Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 47 (1956)

Heft: 24

Artikel: Ein graphisches Verfahren zur Bestimmung des Verhaltens von Relais

Autor: Koch, P.

DOI: https://doi.org/10.5169/seals-1060122

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

GEMEINSAMES PUBLIKATIONSORGAN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS (SEV) UND DES VERBANDES SCHWEIZERISCHER ELEKTRIZITÄTSWERKE (VSE)

Ein graphisches Verfahren zur Bestimmung des Verhaltens von Relais 1)

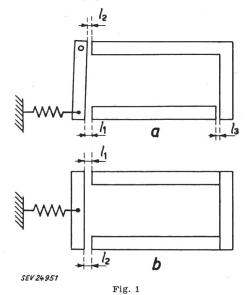
Von P. Koch, Bern

518.4:621.318.5

Die vorliegende Arbeit befasst sich mit der Aufgabe, verschiedene Probleme, die sich bei der Konstruktion eines Relais stellen, graphisch zu veranschaulichen und zu lösen. Das Verfahren ist durch seine Anschaulichkeit der blossen Rechnung überlegen und lässt sich sinngemäss auch auf andere Probleme anwenden, wo ein magnetisches Feld und eine Feder gegeneinander wirken, z. B. bei Kopfhörern.

On cherche à résoudre par voie graphique divers problèmes qui se posent dans la construction de relais. Cette méthode a l'avantage sur le pur calcul d'être plus intuitive. Elle peut s'appliquer à d'autres problèmes posés par la combinaison d'un champ magnétique et d'une force élastique, par exemple à l'étude d'écouteurs électro-magnétiques.

1. Problemstellung


Man betrachte einen magnetischen Kreis mit einem beweglichen Teil (Anker) nach Fig. 1. Elektrisch gesehen besteht der magnetische Kreis aus einem Eisenweg (mit den Teillängen $L_1, L_2, L_3 \dots$ und den Querschnitten A_1 , A_2 , A_3 ...) und einem Luftspalt (mit den Teillängen l_1 , l_2 , l_3 ... und den Querschnitten a_1 , a_2 , a_3 ...). Der bewegliche Teil wird durch Federkräfte in einer definierten Lage gehalten bis eine Magnetisierung des Kreises ihn aus dieser Lage zwingt. Diese Magnetisierung wird durch einen gegebenen Magnetisierungsstrom hervorgerufen. Auf den Anker wirken also elastische Federkräfte und magnetische Kräfte ein. Die magnetischen Kräfte sind proportional dem Quadrat der Induktion im Luftspalt. Diese Induktion wiederum ist gegeben durch den magnetisierenden Strom und durch die Grösse des Luftspaltes. Eine Bewegung des Ankers ändert den Luftspalt und damit auch die resultierende Kraft, die auf den Anker wirkt. Es besteht also eine Rückwirkung von der erzeugten Bewegung auf die antreibende Kraft. Je nach dem Gegeneinanderwirken von Feder und Magnetfeld können sich dabei stabile Gleichgewichte ergeben (dies ist beim Kopfhörer der Fall, wo zu jedem Momentanwert des Stromes eine bestimmte und möglichst zum Strom proportionale Elongation der Membran erwünscht ist) oder es kann zu unstabilen Zuständen kommen, wo die Rückwirkung der Ankerbewegung auf das Feld derart ist, dass eine einmal begonnene Bewegung erst bei einer mechanischen Begrenzung wieder aufhört. Dies ist beim Relais erwünscht.

Die graphische Darstellung soll vor allem den Überblick über diese Erscheinungen ermöglichen, ferner über die Grösse der auftretenden Kräfte und der notwendigen magnetischen Induktionen. Weiter erlaubt sie, die Wirkung der verschiedenen Relais-Parameter abzuklären und gibt Anhaltspunkte zu deren günstigsten Bemessung.

2. Der Luftspalt

Der Begriff Luftspalt muss noch schärfer definiert werden. In Wirklichkeit gibt es mindestens 2 Übergänge durch Luft, gelegentlich mehr. Diejenigen Übergänge, die durch das Zusammenfügen zweier Eisenteile bedingt sind, werden nicht als Luftspalt betrachtet, sondern nur als Verschlechterung des Eisenweges.

Unter Luftspaltlänge l soll der Luftweg verstanden sein, der gegeben ist durch die zwei Über-

Schema des Kraftlinienweges

 l_1 , l_2 , l_3 die drei Arten von Luftspalten, welche berücksichtigt werden

 $Im\ Falle\ a$ ist l_1 der Hauptluftspalt, dessen Veränderung durch l_2 um einen gewissen Bruchteil vergrössert und zu dem ein von l_3 abhängiger konstanter Zuschlag addiert wird $Im\ Falle\ b$ sind l_1 und l_2 gleichwertig, ihre Längen werden

einfach addiert

¹) Das Verfahren wurde im Verlauf von Relais-Untersuchungen am eidg. Amt für Mass und Gewicht entwickelt, im Rahmen einer Arbeit, für die die Stiftung Hasler-Werke, Bern, die Mittel zur Verfügung stellte.

gänge vom Anker zum festen Teil des Relaiseisens (Teillängen l_1 und l_2 , evtl. beide variabel), vermehrt mit dem Luftweg, der durch einen absichtlich angebrachten Luftspalt l_3 bedingt ist (Fig. 1).

Die Teillängen l_1 und l_2 sind entweder identisch, oder dann ist die eine (l_1) vorwiegend wirksam. l_1 tritt in den Berechnungen am meisten auf, und es wird so weit als möglich so vorgegangen, als ob nur diese Länge existieren würde. Die Länge l_2 wird auf l_1 zurückgeführt, und ein allfällig vorhandenes l_3 als konstante Vergrösserung von l_1 betrachtet.

Im Spalt l_1 herrsche die Induktion B_1 . Daraus berechnet sich der magnetische Fluss im Kreis zu

$$\Phi = a_1 B_1 \tag{1}$$

Die Induktionswerte in den übrigen Luftspalten ergeben sich, unter Vernachlässigung der Streuungen,

$$B_2=\;rac{a_1}{a_2}\,B_1\,;\; B_3=rac{a_1}{a_3}\,B_1\,;\; ...\,B_n=rac{a_1}{a_n}\,B_1\;\; (2\,{
m a})$$

und im Eisen zu

$$B_L = \frac{a_1}{A_L} B_1 \tag{2b}$$

Der Magnetisierungsstrom für die Luftspalte beträgt:

$$I_l = rac{1}{0.4 \, \pi} \, (l_1 \, B_1 + l_2 \, B_2 + l_3 \, B_3)$$

Die Induktionswerte B_2 und B_3 werden durch B_1 ausgedrückt, und man erhält:

$$I_l = \frac{B_1}{0.4 \,\pi} \, l \tag{3}$$

worin l die definierte (effektive) Luftspaltlänge bedeutet:

$$l = \left(l_1 + \frac{a_1}{a_2} \, l_2 + \frac{a_1}{a_3} \, l_3\right) \tag{4}$$

Bei einer Bewegung des Ankers verändern sich l_1 um Δ l_1 , l_2 um Δ l_2 ; l_3 dagegen verändert sich nicht. Für die Luftspaltänderung gilt daher:

$$\Delta l = \Delta l_1 + \frac{a_1}{a_2} \Delta l_2 \tag{5}$$

Infolge der mechanischen Verkopplung von l_1 und l_2 kann geschrieben werden:

$$\Delta l_2 = h \cdot \Delta l_1 \tag{6}$$

worin h das für die Luftspalte in bezug auf die Ankerachse geltende Hebelverhältnis darstellt (Fig. 2):

$$h = \frac{x_2}{x_1} \tag{7}$$

Führt man die Grösse h in Gl. (5) ein, so erhält man die Beziehung:

$$\Delta l = \Delta l_1 \left(1 + \frac{a_1}{a_2} h \right) \tag{8}$$

Bezeichnet man den Faktor $(1 + h a_1/a_2)$ als «Übersetzungsfaktor» \ddot{u} , dann reduziert sich Gl. (8) zu:

$$\Delta l = \ddot{u} \Delta l_1 \tag{9}$$

Man ist jetzt in der Lage, mit der definierten Luftspaltlänge l zu rechnen und doch gegebenenfalls aus dem Wert für l wieder die Teillänge l_1 zu bestimmen.

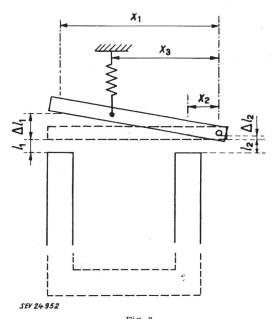


Fig. 2 Schema der mechanischen Verhältnisse

 $l_1,\ l_2$ Längen der Luftspalte im Arbeitszustand des Relais; $\Delta l_1,\ \Delta l_2$ Veränderungen dieser Längen beim Abfall Diese Strecken werden über den Mitten der magnetischen Pole gemessen, wo die Angriffspunkte der magnetischen Kräfte angenommen werden. Für diese ergeben sich die Hebelarme x_1 und x_2 , während x_3 den Abstand des Feder-Angriffspunktes von der Drehachse des Ankers bezeichnet

Beispiel:

In einem Relais ähnlich wie in Fig. 2 seien $a_1 = a_2$ und h = 0,2. Der Übersetzungsfaktor berechnet sich somit zu $\ddot{u} = 1,2$.

Bei angezogenem Anker habe l_1 den Wert $l_1an=0.1$ mm (wegen eines Klebstifts) und l_2 sei ebenfalls auf einen Wert $l_2an=0.1$ mm eingestellt. Am abgefallenen Relais soll sich der Anker um 1,5 mm bewegt haben, d. h., l_1 soll sich von 0,1 auf 1,6 mm vergrössern (d. h. Δ $l_1=0.15$ cm). Der Vollständigkeit halber sei noch ein Unterbruch im Eisenweg angenommen, mit einer konstanten Länge $l_3=0.05$ mm und einer Fläche $a_3=2$ a_1 .

Man erhält dann für die Luftspaltlänge im angezogenen Zustand l_{an} :

$$l_{an} = l_{1\,an} + rac{a_1}{a_2} \; l_{2\,an} + rac{a_1'}{a_3} l_3 = 0{,}0225 \; {
m cm}$$

Beim Abfall wird Δ $l_1=0.15$ cm und [aus Gl. (9)] Δ $l=\ddot{u}$ Δ $l_1=0.18$ cm. Folglich ist die Luftspaltlänge im abgefallenen Zustand l_{ab} :

$$l_{ab} = l_{1\,ab} + rac{a_1}{a_2} \, l_{2\,ab} + rac{a_1}{a_3} \, l_3 = l_{an} + \Delta \, l = 0,2025 \; \mathrm{cm}$$

Die Länge l_1 ist auf $l_{1ab}=0.16$ cm angewachsen, l_2 auf $l_{2ab}=l_{2an}+h$ Δ $l_1=0.01+0.2\cdot0.15=0.04$ cm, l_3 blieb gleich (0.005 cm).

Ergibt sich aus den Untersuchungen, dass etwas besonderes bei $l=0.175\,$ cm passiert, dann erhält man rasch das zugehörige l_1 :

$$\begin{array}{lll} \Delta\,l &=& 0.175 - l_{an} = 0.1525 \ \mathrm{cm} \\ \Delta\,l_1 &=& \Delta\,l/\ddot{u} = 0.1525/1.2 = 0.127 \ \mathrm{cm} \\ l_1 &=& 0.01 + 0.127 = 0.137 \ \mathrm{cm} \end{array}$$

3. Die Kräfte

a) Elastische Kraft

Am Anker greift irgendwo im Abstand x_3 vom Drehpunkt (Fig. 2) eine Feder an mit der Federkonstante K [g/cm]. Bei einer Bewegung des Ankers um Δl erzeugt die Feder beim Luftspalt l_1 eine Kraft ΔF_e :

$$\Delta F_e = \frac{x_3}{x_1} K \cdot \Delta l_1 = \frac{x_3}{x_1} \cdot \frac{K \Delta l}{\ddot{u}} = k \cdot \Delta l \quad (10)$$

worin k die scheinbare Federkonstante bedeutet.

$$k = \frac{x_3}{x_1} \cdot \frac{K}{\ddot{u}} \tag{11}$$

Die Vorspannung der Feder kann ausgedrückt werden durch l_0 , den Wert von l, bei dem die Feder entspannt wäre. Damit wird die Gleichung für die elastische Kraft F_e :

$$F_e = -k \left(l_0 - l \right) \tag{12}$$

(negatives Vorzeichen, weil die Feder auf Abfall hin arbeitet). Es sei ausdrücklich festgehalten, dass die hier angenommene lineare Federkraft keine Eingrenzung der Brauchbarkeit des Verfahrens darstellt; andere Kraftgesetze können ebenfalls verwendet werden.

b) Magnetische Kraft

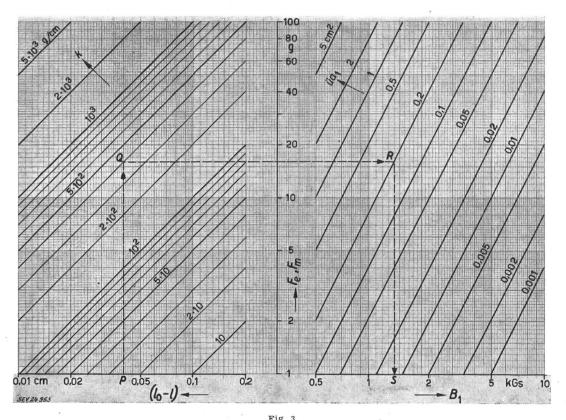
Die magnetische Kraft, F_m , sucht den Anker anzuziehen und hat, in CGS-Einheiten ausgedrückt, die Grösse

$$F_m = rac{1}{981} \left(a_1 rac{B_1{}^2}{8\,\pi} + h\, a_2 rac{B_2{}^2}{8\,\pi}
ight)$$

(positiv, auf die Mitte von l_1 bezogen; F_m in g; a_1 , a_2 in cm²; B in Gs). Mit $B_2 = a_1 B_1 / a_2$ und durch Auswertung der Zahlenfaktoren für F_m [g], B_1 [kGs] und a [cm²] erhält man:

$$F_m = 40.6 \ a_1 \left(1 + h \frac{a_1}{a_2} \right) B_1^2 = 40.6 \ \ddot{u} \ a_1 \ B_1^2$$
 (13)

c) Gleichgewicht des Ankers


Der Anker ist im (stabilen oder labilen) Gleichgewicht, wenn

$$F_e + F_m = 0$$

d. h. wenn

$$40.6 \ \ddot{u} \ a_1 \ B_1^2 - k \ (l_0 - l) = 0 \tag{14}$$

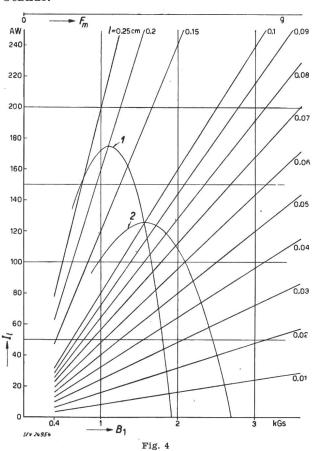
Falls die Konstanten \ddot{u} a_1 , k, l_0 gegeben sind, gehört also zu jedem Wert B_1 der Luftspaltinduktion ein entsprechender Wert der Luftspaltlänge l, für welchen die Summe beider Kräfte null ist. Für kleinere l,

Darstellung der auf den Anker wirkenden magnetischen und elastischen Kräfte (Alle Kräfte auf die Mitte des Hauptluftspaltes bezogen)

 $\begin{array}{ll} links: & \text{elastische Kraft } F_\theta \text{ (Ordinate) als Funktion der Ankerlage } (l_0\overset{-}{\smile}l), \text{ mit der scheinbaren Federkonstante } k \text{ als Parameter; } l \text{ "aquivalente Luftspaltlänge; } l_\theta \text{ Wert von } l, \text{ bei dem die Feder entspannt wäre} \end{array}$

rechts: magnetische Kraft F_m als Funktion der Induktion B_1 im Luftspalt, mit dem äquivalenten Luftspaltquerschnitt $\ddot{u}a_1$ als Parameter

Wenn k und $\ddot{u}a_1$ gegeben sind, kann zu irgendeiner Ankerlage (l_0-l) der Wert der Induktion B_1 bestimmt werden, für welchen der Anker im Gleichgewicht ist. P, Q, R, S Berechnungsgang: ausgehend von einer beliebigen Ankerlage l_0-l (Punkt P) und einer gegebenen Federkonstante k (Punkt Q), wird die elastische Kraft F_e , zugleich die magnetische Kraft F_m ($F_m=F_e$), bestimmt (Schnittpunkt Gerade QR mit Ordinate); aus diesem Wert F_m wird bei gegebenem äquivalentem Luftspaltquerschnitt $\ddot{u}a_1$ (Punkt R) die Induktion B_1 bestimmt (Punkt S)


als diesem Gleichgewicht entspricht, wird die Kraftsumme negativ, der Anker fällt in Richtung auf die Gleichgewichtslage hin ab. Bei grösseren l wird der Anker zur Gleichgewichtslage hin angezogen. Dabei ist Voraussetzung, dass das Gleichgewicht stabil ist, was bei konstant bleibendem B_1 (theoretisch) der Fall wäre.

4. Darstellung der Gleichgewichtskurve

a) Luftspaltverhältnisse

Als erster Schritt werden zwei Kurvenscharen auf doppelt logarithmisches Papier gezeichnet, welche die elastische Kraft F_e in Abhängigkeit von (l_0-l) , mit k als Parameter, und die magnetische Kraft F_m in Abhängigkeit von B_1 , mit \ddot{u} a_1 als Parameter zeigen (Fig. 3).

Die Achsen für die Kräfte F_e und F_m sind gemeinsam, so dass auf einfache Weise zu (l_0-l) das zugehörige B_1 gefunden werden kann, und umgekehrt. Diese zwei Kurvenscharen können stets neu gebraucht werden, unabhängig vom untersuchten Gebilde.

Beziehung zwischen Luftspaltinduktion B_1 und Magnetisierungsstrom-Bedarf I_l des Luftspaltes bei gegebener effektiver Luftspaltlänge l (gerade Parameterlinien) Eingezeichnet sind für zwei Sätze von Relaisparametern die aus Fig. 3 ermittelten Orte des Ankergleichgewichtes (Parabeln 3. Grades), welche jedem B_1 ein l zuordnen und umgekehrt Kurve $1:k=500,\ l_0=0,3,\ \dot{u}a_1=1;$ Kuve $2:k=1000,\ l_0=0,15.$ $\dot{u}a_1=0,5;$ F_m (quadratische) Skala für die magnetische Kraft je nach der Grösse von $\dot{u}a_1$

Der zweite Schritt besteht darin, den Zusammenhang zwischen dem Magnetisierungsstrom I_l und B_1 darzustellen. Dies geschieht auf Millimeter-Papier, mit B_1 als Abszisse und I_l als Ordinate. Alle Werte-

paare (B_1, I_l) , die zu einem festen l gehören, liegen auf einer Geraden durch den Ursprung (Fig. 4). Auch diese Einteilung kann immer wieder verwendet werden. Vorteilhafterweise lässt man die untere Hälfte des Blattes frei, zieht die B_1 -Achse also in die Mitte (wie in Fig. 5...8).

In das B_1I_l -Feld kann nun die für eine konkrete Konstruktion geltende Gleichgewichtskurve des Ankers, wie sie aus Fig. 3 ermittelt wird, eingezeichnet werden. In Fig. 4 ist dies für zwei verschiedene Fälle durchgeführt.

b) Einfluss des Eisens

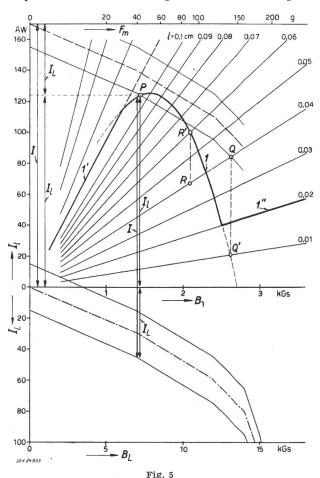
Zu jedem Wert B_1 der Induktion im Luftspalt gehört ein Wert des magnetischen Flusses und damit eine bestimmte Induktion in den verschiedenen Eisenteilen (der Anker muss auch berücksichtigt werden.) Wenn man Streuungen vernachlässigt, lassen sich diese Induktionen aus B_1 und den Querschnittverhältnissen leicht ermitteln.

Es muss nun entweder rein experimentell oder theoretisch anhand der errechneten Induktionen und der bekannten Eiseneigenschaften die Magnetisierungskurve $I_L\left(B_1\right)$ der Eisenteile gezeichnet werden. Diese Bestimmung der Magnetisierungskurve dürfte der zeitraubendste Teil einer Relais-Berechnung sein, lässt sich aber auf keine Art umgehen.

Die Magnetisierungskurve der Eisenteile wird als Funktion von B_1 (und mit dem gleichen Maßstab für den Magnetisierungsstrom wie für die Luftspaltmagnetisierung) unterhalb der B_1 -Achse in Fig. 4 eingezeichnet (Fig. 5).

Auf diese Art ist es jetzt möglich, zu einem bestimmten B_1 und l der Darstellung die Werte von I_l und I_L sowie den gesamten Bedarf an Magnetisierungsstrom, I_l+I_L , zu entnehmen. Ebenfalls lässt sich bestimmen, bei welchem Wert von l der Anker im Gleichgewicht ist. Es wird auch schon hier bewusst, dass alle die so ermittelten Werte wegen der Breite der Eisenkurve davon abhängig sind, wie das Eisen vorher magnetisiert war (Einfluss der magnetischen Vorgeschichte).

c) Bestimmung der beschleunigenden Kraft


Wenn die Induktion B_1 gegeben ist und ein Wert l der Luftspaltlänge, welcher nicht der Gleichgewichtslage l_g entspricht, dann kann aus den Grössen $(l-l_g)$ und k die auf den Anker wirkende überschüssige magnetische oder elastische Kraft bestimmt werden. Die Kräftesumme F_e+F_m ist dann nicht null, sondern

$$F_e + F_m = k \left(l - l_g \right) \tag{15}$$

Für zu kleine Werte von l wird die Kraft negativ, der Anker fällt gegen die Gleichgewichtslage hin ab; die Feder ist bei l mehr gespannt als es das magnetische Feld zulässt. Für Werte von l grösser als l_g ist die Kräftesumme (F_e+F_m) positiv, der Anker wird gegen die Gleichgewichtslage hin angezogen (die Feder ist zu wenig gespannt).

Aus Fig. 5 ist weiter zu sehen, dass die Gleichgewichtskurve des Ankers 2 Knicke hat, ausserhalb derer sie gerade verläuft. Diese Knicke liegen im angegebenen Beispiel bei l=0,12 cm und l=0,02 cm.

Sie entsprechen im Beispiel für die Induktion B_1 den Werten 1,2 kGs und 2,5 kGs und stellen die mechanischen Begrenzungen des Ankerweges dar. Bei einer Induktion von über 2,5 kGs oder unter 1,2 kGs geht der Anker nicht weiter, sondern findet zu jeder Kraft sein Gleichgewicht am Anschlag.

Bestimmung des gesamten Magnetisierungsstromes und der auf den Anker wirkenden Kräfte

oben: wie Fig. 4

unten: Es ist schematisch der Magnetisierungsstrom I_L für die Eisenteile als Funktion der Induktion im Luttspalt B_1 eingezeichnet, unter Berücksichtigung der Gl. (2b).

Zu jedem B_1 kann der totale Bedarf an Magnetisierungsstrom I_l+I_L bestimmt werden entweder für einen vorgegebenen Luftspalt l oder für den Wert l_g , der zum Gleichgewicht des Ankers gehört

Für jeden Wert des Magnetisierungsstromes ($I=I_l+I_L$) und für jede Lage des Ankers (Luftspalt l) kann entschieden werden, ob der Anker abfällt oder angezogen wird, und mit welcher Kraft. Die Gleichgewichtskurve ist unter Berücksichtigung der Ankerweg-Begrenzungen (Anschlag aussen und innen) gezeichnet

1 Magnetisierungskurve des federnden Luftspaltes; 1' Anschlag aussen; 1" Anschlag innen; Q Anker wird angezogen, Kraft $F_{\sigma}=k\times 0.03$ (Abstand QQ' von der Gleichgewichtslage Q'=0.03 cm; Federkonstante k in g/cm); R Abfall mit Kraft $F_{\sigma}=k\times 0.02$ (Abstand RR'=0.02 cm)

d) Geschwindigkeit des Ankers

Die Geschwindigkeit, mit welcher der Anker angezogen wird oder abfällt, ist von mechanischen und elektrischen Einflüssen bestimmt. Auf die elektrischen Einflüsse soll noch zurückgekommen werden. Mechanisch ist neben der Trägheit der Verlauf der beschleunigenden Kräfte massgebend.

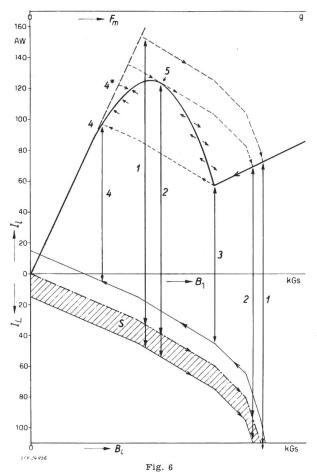
Das Diagramm gestattet, bei Annahme einer konstanten Magnetisierung, den Verlauf der resultierenden Kraft als Funktion der Ankerposition zu bestimmen.

e) Nichtlineare Federcharakteristik

Am Beispiel des Ankeranschlages sieht man, wie eine nichtlineare Feder behandelt werden muss (z. B. eine kreisförmige, ringsum eingespannte Hörer-Membran). Ihre Gleichgewichtskurve im $B_1\,I_l$ -Feld nimmt einfach eine andere Form an, aber es lässt sich auch da aus ihrem elastischen Kraftgesetz und aus dem Ausdruck für F_m zu jedem Wert von B_1 der entsprechende Wert für l finden, bei dem Gleichgewicht herrscht.

f) Stabilität des Gleichgewichtes

Aus Fig. 5 wurde ersichtlich, dass jedem Punkt (B_1, I_l) der obern Hälfte ein Zustand des Luftspaltes mit einer gewissen magnetischen und elastischen Wirkung auf den Anker entspricht: Liegt der Punkt unterhalb der Gleichgewichtskurve, bei zu kleinen l, so bewegt sich der Anker in der Abfall-Richtung; liegt der Punkt oberhalb der Gleichgewichtskurve, so wird der Anker angezogen.


Es stellt sich die Frage, ob (bei konstant gehaltenem totalem Magnetisierungsstrom $I_l + I_L$) die so eingeleiteten Bewegungen erst am Anschlag zum Stillstand kommen, oder ob sie vorher einmal den Anker durch einen Punkt der Gleichgewichtskurve führen könnten, wo er im stabilen Gleichgewicht zu verbleiben vermag. (Dies muss bei magnetischen Hörern stets der Fall sein, sonst geschieht es gelegentlich, dass die Membran nach einem grossen Ausschlag dem Einfluss des Permanentmagneten erliegt und kleben bleibt.)

Ein mechanischer Kreislauf des Ankerweges ist in Fig. 6 dargestellt. Neben der Zahl l ist ein Wert des totalen Magnetisierungsstromes $I_l + I_L$ eingezeichnet, der auf alle Fälle genügt, um den Anker von der Ruhestellung weg zu ziehen. Von der obern Spitze dieses Magnetisierungspfeiles aus geht gestrichelt eine Parallel-Kurve zu der Magnetisierungskurve des Eisens. Sie bezeichnet die Zustände (B_1, I_l) , welche der Luftspalt durchläuft, während sich der Anker (bei konstantem $I_l + I_L$) dem innern Anschlag nähert. Die resultierende Kraft ist in jedem Augenblick anziehend, es kommt zu keinem Gleichgewicht, bis der Anker beim Anschlag ruht. Die Endlage des Vorganges ist nochmals mit l bezeichnet.

2 zeigt den Grenzfall von I an, bei der minimalen Magnetisierung, welche noch den Anker zum innern Anschlag bringt. Im Punkt 5 wird zwar das Gleichgewicht gestreift, der Anker wird aber dank seiner kinetischen Energie trotzdem darüber hinwegkommen (evtl. auch noch bei etwas geringeren Magnetisierungsströmen).

Ein Magnetisierungsstrom, wie er dem Punkt 4* entspricht, würde hingegen nicht mehr genügen: Bevor der Anker genügend Bewegungsenergie gespeichert hat, kommt er zur Gleichgewichtslage und bei deren Überschreitung in das Gebiet unter der Gleichgewichtskurve, wo die resultierende Kraft ihn zurücktreibt.

Nachdem der Anker (im Fall 1 oder 2) den innern Anschlag erreicht hat, kann der totale Magnetisierungsstrom beträchtlich reduziert werden, ohne dass er abfällt. In der Tat zeigt 3, dass der Strom, bei welchem sich die Gleichgewichtskurve vom Anschlag löst, viel geringer ist als der Strom, der notwendig

Mechanischer Kreislauf des Ankers

Bestimmung von Anzugs- und Abfallstrom, Abschätzung des Einflusses der Koerzitivkraft, stabiles und labiles Ankergleichgewicht

 B_1 Induktion im Luftspalt; B_L Induktion im Eisen; F_m magnetische Kraft; I_l Magnetisierungsstrom-Bedarf des Luftspaltes; I_L Magnetisierungsstrom-Bedarf des Eisens; S Anzugstrom, streut je nach magnetischer Vorgeschichte Weitere Bezeichnungen siehe im Text

ist, um den Gipfel der Gleichgewichtskurve zu überschreiten. Dies beruht zum Teil darauf, dass diese Kurve stärker gewölbt ist als die Magnetisierungskurve des Eisens, zum Teil darauf, dass bei zurückgehender Induktion die Breite der Magnetisierungsschleife sich auswirkt, weil I_L bei abnehmenden B_1 von dem der B-Achse nähern Kurvenast aus zu messen ist. Unterschreitet man mit $I_l + I_L$ den bei 3 dargestellten Wert, so gelangt man zu einem Punkt des Diagrammes, welcher unter der Gleichgewichtskurve liegt, der Anker fällt ab und kommt bei 4 wieder zum Gleichgewicht. Es hängt von der Lage des äussern Anschlages ab, ob dieser Gleichgewichtspunkt auf der Anschlagsgeraden liegt, oder noch auf der Gleichgewichtskurve des freien Ankers.

Gestützt auf diese Überlegungen sieht man, dass die Gleichgewichtskurve durch den Punkt 5 in zwei Gebiete unterschiedlichen Charakters geteilt wird:

- a) Links von 5 herrscht stabiles Gleichgewicht. Wird der Anker von der Gleichgewichtskurve entfernt, so kommt er zu einem Punkt, von wo ihn die resultierende Kraft wieder zurücktreibt.
- b) Rechts von Punkt 5 herrscht labiles Gleichgewicht. Bei der kleinsten Entfernung von der Gleichgewichtskurve erfährt der Anker eine resultierende Kraft, die ihn noch weiter weg bringt. Am innern Anschlag allerdings ist das Gleichgewicht wieder stabil.

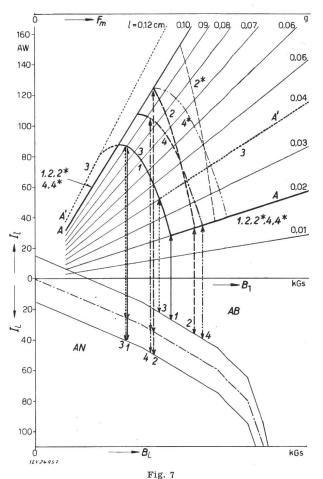
Punkt 5 ist der Ort, an dem die Gleichgewichtskurve parallel zur Magnetisierungskurve des Eisens verläuft.

5. Beeinflussung der Gleichgewichtskurve

Die Möglichkeiten, ein fertiges Relais in seiner Arbeitsweise noch zu korrigieren, sind:

- 1. Veränderung der Federvorspannung;
- 2. Veränderung der Federkonstanten (Auswechseln der Feder);
- 3. Veränderung des Luftspaltes in der Arbeitsposition;
- 4. Veränderung der Kontaktdrucke.

a) Federvorspannung, Federkonstante, Luftspalt


Jede Veränderung der Federvorspannung, der Federkonstante oder des Luftspaltes hat ihre spezifische Wirkung. In Fig. 7 sind diese Möglichkeiten und ihr Einfluss auf das Relaisverhalten dargestellt:

Die Kurven 1, 2 und 2^* ergeben sich durch fortlaufendes Vergrössern der Federvorspannung. Dabei sind die übrigen Parameter unverändert. Man sieht, dass vor allem der Anzugsstrom vergrössert wird. Da die Kurve mit steigendem l_0 spitzer in die durch die Anschläge gegebenen Geraden einmündet, wird der Anker rascher und bestimmter springen (die resultierende Kraft nimmt während des Weges rascher zu). Dagegen nimmt der Unterschied zwischen Anzug- und Abfall-Strom zu, ausser dann, wenn die Magnetisierungskurve bei den Induktionen, die in der Arbeitsstellung herrschen, stark gekrümmt, d. h. das Eisen fast gesättigt wäre.

Die Kurven 1, 4 und 4* zeigen den Einfluss einer fortlaufenden Vergrösserung der Federkonstanten. Die Wirkung auf den Anzugsstrom ist weniger ausgeprägt, diejenige auf den Abfallstrom stärker, so dass in grober Näherung die Stromdifferenzen gleich bleiben.

Der Unterschied zwischen 1 und 3 zeigt die Wirkung der Vergrösserung des Arbeitsluftspaltes. Der innere und äussere Anschlag werden um 0,2 mm verschoben (dickeres Ankerplättchen), damit der Ankerweg gleich bleibt. Die Wirkung auf den Abfallstrom ist ausgeprägt. Der Anzugstrom wird nur wenig vergrössert, falls der äussere Anschlag im Gebiet des labilen Gleichgewichtes war; aber gar nicht, falls er schon im stabilen Gebiet lag. Dagegen wird der Anzug etwas weniger bestimmt vor sich gehen, besonders dann, wenn in der Nähe des Kurvenstückes, welches dem äussern Anschlag entspricht, ein längeres stabiles Stück der Gleichgewichtskurve liegt. In diesem Zusammenhang muss man berücksichtigen, ob das Relais über einen

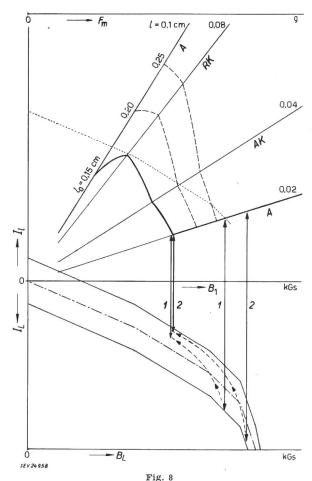
Schalter einen genügenden Anzugsstrom erhält, oder ob es bei kontinuierlich anwachsendem Magnetisierungsstrom «entscheiden» muss, wann der Zeitpunkt zum Anzug gekommen ist.

Die Möglichkeiten zur Beeinflussung der Gleichgewichtskurve Veränderung von Federvorspannung $l_{\rm o}$, Federkonstante k, Arbeitsluftspalt l_{min}

AN Anzug; AB Abfall

Kurve Nr.	l_0 ${f cm}$	k g/cm	l _{min} cm	I_{AN} AW	I _{AB}
2	0,20	1000	0,02	175	70
2*	0,25	1000	0,02	213	82
3	0,15	1000	0,04	128	75 75
4	0,15	1500	0,02	153	75
4*	0,15	2000	0,02	175	90

Weg des Ankers stets 0,08 cm; äquivalenter Luftspalt-querschnitt $\ddot{u}a_1=1$ cm².


Eine Vergrösserung des Arbeitsluftspaltes l_{min} verschiebt den Anschlag von A nach $A^\prime.$

b) Einflüsse der Kontaktfedern und der unvollständigen Eisensättigung

Bevor der Anker zu seinen Endlagen gelangt, trifft er einmal auf die durch Kontaktfedern ausgeübte Gegenfederkraft. Arbeitskontakte wirken wie eine Verminderung der Ankerfederkonstanten, Ruhekontakte wie eine Verstärkung. Dadurch wird die Gleichgewichtskurve zwischen den Berührungspunkten der Kontakte und den darauf folgenden Anschlägen verformt. Sie besteht dann aus drei Teilen, von denen der mittlere mit der Konstanten k

ermittelt wird, die andern mit den resultierenden Konstanten $k + k^*$ bzw. $k - k^*$.

Die Grösse des Anzugsstromes beeinflusst ferner die Abfallgrenze, denn der Rücklauf auf der Magnetisierungskurve des Eisens geschieht auf verschiedenen Bahnen, je nachdem, wie nahe das Eisen der Sättigung kommt. Diese Einflüsse sind in Fig. 8 veranschaulicht.

Einflüsse der Kontaktfedern und der unvollständigen Eisensättigung auf den Abfallstrom

A Anschlag; RK Ruhekontakt; AK Arbeitskontakt

$$\ddot{u}a_1 = 1 \text{ cm}^2$$
 $k = 1000 \text{ g/cm}$

Kontaktfedern: k' = k = 1000 g/cm

- 1 Anzug- und Abfallstrom bei knapper Magnetisierung
- 2 Anzug- und Abfallstrom bei reichlicher Magnetisierung

c) Einflüsse von Permeabilität, Koerzitivkraft, Remanenz, Gestaltung des Eisenweges

Die Permeabilität bestimmt die mittlere Neigung der Magnetisierungskurve. Ein ferromagnetisches Material mit grosser Permeabilität weist eine Magnetisierungskurve auf, die in der Darstellung gestreckter und horizontaler verläuft. Dadurch wird die Grenze zwischen stabilem und labilem Ankergleichgewicht nach links, also gegen grössere Werte von l, geschoben. Ferner wird der Bedarf an Magnetisierungsstrom gesenkt, vorwiegend bei der Abfallgrenze.

Die Koerzitivkraft bestimmt die Breite der Magnetisierungskurve und damit zum einen Teil die Differenz zwischen Anzugs- und Abfallstrom. Da gerade dieser Teil von der magnetischen Vorgeschichte des Relais abhängig ist, bringt die Koerzitivkraft neben allfälligen Reibungs- und Adhäsionseffekten wohl die grösste Unsicherheit in das Verhalten des Relais. Der Einfluss der Koerzitivkraft kann in der graphischen Darstellung gut abgeschätzt und mit der Wirkung von Streuungen in den übrigen Parametern verglichen werden.

Die Remanenz sagt nicht viel über das Relais aus. Eine grosse Remanenz kann auf ein sehr gutes Eisen mit kleiner Koerzitivkraft und grosser Permeabilität hinweisen oder auf ein sehr schlechtes mit kleiner Permeabilität und grosser Koerzitivkraft. Eine kleine Remanenz kann eine kleine Koerzitivkraft bedeuten, oder aber auch eine kleine Permeabilität.

Die Gestaltung des Eisenweges kann auf das Relais grossen Einfluss haben. Gelingt es zum Beispiel, bei gleichbleibenden Verhältnissen im Luftspalt, die Länge des Eisenweges zu halbieren, ohne seine Querschnitte zu verändern, so wird der Bedarf an Magnetisierungsstrom I_L für jede Induktion B_1 halbiert. Die Magnetisierungskurve wird halb so breit und doppelt so flach, d. h., das Relais funktioniert wie mit einem Eisen von doppelter Permeabilität und halber Koerzitivkraft.

Weiter ist es möglich (theoretisch wenigstens) durch passende Gestaltung der Eisenquerschnitte dafür zu sorgen, dass bestimmte Zusammenhänge bestehen zwischen der Induktion im Luftspalt und den Induktionen in einzelnen Abschnitten des Eisenweges. Auf diese Weise könnte versucht werden, der Magnetisierungskurve des Eisens eine gewünschte optimale Form zu geben, welche im Diagramm zu ermitteln ist.

6. Elektrische Einflüsse auf die Arbeitsgeschwindigkeit

Die Beschleunigung des Ankers bei einer gegebenen Magnetisierung des Relais ist abhängig von seiner Trägheit und vom Verlauf der resultierenden Kraft $F_e + F_m$. Diese Grössen könnten relativ leicht ermittelt werden, wenn man die Magnetisierung als konstant annehmen dürfte. Dies ist aber nicht der Fall:

Wenn Spannung auf die Relaisspule gegeben wird, nimmt der Spulenstrom wegen der Selbstinduktion der Wicklung nur mit einer gewissen Trägheit zu. Beginnt der Anker sich zu bewegen, dann erzeugt er zusätzlich mechanisch eine Spannung proportional $\mathrm{d}\Phi/\mathrm{d}t$, welche eine vergrösserte Gegen-EMK zufolge hat, so dass oft der maximale Wert des Spulenstromes erst erreicht wird, wenn der Anker seine Bewegung schon beendet hat. Dieser Spulenstrom ist noch nicht identisch mit der Magnetisierung des Relais, weil davon noch ein Strom zu subtrahieren ist, der im Eisen durch Wirbelströme kompensiert wird. Alle diese Effekte, Selbstinduktion, mechanisch erzeugte Gegen-EMK und Wirbelströme, verzögern den Anzug des Ankers.

Beim Abfall spielt sich ungefähr dieselbe Erscheinung ab. Es besteht nur ein Unterschied je

nachdem, ob der Relaisstrom durch einen Schalter abgeschaltet wird, oder ob er durch Verminderung der Spannung aus einer niederohmigen Quelle verkleinert werden soll. Im ersten Fall wirken bloss die Wirbelströme der Abnahme entgegen, im zweiten Fall tritt wieder die Wirkung der induzierten Spannungen dazu.

Auch hier gibt das Diagramm noch gewisse Auskünfte, indem es gestattet, die in verschiedenen Lagen des Ankers herrschenden Induktionen im Luftspalt zu bestimmen. Daraus ergeben sich (immer unter Vernachlässigung der Streuung) die Flüsse in der Spule, und aus deren Änderung das zeitliche Integral der Gegen-EMK:

$$\int_{t_{1}}^{t_{2}} E \, dt = N \cdot \Delta \Phi \cdot 10^{-8} = N \, a_{1} \left[B_{1} \left(t_{2} \right) - B_{1} \left(t_{1} \right) \right] 10^{-8}$$
(N Windungszahl der Wicklung)

Aus dem Wert des Integrals kann die Zeit (t_2-t_1) geschätzt werden, die bei einer angelegten Spannung U verstreicht, bis ein vorgegebener Wert der Induktion B_1 erreicht ist.

Die Wirbelströme lassen sich in grober Näherung so berücksichtigen, dass man den Kern als ideal annimmt, diesen aber mit einer Sekundärwicklung von einer Windung versieht, die über einen Widerstand ϱ geschlossen ist. Der Widerstand ϱ ist abhängig von der Form des Kernquerschnittes und vom Kernmaterial. Mit der eigentlichen Relaiswicklung zusammen bildet dann das Ganze einen Transformator und wirkt ungefähr wie ein parallel zur Erregungswicklung geschalteter Widerstand von der Grösse $R=\varrho\ N^2.$

Anhang

Die Form der Gleichgewichtskurve

Die Gleichgewichtskurve des Ankers

$$F_e + F_m = 40,6 \ \ddot{u} \ a_1 \ B_1^2 + k \ (l - l_0) = 0$$

mit der Zusatzgleichung

$$l = (0.4 \pi I_l) / (10^3 B)$$

führt in den B_1 I_l -Koordinaten zur Gleichung einer einfachen kubischen Parabel

$$x \, (1-a^2 \, x^2) - c = 0$$
worin $x = B_1$
 $a = \sqrt{rac{40,6 \, \ddot{u} \, a_1}{k \, l_0}}$
 $c = rac{0,4 \, \pi}{10^3 \, l_0} \, I_l$

Diese Parabel hat folgende leicht bestimmbare Punkte:

1.
$$I_l = 0$$
 bei $x^* = \frac{1}{a}$

2. Extremstelle bei

$$x_{
m extr.} = rac{1}{\sqrt{3}} x^*$$
 $I_{
m extr.} = rac{10^3 \ l_0}{0.4 \ \pi} \cdot rac{2}{3} \cdot rac{1}{\sqrt{3}} x^* = 306,5 \ l_0 \ x^*$
 $l_{
m extr.} = rac{2}{3} \ l_0$

3. Bei
$$l_{\alpha}=\alpha \ l_0$$

$$x_{\alpha}=\sqrt{1-\alpha} \cdot x^*$$

$$I_{l,\,\alpha}=\alpha \sqrt{1-\alpha} \cdot \frac{10^3}{0.4 \, \pi} \ l_0 \, x^*$$

4. Steilheit der Kurve an einer beliebigen Stelle x:

$$\frac{\mathrm{d}\ I_l}{\mathrm{d}\ x} = \frac{I_l}{x} \left(3 - \frac{2}{\alpha} \right)$$

Adresse des Autors:

 $P.\ Koch,\ Dr.\ phil.\ nat.,\ Eidgenössisches\ Amt$ für Mass und Gewicht, Bern.

Normung von Transformatoren

Von H. Wildhaber, Wettingen (AG)

389.6:621.314.2

Der Mangel an technischem Personal zwingt zur Rationalisierung der Arbeit. Im Sinne dieser Bestrebungen wird die Normung von Grosstransformatoren in Bezug auf Leistung, Spannung, Regulierbereich, Isolationsniveau und weitere Konstruktionsmerkmale vorgeschlagen und auf die Vorteile einer solchen Vereinheitlichung für Verbraucher und Hersteller hingewiesen.

Le manque de personnel technique exige une rationalisation du travail. Dans ce but, l'auteur propose une normalisation des grands transformateurs, en ce qui concerne leur puissance, leur tension, leur étendue de réglage, leur niveau d'isolement et d'autres caractéristiques de construction. Il indique quels en seraient les avantages pour les exploitants et les fabricants.

Verteiltransformatoren für Sekundärnetze sowie Transformatoren bis zu einigen Tausend kVA und bis 50, teilweise 60 kV, werden vom Hersteller listenmässig entsprechend den in der Schweiz vorkommenden Spannungen und in genügend feiner Leistungsabstufung geführt. Dem Verbraucher steht somit in allen Fällen ein den jeweiligen Anforderungen gut entsprechender Transformator-Typ zur Verfügung. Das Interesse beider Beteiligten, des Verbrauchers und des Herstellers, ist gewahrt, indem der Verbraucher seine Bedürfnisse durch ein Serie- oder Normalfabrikat erfüllt sieht, das er einheitlich in allen Unterstationen vorsehen und jederzeit leicht ersetzen kann, während der Hersteller nach Entwicklung einer Typenreihe keine wesentlichen weiteren Konstruktionsarbeiten mehr aufzuwenden braucht, sondern sämtliche Verbraucher, so verschieden deren Netze und Anforderungen sind, rasch und mit einer bewährten Ausführung beliefern kann.

Damit soll nicht gesagt sein, dass im Streben nach Normung - wovon nachstehend die Rede ist — für Verteiltransformatoren schon die letzten Ziele erreicht wären. So sollte zum Beispiel die Tendenz nach Verminderung der Anzahl Oberspannungen konsequent verfolgt und vorerst eine wenigstens regionale Vereinheitlichung der Oberspannung weiter getrieben werden. Die im Zuge der Erhöhung der Spannungen (8/16 kV) geschaffenen, von Parallel- auf Serienschaltung umschaltbaren Typen sollte nicht immer häufiger verlangt, sondern auf die notwendige Minimalzahl beschränkt und schliesslich nach vollzogenem Spannungsumbau ganz vermieden werden. Auch würde eine Verständigung auf einheitliche Bauart hinsichtlich Anzapfungen eine willkommene Vereinfachung bedeuten; weniger Anzapfungen würden zu entsprechend niedrigeren Preisen führen.

Im Gegensatz zu den Verteiltransformatoren werden Grosstransformatoren für die schweizerische Kundschaft von Fall zu Fall entsprechend den in der Anfrage verlangten Angaben besonders berechnet und konstruiert. Leistung, Spannungen und Isolationsniveau werden den Wünschen der Besteller angepasst, bei Stufentransformatoren auch der Regulierbereich der Spannung sowie in gewissen Grenzen die Stufenzahl. Hieraus ergibt sich ohne Berücksichtigung der zahlreichen Unterschiede äusserer Konstruktionsmerkmale eine sehr grosse Zahl von Varianten. Ist der damit verbundene Arbeitsaufwand schon beim Verbraucher für seine Projektstudien und die Ausarbeitung stets neuer Pflichtenhefte beträchtlich, so lässt sich der grosse Zeitaufwand für die recht umfangreichen Berechnungs- und Konstruktionsarbeiten beim Hersteller angesichts des ausgesprochenen, andauernden Mangels an technischem Personal kaum noch verantworten. Es liegt im beidseitigen Interesse, die Variantenzahl zu vermindern. Für die Elektrizitätswerke ergibt sich daraus der Vorteil weitgehender Freizügigkeit beim Austausch von Einheiten sowie der einfacheren Reservehaltung. Auch der Preis kann beeinflusst werden. Zwar blieben sich die Fabrikationseinrichtungen und -methoden gleich und von einer Ersparnisse bringenden Seriefabrikation kann bei den in Frage stehenden Objekten und geringen Stückzahlen nicht die Rede sein. Wohl aber ergeben Vereinfachungen, mit denen Minderlieferungen verbunden sind, wie kleinere Zahl Anzapfungen und Klemmen, kleinerer Regulierbereich, entsprechende Minderpreise. Ferner ist eine Kürzung der Lieferfristen denkbar, die gegenwärtig nicht nur durch die eigentliche Fabrikationszeit, sondern auch durch die Überlastung der technischen Abteilungen beeinflusst werden. Der grösste Gewinn aber ist darin zu erblicken, dass beim Hersteller Kräfte für neue, notwendige Studien und Entwicklungsarbeiten, die wieder den Kunden zugute kommen, frei werden.

Der Wunsch geht also dahin, für Grosstransformatoren an Stelle der bisherigen Mannigfaltigkeit künftig einheitliche technische Bedingungen, insbesondere eine Leistungsreihe, eine Spannungsreihe, gleiche Regulierbereiche und gleiches Isolationsniveau festzulegen. Die folgenden kurzen Ausführungen über die bestehenden Zustände sollen diesen Wunsch verständlicher machen, wobei an Stelle einer vollständigen Darstellung einige Hinweise genügen dürften.