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BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

GEMEINSAMES PUBLIKATIONSORGAN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS (SEV) UND
DES VERBANDES SCHWEIZERISCHER ELEKTRIZITÄTSWERKE (VSE)

Frequenzsprünge und Zieherscheinungen an gekoppelten Kreisen
Von W. S. Ehrenberg, Wettingen

621.372.512.3 : 621.3.016.35

Es wird das Verhalten von zwei gekoppelten Schwingkreisen
im Anodenkreis eines Oszillators untersucht. Die durch gekoppelte
Kreise bestimmten zwei Eigenfrequenzen bedingen eine
Zweideutigkeit der Schwingfrequenz. Dies hat Frequenzsprünge und
Zieherscheinungen beim Verstimmen der Kreise gegeneinander
zur Folge. Die Untersuchung geht von der Annahme eines
konstanten und reellen negativen Widerstandes aus, welcher das
aktive Oszillatorelement vertritt. Es werden keine Einschränkungen

bezüglich der Grösse der Verstimmung, der Kopplung und
im allgemeinen, der Verluste gemacht. Der allgemeine Verlauf der
Schwingfrequenz in Abhängigkeit von der genannten Grösse wird
bestimmt, und die resultierende Funktion besprochen. Insbesondere
wird eine Grenzbedingung für Frequenzsprungfreiheit ermittelt.
Für den Sonderfall kleiner Verluste wird ferner ein formelles
Kriterium für Ziehfreiheit aufgestellt, und die Grösse des

Frequenzsprunges mit und ohne Ziehen bestimmt.

1. Einführung
1. 1 Verhalten von gekoppelten Schwingkreisen

Die Anwesenheit von zwei Eigenfrequenzen
verursacht (lie bekannte doppelhöckerige Resonanzkurve

von gekoppelten Schwingkreisen. Die ganze
Schaltung besitzt zwei Resonanzfrequenzen, die
mit wa und ap, bezeichnet werden sollen. Die
Eigenfrequenzen der einzelnen Kreise seien co\ und o>2-

Jedem Paar von Frequenzen a>i und a>2 entspricht
ein solches von ma und eo&. Insbesondere wird ein
Oszillator, der auf gekoppelte Kreise arbeitet, die
Wahl zwischen coa und o>t, als Schwingfrequenz
haben.

Fig. 1

Verlauf der Eigenfrequenzen gekoppelter Kreise in Funktion
der Frequenz a>2 des Sekundärkreises, bei fester

Primärfrequenz oq

wa, wb Resonanzfrequenzen der Schaltung

Nun wird aber ein Oszillator nicht beliebig mit
den Frequenzen coa oder a>b arbeiten, sondern
diejenige Frequenz bevorzugen, welche jeweils der

L'auteur examine le comportement de deux circuits oscillants

couplés dans le circuit anodique d'un oscillateur. Les
deux fréquences propres des circuits couplés donnent lieu à

une ambiguïté de la fréquence d'oscillation. Il en résulte des
sauts de fréquence et des sifflements lors d'un désaccord
entre les circuits. L'investigation se base sur une résistance
négative constante et réelle, substituée à l'élément actif de
l'oscillateur. Aucune restriction n'est faite en ce qui concerne
la grandeur du désaccord, le couplage et, d'une manière générale,

les pertes. L'allure de la fréquence d'oscillation en fonction

de ces grandeurs est déterminée et la fonction qui en
résulte est discutée. L'auteur établit, notamment, une condition

aux limites pour l'absence de sauts de fréquence. Pour
le cas particulier de faibles pertes, il établit en outre un critère
formel pour l'absence de sifflement et détermine la grandeur
du saut de fréquence avec et sans sifflements.

Eigenfrequenz des Primärkreises näher liegt. Wird
a>i festgehalten, und w2 variiert, so verlaufen coa
und cob prinzipiell wie in Fig. 1 dargestellt.

Dem Oszillator stehen die beiden Zweige œa und
ü)b nicht beliebig zur Verfügung. Grundsätzlich
müsste die Schwingfrequenz, sobald a>2 coi wird,
von dem jeweils sich von a> coi entfernenden Ast
auf den anderen hinüberwechseln. Sie tut dies jedoch

Gü CJ1

S£V28298 CO, - CO«

-w2

Fig. 2

Verlauf der Schwingfrequenz w04C gekoppelter Kreise in
Funktion der Frequenz o?2 des Sekundärkreises, bei fester

Primärfrequenz oq

erst etwas später, welche Erscheinung, mit Hyste-
rese oder Unterkühlung verwandt, als «Ziehen»
bezeichnet wird (Fig. 2).

Mit oder ohne Ziehen ist das — wörtliche —
Absägen des Astes, auf dem sie sitzt, für die
Schwingung sehr unerwünscht. Der Sprung kann
für den Oszillator u. U. verheerende Folgen haben,
wie Abbrechen der Schwingung und Auftreten von
Überspannungen.
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1. 2 Umfang der Untersuchung

Wir gehen im folgenden von der Annahme eines
rein reellen, konstanten, negativen Widerstandes
für den aktiven Teil des Oszillators aus. Die
Verstimmung beider Kreise gegeneinander sei beliebig,
ebenso der Grad der gegenseitigen Kopplung. Bis
auf einen Teil der Untersuchung dürfen die Verluste
ebenfalls beliebig sein. Die beiden Kreise sollen aus
je einer Parallelschaltung von Induktivität, Kapazität

und Widerstand bestehen. Untersucht wird
der Verlauf der Schwingfrequenz in Funktion der
Variation der sekundären Eigenfrequenz gegen die
primäre. Es zeigt sich, dass diese Funktion vom
Kopplungsfaktor k und der sekundären Kreisgüte
Q2 als Parametern abhängt.

Die vorliegende Analyse wurde mit einfachen
mathematischen Mitteln durchgeführt. Einige
Arbeiten, welche dieselbe oder ähnliche Fragen
behandeln, und für welche Obiges allerdings nicht
mehr zutrifft, sind im Literaturverzeichnis aufgeführt.

1. 3 Ergebnisse der Untersuchung

a) Grenzbedingung für Sprungfreiheit : Frequenzsprünge

können ganz unterbleiben, wenn die
erwähnten Parameter k und Qo einer bestimmten
Beziehung genügen.

b) Die Mindestsprungweite wird für den Fall
geringer Verluste in Funktion der Kopplung
bestimmt.

(X m2 I u>i (bezogene Frequenz)
A kleine Grösse

i] Variable
f Variable
o Radius
cp Winkel
Q to j (0\ (bezogene Frequenz)
ft) Kreisfrequenz
coo, coi, a>2 Eigenfrequenzen

2. 2 Vierpolmatrix

Fig. 3 zeigt die behandelte Schaltung. Für die
Vierpolanalyse soll das Schaltbild der gekoppelten
Kreise nach Fig. 4 umgezeichnet werden. Die
Kettenmatrizen der Vierpole 1, T und 2 lauten1):

Ai
1 0

Vi 1

Fi
U jft»(l —fc2)j/LlL2

J

]/LIL2
l2
Li

1 0

V2 1
(1)

Die Matrix der gesamten Schaltung besteht aus
dem Produkt dieser Matrizen, in der Reihenfolge
IX T X 2. Sie lautet :

|/g + jft> V2 (l—WYhLa jeu (1 — fca) fLtU

Yi y2 (1 - fc2) yLi U + v2 [/£?- j
i ]/ Li I>2 + jft) Vr (1 — k2) )/LiL2

(2)

c) Ziehkriterium : Wird dieses erfüllt, so unterbleibt

das Ziehen, und die Mindestsprungweite
trifft zu.

2. Grundgleichungen
2. 1 Liste der verwendeten Symbole

j| A allgemeines Symbol für Kettenmatrix
anm allgemeines Element einer Kettenmatrix
B allgemeine Bezeichnung für den Imaginär¬

teil einer Admittanz
C Kapazität
c im Text eingeführtes Ziehkriterium
f allgemeines Symbol für Funktion
G allgemeine Bezeichnung für den Realteil

einer Admittanz
j I. J

k Kopplungsfaktor
L Induktivität
Q Kreisgüte
R Widerstand (Realteil einer Impedanz)
X Reaktanz (Imaginärteil einer Impedanz)
x Variable
V Admittanz
Ya Resonanzblindleitwert
y Variable
Z Impedanz

2. 3 Admittanzgleichungen

Für die Kettenmatrix

A an «12

«21 «22 |

SEV28299

Fig. 3

Schaltbild der behandelten gekoppelten Kreise
M Gegeninduktivität von L± und L2
Weitere Bezeichnungen siehe im Text

welche im Leerlauf, also ohne Abschlussimpedanz
ist, wird die Eingangsadmittanz :

Yeing. —
«21

«11

In reelle und imaginäre Anteile gruppiert, wird
die Admittanz :

x) Siehe z. B. Feldtkeller, R.: Einführung in die Vierpoltheorie

der elektrischen Nachrichtentechnik.
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,irK&+il/if-'"l(s + t) »-"»M
U
Lo

f
- cßC2 (1 - V) JuLo] + j (1 - fc2) /Li L2

J

+
(c'|/=i-+C2 -L'2

il- +(sfk -0,3 Ci Ca)(1 -*a>^ Li L2

1;/ ït"—c°2C2 (1_^ ^LlL2} + ••
V=r

1 —V2) AR
(3)

Mit folgenden Grössen:

Ql primäre Kreisgüte Ri j/Ci/Li
Q2 sekundäre Kreisgüte R» J/C2/L2

coi primäre Eigenfrequenz 1 / JL\ Ci
u>2 sekundäre Eigenfrequenz 1 / ]/L2 C2

fc Kopplungsfaktor M / ]/Lx L2

Yiji primärer Resonanzblindleitwert (/Ci /Li
Yij2 sekundärer Resonanzblindleitwert j/C2 / L2
kann Gl. (3) umgeformt werden in :

/ (f? __ _L /coi J_ _L (œ 1

1 l co co2! Qi \ co coj Q2 l

In Real- und Imaginärteile gegliedert :

ac -f- bei bc — ad

ß : ,ßß + d2 '

Damit lautet die imaginäre Schwingbedingung:

bc — ad 0

Yring. — ^It -

' O)

\C01 Q*- + -

£ü2 k)
j (-2-) +-fc2j+jl \co co2l a>2

,1-k2
Q2

' I1
{(02

_j_
0)A

Ig>1 0)2/
1- 1

1 CO

{Qi Q2 o)i
Iis |fe3+ êTêT"1

ico 0) ^ 0)1 0)2\
\
G>1 G>2 CO 0)

'1

('
CO 2 0) \

{ 0) co2) co2 J
l+jl oi

k2
(4)

Der Ausdruck 1 /|/LC liefert zwar nur für grössere
Q die tatsächliche Eigenfrequenz. Es soll hier jedoch
dieser Ausdruck stets formell als Eigenfrequenz
bezeichnet werden.

Setzt man die entsprechenden Ausdrücke der
Gl. (4) ein, dann wird :

l°R _ ®
(1 _ fe2)j p? + + -1 (1 - fcü)

(cd G>2 i lo>l W2 Ç] v2

CD4

COl Gl2

1 — k2 (0)2

Q2 (co

(i-fc2)- Gil G>2

1

Qi
(Ol

CO <?2

CO

0)2 _d _fe2).
G)

Gif 7) (l -(L
0 (5)

3. Schwingbedingungen
Die in der besprochenen Schaltung primärseitig

angeschlossene Energiequelle soll durch einen
reellen, frequenz unabhängigen negativen Widerstand
vom Absolutwert | Rq | ersetzt werden. Die
Schwingbedingungen lauten dann :

Bei Einführung der bezogenen Frequenzen

Qoc
CO 2 ^ CO

COl COl

erhält man schliesslich aus Gl. (5):

ß3(1nA \Af - Q
1 - fc2

<?22IT" 0
ß3

(6)

G -)- 1/jRo 0 (reelle Schwingbedingung)
B — 0 (imaginäre Schwingbedingung)

wobei G -f- jß Y die Schaltungsadmittanz
bedeutet.

Man beachte, dass die Frequenzgleichung somit
von Oi unabhängig ist. Da die Verlustwiderstände
der Kreise als Parallelwiderstände vorausgesetzt
wurden, ist diese Tatsache auch physikalisch ohne
weiteres verständlich.

Während die Gl. (6) für Q bi-kubisch ist, ist sie
für « bi-quadratisch. Umgeschrieben wird sie:

a4 Ç22 (ß2 - 1) + <x2ß2 {(2 - fc2) Ç22 ~ (1 - fc2) - ß2 (1 - fc2) [2 Ça2 - (1 - fc2)]}+ ß4 Ç22 (1 - fc2) [ß2 (1 - fc2) - 1] 0 (7)

3. 1 Allgemeine Frequenzgleichung

Man erhält die Frequenzgleichung beim Ansetzen
der imaginären Schwingbedingung.

Gl. (4) hat die Form:

Y « +j b

c + jd

Mit den Abkürzungen :

A ü2 (1 — Iß) [ß2 (1 — fe2) _ i]
B fß [(2 — Zc2) — 2 ß2 (1 — fc2)]

lauten die Lösungen von Gl. (7) :

2 _ —{B+AIQ22)±yQW+2ABIQ22+A*IQ?
2 (Q2 — 1)

(g)

Bull. ASE t. 50 (1959), n" 21 1011



3. 2 Spezielle Frequenzgleichung für grosses Q2

Für den Fall hoher sekundärer Kreisgüte geht
Gl. (8) über in:

ß2 [1— ß2 (1 fe2)]
«l2

«2

1— ß2
2 ß2(l — &2) (9)

1 T 2
SEV28500

Fig. 4

Für die Vierpolanalyse umgezeichnetes Schaltbild
der gekoppelten Kreise

Bezeichnungen siehe im Text

3. 3 Die reelle Schwingbedingung für den Sonderfall
von grossen Kreisgüten

Die reelle Schwingbedingung G l/|iîo| läset
sich mit den allgemeinen Bezeichnungen von
Abschnitt 3. 1 schreiben:

ac + bd
1

IcZ + df-
1 / 1^1

Wenn man die entsprechenden Ausdrücke der
Gl. (4) einsetzt, und dabei Qi und Q% vernachlässigt,

erhält man die nach ß geordnete Gleichung:

Qi (1 _fc2)2_ß2 ,2(X2 (1 _ fc2) +

Mit der Abkürzung

c _ |/jBo|Tra

- fezi^oi y«i\
Q» I

(10)

I JRol (02 L2
R2 YR2 Q2

lauten die Lösungen von Gl. (10):

R2 co 1L1

ßr,2

1 +
k 1

y»
1 — fc2

(11)

4. Aussagen über Frequenzsprungweite und Ziehen

Mit den Ergebnissen der Abschnitte 3.2 und 3.3
lässt sich einiges über die Frequenzsprungweite und
das Ziehen für den Fall grösserer Kreisgüten
aussagen.

4. 1 Die minimale Sprungweite
Solange man von Zieherscheinungen absieht,

wird der Sprung von einem Funktionsast (s. Fig. 2

und 5) zum anderen jeweils dort erfolgen, wo die
Eigenfrequenzen beider Kreise gerade gleich sind.
Es wird dort jener Ast bevorzugt, welcher im weiteren

Verlauf der primären Eigenfrequenz (co co 1,

also ß 1) immer näher rückt, während der andere
sich von ihr entfernt.

Für minimal mögliche Sprungweite gilt also:

Aus Gl. (9) erhält man explizit für ß2:

n2
<%2 + 1 + j/(«2 + 1)2 4 (X2 (1 — k2)

ßl'2== 2(1-*2)
<12)

— *SEV28301

Fig. 5

Verlauf der Frequenzfunktion Q2 f(ot2) im Grenzfall hoher
Kreisgüte, mit h als Parameter

Für minimale Sprungweite erhält man durch
Einsetzen von oc2=1:

w-réi' <»>

Der arithmetische Mittelwert von ßi2 und ist

ßi2 ~f- Qf2 1
O 2 _ "1—k2 (14)

Geht man aus praktischen Gründen auf ü über,
so erhält man für die relative Sprungweite :

A ß Q\ — Q2

On O r,
y i + k— yi- (15)

CO 1 : (02 d. h. oc 1 oc2 — 1

0 0,1 0.2 0,3 0A 0.5 0.6 0.7 0,8 05

SE/ES3Ü2
~~ A

Fig. 6

Die minimal mögliche Frequenzsprungweite AQIQm im
Grenzfall hoher Kreisgüte, in Funktion der Kopplung Je

1012 Bull. SEV Bd. 50 (1959), Nr. 21



Den Verlauf dieses Ausdrucks in Funktion der
Kopplung zeigt Fig. 6.

4. 2 Das Ziehkriterium
Die im letzten Abschnitt ermittelte minimal

mögliche Frequenzsprungweite entspricht einem
Mangel von Zieherscheinungen. Es soll nun ein
formelles Kriterium für diesen wünschenswerten
Zustand gefunden werden.

Für minimale Sprungweite wird ot 1 ; setzt man
die in diesem Fall erhaltenen Lösungen in Gl. (13)
für ü2 sowie den Wert 1 für ot in folgende, aus
Gl. (11) umgeformte Gleichung für c ein:

c + (1—fc2) Ü2
1

fc
(16)

(die positive Lösung ist zu nehmen)

so erhält man als Lösung den Wert c= 1. Damit
lautet das Ziehkriterium :

|Äol YR1

R2 Yr2
I-Rol ft>2 L2

R2 ça 1 Li (17)

4. 3 Die Sprungweite für c 1

Wenn der Ausdruck

o I-Rol Yrx
R2 YR2 < 1

ist, so erfolgt der Sprung nicht mehr dort, wo die
Eigenfrequenzen beider Kreise gleich sind. Es tritt
jetzt ein «Frequenzziehen» ein, analog etwa der
Unterkühlung einer kristallinen Lösung.

In Gl. (16) setze man einander zugeordnete
Wertepaare von (a2 — Q2) ein, wie sie aus den
Kurven der Fig. 5 zu entnehmen sind. Dabei
werden die Wertepaare demjenigen Funktionsast
entnommen, welcher der Asymptote ü2 =ot2/( 1—fc2)
jeweils näher ist. Damit erhält man einander
zugeordnete Wertepaare von (c — ot2). In
Übereinstimmung mit dem Vorgehen in Abschnitt 4. 1

[Gl. (14) und (15)], wird der Ausdruck für die relative

Frequenzsprungweite gebildet. Für Q2 setzt
man die Werte nach Gl. (12) ein, womit man die
zugeordneten (c—_Q2)-Paare erhält. Der relative
Frequenzsprung wird dann :

Aü
Qm

|A+K
2 —

Punkten A und B kein Schwingen möglich, weder
auf dem oberen, noch auf dem unteren Ast.

0 0.1

SEV28303 c

Fig. 7

Vergrösserung der Frequenzsprungweite infolge von Ziehen,
in Funktion der Ziehgrösse c

Die Sprungweite ist auf den Minimalwert (Fig. 6) bezogen.
Die Kurve gilt für den Fall h 0,3

a Sprung von oberem auf unteren Ast; b Sprung von unterem
auf oberen Ast

42 =1

//

_1
l -0—--f £

-er
SEV2830k (X =1

Fig. 8

Veranschaulichung des Verlaufs der Frequenzfunktion für den
Fall, dass die Ziehgrösse c > 1 wird

A, B Punkte, zwischen welchen auf keinem Ast ein Schwingen
möglich ist

Weitere Bezeichnungen siehe im Text

5. Diskussion der allgemeinen Frequenzgleichung
Kehren wir jetzt zu der in Abschnitt 3.1 bestimmten,

allgemeinen Frequenzgleichung zurück [Gl. (6),
(7) und (8)]. In den folgenden Abschnitten soll diese
Funktion etwas näher untersucht werden.

1 - „4<*2.,,U - fc2)
(ofi + l)2

yi+\ i
4 cx2

((X2 + I)2
(1 - fc2) + y*-v~-

(18)

4 a2

(«2 + l)2
(1 — fc®)

Diese Funktion ist für den Fall fc 0,3 über c
in Fig. 7 aufgetragen.

Seiner Herleitung entsprechend, ist c ein Mass
für die Schwingneigung des Kreises, einschliesslich
des durch —Rq dargestellten aktiven Elementes.
Je grösser die Schwingneigung, und somit je kleiner
c, desto weiter von Q 1 ist die Schaltung auf dem
«falschen» Ast schwingfähig, und um so stärker
wird das Ziehen. Bei c 1 ist bei ot 1 eine
Schwingung gerade noch möglich. Wird c aber
grösser als 1, so entsteht ein leerer Bereich (siehe
Fig. 8). Beim Durchlaufen von ot2 ist zwischen den

5. 1 Grenzkurven für hohe Kreisgüten

Die Grenzkurven für grosses Q2 (die Frequenzgleichung

ist ja von Q1 unabhängig) sind durch
Gl. (9), Abschnitt 3.2 gegeben. Fig. 5 zeigt den Verlauf

dieser Grenzkurven für verschiedene
Kopplungsgrade fc.

5. 2 Ausgezeichnete Punkte

a) Punkt ot2 0 ; ü2 0. Alle Kurven der be¬

handelten Funktion gehen durch den Nullpunkt
des (ot2, ß2)-Koordinatensystems.

Bull. ASE t. 50 (1959), n°21 1013



b) Punkte a2 =1; Q2 —1/(1—k2). Beim Ein¬
setzen (les Wertes Q2 1/(1—k2) in Gl. (8)
erhält man die Lösungen :

oc i2 1 ; «22 0

Den durch die erste Lösung gegebenen Punkt
bezeichnet man als Mittelpunkt. Die zweite
Lösung bestimmt die Punkte:

c) «2 =0; Q2 =1/(1—k2)
d) <x2 — oo; ü2 =1. Dieser Punkt folgt aus Gl. (8)

beim Einsetzen von Q2 1.

Die Lage der ausgezeichneten Punkte ersieht
man aus Abb. 9.

Fig. 9

Uberblick über die im Text ermittelten Besonderheiten
der Frequenzfunktion Q2 f(<x2), mit Je 0,3

1, 2 Grenzkurven bei hoher Kreisgüte; 3 schräge Asymptote
Q2 — <x2/(i—k2) ; 4 horizontale Asymptote Q- 1; 5, 6 Ortskurve
der Extremalwerte der Funktion ü2 f(oc2); 7, 8 bestimmtes
Paar von Extremalwerten, zu bestimmtem Q2-Wert; 9 Linie Q2

1/(1-k2); 10 für Extremalwerte von Q2 f(oc2) verbotener
Bereich; 11 der Mittelpunkt, oc2 1, Q2 — l/(l-/c2); 12 Neigung
einer bestimmten Kurve im Mittelpunkt; 13 Grenzneigung für

Sprungfreiheit; 14 der Punkt oc2 0, Q2 1/(1-Je2)

5. 3 Punkte horizontaler Tangente

Gl. (8) liefert zu jedem Wert vonfi2 zwei solche für
oc2. Die beiden Lösungen fallen zusammen, wenn der
Ausdruck unter der Wurzel in Gl. (8) verschwindet.
Jenseits des entsprechenden Grenzwertes von Q2
wird die Wurzel imaginär, und oc2 komplex. Im
reellen Bereich der Funktion Q2 f (oc2) ist man
somit an einem Extremum angelangt. Mit dem
Verschwinden der genannten Wurzel erhält man eine
Bedingungsgleichung für ü2extr. '•

Ü"" + W+W 0 (19)

wobei A, B die früher (s. Abschnitt 3.1)
eingeführten Abkürzungen sind. Gl. (19) ergibt die
Lösungen (wobei vorteilhaft nach Q2 aufgelöst
wird) :

Q2 2

B 1
L>-kA

B2

(20)

Da Q> reell sein muss, darf der Ausdruck unter
der Wurzel in GL (20) nicht negativ werden. Daraus
ergibt sich ein ß2-Bereich, in welchem keine
Extremalwerte auftreten können. Diese sind
bestimmt durch:

Q4 M
(21)

Die Grenzen des verbotenen Bereichs sind durch
die aus Gl. (21) folgende Gleichung bestimmt:

fi4 (1 — 2 k2 + k4) — Ü2 (2 — 3 k2 + k4) +
+ (1 —k2) =0 (22)

Die beiden positiven Lösungen dieser bi-quadra-
tischen Gleichung sind:

Qx2 Ü22 =1 (23)

(<?22)i.2 =(—f)ßl (24)

1 —k2

Die entsprechenden (L-Werte sind, nach Gl. (20) :

A^_

B,
Mit den Q2-Werten nach GL (23) lauten die

(Ü2—(L)-haare an den Grenzen des für Extremalwerte

von Q2 =f (oc2) verbotenen Bereichs:

ß2 1 /(I—k2) ; Q2 =0
ß2=l ; Q2 ]/'l— k2 (25)

Der erste Fall entspricht dem oberen, der zweite
dem unteren Kurvenast (siehe z. B. Fig. 9).

Die Auswertung der GL (20) für ein k von 0,3

zeigt Fig. 10. Die zu den Lf^r.-Worten gehörigen
oc2-Werte findet man aus Gl. (8), wenn man, laut
Definition, die Wurzel gleich 0 setzt:

0.5-

:j

\\ [ i

i /\ H
s /

1

\ 1

N
\l

S

1.0 2 1,5

i2
2.0 2.5 3.0

Fig. 10

Den Extremalwerten von ü2 [Punkte horizontaler Tangente der
Funktion ü2 f(oc2)] zugeordnete Werte von Q2 für k 0,3

Keine Extremalwerte von Q2 im schraffierten Gebiet
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,2 (B + A/Qz2)
2 (Ü2 — 1)

(26)

Die entsprechenden (Q2—<*2)-Werte sind für k
0,3 in Fig. 9 aufgetragen. Die eingezeichnete Kurve
ist zu verstehen als Ortskurve der Extremalwerte
der durch k — 0,3 bestimmten Kurvenschar der
Funktion Q2 f (a2).

5. 4 Neigung der Tangente
an die Kurven im Mittelpunkt

Zur Bestimmung der Neigung einer Kurve muss
diese nach der unabhängigen Variablen abgeleitet
werden. Die Neigung in einem bestimmten Punkt
wird durch Einsetzen der Koordinaten des Punktes
in die Ableitung bestimmt.

«2 allgemein nach Q2 abzuleiten wäre sehr mühsam.

Da hier aber nur der eine Punkt Ü2 =1/(1—k2),
ix2 1 interessiert, soll für Q2 gesetzt werden :

Ü2
1— k2

(1 + A)

Mit A <C 1 stellt dieser Ausdruck die Funktion
ü2 f (a2) in der Nähe des Mittelpunktes dar. Bei
Vernachlässigung von Gliedern höherer Ordnung von
A erhält man für die verschiedenen Anteile derGl. (8):

B
k2 + A (2 + k2)

" 1 —k2
A/Q+ Zl/<?22

A2IQA 0

Ak2
2 AB/Qz2 —2

Q*k4

Ü2

(1 — k2) QA
k^ -j- 2 k^ A

(1— k2)2

A + k2
1

1 — k2

Damit lauten die Lösungen der Gl. (8) :

k2 + A (2 + k2) _ ±[k2 + A (k* —1

2 (A + fc2)

woraus schliesslich folgt
(27)

k2 A

<x+

1 + k2-
1 — k2

(JA

«2'2 —

A -|- k2

A
(28)

A + k2

Die Ableitung von «2 nach Q2 lautet allgemein:

d«2 i>ot2 öA
dQ~2==YA

'
YÖ2

Für —j- erhält man sofort die zwei Lösungen:

(29)

3«i2
~YT

1

k2

7><X22

isA

k2
1— k2

QÄ
(30)

1

k2

Der Ausdruck iA/^Q2 ergibt:
1 + A is A

ß2=rZZP' ^ =^2(1 fe2) 1; Ag_==l__/C2

(31)

Mit den Gl. (30) und (31) lauten die Ableitungen:

d«!2 _
1 — k2

dQ2
"

/ 1 — k2\

k2 QA

d«22 1 — k2

Agn
(32)

d.Q2 k2

-t-
0.5

— or 1.0 1.50

SEV28307

Fig. 11

Ungefährer Verlauf der Frequenzfunktion für k 0,3 und
verschiedene Werte von Q2
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Fig. 12

Grenzbedingung für Frequenzsprungfreiheit: einander
entsprechende Werte von Q2 in Funktion von k

Frei wählbar sind Wertepaare innerhalb des schraffierten
Bereichs
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Die zweite Lösung, unabhängig von
entspricht keiner physikalischen Realität. Der
gefundene Ausdruck für die Neigung der Funktion im
Mittelpunkt wurde bei der Konstruktion der Kurven
im Beispiel der Fig. 11 verwendet.

5. 5 Grenzbedingung für Sprungfreiheit
Wenn der Ausdruck in der rechten Klammer der

Gl. (32a) verschwindet, wechselt der Winkel 91 sein
Vorzeichen. Aus Fig. 11 ersieht man, dass für cp > 0

Frequenzsprünge stattßnden, für cp < 0 hingegen
nicht mehr. Die Grenze für Sprungfreiheit liegt
somit bei tg (p =0, und :

wänr "Sir?? <33)

Die Funktion Q2 f (k), entsprechend der
erfüllten Grenzbedingung, wurde in Fig. 12
aufgetragen.

6. Zusammenfassung
Es wurden die Admittanzausdrücke für zwei

gekoppelte Schwingkreise aufgestellt. Daraus wurde
der Verlauf der Schwingfrequenz eines Oszillators
bestimmt, der auf diese Kreise arbeitet. Das aktive
Oszillatorelement wurde einem festen, rein reellen
negativen Widerstand gleichgesetzt. Der Kreis¬

verstimmung, der Kopplung und den Verlusten
wurde keine Einschränkung auferlegt. Einzig bei
der prinzipiellen Besprechung der Zieherscheinungen

beschränkte man sich auf kleine Kreisverluste.
Es wurde zunächst der minimale Frequenzsprung

in Funktion der Kopplung bestimmt, sowie
ein Kriterium für Ziehfreiheit; damit konnte die
Grösse des Frequenzsprunges in Abhängigkeit vom
Ausmass des Ziehens ermittelt werden. Die
allgemeine Beziehung für die Schwingfrequenz in Funktion

der relativen Kreisverstimmung, mit Kreisgüte
und Kopplung als Parameter, wurde aufgestellt.
Eine Diskussion der Eigenheiten dieser Funktion
führte zu einer Grenzbedingung für
Frequenzsprungfreiheit.
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Die Möglichkeit zur Erhöhung der statischen Stabilitätsgrenze
bei Synchronmaschinen

Von M. Canay, Bazenheid
621.313.32 : 621.016.33

In dieser Arbeit werden die theoretischen Möglichkeiten zur
Erhöhung der statischen Stabilitätsgrenze gesucht. Mit Hilfe der
hier angegebenen mathematischen Beziehungen kann die Steilheit
der Charakteristik des Winkelreglers bei der Erzeugung der mit
dem Lastivinkel proportionalen Erregung vorausberechnet werden.

Recherche des possibilités théoriques d'élever la limite de
stabilité statique. A l'aide des relations mathématiques
indiquées, on peut calculer d'avance la raideur de la
caractéristique du régulateur d'angle, lors de la production de
l'excitation proportionnelle à l'angle de charge.

Einleitung
Wie bekannt, kann eine Synchronmaschine weder

als Generator noch als Phasenschieber die statische
Stabilitätsgrenze im normalen Betrieb überschreiten,
die mit einem kritischen Winkel Ömax begrenzt ist.
Der Winkel èma% ist immer kleiner als 90 Grad.
Dies beschränkt die aufgenommene Blindleistung
des Generators, die man aus verschiedenen Gründen
manchmal zu vergrössern dachte. Der Wunsch zur
Vergrösserung der aufgenommenen Blindleistung
kann bei den Generatoren, die mit weniger Leistung
fast bei Leerlauf über eine grosse Leitung arbeiten,
ein Bedürfnis sein, denn man würde sich damit
ersparen, einen Phasenschieber in Betrieb zu setzen,
wenn die Generatoren die von der grossen Leitung
erforderliche Blindleistung aufnehmen könnten. Die
Bedingung <5 < ömax ermöglicht aber diesen Betrieb
nicht, und deshalb braucht man einen zusätzlichen
Phasenschieber mit grosser aufgenommener
Blindleistung in Betrieb zu nehmen. Da der
Phasenschieber aber ohne zusätzlichen Regler im normalen
Betrieb nur die Blindleistung von der Grösse l/X^ pu
(Per Unit) aufnehmen kann, wenn man die
Erregung null macht, und diese oft viel kleiner ist als

die normale Leistung des Phasenschiebers, sieht
man ein, dass man wegen dieser Beschränkung
gezwungen ist, den Phasenschieber grösser zu bauen
als notwendig.

Der Winkelregler, der diese Schwierigkeiten
beseitigt und einen noch sichereren Betrieb gewährleistet,

hat in der letzten Zeit grosse Bedeutung
bekommen.

Die theoretischen Unterlagen zur Möglichkeit der
Erhöhung der Stabilitätsgrenze sollen hier zunächst
mathematisch und dann graphisch behandelt und
damit ein Verfahren angegeben werden, um die
erforderliche Eigenschaft, nämlich die Steilheit der
Charakteristik des Winkelreglers für einen
beliebigen Betriebspunkt des Generators oder
Phasenschiebers zu bestimmen. Mit einem solchen zusätzlichen

Regler kann es gelingen, die statische
Stabilitätsgrenze der Synchronmaschine theoretisch bis
zur dynamischen Stabilitätsgrenze auszudehnen.

Stabilitätsbedingung einer Synchronmaschine

Die Stabilitätsbedingung einer Synchronmaschine
kann wie folgt ausgedrückt werden :
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