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Einsatz der Rechenautomaten in der Technik
Yon E. Stiefel, Zürich

(Mitgeteilt aus dem Institut für angewandte Mathematik der Eidgenössischen Technischen Hochschule, Zürich)
681.14-523.8 : 62

Es wird die steigende Bedeutung der Anwendung
mathematischer Methoden in der Technik infolge des Einsatzes
von Rechenautomaten geschildert. Nach dieser Einführung
in die Grundlagen des programmgesteuerten Rechnens wird
der neue elektronische Rechenautomat der Eidgenössischen
Technischen Hochschule kurz beschrieben und die seinem
Bau zugrunde liegende Idee auseinandergesetzt. Der letzte
Teil des Aufsatzes gibt eine Übersicht über die Gebiete der
Technik, in ivelchen sich der Einsatz von Automaten lohnt,
belegt mit Beispielen und Erfahrungen aus dem Institut für
angewandte Mathematik der ETH.

1. Einleitung
«Tlte next ten years will be characterized by

an unprecedented mathematization not only of
engineering but also of essentially managerial
functions such as the running of our plants.»

Dieses Geleitwort zu unserem Thema entstammt
einem Bericht des National Research council der
USA über die Ausbildungsziele in angewandter
Mathematik. Wie dort weiter auseinandergesetzt
wird, ist die prophezeite Mathematisierung
hauptsächlich zurückzuführen auf eine starke Zunahme
der Kraft und Vielfalt mathematischer Theorien,
auf die Notwendigkeit der abklärenden mathematischen

Analyse angesichts der zunehmenden
Forderungen an die Leistungsfähigkeit und Präzision
technischer Konstruktionen und endlich auf die
Automatisierung des Rechnens, welche ja die
Automation in Technik und Industrie überhaupt
ausgelöst hat.

Es soll im folgenden versucht werden, diese
Erscheinung in ihren Beziehungen zur Technik zu
schildern und damit zwei Ziele zu erreichen.
Erstens nämlich die Überzeugung hervorzubringen,
dass die mathematische Analyse heute weit mehr
als früher unentbehrliches Hilfsmittel technischer
Planung ist, hauptsächlich deshalb, weil durch den
Einsatz von Automaten auch feinere mathematische
Methoden schnell zu praktischen Ergebnissen führen

können. Zweitens müssen Vorurteile berichtigt
werden. Ein Rechenautomat ist nämlich nicht
einfach eine elektronische Rechenmaschine, die
dasselbe (nur schneller) leistet wie eine Tischrechenmaschine

und deren Bedienung in einigen Stunden
erlernbar ist; ein Automat hat weitergehende
Fähigkeiten. Ferner ist die Vorbereitung eines technischen

Problems zum automatischen Rechnen von
der Übersetzung in mathematische Termini über die
Entwicklung geeigneter numerischer Methoden bis
zur Aufstellung einer dem Automaten verständlichen

Befehlsfolge eine schwierige und
wissenschaftliche Kompetenz erfordernde Arbeit. Das
scheinbare Paradoxon, dass der Automat trotz
grösserer Leistungsfähigkeit mehr mathematische
Arbeit durch besser geschultes Personal verlangt als

früher, löst sich dadurch auf, dass eben jede
Maschine sofort an der oberen Grenze ihrer Möglichkeiten

eingesetzt wird. Man will eben mit dem
Automaten technische Probleme durchrechnen, an deren

L'auteur montre l'importance croissante de l'application
de méthodes mathématiques dans la technique par suite de
l'emploi d'automates à calculer. Après cette introduction
dans les principes du calcul selon un programme déterminé
et commandé par celui-ci, le nouvel automate à calculer
électronique de l'EPF est brièvement décrit et l'idée qui a
présidé à sa construction est analysée. La dernière partie de
l'article donne une vue d'ensemble des domaines de la
technique où l'emploi d'automates est indiqué du point de vue
économique, avec exemples à l'appui et expériences faites à

l'Institut des mathématiques appliquées de l'EPF.

Behandlung man früher infolge des prohibitiven
Zeitaufwandes nie hätte denken können. Man
braucht daher mehr Mathematiker und weniger
Rechner.

Es scheint überhaupt die einschneidenste Konsequenz

jeder Automation zu sein, dass das Personal
breitere Kenntnisse und höhere Ausbildung bekommen

muss.

2. Das automatische Rechnen

Eine bei technischen Untersuchungen immer
wiederkehrende Aufgabe ist die Auswertung
mathematischer Formeln für viele Werte der auftretenden

Variabein und Parameter. Fig. 1 zeigt als
Beispiel die Auswertung von

l
E (x,y) 2 — 4 Je ~xt • cos (yt) t dt

o

was eine Funktion der beiden unabhängigen
Variabein x, y ist. Die Resultate sind in reliefartiger
Darstellung über einem x, y-Koordinatensystem auf-

Auswertung einer Funktion von zwei Variabein

getragen; man erkennt, dass x zehn Werte und y
fünfzehn Werte durchläuft, so dass E im ganzen
150mal ausgewertet werden muss. Dieser repetitive
Charakter — den man bei fast allen mathematischen

Problemen feststellt — macht das Problem
zur Automatisierung geeignet. Unser Wunsch ist,
dass der Rechenautomat ohne menschlichen
Eingriff eine saubere und übersichtliche Tabelle von
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E (x, y) druckt, und wir wollen uns überlegen,
welche Fähigkeiten er besitzen inuss, um diesen
Wunsch zu erfüllen.

Zunächst muss er einen Cosinus ausrechnen können.

Leider kann auch die grösste elektronische
Rechenmaschine an sich nur elementare Operationen,

wie Additionen und Multiplikationen, ausführen.

Der Mathematiker muss daher zunächst ein
Rechenprogramm aufstellen, das den Cosinus auf
elementare Operationen zurückführt, etwa

Dieses Programm besteht aus einzelnen Befehlen
an die Maschine zur Ausführung von Rechenoperationen

oder zum Aufbewahren von Zwischenresultaten

in ihrem Speicherwerk bzw. zum Abrufen von
Zahlen aus dem Speicherwerk. Das Speicherwerk
einer modernen Maschine kann etwa 10 000 und
mehr Zahlen aufnehmen; die einzelnen Plätze in
diesem Speicherwerk sollen durchnumeriert und
als Zellen bezeichnet werden. Es werde angenommen,

dass die Zahl t in der Zelle Nr. 1000 und die
sukzessiven ganzen Zahlen 1, 2, 3 in den Zellen 0001,
0002,. gespeichert seien. Dann beginnt das
Rechenprogramm nach Tabelle I:

R echenprogramm
Tabelle I

Befehl Nr. Befehl Wirkung

l Lies Zelle Nr. 1000 Die Zahl t kommt ins Re¬

ab chenwerk
2 Mal Inhalt von t wird mit sich multipli¬

Zelle Nr. 1000 ziert, im Rechenwerk
steht £2

3 Durch Inhalt von Division durch 2, im Re-
Zelle Nr. 0002 £2

chenwerk steht —

4 Minus Inhalt von
t2

Im Rechenwerk steht—- -1
Zelle Nr. 0001 2

5 Mal (—1) Vorzeichenwechsel, Er-
t2

gebnis 1 —

6 Speichere in t2\
Speichern von 1 —— 1

Zelle Nr. 1001 \ 2 /
als Zwischenresultat

t4
Hierauf muss gebildet und zum Inhalt der

4! e

Zelle 1001 (welche die Partialsummen der Reihe
enthalten soll) addiert werden usw.

Dieses Programm wird der Maschine vor Beginn
der Rechnung mitgeteilt, etwa indem die einzelnen
Befehle durch einen Fernschreiber in aufeinanderfolgende

Zellen des Speicherwerks eingegeben werden.

Während der Rechnung tastet dann der Automat

die einzelnen Befehle in seinem Speicherwerk
ah und führt sie aus.

Zu diesem Cosinus-Programm tritt nun ein ähnlich

es Programm zur Berechnung der Exponentialfunktion.

Beide Programme sind als Utiterpro-
gramme in das Hauptprogramm einzufügen, das die
Berechnung des Integrals kommandiert und eine der
einfacheren Regeln der numerischen Integration —
etwa die Simpsonsehe Regel — enthält. Rechnet man
pro Integral 10 Schritte, so muss also die Cosinus-

Funktion lSOOtnal berechnet werden, das heisst, das

Cosinus-Unterprogramm läuft 1500mal ah. Diese
Grössenordnung zeigt, wie gut sich schon die
einfachsten mathematischen Aufgaben zur Automatisierung

eignen.
Die Organisation in Haupt- und Unterprogramme

gestattet ein äusserst flexibles Arbeiten mit einem
Automaten, weil selbstverständlich häufig auftretende

Unterprogramme in einem mathematischen
Institut ein für alle Mal bereitgestellt werden.

In diesem Zusammenhang ist noch besonders der
konditionierte Sprungbefehl zu erwähnen, welcher
dem Rechenautomaten direkt eine begrenzte
Willensfreiheit einräumt. Es mögen etwa die Befehle
eines Rechenprogramms in den Zellen 0001 bis 1000
des Speicherwerks aufbewahrt sein. Man kann dann
der Maschine den Befehl geben:

«Springe auf den Befehl in Zelle Nr. 0100, falls die
gerade im Rechenwerk stehende Zahl positiv ist.»

Die Maschine unterbricht dann das fortlaufende
Abtasten der Befehle und führt als nächsten
Befehl den in der Zelle 0100 stehenden aus.

Ein Beispiel zur Anwendung: Das Rechenprogramm

sei etwa derart, dass bei Ausführung des
Befehls aus Zelle Nr. 0198 ein wichtiges Zwischenresultat

x entsteht, das nachgeprüft werden soll,
indem es auf zwei verschiedene Arten berechnet
wird. Die Ergebnisse seien x1 und x2. Durch den
Befehl 0199 bildet man die Grösse

I xi—x21 —£

wobei s eine Toleranz (etwa 5 Einheiten der letzten
Stelle bedeutet. In Zelle 0200 gibt man den obigen
konditionierten Sprungbefehl. Ist nun die Differenz
|x,—x2\ der beiden Rechenresultate kleiner als die
Toleranz, also \x1—x2\—e negativ, so wird der
Sprung nicht ausgeführt und die Rechnung geht
ungehindert weiter. Andernfalls aber springt die
Maschine auf den Befehl 0100, d. h. auf eine
frühere Stelle des Programms und rechnet es von
da an noch einmal durch.

Der Automat kontrolliert sich also seihst und
stellt sich selbst eine Strafaufgäbe, falls er nicht
gut gearbeitet hat.

Konditionierte Sprünge werden hauptsächlich
verwendet, um Unterprogramme in ein Ilauptpro-
gramm einzuhauen und besonders dann, wenn das
Unterprogramm eine Grösse iterativ berechnet, also
so oft abgewickelt werden muss, bis die Genauigkeit

der gesuchten Grösse eine gegebene Toleranz
unterschreitet.

Es wurden hier absichtlich einige Feinheiten der
Programmierung kurz auseinandergesetzt, einerseits

um zu zeigen, welche weitgehende Möglichkeiten

ein gut organisierter Automat bietet und
anderseits um deutlich zu machen, dass die
Aufstellung eines Programms unter Beachtung aller
Verzweigungen des Rechenganges und aller
Kontrollen eine Tätigkeit ist, die spezielle Kenntnisse
und mitunter erheblichen Zeitaufwand bedeutet.
Bei manchen Problemen ist die eigentliche Rechenzeit

verschwindend gegenüber der Vorbereitungszeit.
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Fig. 2

Gesamtansicht der ERMETH

3. Erfahrungen, Grundlagen für die ERMETH
Nichts ist unsachlicher, als einen Rechenautomaten

nur nach der Geschwindigkeit beurteilen zu wollen,

mit der er etwa eine Addition ausführt. Unsere
Erfahrungen seit 1950 im automatischen Rechnen
zeigen vielmehr, dass Einfachheit und Klarheit der
Bedienung und vor allem einfache Programmier-
barkeit oft viel wichtiger ist. Ein europäisches
Recheninstitut muss meistens mit einem kleinen Stab
von Sachbearbeitern eine Vielfalt von Problemen
bearbeiten und stellt dann oft vor der unangenehmen

Situation, dass der Automat mit seiner Arbeit
viel schneller fertig ist, als die Mitarbeiter mit der
ihrigen. Als daher unser Institut im Jahre 1953 den
Entschluss fasste, einen neuen Automaten Ertneth

nen mit «gleitendem Komma» vermeidet den schweren

Nachteil, dass während einer Rechnung Grös-
senordnungen entstehen, welche der Automat nicht
mehr bearbeiten kann. (Wird auf einer
Tischrechenmaschine fortlaufend und lange Zeit addiert,
so entsteht einmal links aussen eine Dezimale, die
in der Maschine nicht mehr vorhanden ist.) Das
Institut war so glücklich, in Stock und Läuchli
Mitarbeiter zu finden, die sehr erfolgreich die
damals noch neuartigen elektronischen Schaltungen
für das Rechnen mit gleitendem Komma und für
das Kommandowerk entworfen haben.

Die Maschine sollte nur einen Speicher mit grossem

Fassungsvermögen besitzen, da sich die hei
vielen modernen Maschinen gewählte Lösung des

zusätzlichen Schnellspei-
cliers der wenig Zahlen
fasst, sie aber in sehr kurzer
Zeit liefern kann)
Umständlichkeiten beim Programmieren

bewirkt. Die durch
den Verzicht auf den
Schnellspeicher entstandenen hohen
technischen Anforderungen
an das Speicherwerk haben
die Konstrukteure Schlaeppi
(Elektronik) und de Fries
(Bau der Speichertrommel
vor schwierige technologische

Aufgaben gestellt.
Die Jahre 1953—1955 waren

der Planung und den
Grundlagenentwicklungen
unter der technischen
Leitung von A. Speiser gewid-

elektronische Rechenmaschine der ETH zu
hauen, war das erste Postulat, dass dieses Gerät so
einfach und übersichtlich organisiert werden sollte,
dass die Mühen der Programmierung auf das
Mindestmass herabgedrückt werden. Ausserdem hat
Prof. Rutishauser in die Maschine bereits die
logischen Grundlagen der von ihm und anderen
entwickelten automatischen Programmierung gelegt.
Das Endziel dieser bedeutsamen Entwicklungen
besteht darin, dass die Maschine ihr Programm selbst
berechnet, ausgehend von den mathematischen
Formeln, die auf Lochkarten geschrieben sind. Als
zweites Postulat wurde möglichste Betriebssicher- \

heit verlangt. Beide Wünsche haben zahlreiche '

technische Einzelmassnahmen bewirkt, von denen
nur die folgenden hier erwähnt seien.

Die Maschine benützt ausschliesslich das
Dezimalsystem, das für Funktionskontrollen so
unangenehme Dualsystem ist streng vermieden. Im
Gegensatz zu Tischrechenmaschinen wird eine
mathematische Grösse x nicht einfach als Folge von
Ziffern dargestellt, sondern in der Form

x a 10ö

also durch Mantisse a und Exponent b. Dieses Rech¬

met; 1956 leitete Schai den definitiven Aufhau und
die Durchprüfung.

Die Maschine hat nun in dreimonatigem und
häufig 24stündigem Betrieh ihre Feuerprobe be-

$ZV25$a3

Fig. 3

Steckbare Einheiten

standen. Fig. 2 zeigt die Schränke des elektronischen

Rechen- und Kommandowerks, das
Bedienungspult und links den Relaisteil, der mit
Kreuzwählern der Firma Gfeller (Bümpliz) ausgerüstet
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ist und hauptsächlich zur Steuerung der elektrischen

Schreibmaschine (Drucken von Resultaten)
und der Loclikartenanlagen dient. Die ganze
Elektronik besteht aus Steckharen und leicht auswechselbaren

Einheiten (Fig. 3), entwickelt von der

noch bemerkt, dass das elektronische Berechnen
eines Logarithmus bedeutend weniger Zeit braucht,
als sein Niederschreiben auf der normalen
automatisch gesteuerten Schreibmaschine, die in diesem
Beispiel verwendet wurde.

Fig. 4

Speicherwerk (Magnettrommel)

Firma Hasler, Bern, die auch alle Verdrahtungsarbeiten

ausgeführt hat. Das Speicherwerk ist eine
mit 6000 U./min rotierende Trommel (Fig. 4, Bau
Firma Wittwer, Männedorf), die mit einer ferro-
magnetischen Schicht belegt ist, auf welche in den
Mantel (Fig. 5) gesteckte Schreibköpfe die Zahlen
der Rechnung als Serien magnetischer Dipole
aufzeichnen.

Besondere Aufmerksamkeit wurde auch dem
automatischen Drucken der Resultate geschenkt.
Die Ermeth ist in der Lage, Tabellen in jeder
gewünschten Anordnung und Stellenzahl zu schrei-

Fig. 5

Mantel der Trommel

Der Automat steht nun den wissenschaftlichen
Instituten der ETH und auch der schweizerischen
Industrie zur Verfügung. Die oben erwähnten
Postulate sind nicht zuletzt dem Wunsch entsprungen,
dass diese Interessenten einfachere Probleme durch
eigenes Personal vorbereiten und programmieren
lassen, um die Mitarbeiter des Instituts zu
entlasten. Schliesslich ist derjenige, der im Zuge
technischer Entwicklung und in Kenntnis aller
physikalischen Grundlagen ein mathematisches Problem
stellt, doch der geeignetste Mann, es nach
Rücksprache mit Mathematikern auch zu lösen und die
Resultate zu bearbeiten. So sehen wir in unserem
Institut lieher Gäste als schriftliche Aufträge. Dass

1 ooo OOO ooooo o4 34 3 08085 13o27 17368 2l7o9 26o5o 3o39o 34730 39069
l oo 1 434O8 47746 52o84 56422 0O759 65o95 694.7 2 73767 781O3 82438
1 oo2 86772 9 II ob 9544O 99773 'o4106 'o8438 ' I2770 ' 1 7101 '214.33 •25763
l oo3 oo 1 3oo93 34423 .18752 43o8l 4741o 51738 56065 6o392 64719 69o4 5

l oo4 73371 77697 82o22 86346 9o67o 04994 99317 'o364o 'o7963 ' 1 2285

l oo5 oo2 16606 20927 25248 29568 33888 382o7 42526 4684 5 51 163 5548 i

1 006 59798 64 1 1 5 68431 72747 77o63 81.378 85693 90007 9432 1 98634
1 oo? oo3 02947 07260 1 1572 1 5883 20195 245o5 28316 33126 37435 41745
i 008 46053 50361 54669 58977 63284 67590 71896 762o2 8o5o7 8481 2

1 oo9 8Q 117 Q34 2 1 97724 "o2o27 * o6.33o '1o632 ' M934 ' 19736 •23537 •27837
SEV2S506

Fig. 6

Automatisch berechnete

und gedruckte

Logarithmentafel

ben, so dass sie gegebenenfalls photokopiert werden

können und nicht für den Druck gesetzt werden

müssen, was oft zu Fehlern führt. Fig. 6 ist das
Faksimile einer von der Maschine errechneten und
geschriebenen Logarithmentafel. Die Maschine hat
sogar die Sterne, die das Umschlagen einer
Mantissenziffer anzeigen, automatisch eingesetzt! Es sei

die gestellten Postulate wenigstens teilweise
verwirklicht worden sind, wird durch die dauernde
Anwesenheit von Gästen bewiesen. Um all dies zu
erleichtern, gehen wir seit mehreren Jahren
allgemein zugängliche Kurse in angewandter Mathematik,

Numerik und im Programmieren, verbunden
mit Praktikum am Automaten.
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Das Ausland steht vor ähnlichen Problemen.
Deutschland besitzt etwa 7 Rechenzentren, die mit
Automaten ausgerüstet werden. Es schenkt durch
spezielle Kommissionen der Gesellschaft für
angewandte Mathematik und Mechanik der Entwicklung

und Vereinheitlichung des Programmierens
sowie der Ausbildung des Nachwuchses und der
Einführung des automatischen Rechnens in
Forschung und Industrie die grösste und für uns
vorbildliche Aufmerksamkeit.

Die einsetzende Nachfrage hat Firmen der
Rechenmaschinenbranche wie die International Business

Machines Corporation und Remington (Sperry
Rand) veranlasst, eigene Recheninstitute zu gründen

und mit ihren Automaten auszurüsten.

4. Die Anwendungen in der Technik
Wegen der ungelieuern Vielfalt der

Anwendungsmöglichkeiten scheint hier eine Einteilung nach
mathematischen Gesichtspunkten das Beste.

a) Auswertung expliziter Formeln
(Tabellierung)

Wir benützten eingangs ein solches Beispiel zur
Erklärung des automatischen Rechnens. Genau wie
dort die Cosinus-Funktion wird natürlich auch
jede höhere mathematische Funktion vom
Automaten beherrscht. Wenn also zum Beispiel hei
einem Ausbreitungsvorgang in einem zylindrischen
Rohr in der Lösung Besselfunktionen auftreten, so
ist dies für den Automaten auch nicht schwieriger
als wenn nur trigonometrische Ausdrücke in der
Lösung stehen würden.

Engmaschige Tabellen, die den Einfluss von Di-
mensionierungs- und anderen Parametern schnell
überblicken lassen, gehen dem Techniker eine
sichere Grundlage seiner Dispositionen. Unsere
Automaten arbeiten seit 1950 häufig an solchen Tabellen,

wobei infolge der Einfachheit der mathematischen

Struktur der Auftraggeher gewöhnlich seihst
programmieren kann.

Das Institut für Aerodynamik der ETH hat zum
Beispiel neulich Taljellen zur Beurteilung
technischer Diffusoren (Kanäle mit zunehmendem
Strömungsquerschnitt) rechnen lassen, wie sie etwa als
Saugrohre bei Wasserturbinen verwendet werden.
Auch die Ausführung von harmonischen Analysen
kann zu diesem Problemkreis gerechnet werden.

b) Gleichungsauflösung
Nicht alle Probleme haben einen derart expliziten

Charakter. Während der klassisch geschulte
Ingenieur im allgemeinen die Tendenz hat, alles zu
Berechnende durch eine explizite und mit einigen
Rechenschieberzügen auswertbare Formel
darzustellen, bevorzugt der am Automaten arbeitende
Mathematiker Prozesse sukzessiver Approximation,
die den Talenten der Maschine besser angepasst
sind. (Da jeder Annäherungsschritt denselben
Rechengang benützt, entsteht eben die repetitive
Situation des einfachen, oft ablaufenden Programms.)
Der Ingenieur muss hier etwas guten Willen zeigen,
umzulernen und durch Diskussion mit dem
Mathematiker das Beste aus der Sache zu machen.

Bereits das Auflösen eines Systems linearer
Gleichungen wird mitunter nach sukzessiver
Approximation disponiert, obwohl der Gaußsclie
Algorithmus einen expliziten Lösungsweg liefern würde.
Diese Gleichungsauflösung ist auch ein Massenartikel

jedes Recheninstituts und Systeme von 100
und mehr Unbekannten sind keine Seltenheit. Die
Statik der unbestimmten Systeme und alle
technischen Wissenschaften, die mit Ausgleichsrechnung

etwas zu tun haben, sind die Hauptkunden.
Aber auch die Berechnung von Gleich- und Wech-
selstromnetzen im stationären Zustand gehört hierher.

Ein Schritt schwieriger ist das Auflösen von
Gleichungen höheren Grades. Ein Automat kann
jedoch, nach Eintasten der Koeffizienten der
Gleichung, die Wurzeln ohne menschliches Zutun
berechnen. In der Technik treten solche Gleichungen
häufig als Frequenzgleichungen bei Schwingungsproblemen

auf; eine deutsche Firma hat uns viele
Gleichungen 12. Grades auflösen lassen, die zur
Berechnung elektrischer Filter dienten.

c) Gewöhnliche Differentialgleichungen
Dies ist das weite Feld der Servotechnik und der

Stabilitätsuntersuchungen. Jede Rückkopplung in
einer mechanischen, hydraulischen oder elektrischen

Anlage bedeutet ja letzten Endes ein System
von Differentialgleichungen, das nur in den seltensten

Fällen mit klassischen Methoden — etwa mit
der Laplace-Transformation — gelöst werden kann.
Es bleibt dann nur die numerische Integration, die
in ihrer schrittweise vorgehenden Art für den
Automaten wie geschaffen ist. Alle Einschwingvorgänge
in elektrischen Apparaten führen auf dasselbe
Problem. Als Kostprobe zeigt Fig. 7 die vollautomatisch

Fig. 7

Automatische Integration eines Systems von
6 Differentialgleichungen

gerechnete Lösung eines Systems von 6 simultanen
linearen Differentialgleichungen, die zur Diskussion

der Stabilität einer automatischen Steuerung
gelöst werden mussten. Die Kurven wurden nachher

von Hand gezeichnet; viele digitale Automaten
besitzen aber heute Zusatzgeräte zum automatischen
Aufzeichnen von graphischen Darstellungen.

d) Kritische Drehzahlen und Frequenzen
Die Berechnung der Frequenzen schwingungsfähiger

Systeme (Träger im Hochhau, rotierende
Wellen im Maschinenbau, elektrische Schwingungen

in der Nachrichtentechnik) wird vom Mathe-
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inatiker als die Bestimmung von Eigenwerten
bezeichnet. Wir kommen damit in das Gebiet der
neueren Entwicklungen in der numerischen Mathematik

der letzten Jahrzehnte. Sie und die Automaten

haben es möglich gemacht, nun auch höhere
Frequenzen sicher und mit vertretbarem Zeitaufwand

zu berechnen. In Fig. 8 wurden zum Beispiel
5 kritische Drehzahlen der oben gezeichneten und
mehrfach gelagerten Turbinenwelle berechnet und
die zugehörigen Formen der Biegeschwingungen
der Welle aufgezeichnet. Man beachte, dass jede
Eigenschwingung einen Knoten mehr hat als die
vorhergehende

Fig. 8

Kritische Drehzahlen einer Turbine
1 Hochdruckturbine; 2 Niederdruckturbine; 3 Generator

Besonders komplexe Verhältnisse findet man in
der Flugzeugstatik, wenn es sich darum handelt, die
Frequenzen des Flatterns von Trag- und Leitwerk
festzustellen. Alle Flatterrechnungen für das
schweizerische Jagdflugzeug P 16 wurden auf unserem
Automaten ausgeführt.

e) Partielle Differentialgleichungen
Jeder physikalische Vorgang, der sich in einem

ebenen oder räumlichen Gebiet abspielt, wird durch
eine partielle Differentialgleichung regiert.
Elektrische und magnetische Felder in Maschinen,
Diffusionsvorgänge wie Wärmeleitung und Neutronentransport

in der Reaktortechnik, Elastizitätsprobleme

in Scheiben, Platten und Schalen führen alle
auf Randwertprobleme hei partiellen
Differentialgleichungen. Die automatische Lösung erfolgt so

(Fig. 9), dass in das Gebiet ein Netz von Gitter¬

punkten gelegt wird und dann die physikalischen
Zustandsgrössen in jedem Gitterpunkt berechnet
werden. Sie sind gewöhnlich durch lineare
Gleichungen miteinander verkoppelt. Es ist dann eine
amüsante Aufgabe, dem Automaten die geometrische

Gestalt des Randes mitzuteilen!
Während man sich früher damit begnügen

musste, die einfachsten Differentialgleichungen für
die einfachsten Randbedingungen und die einfachsten

Gebietsformen zu lösen, scheint nun, durch das
Zusammenwirken von Numerik und Automatik die
Lösung unter allgemeinen Verhältnissen ein in näherer

Zukunft erreichbares Ziel. Natürlich wird eine
ganz andere Art Mathematik dies leisten, als die
Klassiker wie Gauss und Riemann wohl angenommen

haben.

SSV2SS09

Fig. 9

Gitter für die Berechnung der Spannungen in einer Staumauer
unter Berücksichtigung der elastischen Einbettung in den

Baugrund

Hier steht man jedoch an der Grenze der
Leistungsfähigkeit der heutigen Automaten. Wir haben
im Institut mehrere zweidimensionale Elastizitäts-
probleme behandelt, aber nur die schnellsten
Maschinen mit grösster Speicherkapazität sind
imstande, das ungeheure Zahlenmaterial zu bewältigen,

das in dreidimensionalen Gebieten und hei
feinen Netzen auftritt.

f) Allgemeines und Rückwirkungen auf die
Mathematik

Der Rand eines elektrisch leitenden Gebiets in
der Ebene sei geerdet, während in einem inneren
Punkt P eine Elektrode als Quelle konstanter
Ergiebigkeit angelegt wird. Es wird sich im Gebiet
eine stationäre Stromverteilung einstellen und wir
suchen etwa die Stromdichte i(s) am Rand als
Funktion der Bogenlänge s. Man kann dieses
Problem makrophysikalisch auffassen; es ergibt sich
dann eine Randwertaufgabe hei der Laplaceschen
Differentialgleichung, die unter das im vorigen
Abschnitt Besprochene fällt.



Bull. Ass. suisse électr. t. 48(1957), n° 11 513

Man kann das Problem aber auch mikrophysikalisch

interpretieren. Strömen von Elektrizität
heisst Bewegung von Elektronen; wir suchen
also die Anzahl Elektronen, die pro Zeiteinheit
über eine gegebene Stelle des Randes treten. Statt
dessen können wir auch ein einzelnes Elektron
betrachten, das vom Punkt P ausläuft und einen vom
Zufall diktierten Weg gegen den Rand hin
beschreibt. Dann interessieren wir uns für die
Wahrscheinlichkeit, mit der (las Elektron eine gegebene
Stelle des Randes erreicht. Nun wird plötzlich die
Statistik das zuständige mathematische Hilfsmittel
und man kann folgendes Modell des Vorgangs
benutzen: Wir legen in das Gebiet ein quadratisches
Gitter, das eine Ecke in P hat. Die vier von einem
Gitterpunkt auslaufenden Gitterstrecken seien nach
den Himmelsrichtungen bezeichnet und in einer
Urne seien vier ebenfalls so bezeichnete Kugeln.
Wir ziehen willkürlich eine Kugel und sie zeige
etwa «Norden» an. Dann schieben wir einen beweglichen

Punkt von P aus auf der nach Norden
weisenden Gitterstrecke bis zum nächsten Gitterpunkt.
Beim nächsten Zug erwischen wir vielleicht die
Kugel «Ost». Dann schieben wir unseren Punkt weiter

nach Osten hin bis zum nächsten Gitterpunkt.
So erzeugen wir einen Zufallsweg und durch die
Konstruktion genügend vieler «Zufallswege» können

wir unser Problem lösen.

Der ganze Vorgang kann nun leicht durch einen
Rechenautomaten nachgespielt werden, indem man
im Rechenwerk Zufallszahlen erzeugt. Man kommt
so zu einer automatischen Lösung des gestellten
Potentialproblems, die jeden Umweg über
mathematische Formeln und Gleichungen vermeidet und
das Problem direkt an seiner physikalischen Wurzel

packt. Viele Leute glauben, dass diese und
andere Methoden des direkten Angriffs auf ein
Problem zukünftig die aussichtsreichsten sein werden.
So haben denn neben der Quantenphysik auch die
Automaten uns gelehrt, dass viele mathematische
Fragen heute im neuen Licht der Statistik
angesehen werden müssen und dann oft Schwierig¬

keiten wegfallen, die rein durch die mathematische
Konzeption entstanden sind.

Schliesslich kennt man heute Problemkreise, wo
die mathematische Analyse keinen Lösungsweg
zeigt und der Automat autonom geworden ist. Sie
lassen sich durch den Begriff des Minimalisierens
kennzeichnen. Wenn zum Beispiel die Herstellungskosten

eines industriellen Produkts minimalisiert
werden sollen, so bleibt nichts anderes übrig, als
den Automaten als Simultator der möglichen
Fabrikationsvarianten zu benützen und durch
systematisches Probieren das Minimum unter allen
Parametervariationen zu suchen. Diese und
ähnliche Problemstellungen werden im englischen
Sprachgebiet als «operational research» und «linear
programming» bezeichnet und haben zu einer
Sonderart von Automaten (Daten-Verarbeitungsmaschinen)

geführt.
All dies darf aber nicht zum Glauben verleiten,

man könne grosse Teile der guten alten Mathematik

vergessen. Zum Abschluss sei folgendes Detail
zur Illustration dieser Behauptung erwähnt. Eine
Firma, die Zahnradgetriebe baut, hat uns folgendes
Problem vorgelegt: Sie besitzt Zahnräder, deren
Übersetzungsverhältnisse ganzzahlig sind und
zwischen den Grenzen 36 bis 120 variieren. Man
möchte durch zwei Über- und zwei Untersetzungen
ein gegebenes Übersetzungsverhältnis x möglichst
gut realisieren. Mathematisch heisst dies:

Gesucht sind 4 ganze Zahlen a, b, c, d in den
angegebenen Grenzen, so dass

a b
x -c d \

möglichst klein wird. Die Aufgabe wurde auf dem
Automaten gelöst, indem x in einen Kettenbruch
entwickelt wurde. Die Lehre von den Kettenbrüchen

gehört aber in die reinste aller mathematischen

Theorien, nämlich in die Zahlentheorie.

Adresse des Autors:
Prof. Dr. E. Stiefel, Vorstand des Institutes der ETH für
angewandte Mathematik, Drusbergstrasse 15, Zürich 7/53.

Beleuchtung und Architektur
Von W.H. Rösch, Zürich

Nach einem Vortrag, gehalten im Rahmen des Kurses über Licht- und Beleuchtungstechnik am 18. Februar 1957

an der ETH in Zürich
628.974.8

Ausgehend von geschichtlichen Beispielen für Bauten und
Beleuchtungen wird die absichtlich erzielte Wirkung und
Stimmung geprüft. Licht- und Schattenverteilung, Glanz,
dekorative Elemente und das Mass der Helligkeit, sowie ihre
Verteilung und Abstufung im Raum sind die Mittel, aus denen
das «Lichtklima» geschaffen wird. Das hohe Mass an
Verständnis, das die Architekten für Raumbeleuchtungsfragen
und für die Zusammenarbeit mit dem Lichtfachmann
mitbringen sollten, wird in den Vordergrund gerückt.

L'auteur, se fondant sur les exemples historiques de
constructions et d'éclairages, étudie l'effet et l'ambiance obtenus.
La répartition de la lumière et de l'ombre, le brillant, les
éléments décoratifs, le degré de clarté, comme leur répartition

et leur graduation dans l'espace sont les moyens qui
permettent de créer le «clima lumineux». L'auteur insiste sur
la grande comprétension dont devraient faire preuve les
architectes envers les problèmes d'éclairage des locaux et la
collaboration avec les éclairagistes.

Direktor M. Roesgen erklärte in seinem Referat
über die Grundbegriffe der Beleuchtungstechnik1),
dass die Beleuchtungstechnik sich in Wissenschaft,
Technik und Kunst der Beleuchtung aufteilen lasse.

') Wird in einem späteren Heft des Bulletins veröffentlicht
weruen.

Die bis heute gehaltenen Referate haben uns mit
der Wissenschaft und der Technik bekannt
gemacht. Sie zeigten die wichtigsten Problemkreise
auf: Optik, Elektrizität, Physik der Strahlung,
Physiologie, dann Elektrotechnik, Photometrie
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