieren sich die angegebenen Preise um sFr. 1.—/100 kg.

Kohlen

		Januar	Vormonat	Vorjahr
Ruhr-Brechkoks I/II 1)	sFr /t	105.—	105.—	136.—
Belgische Industrie-Fett-				
kohle Nuss II ¹)	sFr /	81.—	81.—	91.—
Nuss III 1)	sFr /t	78.—	78.—	87.—
Nuss IV 1)	sfr /!	76.—	76.—	87.—
Saar-Feinkohle 1)	sFr./i	72.—	72.—	82.50
Französischer Koks, Loire 1)	sFr /t	124.50	124.50	139.—
Französischer Koks, Nord 1)	sFr./	119.—	119.—	136.—
Polnische Flammkohle				
Nuss I/II 2)	sfr /l	86.50	88.50	96.—
Nuss III 2) Nuss IV 2)	sFr /t sFr./t	80.— 80.—	82.— 82.—	93.— 93.—

¹) Sämtliche Preise verstehen sich franko Waggon Basel, verzollt, bei Lieferung von Einzelwagen an die Industrie.

²) Sämtliche Preise verstehen sich franko Waggon St. Margrethen, verzollt, bei Lieferung von Einzelwagen an die Industrie.

Aus den Geschäftsberichten schweizerischer Elektrizitätswerke

(Diese Zusammenstellungen erfolgen zwanglos in Gruppen zu vieren und sollen nicht zu Vergleichen dienen)

Man kann auf Separatabzüge dieser Seite abonnieren

	Elektrizitätswerk der Landschaft Davos		Elektra Birseck Münchenstein		Etzelwerk AG. Altendorf		Impraisa electrica Scuol Scuol/Schuls	
	1958	1957	1958	1957	1957/58	1956/57	1957/58	1956/57
1. Energieproduktion kWh 2. Energiebezug kWh 3. Energieabgabe kWh 4. Gegenüber Vorjahr º/o 5. Davon Energie zu Abfallpreisen kWh	25 509 400	7625450 24819700 32445150 $+3,1$ 718432	$373\ 551\ 900 \ +\ 1,5$		38 179 000 227 008 000 — 16,59	35 090 000	11 403 850 718 300 10 561 864 + 2,8 1 442 000	$759\ 230$ $10\ 279\ 044$ $+\ 4,9$
11. Maximalbelastung . kW 12. Gesamtanschlusswert . kW 13. Lampen . Zahl kW 14. Kochherde . Zahl kW 15. Heisswasserspeicher . Zahl kW 16. Motoren . Zahl kW	7 072 46 654 81 334 4 330 2 033 15 361 1 951 5 732 3 427 3 860	6 895 45 503 80 314 4 279 1 983 14 981 1 891 5 562 3 325 3 660	68 500 428 110 551 143 27 557 16 650²) 116 168²) 16 623 36 235 46 227 135 526	68 400 527 613 26 380 21 554 124 593 15 086 33 659 39 575 131 015	3)	91 000	2 080 10 436 25 295 831 749 3 589 267 1 393 323 640	1 990 9 833 25 105 822 711 3 375 252 1 370 310 632
21. Zahl der Abonnemente 22. Mittl. Erlös p. kWh Rp./kWh	2 446 7,84	2 500 7,78	39 068 4,76	31 530 4,49	— —	-	1 944 5,46	1 935 5,32
Aus der Bilanz: 31. Aktienkapital Fr. 32. Obligationenkapital 33. Genossenschaftsvermögen 34. Dotationskapital 35. Buchwert Anlagen, Leitg 36. Wertschriften, Beteiligung	5 796 012	6 205 011				15 000 000 — 63 251 086 —	 -1 000 000 1 165 030 38 000	1 000 000 1 169 400 38 000 105 000
$Aus\ Gewinn-$ und $Verlustrechnung$:			,	ý				
41. Betriebseinnahmen Fr. 42. Ertrag Wertschriften, Beteiligungen	2 639 426 12 207 319 495 4 100 369 009 725 420 834 000 220 000	$\begin{array}{c} - \\ 344\ 070 \\ 4\ 000 \\ \end{array} \\ 376\ 304 \\$	368 743 677 593 — 10 854 780 4 029 514 —	483 325 448 846 1 316 205 391 985 726 856 — 11 534 173	95 578 720 000 527 751 584 388 464 024 478 289	86 216 757 714 1 128 964 546 969 556 953 419 268 1 239 598	5 085 12 420 39 640 20 562	946 499 5 005 12 573 37 652 19 432 64 895 525 299 57 358 129 441 — 130 000
Übersicht über Baukosten und Amortisationen	2			N				
61. Baukosten bis Ende Berichtsjahr Fr. 62. Amortisationen Ende Berichtsjahr	122 300¹) 122 300¹) —	150 650 ¹)	45 183 947 24 582 442 20 600 505 45,6	21 614 627	63 325 351	- 63 251 086 -	3 615 783 2 450 753 1 165 030 32,2	3 554 204 2 384 804 1 169 400 32,9
	itigstellung.	3)	Kein Deta			and the second	·,=	

Redaktion der «Seiten des VSE»: Sekretariat des Verbandes Schweizerischer Elektrizitätswerke, Bahnhofplatz 3, Zürich 1, Postadresse: Postfach Zürich 23, Telephon (051) 27 51 91, Postcheckkonto VIII 4355, Telegrammadresse: Electrunion Zürich.

Redaktor: Ch. Morel, Ingenieur.

Sonderabdrucke dieser Seiten können beim Sekretariat des VSE einzeln und im Abonnement bezogen werden.