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BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

GEMEINSAMES PUBLIKATIONSORGAN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS (SEV) UND
DES VERBANDES SCHWEIZERISCHER ELEKTRIZITATSWERKE (VSE)

Frequenzspriinge und Zieherscheinungen an gekoppelten Kreisen
Von W. S. Ehrenberg, Wettingen

Es wird das Verhalten von zwei gekoppelten Schwingkreisen
im Anodenkreis eines Oszillators untersucht. Die durch gekoppelte
Kreise bestimmiten zwei Eigenfrequenzen bedingen eine Zwei-
deutigkeit der Schwingfrequenz. Dies hat Frequenzspriinge und
Zieherscheinungen beim Verstimmen der Kreise gegeneinander
zur Folge. Die Untersuchung geht von der Annahme eines kon-
stanten und reellen negativen Widerstandes aus, welcher das
aktive Oszillatorelement vertritt. Es werden keine Einschrin-
kungen beziiglich der Grésse der Verstimmung, der Kopplung und
im allgemeinen, der Verluste gemacht. Der allgemeine Verlauf der
Schwingfrequenz in Abhingigkeit von der genannten Grisse wird
bestimmt,und die resultierende Funktion besprochen. Insbesondere
wird eine Grenzbedingung fiir Frequenzsprungfreiheit ermittelt.
Fiir den Sonderfall Eleiner Verluste wird ferner ein formelles
Kriterium fiir Ziehfreiheit aufgestellt, und die Grésse des Fre-
quenzsprunges mit und ohne Ziehen bestimmt.

1. Einfiihrung
1.1 Verhalten von gekoppelten Schwingkreisen

Die Anwesenheit von zwei Eigenfrequenzen ver-
ursacht die bekannte doppelhdckerige Resonanz-
kurve von gekoppelten Schwingkreisen. Die ganze
Schaltung besitzt zwei Resonanzfrequenzen, die
mit o, und wy bezeichnet werden sollen. Die Eigen-
frequenzen der einzelnen Kreise seien w; und ws.
Jedem Paar von Frequenzen w; und ws entspricht
ein solches von wgz und wp. Insbesondere wird ein
Oszillator, der auf gekoppelte Kreise arbeitet, die
Wahl zwischen w, und w; als Schwingfrequenz

haben.
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Fig. 1
Verlauf der Eigenfrequenzen gekoppelter Kreise in Funktion

der Frequenz w, des Sekundirkreises, bei fester
Primirfrequenz o,

w,, @, Resonanzfrequenzen der Schalturig

Nun wird aber ein Oszillator nicht beliebig mit

den Frequenzen w, oder w; arbeiten, sondern die-
q

jenige Frequenz bevorzugen, welche jeweils der
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L’auteur examine le comportement de deux circuits oscil-
lants couplés dans le circuit anodique d’un oscillateur. Les
deux fréquences propres des circuits couplés donnent lieu a
une ambiguité de la fréquence d’oscillation. Il en résulte des
sauts de fréquence et des sifflements lors d’'un désaccord
entre les circuits. L’investigation se base sur une résistance
négative constante et réelle, substituée a I'élément actif de
Poscillateur. Aucune restriction n’est faite en ce qui concerne
la grandeur du désaccord, le couplage et, d’'une maniére géné-
rale, les pertes. L’allure de la fréquence d’oscillation en fonc-
tion de ces grandeurs est déterminée et la fonction qui en
résulte est discutée. L’auteur établit, notamment, une condi-
tion aux limites pour Uabsence de sauts de fréquence. Pour
le cas particulier de faibles pertes, il établit en outre un critére
formel pour Uabsence de sifflement et détermine la grandeur
du saut de fréquence avec et sans sifflements.

Eigenfrequenz des Primirkreises niher liegt. Wird
w1 festgehalten, und ws variiert, so verlaufen w,
und wp prinzipiell wie in Fig. 1 dargestellt.

Dem Oszillator stehen die beiden Zweige w, und
wp nicht beliebig zur Verfiigung. Grundsitzlich
miisste die Schwingfrequenz, sobald ws = w; wird,
von dem jeweils sich von v = w; entfernenden Ast
auf den anderen hiniiberwechseln. Sie tut dies jedoch

SEV 28298

Fig. 2
Verlauf der Schwingfrequenz w,,, gekoppelter Kreise in
Funktion der Frequenz w, des SekundirKkreises, bei fester
Primirfrequenz o,

erst etwas spiiter, welche Erscheinung, mit Hyste-
rese oder Unterkiithlung verwandt, als «Ziehen»
bezeichnet wird (Fig. 2).

Mit oder ohne Ziehen ist das — wortliche —
Absigen des Astes, auf dem sie sitzt, fiir die
Schwingung sehr unerwiinscht. Der Sprung kann
fiir den Oszillator u. U. verheerende Folgen haben,
wie Abbrechen der Schwingung und Auftreten von
Uberspannungen.
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1. 2 Umfang der Untersuchung

Wir gehen im folgenden von der Annahme eines
rein reellen, konstanten, negativen Widerstandes
fiir den aktiven Teil des Oszillators aus. Die Ver-
stimmung beider Kreise gegeneinander sei beliebig,
ebenso der Grad der gegenseitigen Kopplung. Bis
auf einen Teil der Untersuchung diirfen die Verluste
ebenfalls beliebig sein. Die beiden Kreise sollen aus
je einer Parallelschaltung von Induktivitiat, Kapa-
zitit und Widerstand bestehen. Untersucht wird
der Verlauf der Schwingfrequenz in Funktion der
Variation der sekundiren Eigenfrequenz gegen die
primare. Es zeigt sich, dass diese Funktion vom
Kopplungsfaktor & und der sekundiren Kreisgiite
(2 als Parametern abhingt.

Die vorliegende Analyse wurde mit einfachen
mathematischen Mitteln durchgefithrt. Einige Ar-
beiten, welche dieselbe oder dhnliche Fragen be-
handeln, und fiir welche Obiges allerdings nicht
mehr zutrifft, sind im Literaturverzeichnis aufge-
fiihrt.

1. 3 Ergebnisse der Untersuchung
a) Grenzbedingung fiir Sprungfreiheit : Frequenz-

spriinge konnen ganz unterbleiben, wenn die er-
wihnten Parameter &k und ()2 einer bestimmten
Beziehung geniigen.

b) Die Mindestsprungweite wird fiir den Fall ge-
ringer Verluste in Funktion der Kopplung be-
stimmt.

[V wrovi)

k o o
T _ . L

[Yll/l +joY1Ye(1— k) YL Lo+ Yo [/ﬁ

| L Ly

c) Ziehkritertum : Wird dieses erfiillt, so unter-
bleibt das Ziehen, und die Mindestsprungweite
trifft zu.

2. Grundgleichungen
2.1 Liste der verwendeten Symbole

| 4] allgemeines Symbol fiir Kettenmatrix
Qum allgemeines Element einer Kettenmatrix
B allgemeine Bezeichnung fiir den Imaginir-
teil einer Admittanz
Kapazitit
im Text eingefiithrtes Ziehkriterium
allgemeines Symbol fiir Funktion
allgemeine Bezeichnung fiir den Realteil
einer Admittanz

—1
Iléopplungsfaktor
Induktivitit
Kreisgiite
Widerstand (Realteil einer Impedanz)
Reaktanz (Imaginirteil einer Impedanz)
Variable
Admittanz
Resonanzblindleitwert
Variable

Impedanz

Q™° 0

N R g R
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w3y [ w1 (bezogene Frequenz)
kleine Grosse

Variable

Variable

Radius

Winkel

o [ w1 (bezogene Frequenz)
Kreisfrequenz

o, w1, w2 Eigenfrequenzen

S e S bR

2. 2 Vierpolmatrix

Fig. 3 zeigt die behandelte Schaltung. Fiir die
Vierpolanalyse soll das Schaltbild der gekoppelten
Kreise nach Fig. 4 umgezeichnet werden. Die Ket-
tenmatrizen der Vierpole I, T und 2 lautenl):

“Al N H 11/1 (1)”

T , S
O ’Vf; joo(1—k2) )/ Ly Ly
=

‘AT =
i /B l
o] = | %, 8] i

Die Matrix der gesamten Schaltung besteht aus
dem Produkt dieser Matrizen, in der Reihenfolge
1 x T x 2. Sie lautet:

[jo (1) V1L

1

jm] H/ﬁ—j+ jo Y1 (1—k2) VITLz] -

2. 3 Admuttanzgleichungen

Fiir die Kettenmatrix

U ‘ - \an a2
HA l_ | a1 azzrl
M
Yo
o —0

R G L8, TG l::IRZ

[og s O
SEV28299

Fig. 3

Schaltbild der behandelten gekoppelten Kreise
M Gegeninduktivitdt von L, und L,
Weitere Bezeichnungen siehe im Text

welche im Leerlauf, also ohne Abschlussimpedanz
ist, wird die Eingangsadmittanz:

azi
Yeing. == a*
11

In reelle und imaginire Anteile gruppiert, wird
die Admittanz:

') Siehe z. B. Feldtkeller, R.: Einflihrung in die Vierpol-
theorie der elektrischen Nachrichtentechnik.

Bull. SEV Bd. 50 (1959), Nr. 21



fl L1 1 kL’Z—*) (/1 o 1
mll/ TRl R )“ ) Py

”/il a2Cs (1 — 4% YT Lo} 25 —(1 — k) VL, Ls

+

eing. —

Ly =
(V) ey oo k] |
‘l [L e, 0—m) VL i2} +] R' 1—k?) /L, L,
Mit folgenden Gréssen:
(1 primire Kreisgite = R; [/Cl/Ll b .
. I ;
02 sekundsire Kreisgiite — Ry |/Ca/Ls | In Real- und Imaginirteile gegliedert
w1 primire Eigenfrequenz = 1 VLLCL G — _“C__‘l’_b‘i . _ _I{C:jfl
wz  sekundire Eigenfrequenz = 1 /J/sz Cs 24 d2’ e% 4 d?
k  Kopplungsfaktor = M | VLl Lo B Damit lautet die imaginire Schwingbedingung:
S g g gung
Yr1 primirer Resonanzblindleitwert = ]/Cl [ Ly be — ad — 0
Yro sekundirer Resonanzblindleitwert = ]/C; Is
kann Gl. (3) umgeformt werden in:
wy o\ 1 o) 1 T 1 7—; - ]
Ty, = Fox (oot Cra)at o ote o) ¥ .
| (O
w w9 D] ] QQ
. w2 | w1 il w w 2',1);, o o w1 o2
+J[(QT1+ﬁTz) (TQTQZAQILBE)k 010 (wl w2+w w)} 4)
Wy w 1 —Fk2
{(77;‘;)_’_&’2 k2}+ Qz
Der Ausdruck l/VfC liefert zwar nur fiir gréssere

(Q die tatsiichliche Eigenfrequenz. Es soll hier jedoch Setzt man die entsprechenden Ausdriicke der

dieser Ausdruck stets formell als Eigenfrequenz be- Gl. (4) ein, dann wird:
zeichnet werden.

w32 w3 w1 w2
oS0 B gt -5
1M os 1 ug.,L_ﬁ)_ 1— k) — 2 9| —
i Q2 » Ql + w Q2 e Ql ( k ) w1 Q" (1 k ) 0 (5)
3. Schwinghedingungen Bei Einfithrung der bezogenen Frequenzen
Die in der besprochenen Schaltung primirseitig
angeschlossene Energiequelle soll durch einen re- g=22 . 5. %
ellen, frequenzunabhingigen negativen Widerstand w1 w1
zgg;nf;g?glmg; | Ry | exsctat werden. Die Schwing-  orpyslt man sehliesslich aus G1. (5):
3 ; 1 1 — k2 1 — k2 ol
=k — Q(I—kl)(z—{- ﬁ'_o'zz_) + (2—k2+ 2 7022 ) — =10 (6)

Man beachte, dass die Frequenzgleichung somit
G+ 1/Ry = 0 (reelle Schwingbedingung) von @ unabhingig ist. Da die Verlustwiderstinde

B = 0 (imaginire Schwingbedingung) der Kreise als Parallelwiderstinde vorausgesetzt
wurden, ist diese Tatsache auch physikalisch ohne

wobei G 4+ jB = Y die Schaltungsadmittanz be- weiteres verstindlich.
deutet. Wihrend die Gl. (6) fiir 2 bi-kubisch ist, ist sie

fiir & bi-quadratisch. Umgeschrieben wird sie:

1 ot Q22 (2 — 1) + 0202 ((2 — k2) Qa2 — (1 — k%) — Q2 (1 — k2 [2 Qa2 — (1 — k)] |+ Q4 Q22 (1 — k)[R (1 — k) —1] =0 (7)

Mit den Abkiirzungen:
A= 22(01—k?)[22(1—k2) —1]

3.1 Allgemeine Frequenzgleichung

Man erhilt die Frequenzgleichung beim Ansetzen

der imaginidren Schwingbedingung. B = Q22[(2—K2) —2022(1 —k2)]
Gl. (4) hat die Form: lauten die Losungen von Gl. (7):
a+ jb i (B AJQo) QWA 24 B[ Qs A2/Qs
T ctjd hEe 2(22—1)

(8)

Bull. ASE t. 50 (1959), n° 21 1011



3. 2 Spezielle Frequenzgleichung fiir grosses Qs

Fiir den Fall hoher sekundirer Kreisgiite geht
Gl. (8) uber in:

[ 02 (1 k)]

oz I—02
22 = 02 (1 — k?) (9)
M
VR
(o2 O o— 2 OJ_ O
Rﬂ T 126 L, Tcz Df?z
O O O 0 G & -0
T 2
SEV 28300 Fig. .

Fiir die Vierpolanalyse umgezeichnetes Schaltbild
der gekoppelten Kreise
Bezeichnungen siehe im Text

3. 3 Dre reelle Schwingbedingung fiir den Sonderfall
von grossen Kreisgiiten

Die reelle Schwingbedingung G = 1/|Ry| lésst
sich mit den allgemeinen Bezeichnungen von Ab-
schnitt 3. 1 schreiben:

ac + bd
2 1 d2
Wenn man die entsprechenden Ausdriicke der

Gl. (4) einsetzt, und dabei Q; und Q2 vernach-
lassigt, erhélt man die nach 2 geordnete Gleichung:

= 1 /Ry

O4(1—k2)2— 02 242 (1 —k2) + a3 (oc — kzﬁ%yﬂ)
2

(10)
Mit der Abkiirzung

. I/IRUI Yr1 V]R(TYIQ _ [Ro| w2 Lg
Ry Yge Q2 R w1 Ly
lauten die Lésungen von GI. (10):

e (1 - V“) (1)

Ga=

4. Aussagen iiber Frequenzsprungweite und Ziehen
Mit den Ergebnissen der Abschnitte 3.2 und 3.3

lisst sich einiges tiber die Frequenzsprungweite und
das Ziehen fur den Fall grosserer Kreisgiiten aus-
sagen.
4.1 Die minimale Sprungweite

Solange man von Zieherscheinungen absieht,
wird der Sprung von einem Funktionsast (s. Fig. 2
und 5) zum anderen jeweils dort erfolgen, wo die
Eigenfrequenzen beider Kreise gerade gleich sind.
Es wird dort jener Ast bevorzugt, welcher im weite-
ren Verlauf der primiren Eigenfrequenz (0 = wy,
also 2 = 1) immer niher riickt, wihrend der andere
sich von ihr entfernt.

Fiir minimal mégliche Sprungweite gilt also:

w1 =ws, d.h.a =1, x2 =1

1012

Aus Gl (9) erhilt man explizit fir 02:

0f, =211 + V(o +1)2—4x2(1—k?) (12)

2(1— k?)

1T

00 1

SEV 28301

S o(z

Fig. 5
Verlauf der Frequenzfunktion 22 = f(«x? im Grenzfall hoher
Kreisgiite, mit k als Parameter

Fiir minimale Sprungweite erhilt man durch Ein-

setzen von x2 =1:
1 1
2 — - . 02 — T
(N Qs 11k (13)

Der arithmetische Mittelwert von £212 und 292 ist

Q2+ 0.2 1
o 2 T1—k2 (14)

Geht man aus praktischen Griinden auf Q iiber,
so erhilt man fiir die relative Sprungweite:

O

A0 0 —Qy
o, 0, = Vi+k—)1—k (15
151 ST ol
10 B o
13
(+]
~
g
i
los o I
i
D(J 01 02 ] 93 ” 04 05 06 07 08 09 10
SEV28302 Fig. 6

Die minimal mégliche Frequenzsprungweite AQ/2, im
Grenzfall hoher Kreisgiite, in Funktion der Kopplung k

Bull. SEV Bd. 50 (1959), Nr. 21



Den Verlauf dieses Ausdrucks in Funktion der
Kopplung zeigt Fig. 6.

4. 2 Das Ziehkriterium

Die im letzten Abschnitt ermittelte minimal
mogliche Frequenzsprungweite entspricht einem
Mangel von Zieherscheinungen. Es soll nun ein for-
melles Kriterium fiir diesen wiinschenswerten Zu-
stand gefunden werden.

Fiir minimale Sprungweite wird & = 1; setzt man
die in diesem Fall erhaltenen Lésungen in Gl. (13)
fiir 22 sowie den Wert 1 fiir x in folgende, aus
Gl. (11) umgeformte Gleichung fiir ¢ ein:

sfimme i

2

(16)

(die positive Losung ist zu nehmen)

so erhilt man als Losung den Wert ¢ = 1. Damit
lautet das Ziehkriterium:

2 — Bl Yr _ [Rojoaly

Ro YRa

(17)

4. 3 Die Sprungweite fiir ¢ == 1
Wenn der Ausdruck
_ |Ro| Yr1

2 —
¢ s Yoo

<1

ist, so erfolgt der Sprung nicht mehr dort, wo die
Eigenfrequenzen beider Kreise gleich sind. Es tritt
jetzt ein «Frequenzziehen» ein, analog etwa der
Unterkiihlung einer kristallinen Lisung.

In GIl.(16) setze man einander zugeordnete
Wertepaare von (x2— 0Q2) ein, wie sie aus den
Kurven der Fig.5 zu entnehmen sind. Dabei
werden die Wertepaare demjenigen Funktionsast
entnommen, welcher der Asymptote Q2 =«2/(1—k2)
jeweils niher ist. Damit erhilt man einander zuge-
ordnete Wertepaare von (¢ — x2). In Uberein-
stimmung mit dem Vorgehen in Abschnitt 4.1
[GL. (14) und (15)], wird der Ausdruck fiir die rela-
tive Frequenzsprungweite gebildet. Fiir Q2 setat
man die Werte nach Gl. (12) ein, womit man die
zugeordneten (¢—(22)-Paare erhilt. Der relative
Frequenzsprung wird dann:

Punkten 4 und B kein Schwingen méglich, weder
auf dem oberen, noch auf dem unteren Ast.

(02/2m).
~ BR/Rm)ey W

e

1

0
SEV28303

Fig. 7
Vergroisserung der Frequenzsprungweite infolge von Ziehen,
in Funktion der Ziehgrosse c
Die Sprungweite ist auf den Minimalwert (Fig. 6) bezogen.
Die Kurve gilt fiir den Fall kK = 0,3

a Sprung von oberem auf unteren Ast;
auf oberen Ast

b Sprung von unterem

: ~
N -
G I -~
T
A __r”
|
2 /
o [ e e e i
e
- !
A~ !
7/
' |
£ I
SEV 28304 2=
e dz
Fig. 8

Veranschaulichung des Verlaufs der Frequenzfunktion fiir den
Fall, dass die Ziehgrosse ¢ > 1 wird
A, B Punkte, zwischen welchen auf keinem Ast ein Schwingen
moglich ist
Weitere Bezeichnungen siehe im Text

5. Diskussion der allgemeinen Frequenzgleichung
Kehren wir jetzt zu der in Abschnitt 3.1 bestimm-
ten, allgemeinen Frequenzgleichung zuriick [Gl. (6),
(7) und (8)]. In den folgenden Abschnitten soll diese
Funktion etwas niher untersucht werden.

a9 _, V V (2+1)2(1

S A

(18) |

Om
Vrio)/im ot

Diese Funktion ist fiir den Fall £k = 0,3 iiber ¢
in Fig. 7 aufgetragen.

Seiner Herleitung entsprechend, ist ¢ ein Mass
fiir die Schwingneigung des Kreises, einschliesslich
des durch — R, dargestellten aktiven Elementes.
Je grosser die Schwingneigung, und somit je kleiner
¢, desto weiter von {2 =1 ist die Schaltung auf dem
«falschen» Ast schwingfihig, und um so stirker
wird das Ziehen. Bei ¢ =1 ist bei « =1 eine
Schwingung gerade noch moglich. Wird ¢ aber
grosser als 1, so entsteht ein leerer Bereich (siche
Fig. 8). Beim Durchlaufen von a2 ist zwischen den

Bull. ASE t. 50 (1959), n°21

(I -k

k)+l/1~]/

5.1 Grenzkurven fiir hohe Kreisgiiten

z_|_1)2

Die Grenzkurven fiir grosses (2 (die Frequenz-
gleichung ist ja von (; unabhingig) sind durch
GI. (9), Abschnitt 3.2 gegeben. Fig. 5 zeigt den Ver-
lauf dieser Grenzkurven fiir verschiedene Kopp-
lungsgrade k.

,

2 Ausgezeichnete Punkte

a) Punkt &2 :0; 22 =0. Alle Kurven der be-
handelten Funktion gehen durch den Nullpunkt
des (x2, £22)-Koordinatensystems.

1013



b) Punkte x2 =1; 22 =1/(1—k2). Beim Ein-
setzen des Wertes 22 = 1/(1—k?) in Gl. (8) er-
hilt man die Losungen:

x92 =

w2 =1 ;
Den durch die erste Losung gegebenen Punkt
bezeichnet man als Mittelpunkt. Die zweite

Losung bestimmt die Punkte:
c) a2 =0; Q2 =1/(1—Fk?)

d) a2 =o0; 22 = 1. Dieser Punkt folgt aus GIl. (8)
beim Einsetzen von 22 =1,
Die Lage der ausgezeichneten Punkte ersieht
man aus Abb. 9.

O ks
0 05 2
SEV 28305 -
Fig. 9
Uberblick iiber die im Text ermittelten Besonderheiten
der Frequenzfunktion Q2 = f(x?), mit k = 0,3

1, 2 Grenzkurven bei hoher Kreisglite; 3 schridge Asymptote
0% = ?/(1—k?); 4 horizontale Asymptote 22 = 1; 5, 6 Ortskurve
der Extremalwerte der Funktion 22 = f(«x?); 7, 8 bestimmtes
Paar von Extremalwerten, zu bestimmtem Q,-Wert; 9 Linie 22
= 1/(1-k?); 10 fuir Extremalwerte von 22 = f(x?) verbotener
Bereich; 11 der Mittelpunkt, «? = 1, 2% = 1/(1-k?); 12 Neigung
einer bestimmten Kurve im Mittelpunkt; 13 Grenzneigung fiir
Sprungfreiheit; 14 der Punkt «? = 0, Q22 = 1/(1-k?)

5.3 Punkte horizontaler Tangente

Gl. (8) liefert zu jedem Wert von 22 zwei solche fiir
o2, Die beiden Losungen fallen zusammen, wenn der
Ausdruck unter der Wurzel in Gl. (8) verschwindet.
Jenseits des entsprechenden Grenzwertes von 2
wird die Wurzel imaginir, und «2 komplex. Im
reellen Bereich der Funktion 02 = f («2) ist man
somit an einem Extremum angelangt. Mit dem Ver-
schwinden der genannten Wurzel erhilt man eine
Bedingungsgleichung fiir 22,4, :
2A4B L A2

022 0ot
wobei A, B die frither (s. Abschnitt 3.1) einge-
fiuhrten Abkiirzungen sind. Gl. (19) ergibt die

Losungen (wobei vorteilhaft nach () aufgelost
wird):

Q1A |- —0 (19)

1014
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Da (9 reell sein muss, darf der Ausdruck unter
der Wurzel in G1. (20) nicht negativ werden. Daraus
ergibt sich ein ©2-Bereich, in welchem keine
Extremalwerte auftreten kénnen. Diese sind be-
stimmt durch:

Q2% =

4

1— B2

<0 (21)

Die Grenzen des verbotenen Bereichs sind durch
die aus Gl. (21) folgende Gleichung bestimmt:
Q4(1—2k2 + kY —22(2—3 k24 k%) +

+ (1—k) =0 (22)

Die beiden positiven Lésungen dieser bi-quadra-
tischen Gleichung sind:

1
.le = ]_Tkz H .sz =1 (23)
Die entsprechenden (J3-Werte sind, nach Gl. (20):
A
(Q22)1,2 = (— E) 2, (24)

Mit den 22-Werten nach Gl. (23) lauten die
(£22—(Qq)-Paare an den Grenzen des fiir Extremal-
werte von £22 = f (x2) verbotenen Bereichs:

2=1/1—k); @=0
2 =1 ; Q2= J1—k2  (25)
Der erste Fall entspricht dem oberen, der zweite
dem unteren Kurvenast (siche z. B. Fig. 9).
Die Auswertung der Gl. (20) fiir ein k von 0,3

zeigt Fig. 10. Die zu den .Qfx,,_-Werten gehorigen
«2-Werte findet man aus Gl (8), wenn man, laut
Definition, die Wurzel gleich 0 setzt:
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Fig. 10
Den Extremalwerten von Q2 [Punkte horizontaler Tangente der
Funktion 22 = f(x?] zugeordnete Werte von @, fiir k = 0,3
Keine Extremalwerte von 02 im schraffierten Gebiet
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(B + 4]0
2(02—1) (20)
Die entsprechenden (£22—nx?)-Werte sind fiir k =
0,3 in Fig. 9 aufgetragen. Die eingezeichnete Kurve

ist zu verstehen als Ortskurve der Extremalwerte

der durch £ = 0,3 bestimmten Kurvenschar der
Funktion Q2 =f («2).

" P

5.4 Neigung der Tangente
an die Kurven im Mittelpunkt

Zur Bestimmung der Neigung einer Kurve muss
diese nach der unabhéngigen Variablen abgeleitet
werden. Die Neigung in einem bestimmten Punkt
wird durch Einsetzen der Koordinaten des Punktes
in die Ableitung bestimmt.

«2 allgemein nach 2 abzuleiten wiire sehr miih-

sam. Da hier aber nur der eine Punkt 22 =1/(1—%2),
a2 =1 interessiert, soll fiir 22 gesetzt werden:

L
1—k2

Mit A < 1 stellt dieser Ausdruck die Funktion
Q2 —=f(«2) in der Nihe des Mittelpunktes dar. Bei

Vernachlissigung von Gliedern hsherer Ordnung von
A erhilt man fiir die verschiedenen Anteile der G1. (8):

2 = (1 + 4)

B=——7F—15—
AlQ22 = A]Q22
42/Qst = 0
A k2
2 ___9_ ="
2ABJQ? = —2 3“0
ki 2 k4 A
414 — =
ot = T e
A+ k2
PR [t e A
-1 =70

Damit lauten die Losungen der Gl. (8):

K@iy 20K, [+ a (e - *kz)]

o2 Q22 Q22 /]
LA 2(A + k2
(27)
woraus schliesslich folgt
2
k2 A [1 k2 — l ,;L
9 02
x1= — i
A+ k2
(28)
9 A4
I Ty

Die Ableitung von &2 nach (22 lautet allgemein:

da2 2 24

TRy /D (@)
2

Fir pa erhilt man sofort die zwei Losungen:

24
g Ly [kz . 1’*’“2]

A k2 Q2
(30)
doxg2 - 1
M k2
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Der Ausdruck d4/3£22 ergibt:

1+ 4 A ,
—B)—1; o =1—Fk
(31)

Mit den Gl (30) und (31) lauten die Ableitungen:

x?2 122 2

402 k2 Q22 g
das? 11— k2 (32)
a2 k2

10

05

?>0 w<0 ‘

0

0 05 3 10 15
SEV 26307 ==

Fig. 11

Ungefihrer Verlauf der Frequenzfunktion fiir k = 0,3 und
verschiedene Werte von @,
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Fig. 12
Grenzbedingung fiir Frequenzsprungfreiheit: einander
entsprechende Werte von @, in Funktion von k
Frei wéahlbar sind Wertepaare innerhalb des schraffierten
Bereichs
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Die zweite Losung, unabhingig von (g, ent-
spricht keiner physikalischen Realitit. Der ge-
fundene Ausdruck fiir die Neigung der Funktion im
Mittelpunkt wurde bei der Konstruktion der Kurven
im Beispiel der Fig. 11 verwendet.

5.5 Grenzbedingung fiir Sprungfreiheit

Wenn der Ausdruck in der rechten Klammer der
Gl. (32a) verschwindet, wechselt der Winkel ¢ sein
Vorzeichen. Aus Fig. 11 ersieht man, dass fiar ¢ > 0
Frequenzspriinge stattfinden, fiir ¢ << 0 hingegen
nicht mehr. Die Grenze fir Sprungfreiheit liegt so-
mit bei tg ¢ =0, und:

1— k2 1
LR | I N

ER S X

Die Funktion Qs = f(k), entsprechend der er-
fillten Grenzbedingung, wurde in Fig. 12 aufge-

tragen.

Q:2 < (33)

6. Zusammenfassung

Es wurden die Admittanzausdriicke fiir zwei ge-
koppelte Schwingkreise aufgestellt. Daraus wurde
der Verlauf der Schwingfrequenz eines Oszillators
bestimmt, der auf diese Kreise arbeitet. Das aktive
Oszillatorelement wurde einem festen, rein reellen
negativen Widerstand gleichgesetzt. Der Kreis-

verstimmung, der Kopplung und den Verlusten
wurde keine Einschrinkung auferlegt. Einzig bei
der prinzipiellen Besprechung der Zieherscheinun-
gen beschrinkte man sich auf kleine Kreisverluste.

Es wurde zunichst der minimale Frequenz-
sprung in Funktion der Kopplung bestimmt, sowie
ein Kriterium fiir Ziehfreiheit; damit konnte die
Grosse des Frequenzsprunges in Abhingigkeit vom
Ausmass des Ziehens ermittelt werden. Die allge-
meine Beziehung fiir die Schwingfrequenz in Funk-
tion der relativen Kreisverstimmung, mit Kreisgiite
und Kopplung als Parameter, wurde aufgestellt.
Eine Diskussion der Eigenheiten dieser Funktion
fiihrte zu einer Grenzbedingung fir Frequenz-
sprungfreiheit.
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Die Moglichkeit zur Erh6hung der statischen Stabilititsgrenze
bei Synchronmaschinen
Von M. Canay, Bazenheid

In dieser Arbeit werden die theoretischen Maéglichkeiten zur
Erhéhung der statischen Stabilititsgrenze gesucht. Mit Hilfe der
hier angegebenen mathematischen Beziehungen kann die Stetlheit
der Charakteristik des Winkelreglers bei der Erzeugung der mit
dem Lastwinkel proportionalen Erregung vorausberechnet werden.

621.313.32 : 621.016.35

Recherche des possibilités théoriques d’élever la limite de
stabilité statique. A Paide des relations mathématiques in-
diquées, on peut calculer d’avance la raideur de la caracté-
ristique du régulateur d’angle, lors de la production de 'exci-
tation proportionnelle a Uangle de charge.

Einleitung

Wie bekannt, kann eine Synchronmaschine weder
als Generator noch als Phasenschieber die statische
Stabilititsgrenze im normalen Betrieb iiberschreiten,
die mit einem kritischen Winkel 0,4, begrenzt ist.
Der Winkel 0,4, ist immer kleiner als 90 Grad.
Dies beschrinkt die aufgenommene Blindleistung
des Generators, die man aus verschiedenen Griinden
manchmal zu vergriossern dachte. Der Wunsch zur
Vergrosserung der aufgenommenen Blindleistung
kann bei den Generatoren, die mit weniger Leistung
fast bei Leerlauf iiber eine grosse Leitung arbeiten,
ein Bediirfnis sein, denn man wiirde sich damit er-
sparen, einen Phasenschieber in Betrieb zu setzen,
wenn die Generatoren die von der grossen Leitung
erforderliche Blindleistung aufnehmen kénnten. Die
Bedingung 6 << dypqr ermiglicht aber diesen Betrieb
nicht, und deshalb braucht man einen zusitzlichen
Phasenschieber mit grosser aufgenommener Blind-
leistung in Betrieb zu nehmen. Da der Phasen-
schieber aber ohne zusitzlichen Regler im normalen
Betrieb nur die Blindleistung von der Grésse 1/Xg pu
(Per Unit) aufnehmen kann, wenn man die Er-
regung null macht, und diese oft viel kleiner ist als
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die normale Leistung des Phasenschiebers, sieht
man ein, dass man wegen dieser Beschrinkung ge-
zwungen ist, den Phasenschieber grosser zu bauen
als notwendig.

Der Winkelregler, der diese Schwierigkeiten be-
seitigt und einen noch sichereren Betrieb gewihr-
leistet, hat in der letzten Zeit grosse Bedeutung be-
kommen.

Die theoretischen Unterlagen zur Moglichkeit der
Erhohung der Stabilitatsgrenze sollen hier zunichst
mathematisch und dann graphisch behandelt und
damit ein Verfahren angegeben werden, um die erfor-
derliche Eigenschaft, namlich die Steilheit der
Charakteristik des Winkelreglers fiir einen belie-
bigen Betriebspunkt des Generators oder Phasen-
schiebers zu bestimmen. Mit einem solchen zusitz-
lichen Regler kann es gelingen, die statische Stabili-
titsgrenze der Synchronmaschine theoretisch bis
zur dynamischen Stabilititsgrenze auszudehnen.

Stabilititshedingung einer Synchronmaschine

Die Stabilitiatshedingung einer Synchronmaschine
kann wie folgt ausgedriickt werden:
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