Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätswerke
Band:	46 (1955)
Heft:	17
Artikel:	Kurzschlussversuche mit Schnellwiedereinschaltung auf der 22-kV- Leitung Mettlen-Lavorgo
Autor:	Schär, F. / Baltensperger, P.
DOI:	https://doi.org/10.5169/seals-1060946

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 08.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Kurzschlussversuche mit Schnellwiedereinschaltung auf der 220-kV-Leitung Mettlen—Lavorgo

Von F. Schär, Olten, und P. Baltensperger, Baden

621.316.57.064.22 : 621.316.92

Vor der endgültigen Übergabe an den Betrieb wurden die zum Schutze der 100 km langen 220-kV-Leitung Mettlen-Lavorgo mit geerdetem Nullpunkt eingebauten Schutzeinrichtungen und Schalter für Schnellwiedereinschalten durch Lichtbogenkurzschlüsse im normalen Betrieb erprobt. Die hier beschriebenen V ersuche haben das einwandfreie Arbeiten der beteiligten Schnelldistanzrelais mit Druckluftschnellschaltern und zugehöriger Wiedereinschaltapparatur erwiesen. Der nach dem einpoligen Abschalten des Erdschlusses noch brennende Restlichtbogen erlosch in höchstens 2 Perioden. Bei Pausenzeiten von mehr als 0,22 s bei dreipoligen und von 0,45 s bei einpoligem Abschalten fand nie Rückzünden statt, und die Energieübertragung blieb aufrechterhalten. Besonders bemerkenswert ist auch die Zuverlässigkeit und Präzision, mit der die Druckluftschnellschalter, Schnelldistanzrelais und Wiedereinschaltapparate bei allen Versuchen arbeiteten.

Einleitung

Wie das Schema Fig. 1 zeigt, stellt die 220-kV-Leitung Mettlen-Lavorgo eine der wichtigsten Verbindungen im Hochspannungsnetz der Aare-Tessin A.-G. für Elektrizität (Atel) dar.

Es war daher nur natürlich, dass diese rund 100 km lange Verbindung über die Alpen mit dem neuzeitlichsten Schutz, nämlich mit über einen HF-Kanal gekuppelten Distanzrelais, Druckluft-Schnellschaltern und einer Schnellwiedereinschaltautomatik versehen wurde.

Bevor diese Einrichtung dem Betrieb übergeben werden konnte, wurde sie, zusammen mit den Druckluftschaltern an beiden Leitungsenden, eingehenden Proben unterworfen. Die ersten Versuche wurden ohne Kurzschluss durchgeführt und dienten dazu, sämtliche Steuerbefehle und Pausenzeiten der Schalter oszillographisch zu kontrollieren. Hernach wurden ungefähr in der Mitte der Leitung bei Erstfeld-Leitschach betriebsmässige Erdschlüsse auf verschiedenen Phasen - der Netznullpunkt ist geerdet - und zweipolige isolierte Kurzschlüsse eingeleitet. Dabei wurden die Ströme und Spannungen an beiden Leitungsenden und am Kurzschlussort aufgenommen. Anhand dieser Oszillogramme konnte das Funktionieren der ganzen Einrichtung genauestens verfolgt und geprüft werden. Daneben benützte man die Gelegenheit, um zu messen, ob der an der Kurzschlußstelle noch bestehende Restlichtbogen innert genügend kurzer Zeit von selbst verlöscht, derart, dass die aus Stabilitätsgründen ebenfalls kurz zu wählende Pausenzeit zwischen Aus- und Wiedereinschaltung für ein erfolgreiches Wiedereinschaltspiel genügt. Dieser Restlichtbogen kann bekanntlich beim 1poligen Erdschluss durch die zwischen der Fehlerphase und den beiden andern «gesunden» Leitern vorhandene Kapazität und Spannung aufrechterhalten bleiben.

Da Parallelleitungen einen unrichtig dimensionierten Hochfrequenzkanal, speziell bei einem Kurzschluss, ungünstig beeinflussen können, wurden auf der 150-kV-Leitung Airolo-Mettlen, welche 52 km mit der 220-kV-Leitung auf demselben Gestänge verläuft, ebenfalls Kurzschlüsse eingeleitet. L'efficacité des dispositifs de protection et des disjoncteurs pour refermeture rapide de la ligne à 220 kV Mettlen-Lavorgo, a été contrôlée, avant mise en service, par des essais de court-circuit par arc. Le neutre du réseau est à la terre. Les essais ont montré le fonctionnement entièrement correct des relais de distance, des disjoncteurs rapides à air comprimé et des appareils de réenclenchement. Après la coupure de la phase affectée l'arc résiduel s'est éteint au bout de 2 périodes au maximum. Pour des temps morts supérieurs à 0,22 s lors de déclenchements triphasés et de 0,45 s lors de déclenchements monophasés, il n'y eut jamais de réallumage et le transport de l'énergie ne fut pas interrompu. Il faut signaler spécialement la sûreté de fonctionnement et la précision remarquable des disjoncteurs, des relais de distance et des appareils de réenclenchement à tous les essais.

Hiebei durfte der auf der Lukmanierleitung angekoppelte Hochfrequenzkanal nicht beeinflusst werden, d. h. weder nach Norden noch nach Süden einen Schaltbefehl übertragen.

Ferner benützte man die Gelegenheit, um den Spannungstrichter an der Kurzschlußstelle auszumessen.

Da die Versuche bei Schwachlast stattfanden, wurden keine Untersuchungen über die Netzstabilität durchgeführt.

Die Erdschlüsse und die Kurzschlüsse wurden alle auf dem Strang Lavorgo-Mettlen bzw. Airolo-Mettlen an Mast Nr. 9411 bei Erstfeld-Leitschach eingeleitet. Die beiden Stränge laufen dort noch parallel auf den gleichen Masten.

Wie Fig. 2 und 3 zeigen, sind für die Versuche zwei Polleiterseile der Freileitung über entsprechende Anschlüsse in die Nähe des Bodens geführt und dort an Isolatorensäulen befestigt worden. Die Isolatorensäulen selbst standen ihrerseits auf einem Isolierschemel, auf welchem an passender Stelle «Druckluftkanonen» angebracht waren, mit welchen dünne Drähte vertikal zu den mit den Polleiterseilen verbundenen Hörnern hinaufgeschossen werden konnten, womit die Erdschlüsse eingeleitet wurden. Bei 2poligen Erdschlüssen betrug die Zeitdifferenz zwischen dem Zünden der beiden Phasenlichtbogen maximal ca. 1 cs⁻¹), was Bedingung ist zur guten Nachahmung der Verhältnisse bei einem Gewitterüberschlag.

Für die 2polig isolierten Kurzschlüsse benützte man eine oben auf einer der Isolatorsäulen montierte Kanone, die horizontal zum andern Isolator schoss. An der Kurzschlußstelle in Erstfeld wurde mit einem Schleifen- und mit einem Kathodenstrahloszillographen gemessen. Die Aufnahme von Strom und Spannung des Restlichtbogens erfolgte mit Hilfe von Amplitudenbegrenzern.

Prinzipielle Wirkungsweise des Schutzes

Fig. 4 und 5 zeigen das vereinfachte Wirkungsschema des Schutzes und der Schnellwiedereinschaltung.

¹) 1 cs = 1 Zentisekunde = 0.01 s = 10 ms

f Kurzschlußstelle

Die Zahlen bei den Generatoren und Transformatoren geben die Nennleistung in MVA an

Da jedes Schnelldistanzrelais rund 85 % der ganzen Strecke mit Grundzeit schützt oder, anders ausgedrückt, Fehler innerhalb derselben nach rund 0,1 s abschaltet, so liegen alle Fehlerstellen in der Grundzeitstufe mindestens eines der beiden Relais.

Anordnung der Kurzschlußstelle am Mast Nr. 9411 bei Erstfeld-Leitschach für die Erd- und Kurzschlüsse Rechte Masthälfte 220-kV-Strang (Lukmanier); linke Masthälfte 150-kV-Strang (Gotthard) Die mit HF bezeichneten Leiter dienen der Übertragung von HF-Signalen

Tritt ein Kurzschluss am Anfang der Leitung in den ersten 15 % der Strecke auf, so gibt daher das dort eingebaute Relais den Abschaltbefehl nach 0,1 s und überträgt ihn über den HF-Kanal zum Relais am andern Ende, welches so ebenfalls mit Grundzeit auslösen wird. Bei 2- und 3poligen Kurzschlüssen lösen die beiden Schalter in allen drei Phasen aus und schalten nach einer spannungslosen Pause von rund 0,3 s wieder automatisch ein. Ist der Kurzschluss bis dahin verschwunden, so bleiben die Schalter eingeschaltet, besteht der Fehler noch, so erfolgt eine zweite Abschaltung, die diesmal definitiv ist.

Tritt nur lpoliger Erdschluss auf, dann wird an beiden Leitungsenden nur der betreffende Schalterpol geöffnet. Wie erwähnt, bleibt nach dem beidseitigen lpoligen Abschalten des betroffenen Leiters noch ein kapazitiver Reststrom bestehen, dessen Lichtbogenstrecke bis zum Wiedereinschalten entionisiert sein muss, wenn die lpolige Schnellwiedereinschaltung erfolgreich sein soll. Über die Dauer dieses Reststromes sind noch wenig zuverlässige Unterlagen vorhanden, weshalb es nützlich erschien, diese Ströme und Spannungen ebenfalls zu messen. Bei lpoligem Erdschluss kann die spannungslose Pause ohne Gefährdung der Netzstabilität länger gewählt werden (ca. 0,45 s), da ja die Netzteile noch über zwei Leiter und die geerdeten Nullpunkte miteinander verbunden bleiben. Diese

Lichtbogen-Zündeinrichtung

Die Druckluftkanonen, nahe bei den Füssen der Isolatorensäulen, sind deutlich sichtbar. Bei Doppelerdschlüssen ist darauf zu achten, dass die beiden Phasen gleichzeitig zünden. Lichtbogendistanz für Erdschlüsse 2,05 m, für 2-polige isolierte Kurzschlüsse 2,65 m

längere Pausenzeit erhöht die Sicherheit gegen das erneute Zünden des Kurzschlusslichtbogens nach dem Wiedereinschalten.

Fig. 4 und 5

Auslösecharakteristiken der Distanzrelais und Prinzipschema der Auslösekupplung über einen HF-Kanal
1 zu schützende Leitung; 2 Distanzrelais; 3 Auslösecharakteristik des Distanzrelais in Station B; 4 HF-Kanal

Wie aus den Fig. 4 und 5 leicht abgeleitet werden kann, hätten beim gewählten Störungsort ohne besondere Vorkehren jeweils beide Relais den Fehler mit Grundzeit erfasst. Damit aber nicht die ganze Installation mit grossem Zeitaufwand an das Leitungsende versetzt werden musste, wurden die Relaiseinstellungen in Lavorgo und Mettlen so verändert, dass der Kurzschlussort relaistechnisch abwechslungsweise in der Leitungsmitte, am Nordende oder am Südende der Leitung erschien. DemS und T ausgewählt; an diesen beiden Phasen ist in Mettlen und Lavorgo die HF angekoppelt, was für die Übertragung die ungünstigsten Bedingungen darstellt. Um Zufallsergebnisse auszuschalten, wurde jeder Versuch zweimal durchgeführt. So erhielt jede Phase sechs Erdschlüsse: zwei, bei denen Erstfeld in der Grundzeitstufe der beiden Schnell-

Fig. 6 Oszillogramme Nr. 1 von Mettlen, Lavorgo und Erstfeld Einpoliges Aus- und Wiedereinschalten. Erdschluss an Phase S. Erstfeld in der Grundzeitstufe beider Relais

A Messung in Mettlen; B Messung in Lavorgo; C Messung in Erstfeld; a Schalter in Mettlen automatisch aus; b Schalter in Lavorgo automatisch aus; c Schalter in Mettlen automatisch ein; d Schalter in Lavorgo automatisch ein; U_R , U_S , U_T Phasenspannung in R, S bzw. T; I_R , I_S , I_T Phasenstrom in R, S bzw. T; $3 \cdot I_0$ Summenstrom; U_{S-Rest} , U_{T-Rest} Restspannung in Phase S bzw. T gegen Erde mit Amplitudenbegrenzer gemessen; I_{S-Rest} , I_{T-Rest} Reststrom in Phase S bzw. T mit Amplitudenbegrenzer gemessen; I_E Strom, welcher an der Erdschlußstelle direkt in den Boden fliesst; p Schalterbefehl; z Zeitmaßstab

Die Restspannung der Phase S weist nach dem Löschen des Restlichtbogens eine Grundschwingung von ca. 2,8 Hz auf, welche durch die Kapazität der Phase S und die Spannungswandler der Leitung bedingt ist.

entsprechend hatte der Hochfrequenzkanal entweder keinen Befehl durchzugeben oder den Befehl von Mettlen nach Lavorgo bzw. von Lavorgo nach Mettlen zu übertragen.

Versuchsresultate und allgemeiner Verlauf

1. Kurzschlüsse auf der 220-kV-Strecke Mettlen-Lavorgo

Für die Kurzschlüsse und die Erdschlüsse auf der 220-kV-Strecke wurden von der Atel die Phasen

distanzrelais lag, zwei, bei denen der HF-Befehl die Grundzeitauslösung im Norden und zwei, bei denen der HF-Befehl die Grundzeitauslösung im Süden veranlassen musste.

Wie gut hiebei die Einrichtungen gespielt haben, zeigen die nachfolgend als Beispiel ausgewählten Oszillogramme.

Wie aus den Oszillogrammen ersichtlich ist, war die Wiedereinschaltung erfolgreich. Der Kurzschluss wurde in Mettlen und Lavorgo praktisch gleich schnell abgeschaltet. Die Pausenzeitdifferenz der Schalter betrug nur 2,1 cs.

Tabelle	I	
	_	

Technische Daten typischer Versuche:

			0	Absch	altung				Pausenzeit	
Versuchs- Nr.	Kurzschluss- art	Station	Auslösung durch	Relaiszeit	Schalterzeit	Relais- plus Schalterzeit	Schalterspiel	Schalter	ŧU	ŧI
				cs	cs	cs		cs	CS	CB
1	SE	Erstfeld Mettlen Lavorgo	DS DS		6,2	$\frac{-13}{14,6}$	$\begin{array}{c} {}^{1} \mathbf{ph.} \\ - \\ \mathbf{A + E} \\ \mathbf{A + E} \end{array}$	42,6 44,7	40,5 40,5 40,5	46,3 46,3
3	SE	Erstfeld Mettlen Lavorgo	HF DS	10,0	6,5	18 16	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	45,5 43,5	$ \begin{array}{r} 41,5 \\ 41,5 \\ 41,5 \\ 41,5 \end{array} $	47,5 47,5
4	SE	Erstfeld Mettlen Lavorgo	HF DS	 9,0	6,0	16,2 15	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	45,4 44	$\begin{array}{c} 42,8\\ 42,8\\ 42,8\\ 42,8\end{array}$	46,6 46,6
7	TE	Erstfeld Mettlen Lavorgo	DS DS	6,5 8,0	6,5	$\begin{array}{c} -13\\14\end{array}$	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	47 47	46 46 46	48 48
10	TE	Erstfeld Mettlen Lavorgo	HF DS	 9,0	6,5	17 15	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	47,3 47	44,8 44,8 44,8	49,3 49,3
12	TE	Erstfeld Mettlen Lavorgo	DS HF	6,0	5,8	$\frac{-12}{14}$	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	48 47,5	45,5 45,5 45,5	49,5 49,5
15	ST	Erstfeld Mettlen Lavorgo	HF DS	 9,0	6,8	 17 15	$ \begin{array}{r} 3 \text{ ph.} \\ - \\ \mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E} \end{array} $	25 29	25 25 25	29 29
16	ST	Erstfeld Mettlen Lavorgo	HF DS	 9,5	6,0	17,5 15,5	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	28 31	28 28 28	31 31
17a	ST	Erstfeld Mettlen Lavorgo	DS HF	11,0	6,0	17 20	$\mathbf{A} + \mathbf{E} \\ \mathbf{A} + \mathbf{E}$	28,5 31,5	25,5 25,5 25,5	34,5 34,5

Erklärungen zu den Tabellen I und II

Allgemeine Zeichen:		Kommt nicht in Frage
	leeres Feld	Nicht beobachtet oder gemessen
Kurzschlussart:	SE TE ST	Erdschluss Phase S Erdschluss Phase T Zweipoliger Kurzschluss Phasen S und T
Auslösung durch:	DS HF	Auslösung veranlasst durch Schnelldistanzrelais Auslösung veranlasst durch Hochfrequenzsignal
Schalterspiel:	$\begin{array}{c} \mathbf{l} \mathbf{ph} \\ \mathbf{A} + \mathbf{E} \end{array}$	Einphasig Auslösung plus Wiedereinschaltung
Pausenzeiten :	$t_U t_I$	Pause, während welcher keine Betriebspannung auf der Leitung ist Pause, während welcher kein Betriebstrom durch die Leitung fliesst
Distanzschutzeinstellung:	$^{0/0} V c = 0,5$	Eingestellte Prozente der Spannung am Abgleichwandler, mit Konstante $c = 0,5$
%/% der Kurzschlussentfernung	:	Die Distanz für die erste Stufe befindet sich in soundso viel Prozent der Ent- fernung des Kurzschlussherdes Erstfeld
Relaissignale:	D S T E W CU	Auslöseschütz Ansprechschütz Phase S Ansprechschütz Phase T Erdschluss-(Summenstrom)-Schütz Wiedereinschaltschütz Minimalspannungsrelais für Freigabe des HF-Empfang-Signals in der betreffenden Phase. (): Ansprechen erst nach der Abschaltung Hochfrequenzempfang
Witterungsverhältnisse:	beziehen sicl	auf den Kurzschlussort Erstfeld
Kurzschlußströme:	Effektive Str	öme vor dem Abschalten, gemäss Oszillogrammen
	IS IT IE IO 3IO UMast-O USonde	Kurzschlußstrom Phase S Kurzschlußstrom Phase T Strom, der an der Kurzschlußstelle in den Boden geht, d. h. gesamter Erdschluss- strom minus Strom durch das Erdseil. Nullstrom pro Phase Summe der 3 Nullströme oder Summenstrom Spannung zwischen der Masterde und dem 0-Punkt des 380-V-Ortsnetzes Spannung zwischen der Erdsonde im Spannungstrichter und dem Nullpunkt des 380-V-Ortsnetzes
	Ort der Sonde	e Siene Fig. 15

766

Arbeiten der Relais und Schalter

Tabelle I

767

Einstellung schutzer	des Distanz- s 1. Stufe		Rel	aissignale				Anlauf Dist	von wei tanzrelai	teren s		w	itterung	in Erstfe	eld
% V	% der Kurz-	Distar	nz•	CT			Mettlen,	Air	olo, Abg	ang	Lavorgo,	Relativ	e Wi	nd-	Tempe-
c = 0,5	Entfernung	schut	tz	ιu	H	F	Abgang	Mettle	n La	vorgo	Abgang	keit in	g- stä	rke	ratur
	•											%	I	n/s	°C
47 47	175 160	DSE DSE	W W	s s	- C H	-) F	0	E		0	SE	90	2	.,7	9
$197 \\ 47$	42 160	SEW DSE	W	s s	H	F)	SE	E		0	E				
$110 \\ 47$	76 160	SEW DSE	W	s s	H	F)	Е	E		0	Е	¥1			
47 47	175 160	DTE DTE	W	T T	H	E F	Ε	E		0	TE				
$110 \\ 47$	76 160	TEW DTE	W	T	H	F	TE	TE	2	0	TE	60		0	
47 87	175 85	DTE TEW	W	T T	H H) F	E	E	/ (ad 1)	E	TE	08		0	11
99 47	85 160	TW DTW	V	ST(R) ST(R)	H G	F)	Т	0		т	Т	96		0	8
94 47	90 160	STW DTW	V	ST(R) ST(R)	H	F D	т	0		0	Т				
$\frac{-}{47}$ 82	175 90	DST TW	W	ST(R) ST(R)) F	Т	0		0	Т	93		0	8
				Tallai	ala D.	-A and Acces		7 7	a		7 0	1523			
				1 ecnnis	sche D	aten ty	pischer	ersuch	e: Stro	ome ur	id Spann	ungen		I	'abelle II
ersuchs-Nr.	Station	IS	IŢ	3 I ₀ Luk- manier	IE	3 I ₀ Gott- hard	Span- nung der be- troffe- nen Phase	Spannu Erdsel lichtbo Scheite Phase	e: Stre ng des hluss- ogens elwert Phase	Kurz- schluss dauer	Kapa Spannu Lösch Restlich Phase	zitive ng nach en des tbogens Phase	Spar U _{Mast-o}	T anungstri U _{Sonde}	abelle II chter Ort der Sonde
Versuchs-Nr.	Station	IS		3 Io Luk- manier		3 Io Gott- hard	Span- nung der be- troffe- nen Phase	Spannu Erdsel lichtbo Scheite Phase S	e: Stro ng des hluss- ogens elwert Phase T	Kurz- schluss dauer	Kapa Spannu Lösch Restlich Phase S	ungen zitive ng nach en des tbogens Phase T	Spar U _{Mast-o}	T nnungstri U _{Sonde}	abelle II chter Ort der Sonde
Versuchs-Nr.	Station	IS A		3 I ₀ Luk- manier		3 I ₀ Gott- hard	Span- nung der be- troffe- nen Phase kV	Spannur Erdsel lichtbe Scheite Phase S kV	e: Stro ng des hluss- ogens elwert Phase T kV	Kurz- schluss dauer	d Spann Spannu Lösch Restlich Phase S kV	ungen zitive ng nach en des tbogens Phase T kV	Span U _{Mast-0} kV	T anungstri U _{Sonde} kV	abelle II chter Ort der Sonde
Versuchs-Nr.	Station Erstfeld Mettlen Lavorgo	IS A 1840 1025 850	IT 	3 I ₀ Luk- manier A 1840 1185 690		3 I ₀ Gott- hard A 314	Span- nung der be- troffe- nen Phase kV	Spannu Erdsel lichtbo Scheite Phase S kV 3,2 —	e: Streen ng des bluss- ogens elwert Phase T kV	kurz- schluss dauer cs 15 13 15	Kapa Spannu Lösch Restlich Phase S kV	zitive ng nach en des tbogens Phase T kV	Spar U _{Mast-0} kV 4,75 	1 nnungstri U _{Sonde} 	abelle II chter Ort der Sonde II/100
L Aersuchs-Nr.	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130	IT 	3 I ₀ Luk- manier A 1840 1185 690 2130	IE 	3 I ₀ Gott- hard A 314	Span- nung der be- troffe- nen Phase kV 33 38 46,7	Versuch Spannu Erdsel lichtbe Scheite Phase S kV 3,2 3,0 3,0	e: Stro ng des bluss- ogens elwert Phase T kV	kurz- schluss dauer cs 15 13 15 18 18 18 18	kapa Spannu Lösch Restlich Phase S kV 10,0 13,0	zitive ng nach en des thogens Phase T kV	Span UMast-o kV 4,75 	USonde 	abelle II chter Ort der Sonde II/100
Leranceps-Nr.	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130 2220 1390 790	IT 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640	IE IE 	3 I ₀ Gott- hard 314 406	Span- nung der be- troffe- nen Phase kV 33 38 46,7 46,8 34,3	Versuch Spannu Erdsel lichtbo Scheite Phase S kV 3,2 3,0 2,6 	e: Stro ng des bluss- ogens elwert Phase T kV 	Kurz- schluss dauer cs 15 13 15 18 18 18 16 16 16 16	kapa Spannu Löseh Restlich Phase S kV 10,0 13,0	zitive ng nach en des tbogens Phase T kV	Spar UMast-o kV 4,75 	U _{Sonde}	Image: Abelle II chter Ort der Sonde III/100
Lerenceps-Nr.	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130 2220 1390 790	IT A 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640 2120	IE IE 	3 I ₀ Gott- hard A 314 406	Span- nung der be- troffe- nen Phase kV 33 38 46,7 46,8 34,3 46,6 33,3	Versuch Spannu Erdsel lichtbé Scheite Phase S kV 3,2 3,0 2,6 2,6 	e: Streen ng des hluss- ogens elwert Phase T kV 	Kurz- schluss dauer cs 15 13 15 18 18 16 16 16 16 16 15 14 13 14	Kapa Spannu Löseh Restlich Phase S kV 10,0 13,0	ungen zitive ng nach en des tbogens Phase T kV 	Spar U _{Mast-o} kV 4,75 5,7 5,6 5,6 	USonde 	abelle II chter Ort der Sonde II/100
Liveranova Andrewski Andre	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130 2220 1390 790	IT A 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640 2120 2160 1560 660	IE IE 370 360 400 370 	3 I ₀ Gott- hard A 314 406 420	Span- nung der be- troffe- nen Phase kV 33 38 46,7 46,8 34,3 46,6 33,3 46,5 34,5	Versuch Spannu Erdsel lichtbé Scheite Phase S kV 3,2 3,0 2,6 	e: Stro ng des hluss- ogens elwert Phase T kV 	Kurz-schluss dauer cs 15 13 15 18 16 16 16 17 17 15	kapa Spannu Löseh Restlich Phase S kV 10,0 13,0	ungen zitive ng nach en des tbogens Phase T kV 	Spar U _{Mast-o} kV 4,75 5,7 5,6 5,6 5,5 5,5	USonde 	abelle II chter Ort der Sonde II/100
ії. Ч-вероваль 1 1 3 4 7 10 12	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130 2220 1390 790	IT A 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640 2120 2600 2100 1560 640 2120	IE IE A 	3 I ₀ Gott- hard A 314 406 420	Span- nung der be- troffe- nen Phase kV 33 38 46,7 46,8 34,3 46,6 33,3 46,5 34,5 47,2 36,5	Versuch Spannu Erdsel lichtbé Scheite Phase S kV 3,2 3,0 2,6 	e: Stro ng des hluss- ogens elwert Phase T kV 	Kurz-schluss dauer cs 15 13 15 18 16 16 16 16 16 16 14 17 15 14 17 15 14 17 15 14 12 14	Ad Spann Kapa Spannu Löseh Restlich Phase S kV 10,0 13,0 	zitive ng nach en des tbogens Phase T kV 	Spar UMast-o kV 4,75 5,7 5,6 5,6 5,5 5,4 5,4 	USonde USonde kV 0,777 0,700 0,700 0,700 0,700 0,700 0,700 0,700 0,700 0,777 0,777 0,777 0,777 0,777 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,770 0,700 0,700 	abelle II chter Ort der Sonde II/100
ії чі ченорования 1 3 4 7 10 12 15	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	Is A 1840 1025 850 2130 2220 1390 790	IT A A 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640 2120 2560 660 2110	IE IE 370 360 360 380 380 -	3 I ₀ Gott- hard A 314 406 420	Span- nung der be- troffe- nen Phase kV 33 36,7 46,8 34,3 46,6 33,3 46,5 34,5 47,2 36,5 75 68	versuch Spannu Erdsel Erdsel Iichtb Scheite Phase S kV 3,2 - - 3,0 - 2,66 - - - - - - - - - - - - - -	e: Stro ng des hluss- ogens elwert Phase T kV 	Kurz-schluss dauer cs 15 13 15 18 16 16 16 16 16 16 14 17 15 14 17 17 17 17 17 17 15	Id Spann Kapa Spannu Löseh Restlich Phase S kV 10,0 13,0 13,0 	ungen zitive ng nach en des tbogens Phase T kV 17,5 18,0 18,0	Spar UMast-o kV 4,75 5,7 5,6 5,5 5,5 5,4 5,4 5,4	USonde USonde kV 0,777 0,700 	abelle II chter Ort der Sonde II/100
ії чі ча па 1 3 4 7 10 12 15 16	Station Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo Erstfeld Mettlen Lavorgo	IS A 1840 1025 850 2130 2220 1390 790 - - - - - - - - - - - - - - - - -	IT A A 	3 I ₀ Luk-manier A 1840 1185 690 2130 2220 1560 640 2120 2560 660 2110	IE IE 370 360 360 380 380 	a Io 3 Io Gott-hard A 314 406 420	Span- nung der be- troffe- nen Phase kV 33 36,7 46,8 34,3 46,6 33,3 46,5 34,5 47,2 36,5 75 68 72,5 67,5	Versuch Spannu Erdsel Erdsel Iichtb Scheite Phase S kV 3,2 - - 3,0 - 2,66 - </td <td>e: Stro ng des hluss- ogens elwert Phase T kV </td> <td>Kurz-schluss dauer cs 15 13 15 18 16 16 16 16 16 16 17 17 17 17 17 15 18 18 15</td> <td>Id Spann Kapa Spannu Löseh Restlich Phase S kV 10,0 13,0 13,0 </td> <td>ungen zitive ng nach en des tbogens Phase T kV 17,5 18,0 18,0</td> <td>Span UMast-o kV 4,75 5,7 5,7 5,6 5,5 5,5 5,4 - - 5,4 - - - - - - - - - - - - -</td> <td>T mungstri USonde kV 0,777 0,700 3,770 0,400 0,400 0,333 0,333 0,333 </td> <td>abelle II chter Ort der Sonde II/100 </td>	e: Stro ng des hluss- ogens elwert Phase T kV 	Kurz-schluss dauer cs 15 13 15 18 16 16 16 16 16 16 17 17 17 17 17 15 18 18 15	Id Spann Kapa Spannu Löseh Restlich Phase S kV 10,0 13,0 13,0 	ungen zitive ng nach en des tbogens Phase T kV 17,5 18,0 18,0	Span UMast-o kV 4,75 5,7 5,7 5,6 5,5 5,5 5,4 - - 5,4 - - - - - - - - - - - - -	T mungstri USonde kV 0,777 0,700 3,770 0,400 0,400 0,333 0,333 0,333 	abelle II chter Ort der Sonde II/100

Auch beim 10. Versuch (Fig. 7) war die Pausenzeitdifferenz zwischen den Schaltern in Mettlen und Lavorgo klein und betrug nur 0,3 cs. berechtigten Schaltbefehl übermittelt. Es wurden ein- und zweipolige Erdkurzschlüsse an den Phasen S und T an der gleichen Stelle und mit der

Fig. 7

Erfolgreiches Wiedereinschaltspiel bei Erdschluss an Phase T (Versuch Nr. 10) Erstfeld liegt relaistechnisch in der Grundzeitstufe von Lavorgo und in der 2. Stufe von Mettlen. Mettlen erhielt den Auslösebefehl von Lavorgo her über den HF-Kanal

Bezeichnungen siehe Fig. 6

In gleicher Weise wie für die lpoligen Kurzschlüsse wurden Versuche mit 2poligen isolierten Kurzschlüssen zwischen den Phasen S und T gemacht, wobei an beiden Leitungsenden alle drei Schalterpole ein Wiedereinschaltspiel zu vollziehen hatten. Fig. 8 zeigt den Kurzschlusslichtbogen zwischen den Phasen S und T bei Versuch Nr. 15.

Die Oszillogramme in Fig. 9 und 10 zeigen zwei Beispiele von solchen Kurzschlüssen.

Die ausgewerteten technischen Daten der abgebildeten und einiger weiterer Oszillogramme sind in Tabellen I und II angeführt.

Bei den Versuchen 1...14 wurde 220-kV-seitig eine Leistung von 20...25 MW übertragen. Bei den übrigen Versuchen war die Belastung praktisch 0. Die Blindleistung variierte zwischen 36 und 58 MVar, bei einem Strom von 100 bis 180 A.

2. Kurzschlüsse auf der 150-kV-Leitung Mettlen-Airolo

Diese sollten, wie schon erwähnt, vor allem zeigen, dass der HF-Kanal auf der 220-kV-Strecke trotz starker induktiver Beeinflussung keinen un-

Fig. 8

2poliger isolierter Kurzschluss auf der 220-kV-Leitung (Lukmanier, Versuch Nr. 15)

Das Kurzschlussfeuer ist, obschon der Lichtbogen eine Länge von 2,65 m hat, im Verhältnis zur nord- und südwärts der Alpen zur Verfügung stehenden Kurzschlussleistung sehr klein, da der Lichtbogen, kaum hatte er gezündet, auch schon wieder abgeschaltet wurde, wie dies das Oszillogramm Nr. 15 von Fig. 9 zeigt (Kurzschlussdauer 0,17 s) gleichen Apparatur eingeleitet. Die Schalter an den beiden Leitungsenden sind nicht für Wiederein-

zu einer definitiven Abschaltung führte. Bei allen Versuchen sind die Kurzschlüsse richtig abgeschalschaltung eingerichtet, so dass jeder Kurzschluss | tet worden, wobei keiner der Kurzschlüsse den HF-

Fig. 9

Erfolgreiches 3-poliges Wiedereinschaltspiel bei 2-poligem isoliertem Kurzschluss zwischen den Phasen S und T (Versuch Nr. 15)

Erstfeld in der Grundzeitstufe von Relais Lavorgo. Mettlen erhält den Auslösebefehl über den HF-Kanal. Die kleine Summenstromspitze beim 3-phasigen Abschalten zeigt, wie genau und gleichzeitig die drei Schalterpole zusammen abgeschaltet haben.

Eine etwas grössere Amplitude entsteht beim Einschalten der leeren Leitung zufolge des Kapazitätsstosses; diese wurde zu 200 A bei einer Frequenz von ca. 400 Hz gemessen.

Bezeichnungen siehe Fig. 6

Fig. 10

Erfolgreiches 3-poliges Wiedereinschaltspiel bei 2-poligem isoliertem Kurzschluss zwischen den Phasen S und T (Versuch Nr. 17a)

Erstfeld in der Grundzeitstufe von Relais Mettlen. Lavorgo erhält den Grundzeitauslösebefehl über den HF-Kanal. Bezeichnungen siehe Fig. 6

Kanal zu einem unberechtigten Abschaltbefehl anzuregen vermochte. Fig. 11 und 12 zeigen Aufnahmen von diesen Kurzschlüssen.

Das Verhalten des Lichtbogens

a) 1polige Erdkurzschlüsse

Bekanntlich kann nach der Unterbrechung des Lichtbogenkurzschlusses noch ein Restlichtbogen brennen, welcher durch die zwischen der Fehlerphase und den beiden «gesunden», d. h. nicht ausser Betrieb genommenen Phasen vorhandene Kapazität und Spannung gespeist wird. Aus den Oszillogrammen geht hervor, dass der Restlichtbogen stets innert kürzester Zeit, d. h. spätestens 3,4 Halbwellen nach der Kurzschlussunterbrechung, von selbst erlosch. Diese Tatsache ist von grosser Bedeutung für das Gelingen der Wiedereinschaltung bzw. für die unterbruchsfreie Erhaltung des Betriebes. Würde nämlich der Restlichtbogen z. B. erst nach 1 s verlöschen, so wäre die Wiedereinschaltung in vielen Fällen wegen der unterdessen eingetretenen Instabilität des Netzes nicht möglich.

Der Reststrom war kein regelmässiger betriebsfrequenter Strom, sondern trat nur gelegentlich, meistens in der Form einer Aufeinanderfolge kapazitiver Entladestösse, bei Rückzündung des Restlichtbogens, auf. Die Tabelle III vermittelt die Grösse der gemessenen Stromspitzen, ferner die diesen vorangegangenen Spannungsspitzen, und den Zeitpunkt der letzten Stromspitze, von der Unterbrechung des Kurzschlusses an gerechnet, für die Versuche Nr. 2, 6, 8, 9, 10, 11. Bei den übrigen einpoligen Versuchen war überhaupt kein Reststrom feststellbar. Überdies ist die Spannung der Fehlerphase nach dem Verlöschen des Restlichtbogens angegeben.

Wie aus Tabelle III ersichtlich ist, waren der

Restlichtbogenstrom und die Spannung vor einer Rückzündung starken Schwankungen unterworfen. So erreichten bei Versuch Nr. 2 der Lichtbogen-

Fig. 12

Erdschluss an Phase T der 150-kV-Leitung Airolo-Mettlen Trotz starker induktiver Beeinflussung des HF-Kanales auf der 52 km langen Parallelleitung wurden auf der 220-kV-Strecke keine Fehlauslösungen durch die HF eingeleitet

strom 4 A und die vorangegangene Spannungsspitze 2,6 kV, während bei Versuch Nr. 11 die betreffenden Werte 85 A und 43 kV betrugen. Der stationäre kapazitive Reststrom würde ca. 3 A betragen. Das Oszillogramm Fig. 13 zeigt unter anderem den Verlauf des Reststromes beim Versuch Nr. 11.

r critatecte accontectero agon	Verhalten	des	Restlichtbogen
--------------------------------	-----------	-----	----------------

		8	Tabelle II
Stromspitzen im Restlichtbogen (kapazitiver Ent- ladestromstoss) Scheitelwert	Spannung über der Lichtbogen- strecke vor dem Entladestrom- stoss Scheitelwert	Zeitpunkt der letzten Strom- spitze, vom Ver- löschen des Kurz- schlusslichtbogens an gerechnet	Kapazitive Spannung nach Löschen des Restlicht- bogens Effektivwert
Α	kV	cs	kV 1)
4	2,6	1,2	11,5
44 42	23 21	2.8	12.5
15	9,5	1,4	18,0
6	8,3	2,2	17,5
6 39	8,9 27	2,4	18,0
42 85	21 43	2.4	17,5
	Stromspitzen im Restlichtbogen (kapazitiver Ent- ladestromstoss) Scheitelwert A 4 44 42 15 6 6 39 42 85	Stromspitzen im Restlichtbogen (kapazitiver Enti- ladestromstoss) ScheitelwertSpannung über der Lichtbogen furdadestrom- stoss ScheitelwertA&42,644234221159,568,368,9392742218543	Stromspitzen im Restlichtbogen strecke vor dem Entladestromstoss) ScheitelwertSpannung über der Lichtbogen strecke vor dem Entladestrom- stoss ScheitelwertZeitpunkt der letzten Strom- scheitelwertA2,61,242,61,244232,8159,51,468,32,268,92,739272,442212,6

¹) Es handelt sich nur um den 50-Hz-Teil der Spannung, die von den gesunden Leitern kapazitiv induziert wird, ohne Berücksichtigung der durch den Spannungswandler und die Leitungskapazität bedingten Schwingung von etwa 1...2 Hz.

Die gegenüber den stationären Werten höheren Werte der gemessenen Stromspitzen müssen auf aussetzende Schwingungsvorgänge zurückgeführt werden, wie sie z. B. bei der Unterbrechung kapazitiver Ströme bekannt sind.

> Fortsetzung des allgemeinen Teils auf Seite 783 Es folgen die «Seiten des VSE»

Fortsetzung von Seite 770

Kurzschlussversuche mit Schnellwiedereinschaltung auf der 220-kV-Leitung Mettlen-Lavorgo ((Fortsetzung)

Die eingestellte Pausenzeit (zwischen der Unterbrechung des Kurzschlußstromes und der Wiedereinschaltung), gemessen an der Kurzschlußstelle, variierte zwischen rund 0,4 s und 0,46 s, und alle Wiedereinschaltungen gelangen. Mit kürzeren Pausenzeiten wurden keine Versuche durchgeführt. Doch ist auf Grund der nachstehenden Resultate der 2poligen isolierten Kurzschlüsse anzunehmen, einem Kurzschlußstrom von 1,5...1,8 kA eine Lichtbogenspannung von effektiv 2,1...3,1 kV gemessen wurde, was einem Lichtbogenwiderstand von ca. 1,55 Ω entspricht. Nach Warrington [1]²) ergibt sich bei 1,65 kA und einer Länge von 2,1 m ein Lichtbogenwiderstand von

$$R = \frac{27\,800 \cdot l}{I^{1,4}} = 1,83 \ \Omega$$

welcher mit dem gemessenen Wert verhältnismässig gut übereinstimmt.

 Erfolgreiche Ipolige Wiedereinschaltung bei Erdschluss an Phase T (Versuch Nr. 11)
 Bei diesem Versuch waren der Restlichtbogenstrom und die Restlichtbogendauer am grössten. *I_{T(Rest)}* Strom (und Reststrom) in Phase T, mit Amplitudenbegrenzer gemessen. *U_{T(Rest)}* Spannung (und Restspannung) in Phase T, mit Amplitudenbegrenzer gemessen.

dass unter den vorliegenden Verhältnissen auch noch mit weit kürzeren Pausenzeiten erfolgreiche Resultate hätten erreicht werden können. Da nämlich die Wiederzündung des Lichtbogens im Anschluss an einen kleinen kapazitiven Reststrom kaum leichter eintreten dürfte als diejenige im Anschluss an einen weit grösseren mehrpoligen Kurzschlußstrom, so sollte erwartet werden können, dass sogar bis herab zu Pausenzeiten, welche nur um die Dauer des Restlichtbogens (hier maximal 0,034 s) länger sind als die bei der 3poligen Wiedereinschaltung ermittelte minimal notwendige Pausenzeit, das einpolige Wiedereinschalten noch zum Erfolg führen kann.

b) 2polige isolierte Kurzschlüsse

Bei den 2poligen isolierten Kurzschlüssen mit 3phasiger Abschaltung wurde die Grenze der Pausenzeit t_U ermittelt, bei welcher die Wiedereinschaltung noch möglich war. (Diese Versuche, sowie die 1poligen, sind nur zum Teil in den Tabellen I und II enthalten.) Pausenzeiten von 0,16 s, 0,18 s, 0,19 s führten zu Wiederzündungen des Kurzschlusslichtbogens beim Wiedereinschalten, während die Wiedereinschaltung bei Pausenzeiten von 0,22 s, 0,23 s, 0,25 s, 0,26 s, 0,28 s gelang.

Bei den vorliegenden Versuchsbedingungen lässt sich somit eine Grenzpausenzeit von ca. 0,2 s, die nicht unterschritten werden darf, feststellen. Es ist indessen zu beachten, dass bei diesen 2poligen Kurzschlüssen die Überschlagsdistanz zwischen den Phasen S und T an der Lichtbogenstelle nur 2,65 m betrug, während im wirklichen Betrieb die Leiter normalerweise viel weiter auseinander liegen, so dass die für das System erforderliche Mindestpausenzeit eher unterhalb 0,2 s liegen dürfte.

Wir bemerken noch, dass bei einer Lichtbogenlänge von 2,1 m (Lichtbogen gegen Erde) und

Der Spannungstrichter

Man mass bei diesen Versuchen neben den für die Wiedereinschaltung wichtigen Grössen in Erstfeld die Spannung zwischen dem Erdseil der Hochspannungsleitungen und dem Nullpunkt des lokalen 380-V-Netzes, sowie den Spannungstrichter um den Versuchsmast herum. Fig. 14 und 15 orientieren über die örtliche Lage der Messpunkte im Spannungstrichter und über die während der Kurzschlüsse gemessenen Spannungen.

Die grösste zwischen Erdseil (Mast) und Nullleiter des Lokalnetzes gemessene Spannung betrug effektiv 5,9 kV (Versuch Nr. 5). Der Boden um den Mast herum war vor den Versuchen während vieler Stunden gewässert worden; es ist daher anzunehmen, dass bei trockenem Boden noch höhere Mastspannungen aufgetreten wären. Der Spannungs-

²) siehe Literatur am Schluss des Aufsatzes.

Spannungsdifferenzen ΔU zwischen verschiedenen Boden-punkten und dem Erdpunkt des 380-V-Lokalnetzes von Erst-feld, in Funktion des Abstandes *l* von der Mastmitte; bezogen auf die Richtungen *I*, *II*, *IIL* (siehe Fig. 14)

den und ca. 80 % durch den Mast in das Erdseil. Von den 80% des in das Erdseil fliessenden Stromes ging vermutlich der grösste Teil durch die benachbarten Masten in den Boden.

Literatur

- Warrington, A. R.: Reactance Relays Negligibly Affected by Arc Impedance. Electr. Wld. Bd. 48(1931), S. 502...505.
 Parker, W. W. und H. A. Travers: Reclosing of Single Tie Lines between Systems. Trans. AIEE Bd. 63(1944), März, S. 119...122.
- [3] Kirschbaum, H. S.: Transient Electrical Torques of Tur-bine Generators During Short Circuits and Synchronizing. Trans. AIEE Bd. 64(1945), Februar, S. 65...70.

- [4] Sporn, P. und C. A. Muller: Nine Years' Experience with Ultrahigh-Speed Reclosing of High-Voltage Transmission Lines. Trans. AIEE Bd. 64(1945), Mai, S. 225...228.
- Wanger, W.: Systematische Versuche über Schnellwieder-einschaltung im Netz der Kraftwerke Gösgen und Lau-fenburg. Bull. SEV Bd. 36(1945), Nr. 21, S. 697...715. [5]
- [6] Crary, S. B.: Power System Stability. New York: Wiley 1945/1947.
- [7] Trainor, J. J. und C. E. Parks: Experience with Single-Pole Relaying and Reclosing on a Large 132-kV-System. Trans. AIEE Bd. 66(1947), S. 405...412.
 [8] Batchelor, Y. W., D. L. Whitehead und Y. S. Williams: Transient Shaft Torques in Turbine Generator Produced by Transmission Line Reclosing. Trans. AIEE Bd. 67(1948), S 159 164 by Transm S. 159...164.
- Thommen, H.: Leistungsschalter und Nullpunkterdung. Brown Boveri Mitt. Bd. 35(1948), Nr. 7/8, S. 227...230. [9]
- [10] Dana, G. E.: Experience with High-Speed Reclosing. Electr. Engng. Bd. 67(1948), Oktober, S. 942...944.
- Evans, R. D. und H. N. Muller: Power System Stability, Basic Elements of Theory and Application Electric Trans-mission and Distribution. Reference Book from Westing-house, 4. Aufl. S. 433...495. New York: 1950.
- [12] Boisseau, A. C., B. W. Wyman und W. F. Skeats: Effect of Deionization Time on Reclosing Circuit Breakers. Electr. Engng. Bd. 69(1950), April, S. 346...350.
- Parks, C. E. und W. R. Brownlee: Relaying and High-Speed Reclosing on Long, Heavily-Loaded Lines. Electr. Engng. Bd. 69(1950), Mai, S. 422...425. [13]
- [14] Berger, K.: Isolation und Überspannungen, Stabilität der Höchstspannungsübertragung. Bull. SEV Bd. 44(1953), Nr. 4, S. 129...137.
- [15] Jancke, G. und U. Sandström: Essais de champs de dis-joncteurs 380 kV. Conférence Internationale des Grands Réseaux Electriques (CIGRE), Paris 1954, Bd. 2, Rapp. 106, 18. S.
- [16] Cabanes, L., C. Dietsch und Divan: La longueur des lig-nes limite-t-elle l'emploi du réenclenchement automati-que monophasé dans les réseaux de transport d'énergie à très haute tension? Conférence Internationale des Grands Réseaux Electriques (CIGRE), Paris 1954, Bd. 2, Rapp. 142. 12 S.
- [17] Matthey-Doret, A. und A. Leuthold: Netzversuche mit Schnellwiedereinschaltung in einem Höchstspannungsnetz. Brown Boveri Mitt. Bd. 41(1954), Nr. 9, S. 351...353.

Adresse der Autoren:

F. Schär, Aare-Tessin A.-G. für Elektrizität, Olten (SO).

Dr. sc. math. P. Baltensperger, A.-G. Brown, Boveri & Cie., Kurzschlussversuchslokal, Baden (AG).

Technische Mitteilungen - Communications de nature technique

Commission Internationale de l'Eclairage (CIE)

13. Plenarversammlung vom 13. bis 22. Juni 1955

in Zürich

Die CIE schob auf Wunsch der Schweiz zwischen die 12. und 13. Plenarversammlung ein Intervall von 4 Jahren ein. Anlässlich der 12. Plenarversammlung, die im Jahre 1951 in Stockholm stattfand 1), hat der schweizerische Vertreter nach vorgenommenen Sondierungen eine Einladung bekannt gegeben, die folgende Plenarversammlung in der Schweiz abzuhalten. Die CIE nahm diese Einladung an. Die Plenarversammlung ist vom 13. bis 22. Juni 1955 in Zürich durchgeführt worden. Vor und nach der 13. Plenarversammlung tagten die Comités der CEI-Leitung (Scope-, Statutesund Finance-Committees).

Träger der örtlichen Organisation war das SBK 2). Dieses hat in seiner 38. Sitzung vom 20. Mai 1952 einen vorbereitenden Ausschuss bezeichnet, dem 7 Mitglieder und Mitarbeiter des SBK angehörten. Unter dem Vorsitz von H. Leuch löste dieser Ausschuss seine Aufgabe im Laufe des Jahres 1952 und legte dem SBK einen Bericht vor. Daraufhin wurde das Organisations-Komitee aus 9 Mitgliedern gebildet. Als Präsident beliebte M. Roesgen; 1. Vize-Präsident wurde R. Spieser. Als 2. Vize-Präsident und gleichzeitig als Generalsekretär wurde H. Leuch bezeichnet und später eine Vertreterin des Damen-Komitees dazugewählt. In zahlreichen Sitzungen des

¹) Bull. SEV Bd. 42(1951), Nr. 16, S. 580...581.
 ²) SBK: Schweizerisches Beleuchtungs-Komitee.

Organisations-Komitees und dessen Bureau entstanden die Richtlinien für die lokale Organisation. Finanzierungs-, Programm- und Raumfragen gaben zu ausführlichen Diskussionen und Wiedererwägungen gefasster Beschlüsse Anlass. Zahlreiche Fragen mussten mit dem Central-Office der CIE (USA) gemeinsam gelöst und das Programm der Sitzungen von diesem festgelegt werden. Dem Organisations-Komitee standen 6 Arbeits-Komitees zur Seite. Den Mitgliedern der Komitees und den vielen andern Helfern sei auch an dieser Stelle der Dank für ihre Tätigkeit ausgedrückt, welche die erfolgreiche Durchführung der Veranstaltung ermöglicht hat.

Technische Exkursionen führten in den Flughafen Kloten, nach Winterthur in die Oscar-Reinhart-Stiftung und in verschiedenen Gruppen durch Zürich. Die gesellschaftlichen Unterhaltungen umfassten einen Empfang im Stadthaus Zürich, eine Seefahrt nach Rapperswil, das offizielle Bankett, einen Sonntagsausflug auf den Bürgenstock und einen Besuch in Bern. Für die Damen war ein besonderes Programm vorbereitet worden, aus dem die Besichtigungen von Seide-, Schokolade-, Schuh- und Porzellan-Fabriken hier erwähnt seien.

Ausser der feierlich gestalteten Eröffnungssitzung und 23 Halbtags-Sitzungen der Comités d'Etudes, von denen je-weilen zwei gleichzeitig tagten, fanden zwei Plenarversammlungen statt. In der abschliessenden Sizung wurde an die Stelle des bisherigen Präsidenten, Dr. W. Harrison (USA), Dr. J. W. T. Walsh (UK 3) gewählt, wobei die Versammlung dem scheidenden Präsidenten den wohlverdienten Dank für die Führung während vier Jahren und für die geleistete

3) UK: United Kingdom.