Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 46 (1955)

Heft: 2

Rubrik: Energie-Erzeugung und -Verteilung : die Seiten des VSE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Energie-Erzeugung und -Verteilung

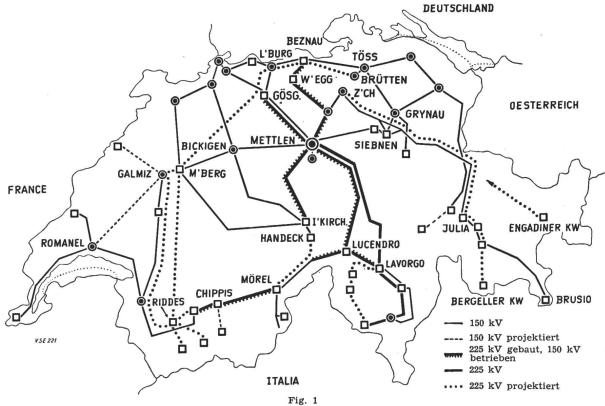
Die Seiten des VSE

Energieaustausch zwischen den grossen Elektrizitätswerken

Vortrag, gehalten an der Herbstversammlung des Betriebsleiterverbandes Ostschweizerischer Gemeinde-Elektrizitätswerke (BOG) vom 2. Oktober 1954 in Lachen,

von W. Hauser, Olten

621.311.161(494)


Der Vortrag vermittelt in allgemeinverständlicher Darstellung einen Einblick in die mannigfaltigen Probleme, die der Energieaustausch zwischen grossen Netzen in Verbundbetrieb stellt, und zeigt an Hand von praktischen Beispielen, wie diese komplizierte Aufgabe in unserm Lande ohne zentralen Lastverteiler, durch gegenseitige Verständigung zwischen den Beteiligten, gelöst worden ist.

La conférence donne, sous une forme intelligible à tous, un aperçu des problèmes très complexes que posent les échanges d'énergie entre les grands réseaux interconnectés; elle montre, à l'aide d'exemples pratiques, comment ces problèmes sont résolus dans notre pays, en l'absence d'un répartiteur de charge central, par entente entre les diverses entreprises dont les réseaux sont interconnectés.

Herr Präsident, Sehr geehrte Herren,

Ich habe das Vergnügen, Ihnen heute einen Einblick in den Energieaustausch zwischen den grossen Elektrizitätswerken zu vermitteln, wobei ich aus der Vielfalt der sich aus diesem Energieverkehr ergebenden Probleme einige herausgreife.

mit Punktierung für eine Spannung von 225 kV ausgeführte Leitungen versinnbildlichen, die vorläufig noch mit 150 kV betrieben werden. Ferner sind im Bau befindliche oder in naher Zukunft zur Ausführung gelangende Leitungen punktiert eingetragen. Das Bild veranschaulicht die Bedeutung der Station Mettlen als Mittelpunkt des schweizeri-

Das schweizerische Hochspannungsnetz 150/225 kV.

Aus Fig. 1 ist das schweizerische Höchstspannungsnetz 150/225 kV ersichtlich, das für den Verbundbetrieb ein wesentliches und notwendiges Hilfsmittel darstellt. Die 150-kV-Leitungen sind durch feine, die 225-kV-Leitungen durch dickere Striche gekennzeichnet, während die dicken Striche

schen Höchstspannungsnetzes, und es ist vielleicht interessant, in diesem Zusammenhang einige wesentliche Daten aus der Entstehungsgeschichte dieses Unterwerkes aufzuführen.

Die Station Mettlen wurde im Jahre 1939 anlässlich der Liquidation der Schweizerischen Kraft-

übertragung A.-G. (SK, Schweiz. Sammelschiene) von 6 Partnern als Gemeinschaftsanlage gegründet. Anfänglich bestand die Absicht, die aus den Richtungen Süd-Nord und Ost-West ankommenden bzw. abgehenden Leitungen schachbrettartig miteinander zu verbinden, d. h. beispielsweise die Ost-West-Verbindungen horizontal und die Nord-Süd-Verbindungen vertikal in die Anlage einzuführen. Damit wäre es theoretisch möglich gewesen, jede gewünschte Verbindung zwischen den Leitungen herzustellen. Dieses Vorhaben kam jedoch später aus praktischen Erwägungen nicht zur Ausführung; man wählte dagegen die klassische Bauweise mit 4 Sammelschienen 150 kV und 2 Sammelschienen 225 kV. Die Kupplung der beiden Netze ist durch 3 Transformatoren von je 100 000 kVA gewährleistet. Mit dem Bau der Maggia-Kraftwerke entsteht in Mettlen ein grosser Energieanfall, der von hier aus an die verschiedenen Partner verteilt werden muss.

Bereits in nächster Zukunft ist eine sehr rasche Entwicklung des 225-kV-Netzes zu erwarten. Heute wird bekanntlich nur die Lukmanierleitung mit der Fortsetzung auf der Leitung Amsteg-Mettlen, d. h. die Verbindung Lavorgo-Mettlen mit 225 kV betrieben. Mitte des nächsten Jahres soll die Strecke Lavorgo-Lucendro-Mettlen-Gösgen auf 225 kV umgeschaltet werden. Die Spannungserhöhung auf der Leitung Mettlen-Gösgen erfolgt durch den Umbau der bestehenden 150-kV-Doppelleitung, wovon ein Strang für 225 kV vorbereitet wurde.

Die Schwierigkeiten, die sich heute dem Bau grosser Übertragungsleitungen in den Weg stellen, sind allgemein bekannt. Aus diesem Grunde sei hier auf den genannten Umbau etwas näher eingetreten; er stellt nämlich einen interessanten Beitrag zu einer Lösung dar, bei welcher der Bau einer neuen Leitung umgangen oder doch um einige Zeit hinausgeschoben werden kann, eine Lösung, die wahrscheinlich in Zukunft noch öfter gefunden werden muss.

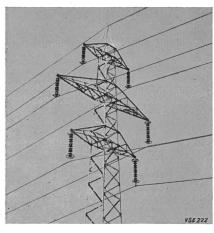


Fig. 2 Mastoberteil der Leitung Mettlen-Gösgen

Fig. 2 zeigt einen Mastoberteil der Leitung Mettlen-Gösgen, wobei hervorgeht, wie der Umbau grundsätzlich erfolgte. Die beiden 150-mm²-Kupferseile des untersten sowie ein Seil des mittleren

Auslegers wurden durch 400-mm²-Aldreyseile ersetzt. Die übrigen, weiterhin mit einer Spannung von 150 kV zu betreibenden Seile wurden belassen. Diese Anordnung bringt zwar betrieblich einige Nachteile, wurde aber deshalb gewählt, weil damit der ganze Mastkopf unverändert bleiben konnte. Die Isolation der Ketten ist nämlich um einen Isolator Typ VK 4 verlängert worden, weshalb der am obersten Ausleger befestigte Leiter zu nahe an den mittleren Ausleger herangekommen wäre. Die Isolationsverstärkung war also relativ gering; anstatt vier Isolatoren VK 4 bei 150 kV sind deren fünf für den 225-kV-Strang eingebaut worden (normalerweise wären 6 Isolatoren VK 4 notwendig gewesen). Was das Verhalten der Leitung gegen äussere Überspannungen anbetrifft, ist hervorzuheben, dass in den 17 Jahren ihres Bestehens lediglich einmal ein Überschlag durch Blitzschlag erfolgte. Bei einer Isolationserhöhung um 25 % ist die Wahrscheinlichkeit von Überschlägen noch geringer geworden. Innere Überspannungen können wie folgt abgeschätzt werden:

Bei einem gelöschten Netz, wie es das 150-kV-System darstellt, sind Schaltüberspannungen von drei- bis viermal die Phasenspannung die Regel. Bei einem fest geerdeten Netz (225 kV) betragen die inneren Schaltüberspannungen ein- bis zweimal die Phasenspannung. Aus dieser ganz knappen Gegenüberstellung ist ersichtlich, dass die inneren Überspannungen beim starr geerdeten 225-kV-Netz nicht viel grösser sein werden als beim gelöschten 150-kV-Netz. Der Leiterzug ist so gewählt worden, dass in Leitungsrichtung keine grössere Beanspruchung auftritt; die Durchhänge sind praktisch gleich geblieben. Hingegen mussten ca. 50 % der Masten gegen seitlichen Wind (grösserer Querschnitt der Leiter) mechanisch verstärkt werden.

Auf das Verbundnetz zurückkommend, sei in Bezug auf die Entwicklung des 225-kV-Netzes noch folgendes gesagt:

In Mühleberg wird, ähnlich wie in Mettlen, ein grösseres Unterwerk entstehen, das den Sammelpunkt der Leitungen aus dem Wallis bilden wird, wo gegenwärtig grosse Kraftwerke im Bau begriffen sind. Im Raume Grynau/Ragaz dürfte ebenfalls ein Unterwerk erstellt werden, dem die Aufgabe zufiele, die Energie der künftigen Graubündner Kraftwerke aufzufangen. Zwischen diesen drei Unterwerken wird dann sicher eine starke Rochadeleitung entstehen, die eine West-Ost-Verschiebung der Energie ermöglicht. Es ist anzunehmen, dass dannzumal von Ragaz aus eine Verbindung mit Österreich hergestellt wird, die bis heute aus verschiedenen Gründen noch nicht verwirklicht worden ist.

Fig. 3 veranschaulicht, als Beispiel eines Netzausbaues wie er in ähnlichem Umfang auch bei den andern grossen Elektrizitätsgesellschaften unseres Landes stattgefunden hat, die Entwicklung des Netzes der Aare-Tessin A.-G. (ATEL) seit 1936. Auf der linken Seite ist die Situation anlässlich der Fusion der Gesellschaften OFELTI/EWOA (Officine Elettriche Ticinesi S. A. / Elektrizitätswerk Olten-Aarburg A.-G.) ersichtlich, auf der rechten

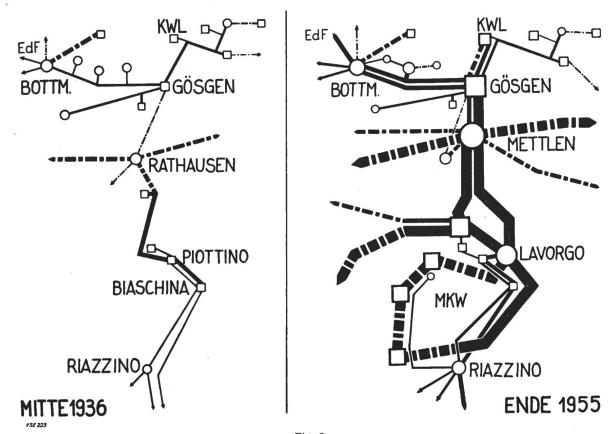


Fig. 3 Entwicklung des Netzes der Aare-Tessin A.-G. (ATEL) seit 1936

Eigene Leitungen Fremde Leitungen

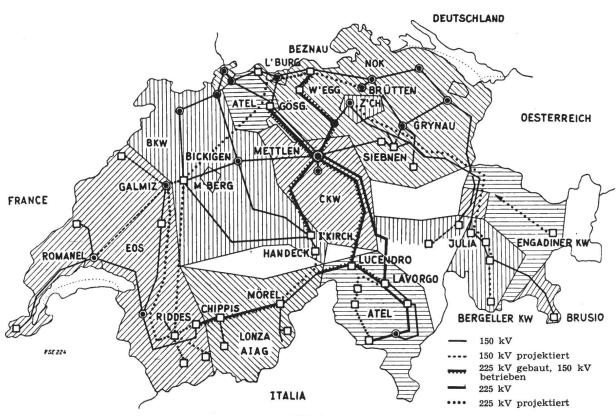
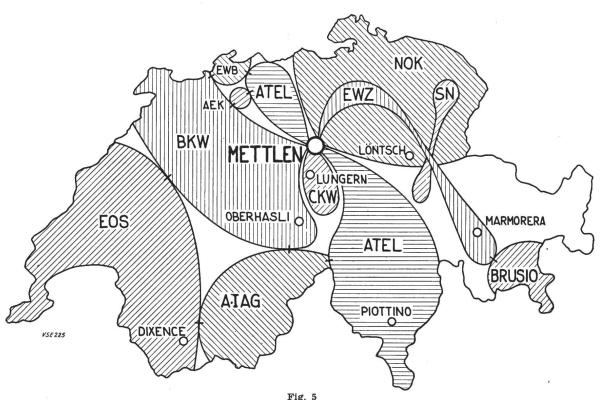



Fig. 4 Einflussgebiete der grösseren Elektrizitätswerke

Seite der Zustand des ATEL-Netzes, wie er sich im Sommer 1955 darstellen wird. Die Dicke der Striche entspricht ungefähr der Transportfähigkeit der Leitungen.

Fig. 4 zeigt technisch gesehen die Aufteilung des schweizerischen Höchstspannungsnetzes in die Einflusszonen der verschiedenen grossen Elektrizitätsgesellschaften. In diesem Zusammenhang sei noch kurz erläutert, wie die Erdungsart der Höchstspannungsnetze in der Schweiz vereinheitlicht wurde. Die 150-kV-Netze des Elektrizitätswerkes der Stadt Zürich (EWZ), der S. A. l'Energie de l'Ouest Suisse (EOS) und der Bernischen Kraftwerke A.-G. (BKW) sind fest geerdet; die ATEL und die Nordostschweiz. Kraftwerke A.-G. (NOK) dagegen besassen ein gelöschtes Netz. Die abweichenden Auffassungen in Bezug auf die Erdungsart ergaben sich aus der Konfiguration der einzelnen Netze. So besitzen z. B. die BKW ein Maschennetz, wie

war von den massgebenden Elektrizitätsgesellschaften grundsätzlich die feste Erdung beschlossen worden, womit sich erneut die Frage nach der Erdungsart für die 150-kV-Netze stellte. Würde hier ebenfalls die feste Erdung eingeführt, so wäre es möglich, für die Kupplung zwischen den beiden Höchstspannungsnetzen Autotransformatoren zu verwenden, die wesentlich billiger sind (ca. 25 %) als die normalen Transformatoren mit getrennten Wicklungen. Sowohl die Nordostschweizerischen Kraftwerke als auch die Aare-Tessin A.-G. haben sich auf Grund ihrer Studien hinsichtlich des Netzaufbaues für die starre Erdung des 150-kV-Netzes entschlossen, um sich die erwähnte Preisdifferenz zunutze zu machen. Für die ATEL bestand zu dieser Umstellung ein weiterer Grund darin, dass sie mit dem Netz der Electricité de France (EDF), die ihr gesamtes 150-kV-Netz fest geerdet hat, praktisch dauernd im Parallelbetrieb steht.

Einflussgebiete der grösseren Elektrizitätswerke; schematische Darstellung

aus dem Bild sogleich hervorgeht. Es ist klar, dass hier die Versorgung des Netzes bei Ausfall einer Leitung wegen Erdschluss, über die verbleibenden Verbindungen bewerkstelligt werden kann, um so mehr, als es sich ausschliesslich um doppelsträngige Leitungen handelt. Ganz anders lagen die Verhältnisse beim Netz der ATEL, das lange nur eine einsträngige Alpenleitung, die Gotthardleitung, für die Verbindung Nord-Süd besass. Der Betrieb mit Löschspulen gestattete es, 80 % der vorübergehenden Erdschlüsse ohne Betriebsunterbruch zu beseitigen. Ähnliche Überlegungen haben seinerzeit die NOK angestellt. Mit dem Bau der Lukmanierleitung, die als zweite Alpenleitung gebaut wurde, sowie mit dem Übergang auf 225 kV änderte sich jedoch die Sachlage. Für diese Betriebsspannung

In Fig. 5 sind wiederum die Einflusszonen der verschiedenen grossen Elektrizitätsgesellschaften schematisch dargestellt, wobei die Berührungspunkte zwischen den einzelnen Netzen genauer zu erkennen sind. Wir sehen als Verbindung EOS/ BKW den Punkt Galmiz, bekanntlich ein Kuppelpunkt 130/150 kV. Die Transformatorenleistung beträgt dort gegenwärtig 100 000 kVA. Der Energieaustausch war früher in diesem Punkt wegen der beschränkten Transformatorenleistung etwas prekär. Dieses Problem wird jedoch demnächst eine endgültige Lösung erfahren, indem die Verbindungen in 225 kV vollzogen werden. Der Berührungspunkt zwischen EOS und AIAG befindet sich bei der Dixence, derjenige zwischen AIAG und BKW bildet die Gemmileitung. Von besonderer Bedeutung ist wiederum das Unterwerk Mettlen als Berührungspunkt mehrerer grosser Elektrizitätsgesellschaften. Im Osten unseres Landes lassen sich noch die Kuppelstellen EWZ/Kraftwerke Brusio sowie Kraftwerke Sernf-Niederenbach/NOK erkennen.

Dieses Bild soll zu einer näheren Beschreibung der Netzregulierung überleiten; in der Folge möchte ich einige Möglichkeiten anhand von Beispielen kurz erläutern.

Das 1. Beispiel (Fig. 6) zeigt die Aufteilung der Maggiaenergie in Mettlen. Die in den Maggia-Kraftwerken im Tessin erzeugte Energie wird von 6 Partnern der Maggia-Kraftwerke A.-G. (MKW) auf der Nordseite der Alpen verwertet. Der Trans-

Das 2. Beispiel (Fig. 7) zeigt folgenden Aufteilungsvorgang:

Die BKW regulieren auf Freguenz mit Ober-

Die BKW regulieren auf Frequenz mit Oberhasli, EOS die Übergabeleistung in Galmiz, Piottino diejenige Richtung Basel; NOK und die Cen-

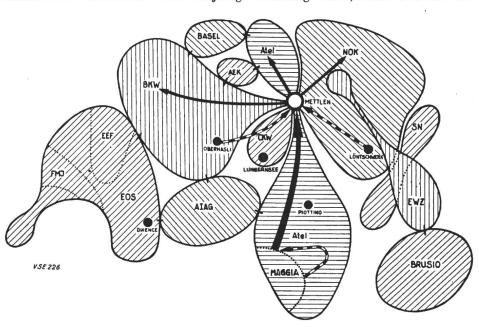


Fig. 6 Aufteilung der Maggia-Anteile in Mettlen

port dieser Energie erfolgt aber ausschliesslich über die Lukmanierleitung, weshalb die einzelnen Partneranteile in Mettlen ausgeschieden werden müssen. Die Energie wird hier in 3 Pakete aufgeteilt, nämlich erstens für BKW, EW der Stadt Zürich und EW der Stadt Bern, zweitens für ATEL und EW Basel, drittens für die NOK allein. Es war da-

tralschweizerischen Kraftwerke (CKW) regulieren auf Mettlen.

In einem 3. Beispiel (Fig. 8) ist insbesondere die Regulierung mit dem Ausland angedeutet. Wir sehen einerseits das Kraftwerk Piottino, das die Aufnahme der Resia-Energie in Ponte Tresa an der italienisch/schweizerischen Grenze reguliert. Die

vom Rheinisch-Westfälischen Elektrizitätswerk

in Klingnau an die Schweiz gelieferte Leistung wird von den NOK mittels des Löntschwerkes reguliert usw.

Anhand der Fig. 9 möchte ich die Reguliermöglichkeiten, wie sie in grossen Netzen bestehen, wiederum anhand des Beispieles des ATEL-Netzes erläutern, wobei der geschilderte Zustand sich gerade im Ausbau befindet. Die verschiedenen Über-

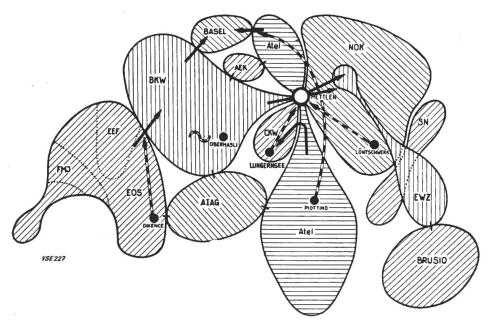
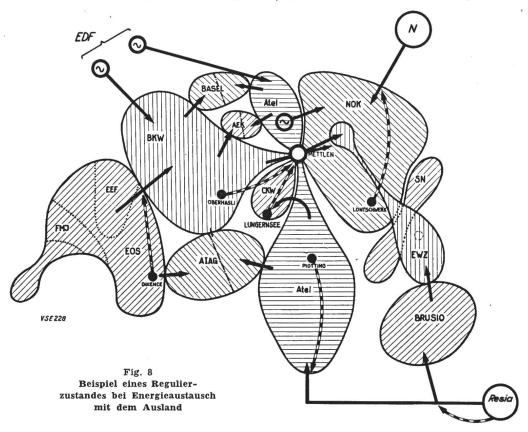



Fig. 7
Beispiel eines Regulierzustandes bei Inlandbetrieb

her notwendig, zwei dieser Energiepakete zu regulieren; das dritte ergab sich als Rest von selbst. Im vorliegenden Beispiel wird von den Kraftwerken Oberhasli der Anteil BKW/EWZ/EW Bern herausreguliert, seitens des Löntschwerkes der Anteil der NOK. Der Rest, also der Anteil der ATEL und des EW Basel, fliesst in das Netz ATEL-Nord.

gabestellen sind als Messinstrumente angedeutet (Bottmingen/Richtung Frankreich, Gösgen/Richtung Laufenburg, Mettlen als Übergabestelle an die einzelnen Partner sowie Riazzino als Übergabestelle von oder nach Italien). Alle Übergabewerte können einzeln oder zum Teil zusammen nach dem Netzregler, der sich im Unterwerk Lavorgo befin-

det, vermittels Hochfrequenz ferngemeldet werden. Im Netzregler wird dann der Frequenzeinfluss hinzugefügt, so dass eine Leistungs-Frequenz-RegulieEnergielieferung des Simplonwerkes Gondo, das seine Energie während der Sommermonate zum grössten Teil an die EDF abgibt. Im Winter wird

rung entsteht. Die entsprechenden Impulse werden daraufhin an die Regulierwerke Piottino und Airolo weitergeleitet, wodurch diese Kraftwerke im Maßstab des eingestellten Sollwertes der Übergabeleistung beaufschlagt werden. Von diesem Netzregler aus können entsprechend dem Wasserhaushalt der hintereinander geschalteten Kraftwerke auch die verschiedenen Gruppen der beiden Zentralen mit je einer Grundlast beaufschlagt werden.

Die Fig. 10 vermittelt einen Eindruck von der Zahl der im Unterwerk Mettlen zwischen den verschiedenen Gesellschaften abgewickelten Geschäfte. Es ist ein beliebiger Tag herausgegriffen worden (17. August 1954); es handelt sich also um keine aussergewöhnliche, sondern um eine durchschnittliche Zahl von Geschäften. Obwohl von Süden her (im Bild unten) nur eine Doppelleitung ankommt, werden darauf 12 Geschäfte getätigt. Auf den Leitungen nach rechts wickeln sich 10, nach links 7 und nach Norden 9 Geschäfte ab. Die Pfeile bezeichnen die Richtung des Energieflusses. Selbstverständlich kann hier nicht auf alle Einzelheiten eingetreten werden; es seien lediglich einige Beispiele herausgegriffen.

Beim Transit Amsteg 9,0 MW handelt es sich um Dreiphasen-Energie des SBB-Werkes Amsteg, die zum Teil über das Netz der NOK nach der Umformerstation Seebach geht, wo diese Energie in Einphasenstrom umgewandelt wird.

Ein weiteres Geschäft ist mit 30 MW Transit Simplon für EDF angeschrieben. Dies ist eine

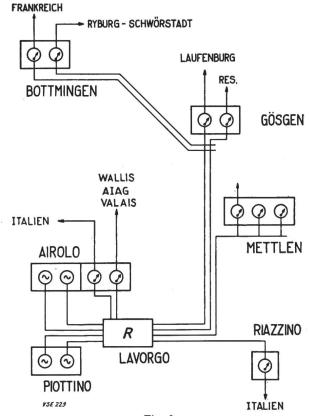


Fig. 9
Beispiel einer Regulierung innerhalb eines grossen Netzes
(ATEL)
R: Netzregler

AARAL

O NOK

diese Energie unter Anwendung bestimmter Umrechnungsschlüssel an die Schweiz zurückerstattet. eine Lieferung an EDF von ca. 100...120·10° kWh.

Auf diese Art erfolgt während der Sommermonate

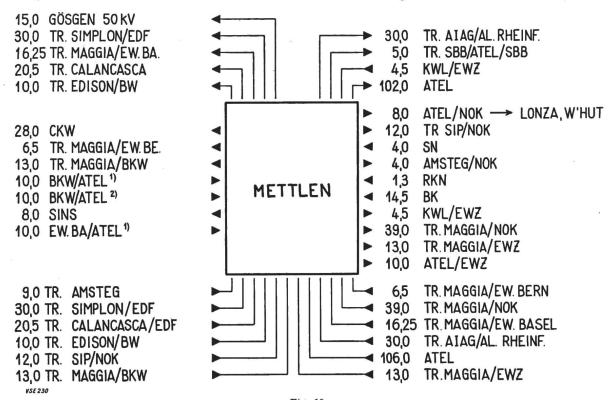
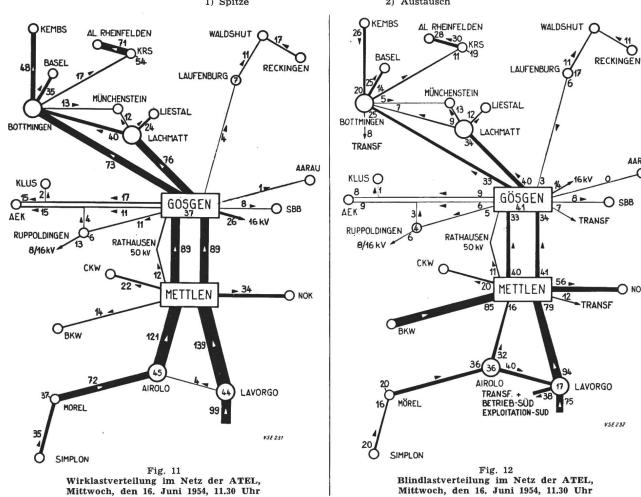
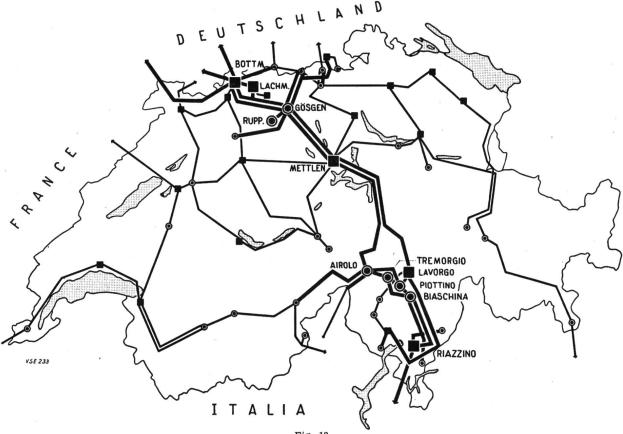
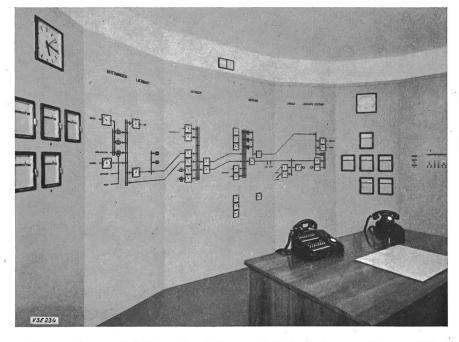



Fig. 10 Beispiel der an einem Tag in Mettlen abgewickelten Energiegeschäfte 1) Spitze

Als weiteres Geschäft ist ein Transit Calancasca für EDF von 20,5 MW, d. h. eine Lieferung des Werkes Calancasca im Tessin an die EDF angeEin weiteres Problem bildet die Spannungshaltung und der Blindlasttransport auf den grossen Verbindungsleitungen. Aus der folgenden Fig. 11




Fig. 13 Einfügung des Atel-Netzes im schweizerischen Verbundnetz

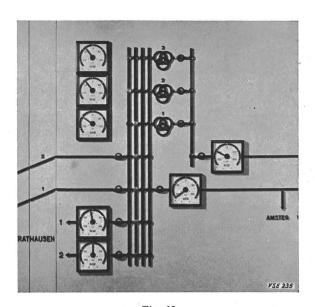
führt. Es handelt sich hier, gleich wie bei der Simplonenergie, um einen Abtausch Sommer- gegen Winterenergie.

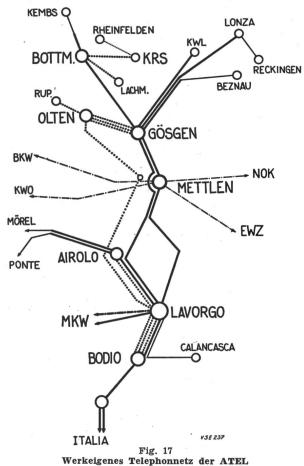
Im weitern sind noch die Maggiaenergieanteile der verschiedenen Partner sowie die Eigenproduktion der ATEL in den Kraftwerken im Tessin eingetragen, die grösstenteils nach Gösgen verschoben wird. Auf der rechten Seite sind, wie bereits erwähnt, 10 verschiedene Austauschgeschäfte zwischen den einzelnen Netzen schematisch dargestellt.

Diese Programme sind einem beständigen Wechsel unterworfen (Tageszeit, Werktag/Feiertag), d. h. sie

Fig. 14 Lastverteiler im Oberbetriebsbüro der ATEL, Olten ist die Wirklastverteilung im Netz der ATEL ersichtlich, wobei der starke Energiefluss Süd-Nord deutlich hervortritt. Dieser Wirkleistungs-Energie-

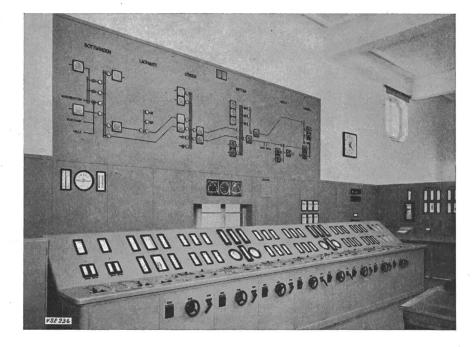
müssen am Vortag zusammengestellt werden und ergeben dann das von den Regulierwerken einzuhaltende Programm. fluss benötigt natürlich grössere Mengen Blindenergie, die im Süden erzeugt und nach Norden transportiert werden müssen; es zeigt dies besonders eindrücklich die folgende Fig. 12. Dieser Blindenergietransport ergibt zusätzliche Verluste und belegt die Leitungen in dem Sinne, dass weniger Wirkleistung übertragen werden kann. Auch




Fig. 15 Ausschnitt des Lastverteilerschemas in Mettlen

wird die Spannungshaltung schwierig, da natürlich ein relativ grosser Spannungsabfall von Süden nach Norden entsteht. Der Nachteil zeigt sich dann, wenn in Bottmingen eine Parallelschaltung mit dem französischen Netz erfolgen muss. Es entsteht dabei eine zu tiefe Spannung, woraus sich ein Bezug von Blindenergie aus dem Netz der EDF ergibt, obwohl im gleichen Moment Wirkleistung Richtung Frankreich geliefert wird. Zur Vermeidung dieses nachteiligen Blindenergietransportes werden gegenwär-

tig im nördlichen Teil des ATEL-Netzes Blindleistungserzeuger aufgestellt. Die ATEL besitzt bereits in Luterbach am Ende 50-kV-Leitung eine Kondensatorenbatterie von 10 000 kVar sowie im Hauptverteilpunkt Gösgen einen rotierenden Phasenkompensator von 30 000 kVar. Das Problem der Blindenergieerzeugung wird sich in nächster Zukunft auch an andern Orten stellen, z. B. dann, wenn die Energie aus den jetzt im Bau befindlichen Walliser Kraftwerken ins Mittelland transportiert werden muss.


Fig. 16 Duplikat des Lastverteilers im Kraftwerk Gösgen

In Fig. 13 ist das 150/225-kV-Netz der ATEL im schweizerischen Verbundnetz durch etwas stärkere

Fremde HF-Verbindung NF-Verbindung HF-Verbindung NF-Verbindung

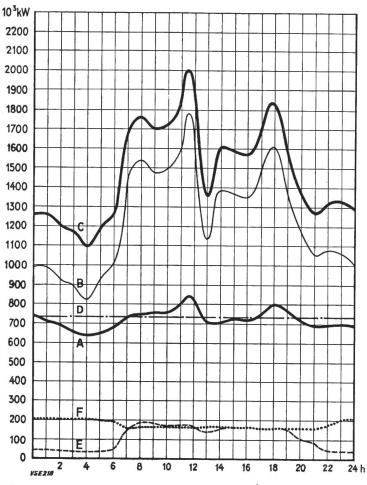
projektiert

Zum Schluss möge noch ein Hilfsmittel Erwähnung finden, das für den Verbundbetrieb von sehr grosser Bedeutung ist, nämlich der Lastverteiler.

Linienführung hervorgehoben. Die nachfolgende Fig. 14 zeigt den Lastverteiler, der im Prinzip eine Nachbildung dieses Hochspannungsnetzes darstellt;

Energiestatistik

der Elektrizitätswerke der allgemeinen Elektrizitätsversorgung

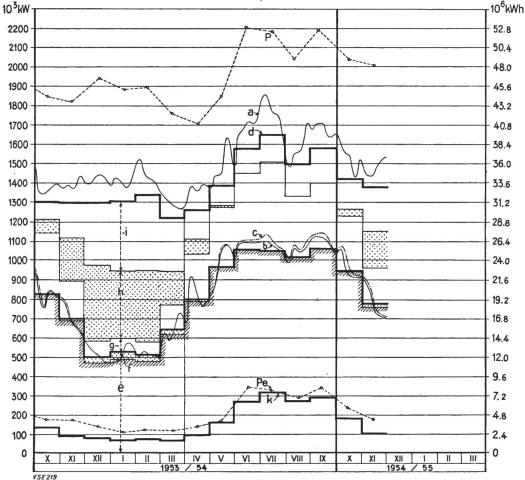

Bearbeitet vom eidgenössischen Amt für Elektrizitätswirtschaft und vom Verband Schweizerischer Elektrizitätswerke

Die Statistik umfasst die Energieerzeugung aller Elektrizitätswerke für Stromabgabe an Dritte, die über Erzeugungsanlagen von mehr als 300 kW verfügen. Sie kann praktisch genommen als Statistik aller Elektrizitätswerke für Stromabgabe an Dritte gelten, denn die Erzeugung der nicht berücksichtigten Werke beträgt nur ca. 0,5 % der Gesamterzeugung. Nicht inbegriffen ist die Erzeugung der Schweizerischen Bundesbahnen für Bahnbetrieb und der Industriekraftwerke für den eigenen Bedarf. Die Energiestatistik dieser Unternehmungen erscheint jährlich einmal in dieser Zeitschrift.

				Er	ergieerz	eugung		Speicherung									
Monat	Hydraulische Erzeugung		Thermische Erzeugung		Bezug aus Bahn- und Industrie- Kraftwerken		Energie- Einfuhr		Total Erzeugung und Bezug		Ver- ände- rung gegen Vor-	Energieinhalt der Speicher am Monatsende		Änderung im Berichts- monat — Entnahme + Auffüllung		Energie- ausfuhr	
	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	jahr	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55
	in Millionen kWh											in Millionen kW			7 h		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	897	940	12	3	32	51	26	62	967	1056	+ 9,2	1369	1533	- 43	- 6	100	135
November	797	829	17	14	19	26	101	120	934	989	+ 5,9	1183	1360	-186	-173	67	73
Dezember	719		34		18		192		963			872		-311	1	61	
Januar	699		27		21		221		968			596		-276		51	
Februar	636		33		16		213		898	(8)		324		-272		51	
März	701		17		19		166		903			187		-137		46	
April	807		5		24		73		909			146		- 41		69	
Mai	958		2		34		40		1034			313		+167		126	
Juni	1048		1		60	2	27		1136			695		+382		203	
Juli	1123		1		65		39		1228			949		+254		240	
August	995		1		71		47		1114			1357		+408		201	
September	1011		2		72		52		1137			15394)		+182		209	
Jahr	10391		152		451		1197		12191							1424	
OktNov	1694	1769	29	17	51	77	127	182	1901	2045	+ 7,6					167	208

	Verwendung der Energie im Inland																
Monat	Haushalt und Gewerbe		Industrie		Chemische, metallurg. u. thermische Anwen- dungen		Elektro- kessel ¹)		Bahnen		Verluste und Verbrauch der Speicher- pumpen ²)		Inlandverbr ohne Elektrokessel und Speicherpump.		Verän- derung gegen Vor-	kl. Verluste mit Elektrokessel und Speicherpump	
	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	1953/54	1954/55	jahr 3) %	1953/54	1954/5
			in Millionen kWh														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	394	413	162	168	112	118	24	30	43	55	132	137	834	881	+ 5,7	867	92
November	411	431	161	178	101	111	10	9	58	59	126 (6)	128 (4)	851	903	+ 6,1		916
Dezember	435		166		97		4		67		133		895			902	
Januar	445		164		96		5		71		136		907			917	
Februar	407		158		91		4	,	63		124		839			847	
März	404		160		106		5		61		121		847			857	
April	379		148		125		22		56		110		813			840	
Mai	379		151		128		68		47		135		819			908	1.
Juni	351		154		127		116		42		143		793			933	
Juli	357		154		137		136		52		152		831			988	
August	368		152		130		65		53		145		824			913	
September	378		158		124		66		55		147		839			928	
Jahr	4708		1888		1374		525		668		1604 (150)		10092			10767	
OktNov	805	844	323	346	213	229	34	39	101	114	258 (15)	265 (14)	1685	1784	+ 5,9	1734	183

D.h. Kessel mit Elektrodenheizung.
Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an.
Kolonne 15 gegenüber Kolonne 14.
Energieinhalt bei vollen Speicherbecken: Sept. 1954 = 1714 Mill. kWh.



Tagesdiagramme der beanspruchten Leistungen,

Mittwoch, den 17. November 1954

Legende:

1. Mögliche Leistungen: 1	03 kW												
Laufwerke auf Grund der Zuflüsse (0—D) Saisonspeicherwerke bei voller Leistungsabgabe (bei maximaler Seehöhe)	$\frac{1367}{2100}$												
2. Wirklich aufgetretene Leistungen													
 0—A Laufwerke (inkl. Werke mit Tages- und chenspeicher). A—B Saisonspeicherwerke. B—C Thermische Werke, Bezug aus Bahn- un dustrie-Kraftwerken und Einfuhr. 													
0—E Energieausfuhr.													
0—F Energieeinfuhr.													
3. Energieerzeugung 106 kWh													
Laufwerke	17,5												
Saisonspeicherwerke	12,7												
Thermische Werke	0,9												
Bezug aus Bahn- und Industrie-Kraftwerken	0,7												
Einfuhr	$_{-4,2}$												
Total, Mittwoch, den 17. November 1954	36,0												
Total, Samstag, den 20. November 1954	33,4												
Total, Sonntag, den 21. November 1954	24,0												
4. Energieabgabe													
Inlandverbrauch	33,3												
The second secon	2,7												

Mittwoch- und

Monatserzeugung

Legende:

- 1. Höchstleistungen: (je am mittleren Mittwoch jedes Monates)
- P des Gesamt-betriebes Pe der Energie-
- ausfuhr.
- 2. Mittwocherzeugung: (Durchschnittl. Leistung bzw. Energiemenge)
- a insgesamt;b in Laufwerken wirklich;
- c in Laufwerken möglich gewesen.
- 3. Monatserzeugung: 3. Monatserzeugung:
 (Durchschnittl.
 Monatsleistung
 bzw. durchschnittl.
 tägliche Energiemenge)
 d insgesamt;
 e in Laufwerken aus
 natürl. Zuflüssen;
 f in Laufwerken aus
 Speicherwasser:

- Speicherwasser;
 g in Speicherwasser;
 g in Speicherwerken
 aus Zuflüssen;
 h in Speicherwerken
 aus Speicherwasser;
- wasser; in thermischen Kraftwerken und Bezug aus Bahn-und Industriewer-ken und Einfuhr;
- k Energieausfuhr; d-k Inlandverbrauch.

er befindet sich im Oberbetriebsbüro der ATEL in Olten. Sie sehen das Kraftwerk Piottino sowie die Unterstationen Lavorgo, Airolo, Mettlen, Gösgen und Bottmingen. Mit je einem Messinstrument wird die auf jeder Leitung befindliche Energie angezeigt. Dieses Messinstrument befindet sich im Leitungszuge selbst. Ferner wird die Erzeugung der Regulier- und Speicherwerke Piottino und Airolo ferngemeldet. Am Anfang und Ende der Leitung ist ein Schaltersymbol vorhanden, das die Stellung des dort befindlichen Schalters anzeigt. Alle diese Messwerte und Schalterstellungen werden hochfrequenzmässig von den verschiedenen Kraftwerken und Unterstationen nach der Lastverteilerstelle übertragen.

Fig. 15 zeigt einen Ausschnitt des Lastverteilerschemas (Unterwerk Mettlen).

Auf der folgenden Fig. 16 sehen Sie das im Kraftwerk Gösgen installierte Duplikat des in Olten aufgestellten Lastverteilers. Die Lastverteilerstelle im Verwaltungsgebäude der ATEL ist vorläufig nur während der Bürostunden besetzt; in der übrigen Zeit erfolgt die Überwachung des Lastverteilers im Kraftwerk Gösgen.

Zum Schlusse soll als Beispiel eines werkeigenen Telephonnnetzes eine Darstellung des ATEL-Telephonnetzes gegeben werden (Fig. 17). Es handelt sich um ein sehr weitverzweigtes Netz, das im Prinzip den vorhandenen Leitungen folgt, und zwar ist mit ausgezogenen Linien das Hochfrequenztelephonienetz, mit punktierten Linien das aus gemie-

teten Adern der PTT bestehende Netz aufgetragen. In Mettlen münden die Verbindungen zu den Gesellschaften NOK, EW Zürich, BKW, etc., m. a. W., die grossen Werke sind direkt über eigene Telephonleitungen miteinander verbunden. Ein gleiches Schema können Sie sich bei den NOK, BKW usw. vorstellen. Dieses Netz ermöglicht also, intern im eigenen und mit andern Netzen Telephonverbindungen herzustellen, und zwar nach demselben System, wie beim Netz der PTT durch gewisse Zoneneinteilungen, indem z.B. die Vorziffer 96 die Zone der MKW, die Kennziffer 92 diejenige des Netzes ATEL-Nord bedeutet. Aus diesem Bild ersieht man, dass der Kontakt zwischen den Betriebsleitungen der verschiedenen Netze ein sehr enger ist. Die kurzen Distanzen bilden denn auch einen Vorteil des schweizerischen Verbundbetriebes. Die Herren, die sich mit dem Betrieb zu befassen haben, sind einander persönlich bekannt, was den Verkehr ausserordentlich erleichtert.

Ich hoffe, mit meinem Vortrag einen Einblick in die Probleme des Energieaustausches zwischen den grossen Elektrizitätswerken vermittelt zu haben, wobei ich nochmals betonen möchte, dass es sich nur um eine Auslese aus den sich stellenden Fragen handelte und die verschiedenen Punkte lediglich gestreift werden konnten.

Adresse des Autors:

W. Hauser, dipl. Ing. ETH, Direktor der Aare-Tessin A.-G. für Elektrizität, Olten.

Literatur

Le prix de l'électricité. Son influence sur le financement des investissements dans l'industrie de l'électricité. — Paris, Organisation européenne de coopération économique; 8°, 65 p., 11 fig., 13 tab. — Preis: Fr. f. 200.—.

Im Laufe des Jahres 1953 hat eine Experten-Gruppe der OECE, zum erstenmal auf internationaler Ebene, eine Studie über den Preis der elektrischen Energie und seine Beziehungen zur Finanzierung der Investierungen in der Elektrizitätswirtschaft unternommen.

Das vorliegende Heft ist ein Auszug aus den wichtigsten Abschnitten dieser sehr eingehenden Studie.

Im ersten Kapitel werden die hauptsächlichsten Auffassungen wiedergegeben, die von den Mitgliedern der OECE einstimmig gebilligt wurden. Nach einer kurzen Einleitung wird die Entwicklung der Elektrizitätswirtschaft vor und nach dem Kriege gewürdigt; sodann folgt eine Untersuchung über die Entwicklung der Produktionskosten. Auf Grund dieser Feststellungen gelangen die Experten zu folgendem Schluss: Um die Zunahme der Energieerzeugung in dem durch die

wirtschaftliche Entwicklung der OECE-Länder bedingten Masse zu sichern, ist es angezeigt

a) der Elektrizitätswirtschaft genügend Freiheit zu lassen, damit sie nach gesunden wirtschaftlichen Grundsätzen arbeiten kann, so dass ihr die nötigen Gelder leichter zufliessen.

b) in den Ländern, in denen der Staat den Kapitalimport begünstigt, diesen durch eine geeignete Tarifpolitik zu unterstützen, d. h. für genügende Betriebsergebnisse zu sorgen, um die fremden Gelder zu einem Ansatz verzinsen zu können, der mit den Verhältnissen auf dem internationalen Kapitalmarkt übereinstimmt.

Das zweite Kapitel enthält die von den einzelnen Mitgliedstaaten der OECE zur Verfügung gestellten Berichte über jedes Land; sie vermitteln einen Überblick über die finanzielle Lage der Elektrizitätswirtschaft dieser Länder sowie über bestehende gesetzliche Bestimmungen betreffend die Energiepreise.

Die Lektüre dieses Heftes, dessen graphische Darstellungen und Tabellen eine Fülle nützlicher Auskünfte enthalten, kann nur empfohlen werden.

Verbandsmitteilungen

Meisterprüfung für Elektroinstallateure

In der Zeit zwischen April und Juli dieses Jahres findet eine Meisterprüfung für Elektroinstallateure statt. Ort und genauer Zeitpunkt werden später festgesetzt. Dauer der Prüfung: zirka vier Tage. Anmeldeformulare sind beim Sekretariat des Verbandes Schweizerischer Elektro-Installationsfirmen (VSEI), Splügenstrasse 6, Postfach Zürich 27, zu beziehen (Telephon (051) 274414) und unter Beilage von Arbeitsausweisen, einem handgeschriebenen Lebenslauf und einem Leumundszeugnis neuesten Datums bis spätestens am 5. Februar 1955 1) an obige Adresse einzureichen. (Die Herbstprüfungen werden später ausgeschrieben). Im übrigen verweisen wir auf die weiteren im Reglement festgelegten Zulassungs- und Prüfungsbestimmungen. Das neue Meisterprüfungsreglement, gültig ab 15. Dezember 1950, kann beim VSEI bezogen werden.

Meisterprüfungskommission VSEI/VSE

Redaktion der «Seiten des VSE»: Sekretariat des Verbandes Schweizerischer Elektrizitätswerke, Seefeldstrasse 301, Zürich 8, Telephon (051) 34 12 12, Postcheckkonto VIII 4355, Telegrammadresse: Electrounion, Zürich.

Redaktor: Ch. Morel, Ingenieur.

¹⁾ Im Bull. SEV Bd. 46(1955), Nr. 1 wurde irrtümlicherweise den 5. Dezember 1955 als Datum angegeben.