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49. Jahrgang Nr. 20 Samstag, 27. September 1958

BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

GEMEINSAMES PUBLIKATIONSORGAN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS (SEV) UND
DES VERBANDES SCHWEIZERISCHER ELEKTRIZITÄTSWERKE (VSE)

Die Berechnung de

Yon J. K

In der Arbeit wird nachgewiesen, dass die Berechnung der
Kräfte, welche aufeinen Leiter im magnetischen Feld wirken, auf
Grund des Biot-Savartschen Gesetzes sowie auf Grund der Energie
des magnetischen Feldes zu den gleichen Ergebnissenführt. Beide
Berechnungsarten ermöglichen auch die Bestimmung der Verteilung

der Kräfte längs der Wicklungen. Im weiteren wird auf den
Fehler hingewiesen, welcher bei Berechnung der achsialen Kraft
aus der magnetischen Feldenergie bei nicht ganz korrekter

Durchführung der virtuellen Verschiebung der betreffenden Wicklung
entstehen kann. Zum Schluss werden die Berechnungsergebnisse
auf Grund beider Methoden miteinander verglichen. Es wird
gezeigt, dass die Berechnung auf Grund des Biot-Savartschen
Gesetzes einfacher, schneller und anschaulicher ist als die Berechnung

auf Grund der magnetischen Feldenergie, welche besonders
bei weniger einfachen Wicklungsanordnungen recht schwierig und
langwierig ist.

Kurzschlusskräfte
la, Praha

621.314.21.045 : 621.3.014.32

Fauteur démontre que le calcul des forces agissant sur
un conducteur se trouvant dans un champ magnétique conduit

aux mêmes résultats en appliquant la loi de Biot-Savart,
qu'en se basant sur l'énergie du champ magnétique. Ces deux
modes de calcul permettent également de déterminer la répartition

des forces le long des enroulements. Il attire ensuite
l'attention sur l'erreur que l'on peut commettre, lors du calcul

de la force axiale due à l'énergie du champ magnétique,
si l'on ne procède pas tout à fait correctement au décalage
virtuel de Venroulement considéré. Pour terminer, il compare

les résultats des calculs selon les deux méthodes et
montre que le calcul basé sur la loi de Biot-Savart est plus
simple, plus rapide et plus clair que si l'on considère l'énergie

du champ magnétique, méthode passablement compliquée
et longue, surtout quand la disposition des enroulements
n'est pas très simple.

1. Berechnung der Kurzschlusskräfte

Die Kurzschlusskräfte, welche auf die
Transformatorwicklungen wirken, können, wie bekannt
[l]1):

1. aus dem Gesetz für die Kraftwirkung oder
2. aus der Energie des Magnetfeldes

ermittelt werden.

In der Literatur [2] wird oft behauptet, dass einerseits

in einigen Fällen beide Berechnungsarten nicht
zu übereinstimmenden Ergebnissen führen, und
dass anderseits die Kräfteverteilung längs der
Wicklungen (die für die richtige Bestimmung der
Gesamtaxialkraft und für die Beurteilung der
mechanischen Beanspruchung von einzelnen Windungen

wichtig ist), nur aus dem Gesetz für die
Kraftwirkung (Stromkraftgesetz) bestimmt werden kann.

In der vorliegenden Arbeit werden beide
Ermittlungsarten benützt, um die Kräfte zu bestimmen,
die im Magnetfeld auf den stromdurchflossenen Leiter

wirken. Es wird gezeigt, dass die Verteilung der
Kräfte längs der Wicklungen auch aus der Verteilung

der magnetischen Energie oder aus der Energie
der Wechselwirkung bestimmt werden kann.

An einigen Beispielen wird auch bewiesen, dass
die verschiedenen Berechnungsgänge immer zu
gleichen Ergebnissen führen. Zum Schluss wird
auch der Ursprung des Fehlers bei der Berechnung
der Axialkraft aus der magnetischen Energie
erläutert.

J) Siehe Literatur am Schluss des Aufsatzes.

a) Berechnung aus dem Gesetz für die Kraftwirkung
Wenn man einen Leiter mit der Stromdichte

a [A/m2] in ein Magnetfeld von der Induktion B
bringt, wirkt auf ihn die Kraft

[a'B] d T ^ A
F N; s, T, m3 (1)

T bzeichnet den Raum des Leiters.
Auf die Volumeneinheit des Leiters wirkt dann

die Kraft
NAT=§=&3\ m° in2' (2)

Bei der Berechnung von Kurzschlusskräften in
Transformatoren mit Zylinderwicklungen wird
gewöhnlich deren Dicke vernachlässigt und die
Wicklungen werden durch unendlich dünne Stromschichten

ersetzt, die sich aus Stromfäden zusammensetzen.

Für einen solchen vom Strom I durchflosse-
nen Faden geht die Gl. (1) in die Gleichung

F= I & [dl B] I& [î0£]dZ [N ; A, m, T] (3)

und Gl. (2) in die Gleichung

f=I[T0B] N^
m

A, m, T (4)

über. 1q ist der Einheitsvektor.
Auf Grund von Gl. (4) soll nun die Verteilung

der Axial- und Radialkräfte längs der Wicklungen
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untersucht und so die Lokalkräfte bestimmt werden.

Aus Gl. (3) kann man dann diejenige Kraft
ermitteln, die auf den gegebenen Abschnitt oder auf
die ganze Wicklung einwirkt, wobei man I a dh
setzt und Gl. (3) im gegebenen Gebiet integriert.
a [A/m] ist der Strombelag und h die Wicklungshöbe.

Da die Stromverteilung in der Wicklung bekannt
ist, muss nur die magnetische Induktion B längs der
Wicklung bestimmt werden; dies kann entweder
aus dem Biot-Savartschen Gesetz, aus dem
Vektorpotential oder durch Einführung der mittleren
Streulinienlänge geschehen.

b) Berechnung der Kraft aus der Energie
des Magnetfeldes

Lege man eine dünne Windung mit dem Strom
I2 in das Magnetfeld, das z. B. von einer Spule mit
dem Strom I\ erregt und in einem beliebigen Punkte
durch das Vektorpotential A\

B\ rot Ai (5)

definiert ist. Für die Energie der Wechselwirkung
erhält man

Wx,2 h § Ax d7= hJJ Bi dS h 01,2 H
'= h I2 M1>2

S

[J ; A, H] (6)

0i,2 ist der Kraftfluss der Windungsfiäche und Mi,2
der Wechselinduktionskoeffizient.

Bezeichnet man die auf die Längeneinheit
wirkende Kraft mit /i,2, so wird bei der Deformation

um du die mechanische Arbeit.

àWm= ^ /i,2 du dZ

1

geleistet. Gleichzeitig ändert sich die Energie der
Wechselwirkung um den Betrag

dfP1;2 h kj Bx [du dZ] I2 § du [Z0 Bi] dZ (8)
;

Aus dem Vergleich der Gl. (7) und (8) erhält man
für die gesuchte Kraft Jj,2 die Beziehung:

/1,2 I2 [To Bi] (9)

die mit Gl. (4) identisch ist.
Aus Gl. (9) kann man weiter die Kraft auf die

Volumeneinheit des Leiters mit der Stromdichte

ty'i— —J~3
Zo ableiten:

do
fl,2 W2 Bl] (10)

Aus Gl. (9) und (10) ist es wiederum möglich, die
Teil- bzw. Gesamtkraft der Wicklung zu bestimmen.

Die Gleichung für die Kraft kann noch in anderer
Form angegeben werden. Nach Durchführung der
virtuellen Verschiebung der Windung in Richtung
du erhält man für die Kraft in dieser Richtung

i)IFl,2 T j SVfi,2
r 1,2 D 12

clu 3u
(H)

Die Kraft kann aber auch aus der Gesamtenergie
des magnetischen Feldes ermittelt werden, die durch
den Ausdruck

W=~^BHdT ^^WdT J;^,T,m3

(12a)

gegeben ist; dieser kann mit Hilfe von Gl. (5) und
unter Benützung des Satzes von Gauss übergeführt
werden in:

n7=-fffiydr (i2b)

Diese Gleichung ist nur dort im Transformatorfenster

zu integrieren, wo sich stromführende Leiter
befinden.

In den Gl. (12a) und (12b) bedeuten B, II und A
Gesamtwerte, d. h. die Summen der den einzelnen
Windungen zugehörigen Werte, unter Voraussetzung

von (i — konst.
Die magnetische Gesamtenergie kann auch aus

bekannten Eigen- und Wechselinduktionskoeffizienten

berechnet werden. Für den Zweiwicklungstransformator

gilt für die Energie

W - Li Fi* + Mi,2 I1/2 + - L2 I22 (13)
2 2

(Lj, L2 Selbstinduktionskoeffizienten der primären
und der sekundären Wicklung; M12 Gegeninduk¬

tivität beider Wicklungen)

Mittels der virtuellen Verschiebung der untersuchten

Wicklung bekommt man für die gesuchte Kraft

F air
au

(14)

wo W durch die Gl. (12) und (13) gegeben ist.
Bei der Durchführung der virtuellen Verschiebung

der untersuchten Wicklung ist darauf zu
achten, dass alle andere Wicklungen in Ruhe
bleiben.

Gl. (12) benützt man bei der Berechnung, wenn
das Magnetfeld bekannt ist, was z. B. bei Einführung

der mittleren Streulinienlänge der Fall ist,
oder wenn das Vektorpotential aus vorhergehenden
Berechnungen des Magnetfeldes bereits ermittelt
wurde. Gl. (13) wird benützt, wenn für die gegebene
Wicklungsanordnung der Ausdruck für die
Streuinduktivität bekannt ist.

Aus der Verteilung der magnetischen Energie im
Transformatorfenster kann auch die Lokalkraft
ermittelt werden. Nach dem von Maxwell abgeleiteten
Satz ist die auf einen beliebig begrenzten Raum
angreifende Kraft gleich den zugehörigen Flächenkräften

[1].

fdT
2

dS (15)

Im weiteren sollen die erwähnten Gleichungen
zur Berechnung von Kräften einiger
Wicklungsanordnungen zur Anwendung gebracht werden.
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2. Berechnung von Kräften einiger Wicklungs¬
anordnungen

a) Zwei koaxiale Zylinderspulen
(Fig. 1)

Bei der Berechnung der Gesamtaxialkraft bei
solcher Wicklungsanordnung ist es vorteilhaft von
der Energie auszugehen.

t

Die Wechselenergie beider Spulen wird
a

Wit2 J02 <Pi, 2 (y) dy
b

so dass auf die Wicklung II die Axialkraft

7)Wi
7>a

<*2 [01,2 (a) —0i,2 (&)]

h a2 [Mh2(a) — Mli2{b)]

Fig. 1

Schema der koaxialen
Zylinderspulen für die Berech¬

nung der Kraft auf die
Spule II

a, b Ordinaten der Endpunkte
der Wicklung II

y Ordinate der Windung mit
dem Fluss #12 (y)

wirkt. 0i,2 («), 01,2 (b) sind die Flüsse in den
Endwindungen a, 6; Mi,2 (o), Mi,2 (b) sind
Wechselinduktivitäten der Wicklung I und einer Windung
in den Endpunkten a, b der Wicklung II.

Wenn man für die Bestimmung der totalen
Axialkraft Gl. (13) und (14) benützt, kommt nur
das zweite Glied von Gl. (13) zur Geltung, da sich
die Eigeninduktivität mit der Verschiebung der
Spule nicht ändert. Das gilt natürlich nur für Spulen
in Luft oder auf einem unendlich langen Kern.

Um die Berechnung des Magnetfeldes im
Transformatorenfenster zu vereinfachen, wird die mittlere
Streulinienlänge eingeführt, deren Wert aus
verschiedenen durch Messungen bestätigten Formeln
ermittelt werden kann. Bei der Berechnung des
Feldes wird dann vorausgesetzt, dass alle Kraftlinien

dieselbe Länge haben, d. h. parallel sind. Die
Feststellung des Magnetfeldes aus der Verteilung
der Durchflutung ist dann sehr einfach und anschaulich

und wird deshalb oft benützt, obwohl sie für die
Kräftebestimmung nicht immer ganz genau ist. In
weiteren Beispielen wird diese mittlere Streulinienlänge

lq angewendet.

b) Eine einzige Wicklung im Transformatorfenster
(Fig. 2)

Durch passende Umformung ist es möglich, eine
solche Wicklungsanordnung auf zwei Wicklungen
überzuführen, von denen die erste I' (Fig. 3) die
Höhe des Fensters hat und nur das magnetische
Axialfeld bildet, während die zweite I" die erste so

ergänzt, dass die resultierende Verteilung der
Durchflutung der Fig. 2 entspricht. Die Wicklung I"

erzeugt nur das Radialfeld (Querfeld). Aus Fig. 3 ist
ersichtlich, dass die resultierende Durchflutung der
Wicklung I" gleich Null ist. Sollen die Kraftlinien

Fig. 2

Anordnung der Wicklung im
Transformatorenfenster

NI Durchflütung; bx, b2 Ordinaten der
Wicklungsendpunkte; l Windungshöhe;

t Fensterhöhe; lq wirksame
Streulinienlänge (Fensterbreite)

y Ordinate der Windung mit der
Induktion B_

dieser Wicklung nur in der Querrichtung verlaufen,
müsse, physikalisch gesehen, die Wicklung I" das

ganze Fenster ausfüllen. Der Einfluss der unendlich
grossen Permeabilität des magnetischen Kreises

(16)

(T-b2>

V////////////

Fig. 3

Zerlegung der Wicklung mit der
Durchflutung NI in zwei fiktive

Wicklungen
r axialfelderregende Wicklung von
der Höhe r; II' querfeiderregende

Wicklung mit kompensierter
Durchflutung

wird durch Spiegelung ersetzt, so dass man eigentlich

das Feld unendlich ausgedehnter Platten untersucht,

die in der Axialrichtung periodisch wechseln

(Fig 4).

' M~Z 4 f S
/ * V

n ; /
/ - -Q Z>K/bX/// * s-

1 ;
y >

t
lq

»

Fig. 4

Anordnung von Wicklung IV der Fig. 3 für die Magnetfeld-
berechnung aus den Maxwellgleichungen und Verlauf des

magnetischen Querfeldes
S Fläche, die für die totale Axialkraft massgebend und ihr

proportional ist
Weitere Bezeichnungen siehe Fig. 2

Die Verteilung der Stromdichte in der Richtung
der Achse y kann in eine Fourierreihe entwickelt
werden :

ff' oo' +

dabei bedeuten

NI

^
^

an cos ny
n 1

(17)

r l„

.2 NI
On * Lsin n ß2 — sm n Plj

TITZ lla

-y* ßi — h, ßt —
T T
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Der Stromdichte a0' entspricht das Axialfeld
By — poGo im Inneren der Spule. Das Feld des
zweiten Gliedes der Gl. (17) bestimmt man mit Hilfe
des Vektorpotentials, für welches

AA --- — /uog'

gilt. Nach kurzer Umrechnung erhält man für den
Raum I (0 y 5^ b{) :

: ,«o
JVI
i7

b22 + bjb2 + fr]2 + 3y2 b1 + b2 t
2 36 T

für den Raum II (bi y 62) :

NI

(18 a)

A [to¬
la

b22 + 61 b2 + &12 + 3 y2 &22+J2 — t
6 T 2(62 — bi) 3

(18b)
für den Raum III (b2 "A r "V t) :

NIA [lo¬
in

b22 + &i b2 + &i2 + 3 y2 ty q
6 r 3

(18c)

Aus Gl. (5) bestimmt man die magnetische
Induktion, deren Verlauf in Fig. 4 angegeben ist:
Raum I :

NI yBx — [to -

In

Raum II :

Bx — [10
NI y y — bi

x b2 — bi_

Raum III:
Bx — [*o

NI y — t
In X

(19a)

(19b)

(19c)

Die gesamte Axialkraft ermittelt man zuerst aus
GL (1)

Fy= J ff' BxUlaAy ^- {NI)2

U
bi -f- b2 x

lq

N;-, A, m
m

(20)

(U mittlerer Umfang beider Wicklungen)

Zur Feststellung der Axialkraft kann auch die
Wechselenergie benützt werden. Ordnet man der
Wicklung I eine übereinstimmende fiktive Wicklung

If bei, so herrscht zwischen ihnen die Energie
i-',

W\<2 JAo' Ulq dy
Vi

wo bi' und b2 Koordinaten der Endpunkte der
Wicklung If bedeuten.

Die auf die Wicklung If wirkende Kraft ist:

Fy a' Ulq [A (62') - A (h')]

a'Ulq [A (62) — A (61)]

Dasselbe Resultat erreicht man bei der Annahme,
dass der Windung in der Höhe y die Wechselenergie

dWi)2 A g' U Iqdy

gehört. Die Axialkraft ist dann:

Fy

o.

I 7>A

Sj
o' U Iqdy a' U lq [A (b2) — A (61)]

Endlich kann die Gesamtenergie W der Wicklung
I zur Berechnung herangezogen werden:

2

W -- JAg' Ulqdy

Für die Axialkraft gilt dann:

7", DW 1
,TT]Fy — — G U In

Dbf

— a' U L

ft* + A(b2)-A(b1)

"2

U
bA a6i

û&i 7>y
dy + A (b2) — A (b 1)

0' Ulq[A(b2)-A(bi)]
(21)

Für den vorliegenden Fall erhält man mit
Benützung von Gl. (18)

F _ [>Q (N I)2 jj bf + b2 x
V

2 lg X

Gl. (21) kann nach bekannten Beziehungen wie
folgt umgeformt werden:

Fy G'lq[d>{b2)-0(b1)]- NI
l

<p'

wo 0 (b2) und 0 (61) die Flüsse in den Endquerschnitten

der Spule darstellen. Der Fluss 0' ist der
Fläche S in Fig. 4 proportional.

Zur Berechnung dieser Kraft kann auch die
durch Gl. (12) oder (13) gegebene Gesamtenergie W
herangezogen werden.

r f»2

W=^JB H U Iqdy ~ Ja' A U lqdy

_Po (NI)2
In

u b\2 bi b2 b22 2 b2 -f- 61 r
3 33 r

Die Axialkraft strebt die Wicklung im Fenster
zu verschieben und so die Koordinaten b\ oder b2 zu
ändern. Aus der virtuellen Verschiebung folgt:

ix _ hlP _ [io (NI)2 ^ bi + b2 — x

i)b 1 i)b2 In

c) Zwei Wicklungen mit sich kompensierenden
Amperewindungen

Für die allgemeine Anordnung (Fig. 5) zweier
Wicklungen mit N1 Ii — — No 12 bestimmt man
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das resultierende Vektorpotential bzw. die Induktion

als Summe der Werte der einzelnen Windungen :

A Ai An
5 5/+ Bn

(22)

(23)

Fig. 5

Anordnung von zwei Wicklungen
im Transformatorenfenster

b-p b2 Ordinaten der Endpunkte der
Wicklung I; b3, b4 Ordinaten der

Endpunkte der Wicklung II
Weitere Bezeichnungen siehe im

Text

Für die magnetische Induktion gilt im Raum I:
Bx — 0

im Raum II:
NI y —63Brx — /<0

lq b 4 — 63

im Raum III:
B NI

x — /'0 " y — h
l64 — 63

y — h
62 — by

im Raum IV:

Bx — fip

im Raum V:

Bx= 0

NI 62 — y
l/r b'2 b 1

(23 a)

(23b)

(23 c)

Gemäss Gl. (1) wird auf die Wicklung I folgende
Kraft wirken :

Fyl Jai Bx Ulqdy //0 (iV/)2

• U

lg

(bg-btf
Ii In

(24)

Auf die Wicklung II die Kraft:

Fyll J02' Bx U lq dy

/to (NI)2
la

U (bi — btf
h hi

Aus der Energie der Wechselwirkung [Gl. (7),
Gl. (21)] ergibt sich die Kraft auf die Wicklung I:

FyI ffl, u lq [A {b2) _ A (6l)]
bb

/to (iv I)2
2

'

L
U [1

(64 — 61)2

Ii l1 hi
Die Gesamtenergie der beiden Wicklungen wird :

W

U

fto (IVI)2
2

'

lg

2 61 -|- 62 2 64 -|- 63

3 3

(64 — 61)2

3(62-^) (64-63)

und die Axialkraft ergibt sich zu :

bW
yl

hbx

f±0

2

(NI)2
In

u (64—61)21

l[ Iii]
Zur Ermittlung der Axialkraftverteilung aus der

magnetischen Energie benützt man Gl. (15). Für
das Wicklungselement der Höhe dy gilt (Fig. 6) :

f Ulqdy £5 (FT2 —Jf2) Ulq

Fig. 6

Wicklungselement für die Berechnung

der Kraftverteilung aus
Gl. (15)

H, H' Intensität des magnetischen
Radialfeldes; y Ordinate des
Wicklungselementes dy; 0-' Stromdichte;

lq mittlere Streulinien¬
länge (Fensterbreite)

II III ö"

SSV27011t

Setzt man

H' H+ *Hdy
by

so erhält man für die Kraft auf das Volumenelement
des Leiters

f yo/r" (25)
by

bH/by ergibt sich aus den Gl. (23a, b, c). Nach
Durchführung dieser Operation wird:

bH

IH
by

bH

by

0-2

<72 <7!

CT!

im Raum I

im Raum II

im Raum III
Bei der Berechnung wurde vorausgesetzt, dass

beide Wicklungen (I und II) das ganze Fenster
ausfüllen und sich demnach in der Zone II überlagern.
Bei Trennung der Stromdichten kann man die
Ortskräfte für jede Wicklung gesondert bestimmen.
Gl. (25) hat dann die gleiche Form wie Gl. (2).

d Zwei ungleich hohe Wicklungen mit
einseitiger Unsymetrie

(Fig. 7)

Aus der im vorhergehenden Kapitel abgeleiteten
Gleichung kann die Axialkraft der Wicklung I
ermittelt werden, wenn man 61 63 setzt. Man erhält
dann

Fyl ftQ
2

(.N iy-ub2-b4
In 61

(26)

Fig. 7

Wicklungsanordnung mit
einseitiger Unsymmetrie

blf b2 Ordinaten der Endpunkte der
Wicklung I; bv b4 Ordinaten der

Endpunkte der Wicklung II
Weitere Bezeichnungen siehe im

Text
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Bei der Berechnung dieser Kraft aus der Energie
des Magnetfeldes ist darauf zu achten, dass bei der
virtuellen Verschiebung der untersuchten Wicklung,
die zweite Wicklung in ihrer ursprünglichen Lage,
also in Ruhe, bleibt. Aus diesem Grunde müssen in
der Gleichung für die magnetische Induktion die
Koordinanten der beiden in gleicher Höhe liegenden
Punkte voneinander unterschieden werden. Für die
Bezeichnung in Fig. 7 wird in der Zone I :

Bx — /<o
NI
17

y — b\

64-61'
y — 61

und in der Zone 11 :

Bx /'o
NI 62 —y

I2 bo — 61

(27a)

(27b)

Die magnetische Energie im Transformatorenfenster

wird dann

W ~\W B H dT

Streuinduktivität zur Ermittlung der magnetischen
Energie. Das richtige Resultat wird sicher aus dem
Stromkraftnetz erreicht, in welches die vereinfachten

Gleichungen (28a, b) für die magnetische
Induktion eingesetzt werden.

Vergleicht man die aus der Literatur bekannten
Formeln für die Axialkräfte, die einerseits aus der
magnetischen Energie, anderseits aus dem Kraftgesetz

[3] abgeleitet wurden, so stellt man fest, dass
sie immer bei denjenigen Wicklungsanordnungen
nicht übereinstimmen, bei welchen die Wicklungsendpunkte

die gleichen Koordinaten besitzen. Für
alle diese Fälle gilt, was in diesem Abschnitte über
die Berechnung der Axialkraft gesagt wurde.

Zusammenfassung
In der Arbeit wird gezeigt, dass alle Gleichungen,

die für die Kräfteermittlung in magnetischen Fel-

jMQ jVf((fe4-fcl)3 + (&2-&4)3
2' lg \ 3(fca — 6l)2

1—[-
(62—bi)(bi—bi) |_3

(bi3-6,3) - (h+fcW-ki2) +26161'(64-6l)

Aus dieser Gleichung bestimmt man die gesuchte
Axialkraft. Nach kleineren Umformungen ergibt
sich dann:

7>W
byi —

S61

/i0 (N 1)2 62-64
2 lg 62 6l

u

Dasselbe Resultat ergibt sich aus Gl. (21).
Wenn man bei der Berechnung der magnetischen

Energie die beiden gemeinsamen Koordinaten nicht
unterscheiden würde, käme man zu ganz falschen
Ergebnissen, da sich bei der virtuellen Verschiebung
z. B. von Wicklung I gleichzeitig die Länge der
Wicklung II ändern würde, weil der Endpunkt 64
fest und 63 mit der Bewegung der Wicklung I durch
die Bedingung 63 61 verknüpft wäre.

In diesem Falle würde man für die Induktion
erhalten :

im Gebiete I:
d NI
t>x — 1*0 ~ '

im Gebiete II:
Bx — «o

62 — 64 y — 61

6 2 — 61 64 — 61

NI bo—y
lg bo—bi

(28a)

(28b)

Die magnetische Energie im Fenster wäre dann:

W B HAT f*o NI u (62- •64)2

2 lq 3(62 — 61)

so dass man für die gesuchte Kraft den folgenden
Ausdruck erhalten würde :

-6W

51
i»0|
2 '

(iVI)2 ^2 62 — 64

In 3 62 — 61

Dieser ist ganz anders als die früher abgeleitete
Gleichung. Zu den gleichen falschen Ergebnis führt
auch die Benützung der Gleichung für die Quer-

(64-fc1')3_(61_fc1')3|
3(64_fcl')2 j

U

dern herangezogen werden, bei richtiger
Durchführung der mathematischen und physikalischen
Operationen zu übereinstimmenden Resultaten
führen.

Nach der Bewertung bekannter Berechnungsmethoden

ergibt sich am vorteilhaftesten das Kraftgesetz

[Gl. (1) und (2)], welches die Bestimmung
nicht nur der Lokalkräfte, sondern auch der Gesamtkräfte

ermöglicht. Der grösste Vorzug liegt in der
einfachen und schnellen Ausrechnung.

Die Berechnung der Kräfte aus der magnetischen
Energie ist wesentlich verwickelter und länger.
Auch für die einfachsten Wicklungsanordnungen ist
die Bestimmung des Integrals

$ H2AT

mühevoll und das Resultat muss auch noch differenziert

werden. Auch führt diese Methode bei
unaufmerksamer mechanischer Benützung zu einem
falschen Ergebnis. Gl. (14) bzw. (21) werden in Sonderfällen

in Anspruch genommen. Gl. (16) kann zur
Berechnung der Lokalkraft nur für die einfachen Fälle
verwendet werden, da sonst das Integral auf der
rechten Seite sehr unübersichtlich werden kann.
Freilich zeigt gerade diese Gleichung die Möglichkeit,

aus der Energieverteilung die Lokalkraft zu
ermitteln.
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