Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 45 (1954)

Heft: 7

Rubrik: Mitteilungen SEV

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Sektion 5, die ich als letzte erwähne, weil sie die geringste Anzahl der Berichte zu bewältigen hatte, übernahm die Aufgabe: Problèmes d'électrochimie en tant qu'ils mettent en œuvre des phénomènes thermiques. Hier wussten Frankreich und Italien das grösste Interesse zu erwecken. Die Schweiz hat keinen Bericht eingereicht.

Zusammenfassend ist zu sagen, dass viel Lehrreiches zutage gefördert worden ist an neuen Ergebnissen und Ideen in der Grundlagenforschung. Es ist viel Wissenswertes berichtet worden über die konstruktiven Probleme und über den einen und andern überraschenden Erfolg auf diesem Gebiet. Die wirtschaftlichen Fragen gelangten nicht zur vollen Abklärung. Hier, wie überhaupt, herrschte der Eindruck vor, dass auf allen Gebieten manche wichtige Frage der weiteren

Vertiefung und der hierauf folgenden gemeinsamen Beratung bedürfe.

Die Beteiligung an den Kongressarbeiten war rege. Dass sich hiebei unsere französischen Freunde in besonderem Masse bemühten, war nicht allein auf ihre Gastgeberpflichten zurückzuführen. Ihre Fachleute hatten in vielen Punkten Wesentliches zu sagen.

Ich bin in nachdenklicher Stimmung heimgekehrt, denn ich musste mich fragen, wann endlich auch wir die vorhandenen Kräfte aus ihrem partikularistischen Selbstgenügen herausheben zu einer geordneten machtvolleren Wirkung zum Wohl des Landes und zur Steigerung seines Ansehens auf internationalem Boden?

Technische Mitteilungen — Communications de nature technique

Cinquantenaire de l'Ecole d'électrotechnique du Technicum neuchâtelois

061.75.373.622(494.43)

En 1903, les autorités communales du Locle suggérèrent, avec une admirable clairvoyance, d'ajouter aux Ecoles d'horlogerie et de mécanique, fondées respectivement en 1868 et en 1886, une Ecole d'électricité et d'édifier un nouveau bâtiment appelé «Technicum». En 1933, les Technicums du Locle et de La Chaux-de-Fonds fusionnèrent pour former le Technicum neuchâtelois.

L'Ecole d'électrotechnique eut des débuts très modestes mais se développa rapidement sous les directions successives de MM. Isaac Revilliod, Paul Lang et Charles Moccand, ingénieur dipl. EPF, directeur actuel. M. Louis Huguenin. ingénieur dipl. EPF, remplaça en 1950 M. Henri Perret, actuellement Président du Conseil national, à la direction du Technicum neuchâtelois.

L'Ecole d'électrotechnique prépare trois catégories différentes d'élèves:

a) des techniciens-électriciens dont les études durent 5 ans; notons que leur entrée à l'Ecole polytechnique fédérale est facilitée, s'ils désirent poursuivre leurs études;

b) des mécaniciens-électriciens; la durée de leur apprentissage est de 4 ans;

c) des monteurs en appareils à courant faible; leur apprentissage requiert 4 ans également.

Les élèves travaillent selon une méthode nouvelle qui leur permet d'être initiés à la tâche et aux responsabilités qui les attendent lorsqu'ils quittent l'Ecole. En effet, ils effectuent, pour satisfaire aux exigences de l'Ecole ou les commandes de l'industrie privée, sous la direction de leurs maîtres, les projets qui ont été élaborés au Bureau technique. Relevons que cette méthode d'enseignement, pratiquée aussi en Angleterre et aux Etats-Unis, donne des résultats

Le 30 janvier dernier, une journée officielle organisée à l'occasion du cinquantenaire de l'Ecole d'électrotechnique, s'est déroulée au Locle. La cérémonie réunit au Casino-Théâtre, les délégués des autorités fédérales, cantonales et communales, les représentants des industries suisses et des associations professionnelles, les anciens élèves de l'Ecole et les membres du Corps enseignant du Technicum, qui entendirent diverses allocutions; elle fut agrémentée de quelques morceaux interprétés par l'orchestre du Technicum. La partie officielle fut suivie d'un banquet et d'une visite de la partie la plus récente de l'établissement. Les participants eurent alors le plaisir de voir l'équipement très complet et moderne des laboratoires ainsi que les travaux remarquables des élèves.

Les nouveaux laboratoires

La grande mission de notre école reste celle de préparer au mieux ses élèves à leur activité future. En regard des progrès incessants de la technique et des exigences croissantes qu'elle impose aux jeunes techniciens débutant dans l'industrie, cette préparation n'est pas un vain mot. Cela signifie qu'une école d'électrotechnique moderne, consciente de la responsabilité qu'elle assume à l'égard des jeunes gens qui se confient à elle, se doit de vouer à son équipement une attention toute particulière.

Mais l'équipement d'une école technique n'est-il pas fonction de ses laboratoires? Ceux-ci, à condition d'être bien

outillés, jouent, en effet, un rôle important dans l'enseignement de l'électrotechnique, science qui repose sur les phénomènes électriques et magnétiques; son étude, comme aussi celle des applications qui en découlent, constitue la base fondamentale de la formation du technicien électricien.

Tout en développant l'ingéniosité de l'élève, les expériences de laboratoire l'obligent à appliquer les connaissances théoriques acquises. «Mesurer, c'est savoir» dit un vieil adage.

On distingue trois catégories d'exercices:

- 1. Les démonstrations donnant une vision concrète des phénomènes dont elles facilitent la mémorisation;
- 2. Les exercices de base se rapportant aux mesures élec-
- 3. Les essais de machines familiarisant les élèves avec les phénomènes fondamentaux dont elles sont le siège.

Un tel grogramme entraîne naturellement l'obligation d'avoir de nombreuses installations. L'agrandissement du Technicum a mis récemment à notre disposition de nouveaux

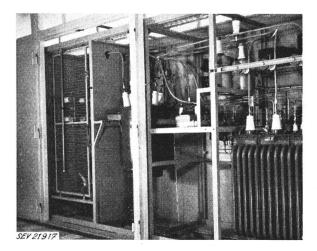


Fig. 1 Station transformatrice assurant la distribution de l'électricité pour le laboratoire

locaux dont l'aménagement fait l'objet de la description suc-

Salle des machines électriques. — Ce laboratoire, alimenté en énergie par le réseau triphasé à 8000 V de la ville, possède une cabine dont la puissance installée nominale est de 75 kVA. Un transformateur abaissant la tension de 8000 V à 380 V et 220 V, fournit l'énergie aux deux jeux de barres des tableaux de distribution à basse tension (fig. 1).

Indépendamment de cette alimentation en courant alternatif, on dispose d'une source de courant continu constituée par une batterie d'accumulateurs au plomb montée dans un local avoisinant. Un système de commande à distance permet de réaliser automatiquement la mise en série ou en parallèle des différents éléments. Il est ainsi possible de distribuer n'importe quelle tension, entre 0 et 60 V, par échelon de 2 V.

En outre, on a aussi la possibilité de connecter, par renvoi à un tableau général de répartition, l'ensemble des machines susceptibles de fournir, sous différentes tensions, des courants continus et des courants monophasés de 25 à 70 Hz ou encore monophasés de 10 000 Hz. De là, ces courants peuvent être dirigés vers d'autres laboratoires et vers quelques salles de cours.

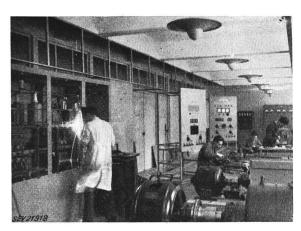


Fig. 2 Laboratoire de machines Vue de quelques cellules en cours de montage (Travaux d'élèves)

L'ensemble de ces distributions nécessita l'exécution d'un grand tableau (fig. 2). Sa réalisation posa de multiples problèmes et il ne fut pas toujours aisé de leur trouver une solution. Les conditions à satisfaire étaient posées non seulement par des nécessités techniques ou didactiques, mais aussi par la modestie des dépenses consenties à cet effet. Aujourd'hui, ce tableau rend les plus grands services; d'une clarté parfaite, il permet une très grande maniabilité dans la conduite des essais.

Dans son état actuel, la salle des machines comporte aussi les équipements suivants: plusieurs groupes à courant continu et alternatif, une commutatrice, une dynamo-frein, un frein mécanique système Prony, un redresseur à vapeur de mercure, un régulateur d'induction, quelques moteurs spéciaux et plusieurs transformateurs classiques et spéciaux (fig. 3).

Fig. 3 Vue du laboratoire de machines

Ces machines sont placées sur des socles rainurés de telle façon que l'une quelconque d'entre elles puisse entraîner n'importe quelle autre, soit par courroie, soit par manchonnage. De cette manière, on peut combiner tous les montages utiles à l'étude. Un moufle installé sur rail facilite la manutention nécessaire à la mise en place des machines mobiles. On utilise, en guise de socle, de deux tables rainurées, montées sur 4 colonnes de hauteur réglable.

Pour effectuer les mesures, nous disposons d'une collection d'instruments modernes que nous avons acquis au cours de ces dernières années. Mentionnons, à titre d'exemple, l'oscillographe cathodique avec commutateur électronique à trois

En résumé, l'équipement de ce laboratoire est prévu pour exécuter la plupart des mesures exigées dans l'industrie des machines électriques.

Signalons, en passant, que la sous-station d'alimentation, les tableaux de distribution, les tableaux de mesure et de commande ont été projetés et réalisés par l'école.

Laboratoire de courant faible et de haute fréquence. — L'équipement de cette salle comporte un certain nombre d'appareils usuels de mesure et ceux destinés à la technique de la radioélectricité et des télécommunications. Signalons qu'au cours de ces dernières années, ce laboratoire s'est accru d'une gamme complète d'appareils de mesure de hautes performances: générateurs, voltmètres à lampes, wobulateurs, banc de mesure des tubes électroniques, ponts de mesure alternatifs couvrant la plage de 50 à 10⁶ Hz, oscillographes à tube cathodique. Il dispose, en outre, de tout le matériel nécessaire au montage d'appareils électroniques les plus divers tels que: amplificateurs, récepteurs, compteurs, commandes par thyratrons, etc....

Ce local permet de recevoir 16 élèves disposant chacun d'une place de travail spacieuse. Quatre grandes tables d'expériences de 3 m × 1,5 m offrent toutes les facilités de connexions et de manœuvres (fig. 4).

Fig. 4

Vue partielle du laboratoire de courant faible

Une part importante des essais se rapporte aux applications de l'électronique et à l'étude de commandes automatiques. Des exercices de mesures se font également sur un câble téléphonique posé, à cet effet, à l'extérieur du bâtiment.

A côté du laboratoire se trouve une cabine blindée constituée par une enceinte de tôle de cuivre de 0,4 mm d'épaisseur soigneusement soudée, de façon à constituer une surface protectrice électriquement étanche. Les lignes d'alimentation des appareils installés dans la cabine sont munies de filtres antiparasites. L'ensemble forme un local d'essai d'assez grandes dimensions $(5\ m\times 4\ m\times 3\ m)$ permettant d'effectuer les mesures radioélectriques à l'abri des actions perturbatrices extérieures.

Laboratoire de haute tension. — Ici, les exercices sont, d'une part, consacrés aux essais des principales matières isolantes utilisées dans la construction électrique et, d'autre part, à ceux de certains organes de petites dimensions (bornes, isolateurs, traversées, etc.).

Les essais que l'on fait subir aux isolants solides sont multiples: le premier et le plus usuel est la mesure de la résistance superficielle. Pour ce faire, on dispose d'électrodes normalisées et d'un galvanomètre à haute sensibilité. Vient ensuite la mesure de la résistivité diélectrique effectuée avec le spintermètre classique. Pour cette détermination, on opère soit dans l'air, soit dans l'huile, à des températures, différentes de la température ambiante, sous une tension croissant rapidement ou par palier.

L'école a acquis récemment un pont de Schering à haute tension permettant la mesure des pertes diélectriques en fonction de la tension appliquée, ce qui fournit des renseignements précieux sur la tenue diélectrique de l'isolant ou de l'appareil examiné. Les tensions maxima d'essais que l'on peut atteindre avec les installations actuelles du laboratoire (fig. 5) sont de 100 kV en courant continu, de 350 kV pour les essais de choc et de 120 kV à la fréquence de 50 Hz avec une puissance de 10 kVA.

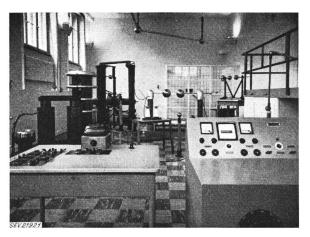


Fig. 5

Vue du local haute tension

Signalons en terminant que l'école fait également bénéficier l'industrie régionale de ses laboratoires pour des contrôles et des essais de matériel électrique.

Nous possédons aujourd'hui, grâce à ces nouveaux laboratoires, un instrument précieux qui doit nous permettre de préparer nos élèves à résoudre toujours mieux les problèmes posés par la technique moderne.

Adresse de l'auteur:

 $\it Charles\ Moccand,$ ingénieur dipl. EPF, directeur de l'Ecole d'électrotechnique, Le Locle (NE).

Eine neue Gleichrichterröhre für sehr hohe Spannung und grosse Leistung

[Nach T. H. Rogers: New Rectifier Tube for Extremely High Power and Voltage Levels. Electr. Engng. Bd. 72(1953), Nr. 1, S. 51...56]

Zur Gleichrichtung von hochgespannten Wechselströmen (z. B. von 100 kV), für welche gasgefüllte Röhren nicht mehr brauchbar sind, verwendet man seit langem Hochvakuumdioden (Kenotrons). Diese Hochspannungsventile waren bis vor kurzem nur für relativ geringe Ströme verwend-

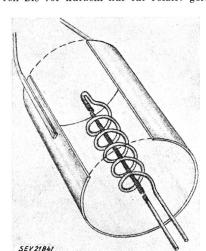


Fig. 1

Kathode einer bisher

üblichen Hochspannungs-Gleichrichterröhre

bar. Mit der Entwicklung der Radartechnik, der Verwendung von Massenspektrometern zur Isotopentrennung usw. kam jedoch das Bedürfnis nach leistungsfähigeren Typen.

Die Leistungsfähigkeit einer Hochspannungsgleichrichterröhre wird zur Hauptsache durch das Emissionsvermögen der Kathode, die Auswirkung der elektrostatischen Kräfte auf die Kathode und die Wärmeentwicklung in der Anode bestimmt. Für hohes Emissionsvermögen wären Oxydkathoden besonders geeignet, doch ertragen diese keine hohen Spannungen; daher verwendet man bei Spannungen über 20 kV Wolframkathoden oder besser, thorierte Wolframkatho-

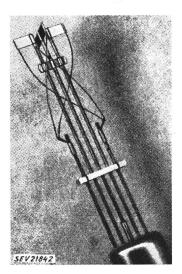
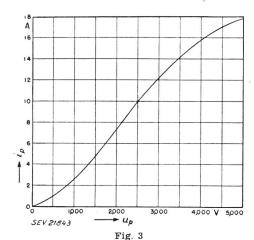



Fig. 2 Neue Kathodenform

den, da diese bei bedeutend tieferen Temperaturen emittieren. Der Elektrodenabstand muss wegen der grossen zu sperrenden Spannungen relativ gross sein. Trotzdem bewirkt die grosse Spannung sehr starke elektrostatische Anziehungskräfte, die den weissglühenden Kathodendraht deformieren können, wenn er nicht entweder so geformt ist, dass der Zug in seiner Längsrichtung erfolgt, oder wenn er nicht elektrisch abgeschirmt wird, z. B. durch eine Spirale aus dickem Draht (Fig. 1).

Da die in der Anode erzeugte Wärme exponentiell mit der Stromstärke wächst, wird bei Röhren mit grosser Stromstärke das Wärmeabstrahlungsvermögen der Anode zu einem der wichtigsten Faktoren. Wegen der Abhängigkeit der Anodenverlustleistung vom Spannungsabfall in der Röhre muss dieser so klein wie möglich gehalten werden; dazu müsste man auf eine Abschirmung der Kathode verzichten. Aus diesem Grunde wird bei der neuen Machlett-Röhre die von Skehan und Magnusson vorgeschlagene Kathodenform (Fig. 2) in Verbindung mit einer zylindrischen Anode ver-

Strom-Spannungscharakteristik einer neuen Röhre i_p Strom; u_p Spannung

wendet. Bei dieser Kathodenform sind die Glühdrähte als Teile einer grossen Spirale angeordnet, wodurch die deformierenden Kräfte auch ohne Abschirmung genügend klein gehalten werden können. Das Wärmeabstrahlvermögen der Anode (Tantalblech) wird durch Aufsintern von Wolframpulver um ca. 50 % verbessert.

Die durch die neue Kathodenform bei Verwendung von thorierten Wolframdrähten bewirkte Verminderung der Anodenverluste ist beachtlich. Die dem thorierten Wolframdraht sonst anhaftenden Nachteile spielen bei dieser Kathodenform nur eine untergeordnete Rolle. Die neue Röhre arbeitet mit 250-W-Heizleistung und weist die in Fig. 3 dargestellte Charakteristik auf: Spitzenstrom 10 A (mittlere Stromstärke 0,4 A), zulässige zu sperrende Spannung 110 kV, Anoden bis 1500 W belastbar. Die Röhren sind in ihren wichtigsten Abmessungen gleich wie die früher verwendeten Kenotrons, die sie daher in vielen bestehenden Anlagen leicht ersetzen können.

Silikon-Isolierstoffe im Transformatorenbau

[Nach G. Ehlers: Silikon-Isolierstoffe im Tranformatorenbau. ETZ-A Bd. 74(1953), Nr. 19, S. 553...558]

Silikon-Isolierstoffe wie Silikonlack, Silikongummi in Kombination mit andern wenig wärmeempfindlichen Stoffen sind thermisch weitaus stabiler als organische Isolierstoffe. Jene haben im Transformatorenbau bei Vorliegen besonderer Arbeitsbedingungen mit Erfolg einen Anwendungskreis ge-

Die Eigenschaften von Silikonlacken sind folgende: Methyl-Silikone ergeben härtere, weniger zähe Lackfilme als Methyl-Phenyl-Silikone. 0,1 mm dicke Lackfilme können bei 200 °C in etwa 4 h ausgehärtet sein; andere Sorten erfordern bei 250 °C bis 24 h. Auch bei hohen Temperaturen zeigen diese Lackarten keine Verkohlungen, es bilden sich aber feine Risse, durch welche Feuchtigkeit eindringen und den elektrischen Durchschlag einleiten kann. Die Rissbildung kann zur Gütebeurteilung benützt werden. Glas-, Kupfer-, Glasseiden-Schichten werden als Lackträger auf beispielsweise 250 °C gehalten und die Zeit bis zum Auftreten der ersten Risse bestimmt, wobei Werte von 15 min bis 50 Tagen gefunden wurden. Die tatsächliche Lebensdauer einer Isolation kann das Mehrfache der Mindestlebensdauer gemäss Rissetest betragen.

Ein Vergleich von Silikonlacken mit organischen Isolierstoffen zeigt folgendes Bild: Die Haftfestigkeit auf glatter Keramik- oder Metallunterlage ist nicht bei allen Lacksorten gut, und nimmt zudem im Laufe der Betriebserwärmung ab; gehende Temperatur- und Frequenz-Unabhängigkeit. Die dielektrische Festigkeit liegt meistens niedriger als diejenige anderer Lacke. Silikonlack-Glasseide erreicht bei 3...4 mm Schichtdicke nur noch 3...4 kV/mm Durchschlagfestigkeit.

Silikongummi ist ebenfalls wärmebeständiger, die mechanischen Qualitäten aber geringer als diejenigen organischer Gummitypen. Mit der Wärmealterung versprödet der Silikongummi und seine Durchschlagfestigkeit nimmt ab. Mit Glasseide umsponnene Drähte, isoliert mit Silikonlacken bis 0,3 mm Schichtdicke, ergeben eine Durchschlagspannung von 1...2 kV. Besser sind Glasseiden-Schläuche mit Silikonlack oder Silikongummi, wo bei Transformatoren Durchschlagspannungen bis 6 kV erzielt werden. Grössere elektrische Festigkeit, wie sie für Lagenisolation notwendig wird, kann mit Silikon-Glasseide oder Glasseide-Glimmer-Silikonlack-Klebung erzielt werden.

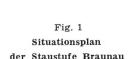
Silikonisolierte Transformatoren werden in den USA für Flugzeuge sowie im Bergbau angewendet, in druckfester Ausführung unter Stickstoff, bei Arbeitstemperaturen von 200... 225 °C. Die Leistungen werden mit 5 bis 1500 kVA angegeben. In Deutschland sind nach mehrjährigen Vorversuchen seit 2 Jahren vorzugsweise für den Bergbau Transformatoren in geschlossener Ausführung für 315 kVA ausgeführt worden, die gegenüber normalen Trockentransformatoren erhebliche Einsparung an Werkstoffen ergeben.

Über die Lebensdauer der Silikonlack-Isolierung kann folgendes gesagt werden: Ausgedehnte Untersuchungen mit neueren Silikonlacken zeigen eine Verdoppelung der Lebensdauer bei einer Reduktion der Arbeitstemperatur um 16°, 12° oder 10°C, je nach Lacksorte. Aus Extrapolationen folgen nachstehende Zahlenwerte für die Mindestlebensdauer in Tagen:

Temperatur	Lack 1	Lack 2	Lack 3
250 ° C	50	17,5	0.1
180 ° C	1000	1000	10
		-	I. Fischer

Das Kraftwerk Braunau am Inn

621.311.21(436)


An der Grenzstrecke des unteren Inn steht das Kraftwerk Braunau vor seiner Fertigstellung (es müssen lediglich die Montage des 3. Generators beendet, der 4. Generator aufge-

Braunau

K.W. BRAUNA

Ranshofen

stellt und Fertigstellungsarbeiten abgeschlossen werden). Die Stufe Braunau liegt stromaufwärts der bereits im Krieg begonnenen und inzwischen fertiggestellten Stufen Obernberg und Ering. Ebenso wie diese zwei Werke wird auch Braunau seine Energie je zur Hälfte an das österreichische und an das Verbundnetz abgedeutsche geben.

Seibersdorf Haiming Alz Hana

die Beständigkeit gegen Wasser und Feuchtigkeit ist besser, aber nicht annähernd so gut wie diejenige chlorierter Wachse. Der Verlustfaktor sowie die Dielektrizitätskonstante sind mit $tg\delta = 0{,}001$ und $\varepsilon = 2{,}5...4$ klein. Dazu kommt noch eine weit-

Die Anlage Braunau ist in mehrfacher Beziehung von Interesse: Ihr Ausbau erfolgte durch eine gemeinsame österreichisch-deutsche Gesellschaft, die «Österreichisch-Bayerische Kraftwerke A.-G.». Sie wurde 1950 gegründet und begann den Bau im Jahre 1951 unter der Voraussetzung gleicher Aufteilung der Errichtungskosten und der Aufträge. Das Baugebiet wurde zur neutralen Zone erklärt. Am 8. Oktober 1953 wurde mit dem Einstau begonnen, am 1. November ging die erste Maschine in Betrieb, obwohl als Termin hiefür der 1. April 1954 in Aussicht genommen war. Die zweite Maschine wurde am 10. Dezember 1953 in Probebetrieb genommen. Das geschaffene Gefälle von 11,5 m bei Mittelwasser (12,22 m bei niedrigstem Niederwasser und 5,9 m bei höchstem Hochwasser) zwang zu grösseren Dammbauten im Rückstaugebiet, nicht nur entlang des Inns, sondern auch der Salzach (auf österreichischer Seite 8,5 km, am bayrischen Ufer 13,5 km). Zur Entwässerung des eingedeichten Gebietes mussten auf beiden Ufern Pumpwerke errichtet werden. Der Rückstau nimmt eine Fläche von rd. 12 km² ein.

Die Wasserführung schwankt zwischen 170 m^3/s bei niedrigstem Niederwasser und 5600 m^3/s bei höchstem Hoch-

Maschinenhaus wurde in der Freiluftbauweise ausgeführt, d. h. es fehlt der Maschinenhausüberbau; die Generatoren sind durch seitlich verschiebbare Abdeckhauben gegen die Einwirkungen der Witterung geschützt.

SEV 21883

Vorgesehen sind 4 vertikale Maschinensätze, bestehend aus je einer Kaplanturbine für 235 m³/s Schluckvermögen (255 m³/s bei Überöffnung). Die Normalleistung beträgt 22 600 kW (30 800 PS) (bei Überöffnung 24 030 kW oder 32 650 PS), die Drehzahl 83,4/min. Die vertikalen Schirmgeneratoren sind für 32 000 kVA bei $\cos\varphi=0.75$ ausgelegt. Die erzeugte Spannung beträgt 10,5 kV. Die Generatoren arbeiten in Blockschaltung mit den 100-kV-Transformatoren. Hilfsschienen mit Kuppelschaltern auf der 100-kV-Seite ermöglichen es, jeden Transformator auf eine beliebige der 4 abgehenden 100-kV-Leitungen zu schalten.

Das mittlere Arbeitsvermögen beträgt in den sechs Wintermonaten 176 GWh, in den

Fig. 2 Ansicht von der Unterwasserseite her

wasser (sie beträgt bei Mittelwasser 697 m/3s). Ausgelegt ist die Anlage für 1016 m³/s. Aus Gründen wirtschaftlicher Bauführung wurde das Maschinenhaus am rechten (österreichischen) Ufer angeordnet. Die Wehranlage erhielt 5 Öffnungen mit je 23 m lichter Weite und 13,5 m Durchflusshöhe. Das

Sommermonaten 337 GWh, somit insgesamt 513 GWh. Die Lage des Kraftwerkes ist für den österreichischen Partner besonders günstig, da einer der Hauptenergieverbraucher, das Aluminiumwerk Ranshofen, in der unmittelbaren Nähe des Kraftwerkes Braunau liegt.

E. Königshofer

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Die Anwendungsmöglichkeiten der Elektronik in Telephonzentralen

[Nach T. H. Flowers: The Uses and Possibilities of Electronics in Telephon Exchanges, J. UIT Bd. 77(1953), Nr 10, S. 148...163]

Es ist bekannt, dass mit Gasentladungsröhren, Vakuumröhren, Dioden, Trioden usw. Schalt- und Kontrollstromkreise aufgebaut werden können, die in ihrer Wirkung Stromkreisen mit elektromechanischen Mitteln (Relais, Schrittschalter)

I

Output

D

Output

aequivalent sind. Trotzdem haben bis jetzt die elektronischen Mittel nur dort Anwendung gefunden, wo die Steuerleistung nicht mehr ausreicht wie bei der Tonfrequenzwahl oder wo die Elektronik in die Augen springende Vorteile bietet, wie

II geschlossen

I offen

bei einem Prüfvorgang. Die Dioden können gemäss Fig. 1 für die beiden stabilen Zustände durch ein einfaches Ersatzschema dargestellt werden. Die Steuerleistung ist grösser als die Nutzleistung, was gegenüber dem Relais ein Nachteil ist.

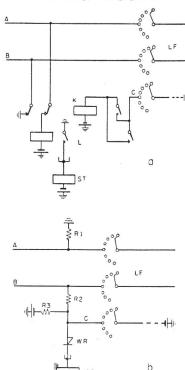


Fig. 2

Leitungssucher-Stromkreis (a) und æquivalenter LeitungssucherStromkreis bei Verwendung eines Gleichrichters
anstelle von Relais (b)

Die Schaltung muss diesem Umstand Rechnung tragen. So wird ein Leitungssucherstromkreis mit Relais nach Fig. 2a mit einem Gleichrichter nach Fig. 2b einen ganz andern Aufbau haben. In der gezeichneten Ruhestellung ist die Diode

SEV 21858

WR gesperrt. Wird die Schleife AB geschlossen, so wird das Potential an C so verändert, dass die Diode leitend wird und damit das Relais ST anspricht. Der Suchprozess wird eingeleitet und stoppt, wenn über die C-Bürste die Diode wieder gesperrt wird.

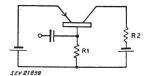
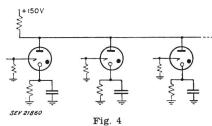
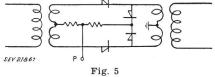



Fig. 3 Trigger-Stromkreis mit Spitzentransistor

Trioden, Transistoren und gesteuerte Strahlröhren mit mehreren Ausgangselektroden sind weitere elektronische Schalter, bei welchen das Verhältnis Nutzleistung zu Steuerleistung wesentlich günstiger ist. Durch Kombinationen lassen sich Schaltungen mit mehreren stabilen Zuständen erreichen, wie z. B. die Triggerschaltung Fig. 3 mit Spitzentransistor oder die Vielstellungs-Triggerschaltung mit Thyratrons der Fig. 4. Bei dieser brennt nur diejenige Röhre, welche den letzten positiven Impuls am Gitter erhalten hat. Photoemis-

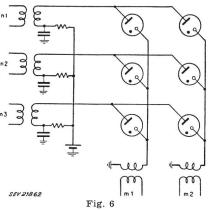


Vielstellungs-Trigger-Stromkreis mit Thyratrons

sion findet ebenfalls Anwendung, besonders in der Form von Phototransistoren. Diese eignen sich infolge ihrer kleineren Abmessungen zur Verwendung in permanenten Gedächtnissen, wie z. B. im Register-Translator, wobei gelochte Karten, welche durchleuchtet werden, sich nach den eingewählten Ziffern verschieben.

Allgemeine Bemerkungen zum Schaltproblem

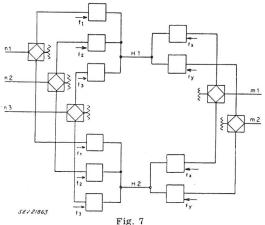
Alle elektromechanischen Schalter bestehen aus drei Teilen: Antrieb, Mechanismus und Kontaktsatz. Diese Teilung ist bei elektronischen Schaltmitteln nicht möglich. Eine Relaisschaltung kann also nicht ohne weiteres durch eine elektronische Schaltung ersetzt werden. Diese muss neu nach der von der Schaltung zu erfüllenden Aufgabe her konzipiert sein. In Telephonzentralen unterscheidet man zwei Aufgabengruppen. Einmal die logische, dass der anrufende Teilnehmer durch Abheben und Wählen einen bestimmten Teilnehmer verlangt und die zweite verbindende, dass die beiden miteinander sprechen können. Bisher wurde die zweite Aufgabe stets mit Relais- oder Wählerkontakten durchgeführt, was inbezug auf Übersprechen eine sichere Lösung ermöglicht. Eine Zusammenschaltung ist aber auch nach Fig. 5 mit elektronischen Mitteln möglich. Je nach dem ob an P gegenüber Erde ein positives oder negatives Potential angelegt wird, sind die Anschlüsse rechts und links für Sprechspannungen miteinander verbunden oder nicht. An einer Zählerschaltung



Verbindungsschalter mit Gleichrichtern

mit bestimmten Bedingungen wird die Lösung mit Relais und mit Elektronik erläutert. Im letzteren Fall werden zwei magnetische Verstärker, mehrere Gleichrichter, Kondensatoren und Widerstände verwendet.

Der Vergleich zwischen elektromechanischen und elektronischen Schaltern zeigt, dass bei diesen weniger Kontaktfehler auftreten, die Abnützung praktisch Null ist, dass aber langsame Veränderungen in der Charakteristik auftreten können. Der sorgfältigen Fabrikation und Kontrolle ist deshalb alle Beachtung zu schenken, wobei erst eine Massen-


fabrikation die notwendige Verbilligung ergäbe, um die elektronischen Mittel in Telephonzentralen einzuführen. Fehlerhafte Lötstellen sind ein Problem für sich und treten in jedem System auf. Zerstörung von Schaltern sind beim elektronischen System eher möglich, aber auch hier kann eine Verbesserung erzielt werden. Der grösste Unterschied liegt wohl in den Schaltzeiten, die beim elektronischen System einige Grössenordnungen kleiner sind als beim elektromechanischen. Die Lebensdauer der elektronischen Schalter ist im übrigen von der Anzahl der Schaltungen unabhängig. Ein weiterer Aspekt bietet die mögliche Reduzierung des Leistungsaufwandes bei elektronischen Schaltern und daraus eine Dezentralisierung der Schaltmittel.

Verbindungsschalter mit Thyratrons

Praktisch verwendet werden elektronische Schalter vom British Post Office im «director»-Register-Translator in Richmond, von der Bell Telephone Manufacturing Co., Antwerpen, im 7-E-System mit Phasenwahl; ausserdem liegt von der gleichen Gesellschaft eine Neuentwicklung einer Zentrale mit ausgedehnter Anwendung von elektronischen Mitteln vor.

Elektronische Gedächtnisse, wie sie bei grossen Digital-Rechenmaschinen in Gebrauch stehen, könnten mit Vorteil in Telephonzentralen dort verwendet werden, wo heute Informationen durch feste Verdrahtungen für permanenten und mittelst Relaisketten für vorübergehenden Gebrauch gespeichert werden. Es sind dies rotierende Trommeln mit einem Nickelbelag, auf welchen kleinste magnetische Dipole aufgezeichnet und entsprechende Impulse abgenommen werden

Verbindungsschalter mit Frequenzmultiplex

können. Es lassen sich auf diese Weise bis 106 binäre Einheiten auf einer Trommel speichern. Ein anderes Mittel stellen ferromagnetische Ringe mit einem Durchmesser von 2 mm dar, welche durch verschiedene Wicklungen im einen oder andern Sinne magnetisch gesättigt werden. Durch einen Absuchprozess kann festgestellt werden, welcher Ring des Speichers die abnorme Magnetisierung aufweist. Gepaart mit den kurzen Schaltzeiten der elektronischen Schalter können u. U. eine Menge Schaltmittel gegenüber heute eingespart werden.

Vollständig elektronische Zentralen sind nur dann möglich, wenn die Verbindung selbst ebenfalls durch elektronische Schalter vollzogen wird. Dazu eignen sich am besten gasgefüllte Trioden, die in einer Schaltung nach Fig. 6 ähnlich den Kreuzschaltern angeordnet werden. Denkbar ist auch eine Schaltung mittels Frequenzverschiebung nach Fig. 7, wobei die richtige Modulationsfrequenz $f_y = f_1$ angelegt werden muss, um z. B. n_1 mit m_2 zu verbinden. Eine vollständige Aufzählung der Möglichkeiten kann nicht gegeben werden. Die Elektronik wird sich dort durchsetzen, wo sie Vorteile erzielen lässt gegenüber den heutigen Lösungen. H.Weber

Elektronische Kontrolle eines Atomkern-Reaktors

 $621.039.421 {--} 253.8$

[Nach J. E. Binns: Electronic Control of a Nuclear Reactor. Electronics Bd. 26(1953), Nr. 11, S. 130...131]

Die Brookhaven-Kernspaltungsanlage in den USA ist für experimentelle Zwecke bestimmt. Der Reaktor besteht aus einem grossen Würfel aus Graphit, der das Uran enthält. Mit legierten Stahlstäben lässt sich der Spaltungsvorgang regulieren. Die Zahl der erzeugten Neutronen liegt zwischen 10^8 und 10^{18} pro s. Einige elektronische Geräte zeigen den Betriebszustand an, können ihn auf einem bestimmten Pegel konstant halten, wenn dies erforderlich ist, und sorgen für die Sicherheit der Anlage und des Bedienungspersonals.

Der Betriebszustand des Reaktors wird durch zwei elektronische Geräte bestimmt. Die Blockschemata beider Apparate zeigt Fig. 1. Das Gerät a, ein Zähler, dient zur Messung des Betriebszustandes bei kleiner Neutronenerzeugung, die Ausführung b, ein Periodenmesser, für den Betriebszustand

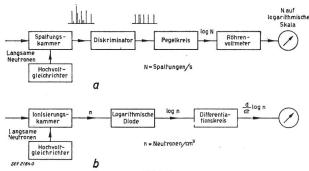


Fig. 1

Blockschemata zweier elektronischer Geräte zur Bestimmung des Betriebszustandes eines Atomkern-Reaktors

- a der Zähler für niedrigen Neutronenpegel
- b der Periodenmesser für hohen Neutronenpegel

bei grosser Neutronenerzeugung. Der Zähler zählt die Spaltungen von U^{235} in einer Ionisierungskammer. Das Signal besteht aus Impulsen. Bei heruntergeregeltem Ofen ergibt sich ungefähr ein Impuls pro Sekunde. Mit zunehmender Neutronenerzeugung steigt die sekundliche Impulszahl an. Der Energieinhalt der ankommenden Impulse und damit die Neutronenerzeugung wird am Ausgangsinstrument abgelesen. Bei mittlerem Betriebszustand erreicht das Instrument des Zählers Vollausschlag und der Periodenmesser setzt mit der Messung ein. Bei diesem ist die von der Ionisierungskammer abgegebene Gleichspannung so gross, dass sie einem Verstärker zugeführt werden kann. Das Ausgangsinstrument gibt den Zuwachs der Neutronenzahl pro Zeiteinheit an.

In der Nähe des kritischen Punktes des Uranofens ist der Gleichstrom einer dritten Ionisierungskammer so gross, dass er auf einem empfindlichen Galvanometer abgelesen werden kann. Mit Hilfe dieser Instrumente lässt sich der Reaktor manuell oder automatisch auf einem konstanten Pegel halten. Bei Gefahr ertönt ein Signal, oder der Ofen wird automatisch in wenigen Sekunden ausser Betrieb gesetzt.

H. Gibas

Ein Vergleich der wichtigsten Modulationsarten für Richtfunkstrecken nach neueren Erkenntnissen

621.396.619.1:621.396.43

[Nach H. Holzwarth: Ein Vergleich der wichtigsten Modulationsarten für Richtfunkstrecken nach neueren Erkenntnissen. Arch. elektr. Übertr. Bd. 7(1953), Nr. 5, S. 213...222]

Bei Mehrkanalübertragung über Kabel wird heute hauptsächlich von der Einseitenband-Amplitudenmodulation mit unterdrücktem Träger Gebrauch gemacht. Seit aber die höheren Frequenzgebiete (bis ca. 10000 MHz) praktisch anwendbar sind, haben die Richtfunkstrecken an Bedeutung gewonnen.

Es bestehen einige wesentliche Unterschiede zwischen den beiden Übertragungsarten:

- a) Die Kosten einer Richtfunkverbindung werden in erster Linie durch die Anzahl der Zwischenämter bestimmt. Die wirtschaftlichste Länge der einzelnen Funkfelder liegt erfahrungsgemäss bei ca. 50 km. Im Gegensatz zu Kabelstrecken treten bei Richtfunkstrecken infolge Änderung der Ausbreitungsbedingungen erhebliche zeitliche Schwankungen auf, die berücksichtigt werden müssen. Neuere Messungen zeigen, dass im Sommer häufig Schwund bis zu 20 db, in einzelnen Fällen bis zu 30 db, auftritt. Diese Angaben beziehen sich auf eine Meßstrecke von 36 km. Damit die Richtfunkverbindungen den CCI-Empfehlungen für Kabelverbindungen genügen (10 000 pW Geräuschleistung bei einer Streckenlänge von 2500 km, entsprechend 80 db Geräuschabstand), ist für jede Funkfeldlänge von 50 km ein Geräuschabstand von 70 db erforderlich, wobei für jedes Funkfeld eine Schwundreserve von wenigstens 20 db einbezogen werden muss.
- b) Bei sehr hohen Frequenzen ist es schwierig, Verstärker mit genügend gutem Frequenzgang zu bauen, um eine grosse Anzahl Sprachkanäle übertragen zu können (Nebensprechen). Es wurden daher viele neue Modulationsarten entwickelt. Die wichtigsten sind:
 - 1. Pulscodemodulation mit AM der Hochfrequenz (PCM-AM)
 - 2. Pulsphasenmodulation mit AM der Hochfrequenz (PPM-AM)
 - 3. Einseitenband-Amplitudenmodulation mit FM der Hochfrequenz (EB-FM)
 - 4. Pulsamplitudenmodulation mit FM der Hochfrequenz (PAM-FM)

Diese Verfahren erfordern eine grössere Bandbreite als EB-AM, gleichzeitig bringen sie aber eine Geräuschverminderung. Dafür benötigen sie besondere Massnahmen zur Erweiterung der Dynamik.

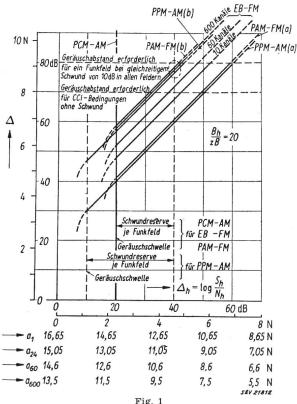
1. Pulscodemodulation (PCM-AM)

Die PCM-AM arbeitet ähnlich wie der Fernschreiber mit einer Folge von q-Impulsen. Da die Nachrichtenschwingung gequantelt wird, ergeben sich Verzerrungen, sog. Quantelungsgeräusch. Dieses darf als Klirren aufgefasst werden, da im unbesprochenen Kanal theoretisch kein Geräusch auftreten kann. Bei den nichtgequantelten Verfahren tritt dagegen ein Geräusch proportional der HF-Störspannung auf. Der Klirrfaktor wird bei Vollaussteuerung

$$k=rac{\sqrt{1+\mu}}{1.25\,n}$$
 für $k<5\,{}^{0/_{0}}$

worin $n = 2^q$ und μ Vorverzerrungsfaktor.

Der Klirrfaktor, gemessen bei 800 Hz, nimmt mit abnehmender Aussteuerung zu. Die CCI-Empfehlungen verlangen. bezogen auf den 0-Pegel, eine Klirrdämpfung von 31 db.


Die HF-Bandbreite wird für den häufig verwendeten Siebnercode (q=7) praktisch zu $B_h=20zB,$ worin z Anzahl Kanäle; B NF-Bandbreite.

Damit das Empfängerrauschen nicht zu Störungen Anlass gibt, muss der Rauschabstand am Empfänger mindestens 20 db betragen. Mit 20 db Schwundreserve ergibt sich auch für PCM ein totaler Rauschabstand von 40 db pro Funkfeld. Theoretisch erhält man für PCM eine scharfe Grenze, unterhalb der die Übertragung vollständig unbrauchbar, oberhalb

aber, abgesehen vom Quantelungsgeräusch, störungsfrei ist. In Fig. 1 ist der Geräuschabstand $\Delta = \log \frac{S}{N}$ als Funktion von $\Delta_h = \frac{S_h}{N_h}$ aufgezeichnet. [S Signalleistung im Sprachkanal (1 mW); N Geräuschleistung im Sprachkanal; S_h Signalleistung im HF-Kanal; N_h Geräuschleistung im HF-Kanal.]

2. Frequenzmodulation (EB-FM)

Als HF-Bandbreite wird $B_h=2c(F+2zB)$ gefordert (worin F maximaler Frequenzhub). Durch den Ausdruck 2zB werden 2 weitere Seitenbänder einbezogen. Fig. 1 enthält Δ als Funktion von Δ_h für $B_h=20zB$ bei 50% Modulation. Es ist ersichtlich, dass diese Übertragungsart für grössere Kanalzahlen günstiger wird.

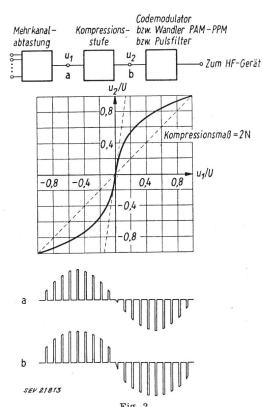
Geräuschabstand A im Sprachkanal in Abhängigkeit vom Rauschabstand A_n am Empfängereingang Streckendämpfung a für die Kanalzahlen 1, 24, 60, 600

3. Pulsphasenmodulation (PPM-AM)

Dieses Verfahren ist für kleine Rauschabstände der FM überlegen. Dies ist der sog. Hochtastung zu verdanken, da die Impulsspitzenleistung, je nach Impulsbreite und -abstand, bedeutend höher ist als die mittlere HF-Leistung. Dadurch wird die Geräuschschwelle tiefer gelegt.

4. Pulsamplitudenmodulation (PAM-FM)

Bei diesem Verfahren wird die ganze Geräuschverminderung durch die FM erreicht. Theoretisch kann hier eine
∞ grosse Nebensprechdämpfung erzielt werden, wenn auf der Sende- wie auf der Empfangsseite die Abtastung der Kanäle zeitlich genau erfolgt. Man macht dabei Gebrauch von einem Tiefpassfilter. Bei einem idealen Tiefpass ohne Laufzeitverzerrungen erscheint ein am Eingang angelegter Impuls in der Form


$$s(t) = \frac{\omega_g \sin \omega_g t}{\pi \omega_g t}$$

mit $\omega_{\rm g}/2\,\pi={
m Grenzfrequenz}$ des Filters. Macht man die Grenz-

frequenz des Filters gleich der Abtastfrequenz, so ist die Nebensprechdämpfung ∞ gross, da nur das Signal eines Kanals auftritt, alle andern Signale dagegen durch Null gehen. Das erforderliche HF-Band ist wie bei EB-FM $B_h=2\ c\ (F+2\ z\ B)$. Normalerweise arbeitet man mit grösserer HF-Bandbreite und speziell angepasster Dämpfungskurve des Filters.

5. Momentankompression und -expansion bei den PM-V erfahren

Damit das PCM-Verfahren auch bei kleinen Amplituden befriedigende Resultate ergibt, wird die Sprachschwingung logarithmisch vorverzerrt und linear gequantelt (Fig. 2). Im Empfänger wird die Verzerrung wieder rückgängig gemacht. Diese Massnahme, Kompansion genannt, ergibt auch bei den nichtgequantelten Verfahren eine Verbesserung, da im Empfänger der Geräuschabstand vergrössert wird. Mit einer Vor-

Amplitudenkompression bei Pulsmodulation a nicht komprimiert; b komprimiert

verzerrung von 17 db lässt sich daher eine Leistungseinsparung im HF-Kanal um einen Faktor 50 erzielen. In Fig. 1 sind die Geräuschverhältnisse für PPM-AM(b) und PAM-FM(b) mit 17 db Kompression eingezeichnet. Die PPM kommt bei Kompansion mit einem HF-Band von ca. 10zB aus. PCM dagegen erfordert nach wie vor $B_h = 20zB$.

6. a-△-Diagramme

Auf verhältnismässig einfache Weise kann man für einen bestimmten Rauschabstand die Streckendämpfung a eines Funkfeldes angeben, wenn die Rauschzahl des Empfängers, die Sendeleistung, die Kanalzahl und das Verhältnis B_h/zB bekannt sind. Eine sehr wesentliche Rolle spielt dabei das Grundgeräusch der Endgeräte. In Fig. 1 sind die entsprechenden Streckendämpfungen bei einer Sendeleistung von 1 W und einer Rauschzahl 10 für die Kanalzahlen 1, 24, 60, 600 eingetragen. Aus der Fig. 1 lassen sich die sogenannten a-A-Diagramme bestimmen, welche den Geräuschabstand Δ in einem Sprachkanal in Funktion der Streckendämpfung a angeben. E. Fischer

Wirtschaftliche Mitteilungen

Unverbindliche mittlere Marktpreise je am 20. eines Monats

Metalle

		März	Vormonat	Vorjahr
Kupfer (Wire bars) 1) .	sFr./100 kg	295 / 300	300.—	325.—
Banka/Billiton-Zinn 2).	sFr./100 kg	925.—	815.—	1165
Blei 1)	sFr./100 kg	110.—	104.—	116
Zink 1)	sFr./100 kg	94.—	92	102
Stabeisen, Formeisen 3)	sFr./100 kg	51.50	51.50	56
5-mm-Bleche 3)	sFr./100 kg	59.—	59.—	74

- $^{1})$ Preise franko Waggon Basel, verzollt, bei Mindestmengen von 50 t.
- ²) Preise franko Waggon Basel, verzollt, bei Mindestmengen von 5 t.
- ²) Preise franko Grenze, verzollt, bei Mindestmengen von 20 t.

Flüssige Brenn- und Treibstoffe

	März	Vormonat	Vorjahr
Reinbenzin/Bleibenzin 1) sfr./100 kg	59.20	63.05	66.35
Benzingemisch inkl. In- landtreibstoffe 1) sfr./100 kg	61.10	65.10	64.30
Dieselöl für strassenmotorische Zwecke 1) . sfr./100 kg	40.55	42.15	45.45
Heizöl Spezial ²) sfr./100 kg	100 SAN DELICATION	17.80 16.20	20.70 18.90
Heizöl leicht ²) sfr./100 kg Industrie-Heizöl (III) ²) sfr./100 kg		11.90	14.50
Industrie-Heizöl (IV) 2) sfr./100 kg	11.10	11.10	13.70

- ¹) Konsumenten-Zisternenpreis franko Schweizergrenze, verzollt, inkl. WUST, bei Bezug in einzelnen Bahnkesselwagen von ca. 15 t.
- ²) Konsumenten-Zisternenpreise (Industrie), franko Schweizergrenze Basel, Chiasso, Iselle und Pino, verzollt, exkl. WUST, bei Bezug in einzelnen Bahnkesselwagen von ca. 15 t. Für Bezug in Genf ist eine Vorfracht von sFr. 1.—/100 kg hinzuzuschlagen.

Kohlen

		März	Vormonat	Vorjahr
Ruhr-Brechkoks I/II .	sFr./t	118.50	118.50	116.—
Belgische Industrie-Fett-				
kohle				
Nuss II	sFr./t	86.—	86.—	98.—
Nuss III	sFr./t	83.—	83.—	94.—
Nuss IV :	sFr./t	82.—	82.—	92.—
Saar-Feinkohle	sFr./t	73.—	73.—	92.—
Saar-Koks	sFr./t	117.—	117.—	123.—
Französischer Koks,	- 0	N 10		
metallurgischer, Nord	sFr./t	117.10	117.10	125.30
Französischer Giesserei-	*			
Koks	sFr./t	115.—	115.—	126.80
Polnische Flammkohle				
Nuss I/II	sFr./t	90.—	90.—	98.—
Nuss III	sFr./t	85.—	85.—	93.—
Nuss IV	sFr./t	83.—	83.—	91.—
USA Flammkohle abge-				15,000,000
siebt	sFr./t	84.—	84.—	95.—

Sämtliche Preise verstehen sich franko Waggon Basel, verzollt, bei Lieferung von Einzelwagen an die Industrie, bei Mindestmengen von 15 t.

Miscellanea

In memoriam

Max Preiswerk †. Vor Jahresfrist verschied in Lausanne Max Preiswerk, dipl. Maschinen-Ingenieur ETH und Mitglied des SEV seit 1933. Die grosse Lücke, die durch seinen Hinschied entstanden ist, wird bei Fachkollegen und Mitarbeitern auch heute noch schmerzlich empfunden.

Max Preiswerk wurde am 17. Mai 1896 in Basel geboren. Nach erfolgreichen Studien an der ETH erhielt er im Jahre 1921 das Diplom als Maschineningenieur und wirkte anschliessend während eines Jahres als Assistent bei Prof. Prašil. 1922 trat er in die Dienste der Aluminium-Industrie A.-G., wo er vorerst in deren Werken Chippis sein berufliches Können entfalten und weiter ausbilden konnte. Zurückberufen in die Zentralverwaltung im Jahre 1926, beschäftigte er sich mit Projektierung und Bau von zahlreichen hydroelektrischen Anlagen im In- und Auslande sowie mit Energieversorgungsanlagen in den verschiedenen Hütten und Fabriken des Konzerns, welchen Aufgaben er sich mit der ihm eigenen unermüdlichen Begeisterung widmete. So erreichte Max Preiswerk dank seinem unablässigen Streben nach technischem Wissen und Fortschritt eine musterhafte Beherrschung der angewandten Elektrotechnik in ihrer Viel-

Max Preiswerk 1896—1953

seitigkeit. Die Klarheit und die strenge Logik seines Denkens führten ihn zu praktischen Lösungen wichtiger Fragen auf diesem Gebiete. Fast leidenschaftlich beschäftigten ihn besonders die Probleme der Freileitungen. Viele von ihm erfundene Konstruktionen haben zu wichtigen Fortschritten im Leitungsbau geführt, und seinen Ideen ist es weitgehend zu verdanken, dass das Aluminium im Bau von Leitungen überhaupt die heute so vielseitige Anwendung gefunden hat. Mit grosser Begeisterung befasste sich Max Preiswerk auch mit Fragen der allgemeinen Energiewirtschaft und ganz besonders mit der wirtschaftlichen Ausnützung der gewaltigen in der Aluminium-Elektrolyse verwendeten Energiemengen. Dank seiner Initiative entwickelte die Industrie die heute allgemein bekannten Mutatoren und Kontaktumformer für Hochstrom und brachte diese Apparate durch Erprobung der Prototypen in den Werken der Aluminium-Industrie A.-G. auf den heutigen Stand der Vervollkommnung.

Seine ausgeprägte und zugleich vornehme, wohlwollende Persönlichkeit und sein unbestrittenes Können und Wissen liessen ihn rasch zum Oberingenieur, dann zum Vize-Direktor und endlich zum Abteilungsdirektor der Aluminium-Industrie A.-G. aufsteigen. Mit besonderer Freude stellte er seine Fähigkeiten zur Verfügung verschiedener Verbände, Kommissionen und Fachkollegien, an deren Arbeiten er stets fördernd teilnahm. So war er Vorstandsmitglied des SEV und Mitglied des CES, Präsident des Fachkollegiums 7 des CES (Aluminium), Mitglied des Fachkollegiums 11 des CES (Freileitungen) und der Koronagruppe der Forschungskommission für Hochspannungsfragen, Präsident des Comité d'Etudes n° 7 der CEI (Aluminium) und Vertreter der Schweiz im Comité d'Etudes n° 6 der CIGRE.

Besondere Hervorhebung verdienen neben den wertvollen beruflichen Eigenschaften auch die Feinfühligkeit und weitgehende Menschenkenntnis von Max Preiswerk, Eigenschaften, welche seine Mitarbeiter und weitere Fachkreise besonders schätzten und die viel dazu beitrugen, das Zusammenschaffen mit ihm jederzeit erfreulich und fruchtbringend zu

Gegen Ende des Jahres 1952 warf ihn ein heimtückisches Leiden aufs Krankenlager, von dem er sich nicht mehr erheben sollte. Mit grosser Geduld ertrug er das ihm auferlegte Schicksal und nahm selbst vom Krankenlager aus noch regen Anteil an all den beruflichen Fragen, die sein Leben erfüllt hatten. Am 10. April 1953 wurde Max Preiswerk von seinem Leiden erlöst, und mit ihm ist ein Ingenieur von uns geschieden, der sich würdig in die Zahl derjenigen Fachleute einreiht, die unserm Lande zur Ehre gereichen. Mögen sein Geist und sein Schaffen überall in bester Erinnerung bleiben. H. Jenny

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Rudolf Ganz, Mitglied des SEV seit 1910 (Freimitglied). vollendete am 28. März 1954 sein 70. Lebensjahr. Seit dem Abschluss seiner Studien am Technikum Burgdorf im Jahre 1908 ist Rudolf Ganz am Elektrizitätswerk Kerns (OW) tätig, dem er bis heute als Betriebsleiter langjährige und erfolgreiche Dienste leistete.

Escher Wyss A.-G., Zürich 5. Der Präsident des Verwaltungsrates, Dr. J. Schmidheiny, ist zurückgetreten; er wurde zum Ehrenpräsidenten ernannt. Zu seinem Nachfolger wählte der Verwaltungsrat P. Schmidheiny, dipl. Ingenieur ETH, Mitglied des SEV seit 1949, Mitglied der Delegation des Verwaltungsrates, welche Stellung er zusammen mit Dr. H. Gygi, Vizepräsident des Verwaltungsrates, weiterhin bekleiden wird.

Albiswerk Zürich A.-G., Zürich 47. E. Sontheim, Mitglied des SEV seit 1940, Präsident des Verwaltungsrates, ist als dessen Delegierter zurückgetreten, bleibt aber Präsident. Zum neuen Delegierten wurde Dr. P. Eberli, Direktor, gewählt. Dr. sc. techn. F. Kesselring, Mitglied des SEV seit 1946, wurde zum Mitglied des Verwaltungsrates gewählt und ist als Direktor zurückgetreten.

«Elmes» Staub & Co., Richterswil (ZH). H. Keller wurde zum Handlungsbevollmächtigten ernannt.

Kleine Mitteilungen

Kraftwerke Zervreila A.-G. Der 6,6 km lange Stollen zwischen Peiltal und Safiental (Wanna) ist am 20. März 1954 durchgeschlagen worden. Diese fensterlose Stollenstrecke, die das Wasser des Valserrheins und des Peilerbaches zur Rabiusa leitet, erforderte bis zum Durchschlag eine Bauzeit von 23/4 Jahren. Die geologische Prognose ist im Laufe des Vertriebes als sehr gut zutreffend befunden worden.

Vortragstagung bei Max C. Meister, Zürich 1. Diese Firma veranstaltet am 6. und 7. April 1954 im Kongresshaus Zürich, Kammermusiksaal, eine Vortragstagung mit Referaten aus den Gebieten der Stahlverarbeitung, Schweissung, zerstörungsfreien Werkstoffprüfung, der thermoplastischen Kunststoffe und der Wasseraufbereitung. Nähere Auskunft und Programme sind erhältlich bei Max C. Meister, Löwenstrasse 25, Zürich 1.

Nachrichtentechnische Gesellschaft im VDE. Die neu gegründete Nachrichtentechnische Gesellschaft im VDE hält vom 6. bis 8. April 1954 in Darmstadt ihre erste Tagung mit zahlreichen Vorträgen aus dem Gebiet der Fernmeldetechnik ab. Ein Teil der Vorträge ist öffentlich. Nähere Auskunft und Programme sind erhältlich bei Dipl.-Ing. Glitsch, Abteilungspräsident, Rheinstrasse 110, Darmstadt (Deutschland).

Literatur — Bibliographie

621.3

Nr. 10 906,2

Handbuch für Hochfrequenz- und Elektro-Techniker. Bd. 2. Hg. von Curt Rint. Berlin, Verlag für Radio-Foto-Kinotechnik, 1953; 8°, XXIV, 760 S., Fig., Tab. — Preis: geb. Fr. 17.50.

Der Umfang, den die HF-Technik mit allen ihren Disziplinen heute angenommen und die grosse Verbreitung, die der 1. Band dieses Handbuches für HF- und Elektrotechniker gefunden hat, rechtfertigte die Ausgabe eines zweiten, ergänzenden Bandes, der sich mit der Behandlung aller jener Probleme der HF-Technik befasst, die sich mit dem Übergang zu den kürzeren Wellen ergeben. Um nur die wichtigsten Kapitel zu nennen, die jeden Funkfreund besonders interessieren müssen und die bisher in der Literatur in so handlicher Zusammenfassung kaum zu finden sind: Die Halbleiter (Heissleiter, Transistoren), Technik und Anwendungen der Ouarze, die Elektronenröhre und ihr Verhalten im UKW-Gebiet einschliesslich der in der Mikro-Wellentechnik wichtigen Laufzeitröhren. Ausführliche Behandlung erfährt auch die Elektronenstrahlröhre und die in der UKW-Technik wichtige Breitbandverstärkung. Die Fülle des behandelten Stoffes erfordert eine gewisse Beschränkung im Text, was aber der Verständlichkeit keinen Abbruch tut, um so mehr, als dieser in allen Kapiteln durch praktisch verwendbare Kurven, Tabellen und Formeln ausgezeichnet ergänzt wird.

Ein weites Kapitel ist der Nachrichten- und Übertragungstechnik gewidmet, der Wellenausbreitung, der UKW-FM-Technik einschliesslich Sender, Empfänger, Antennen; ferner der Funkmesstechnik, Funkortung, Flugsicherung und Funkfeuer, die viele bisher zur Veröffentlichung nicht frei gegebene Details enthalten.

Ein Industrie-Fernseh-Empfänger wird ausführlich im Kapitel «Fernsehen» besprochen, während die industrielle Elektronik zum Teil dem Buch gleichen Titels von Kretzmann entnommen ist. Allein 100 Seiten Nomogramme und Tabellen, ferner ein brauchbares englisch-französisches Fachwörterverzeichnis und zahlreiche neueste Literaturhinweise tragen dazu bei, das Buch für jeden hochfrequenztechnisch Interessierten zu einem wertvollen Helfer und guten Nachschlagewerk der VHF-Technik werden zu lassen.

R. Hübner

Nr. 11 089

Das Fernsehen. Von Paul Bellac. Bern, Hallwag, 1953; 8°, 112 S., Fig., Tab. — Hallwag-Taschenbücher Bd. 37 Preis: geb. Fr. 3.95.

Man zählt einige Monate seit der Eröffnung des Schweizerischen Fernseh-Versuchsbetriebes und schon sind es Tausende, die Abend für Abend die Emission des Üetlibergsenders empfangen. Bald werden es Zehntausende sein.

Wie kommt eigentlich dieses Fernsehen zustande, welches sind die der neuen Übertragungsart innewohnenden Möglichkeiten? Solche Fragen und andere mehr stellen sich heute in der breiten Öffentlichkeit.

Paul Bellac, der erfahrene Publizist und zugleich Sachbearbeiter für Fernsehfragen bei der Schweiz. Rundspruchgesellschaft, hat es nun unternommen, das für den interessierten Fernsehteilnehmer Wissenswerte in anschaulicher und gemeinverständlicher Weise in einem Taschenbüchlein darzustellen. Das Hauptthema bilden natürlich die physikalischen und technischen Grundlagen des Fernsehens. Ausgehend von den Grundbegriffen der elektrischen Nachrichtentechnik und einer kurzen Schilderung der Vorläufer des modernen Fernsehens enthält dieser Abschnitt einlässliche Betrachtungen über Fernsehnormen, die Aufnahmegeräte, das Fernsehstudio, die technischen Mittel für Aussenübertragungen, die Sendung von Bild und Ton, den Fernsehempfang, das Farbenfernsehen und das räumliche Fernsehen. Alsdann folgen grössere Abschnitte über Wellenverteilungspläne, die Vorbereitung und Durchführung von Fernsehprogrammen; ein letzter Abschnitt behandelt verschiedene Anwendungsgebiete.

Im Zuge des Aufbaues des schweizerischen Fernsehens und auch über den nationalen Bereich hinaus bedeutet die Herausgabe des vorliegenden Taschenbuches zweifellos ein verdienstvolles Unterfangen. Vielleicht, dass der selbe Autor später einmal die eigentlichen Programmfragen in gleich anschaulicher Weise zur Darstellung bringt?

W. Gerber

621.3.014.3.0012 : 621.311.1.027.3

Nr. 11 093

Praktische Durchführung von Kurzschlußstromberechnungen für Hochspannungsnetze. Von Gerhard Schendell. Berlin, Verlag Technik, 1953; 8°, 144 S., 34 Fig., Tab., 1 Taf., 3 Beil. — Preis: geb. DM 19.—.

Der Autor stellt sich in diesem Buch die Aufgabe, dem in der Praxis stehenden Ingenieur die verschiedenen Verfahren zur Berechnung von Netzkurzschlüssen nahe zu bringen. Es ist eine Zusammenstellung und Zusammenfassung der einschlägigen Veröffentlichungen. Auf mathematische Herleitungen und Erklärungen wird verzichtet. Hingegen bietet das Buch eine interessante Gegenüberstellung der einzelnen Methoden.

Der erste Teil ist der eingehenden Darstellung des Verfahrens nach Ollendorff gewidmet. Es berücksichtigt alle massgebenden Faktoren möglichst genau. An Hand des angegebenen Berechnungsganges und mit Hilfe der vorhandenen Tafeln lassen sich Ströme und Abschaltleistungen bei zweipoligem oder dreipoligem Kurzschluss bestimmen, ferner Erwärmung und Kurzschlusskräfte, speziell in Stromwandlern und Primärrelais. Dieses Verfahren dient als Vergleichsbasis für die Näherungsmethoden, die anschliessend behandelt werden nach Hameister, Kesselring, Roth und Steglich. Sie beruhen teils auf Erfahrungswerten und -kurven, teils auf vereinfachenden Vernachlässigungen und führen dafür rascher zum Ziel. Zur Erläuterung wird dasselbe Beispiel mit jeder Methode durchgerechnet und die Abweichung der Resultate hervorgehoben.

Das Buch ist sehr übersichtlich aufgebaut und eignet sich daher ausgezeichnet zum direkten Gebrauch. Es ist aber vollständig unpersönlich geschrieben. Insbesondere vermisst man einen Vergleich der verschiedenen Berechnungsmethoden, dem man ihre Verwendbarkeit für einen gegebenen Fall entnehmen könnte. Der Leser ist darauf angewiesen, die diesbezüglichen Erfahrungen selbst zusammenzutragen.

H.P. Eggenberger

31:656 (494)

Nr. 90 027

Schweizerische Verkehrsstatistik 1952 — Statistique suisse des transports 1952. Hg. v. Eidg. Amt für Verkehr. Bern, Eidg. Amt für Verkehr, 1953; 4°, X, 145 S., 93 Tab., 9 Taf. — Preis: brosch. Fr. 12.—.

Diese Statistik vereinigt wie in den vorangegangenen Jahren eine erhebliche Fülle von Zahlenangaben, welche die technischen Anlagen, die Betriebs- und Verkehrsleistungen sowie die finanziellen Belange unserer Privatbahnen, der Schiffahrt auf dem Rhein und den Schweizerseen und des Luftverkehrs betreffen. Beim Strassenverkehr wird über die Güterbeförderung mit Motorfahrzeugen auf Grund einer Stichprobenerhebung berichtet, welche das Eidg. Statistische Amt vom 25. bis 30. Juni 1951 durchführte, wobei etwa 14 % des schweizerischen Nutzfahrzeugbestandes erfasst wurden. Zufolge der starken Saisonschwankungen durfte aus den Erhebungen dieser Juniwoche nur auf den gesamten Gütertransport aller Nutzfahrzeuge im Monat Juni 1951 geschlossen werden, nicht aber auf jenen des ganzen Jahres 1951.

Eine neue Übersichtstabelle ermöglicht für die verschiedenen Verkehrsmittel auf Schiene und Strasse einen Vergleich der Streckenlängen im Laufe der Jahre. Seit 1948 hat sich die Länge von Schmalspur- und Trambahnen um etwas mehr als 100 km vermindert. Demgegenüber weisen die Trolleybuslinien einen Zuwachs von 73 km auf und die Stadt-Autobusbetriebe eine Erweiterung um 93 km. Ganz beträchtlich ist auch die Zunahme der Überland-Autobuslinien und der Reisepoststrecken. Besonders hervorzuheben sind jedoch die Luftseilbahnen mit Umlaufbetrieb (Sesselbahnen) und die Luftseilbahnen mit Pendelbetrieb (z. B. Säntis-Schwebebahn). Bei diesen Bahngattungen ist die Länge der unter die Statistik fallenden Anlagen von 47 km im Jahre 1948 auf 87 km im Jahre 1952 angestiegen.

R. Gonzenbach

Prüfzeichen und Prüfberichte des SEV

I. Qualitätszeichen

B. Für Schalter, Steckkontakte, Schmelzsicherungen, Verbindungsdosen, Kleintransformatoren, Lampenfassungen, Kondensatoren

--- Für isolierte Leiter

Schalter

Ab 1. März 1954.

Klöckner-Moeller-Vertriebs-A.-G., Zürich. Vertretung der Firma Klöckner-Moeller, Bonn.

Fabrikmarke:

Schalterschütze.

Verwendung: in trockenen Räumen.

Ausführung: mit Gehäuse aus Isolierpreßstoff.

Typ DIL 0/53 Typ DIL 1 vh/52

dreipol. Ausschalter für 6 A 500 V.

Kleintransformatoren

Ab 15. März 1954.

GUTOR Transformatoren A.-G., Wettingen.

Fabrikmarke:

Niederspannungs-Kleintransformatoren.

Verwendung: ortsveränderlich, in nassen Räumen.

Ausführung: nicht kurzschlußsichere Einphasen-Transformatoren, Klasse 2b, in Blechgehäuse, mit Masse vergossen. Schutz durch normale oder Kleinsicherungen. Zuleitung mit Stecker auf der Primär-, Steckdose auf der Sekundärseite.

Primärspannung: 110 bis 380 V. Sekundärspannung: 24 bis 48 V. Leistung: 60 bis 500 VA.

Isolierte Leiter

Ab 1. März 1954.

S. A. de Vente de la Compagnie Générale d'Electricité de Paris, Rüschlikon (ZH).

Vertretung der Firma Les Câbles de Lyon, Lyon.

Firmenkennfaden: grün-weiss verdrillt.

Aufzugschnur Typ TAi, flexible Zwei- und Mehrleiter 0,75 mm² Kupferquerschnitt mit Aderisolation auf PVC-Basis und gemeinsamer imprägnierter Umflechtung.

Steckkontakte

Ab 15. März 1954.

Electro-Mica A.-G., Mollis.

Fabrikmarke:

Ortsveränderliche Mehrfachsteckdosen 10 A 250 V. Verwendung: in trockenen Räumen.

Ausführung: Isolierkörper aus schwarzem Isolierpreßstoff. Für 3 Steckeranschlüsse.

Nr. 2640: 2 P + E, Typ 12, Normblatt SNV 24507a.

III. Radioschutzzeichen des SEV

Auf Grund der bestandenen Annahmeprüfung gemäss § 5 des «Reglements zur Erteilung des Rechts zur Führung

des Radioschutzzeichens des SEV», [vgl. Bull. SEV Bd. 25 (1934), Nr. 23, S. 635...639, u. Nr. 26, S. 778] wurde das Recht zur Führung des SEV-Radioschutzzeichens erteilt:

Ab 1. März 1954.

J. Eugster, Handelsunternehmung für elektr. Apparate, Zürich.

Fabrikmarke:

Bur

Staubsauger «BLITZ». 220 V 400 W.

IV. Prüfberichte

[siehe Bull. SEV Bd. 29(1938), Nr. 16, S. 449.]

Gültig bis Ende Februar 1957.

P. Nr. 2383.

Gegenstand:

Quarzlampe

SEV-Prüfbericht: A. Nr. 29406 vom 18. Februar 1954.
Auftraggeber: Siemens Elektrizitätserzeugnisse A.-G.,
Abt. Sirewa, Zürich.

Aufschriften:

ORIGINAL HANAU Quarzlampen Ges. m.b.H. Hanau

PL 18 220 V~ m. Brenner Q 250 F. Nr. 248084 UV+JR 400 W JR 600 W

Beschreibung:

Quarzlampe gemäss Abbildung, bestehend aus Reflektor mit Quarzbrenner und Heizring. Letzterer besteht aus einer Widerstandswendel, die in ein Quarzrohr eingezogen ist und zur Stabilisierung des Brenners sowie zur Wärmestrahlung dient. Im Sockel befinden sich Anschlussklemmen, Umschalter, Störschutzkondensator und Weckeruhr. Dreiadrige Zuleitung mit 2 P + E-Stecker fest angeschlossen. Verbindung zum Reflektor, vieradriger Leiter mit Spezialapparatesteckdose.

Der Apparat hat die Prüfung in sicherheitstechnischer Hin-

sicht bestanden, er entspricht dem «Radioschutzzeichen-Reglement des SEV» (Publ. Nr. 117).

Gültig bis Ende Februar 1957.

P. Nr. 2384.

Gegenstand:

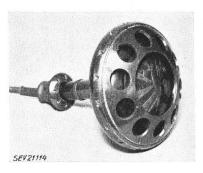
Waschapparat

SEV-Prüfbericht: A. Nr. 27831a vom 19. Februar 1954. Auftraggeber: Karl Schmid, Mühlebachstrasse 9, Zürich.

Aufschriften:

VITAL

Volt 220 Watt 12 Hz 50


Nr. 12261

Made in Western Germany

Beschreibung:

Apparat gemäss Abbildung, zum Waschen von Wäsche durch Vibration. Glocke aus Isoliermaterial zum Eintauchen in den Wäschebehälter. Eingebauter Wechselstrommagnet und Blechmembrane. Elektromagnet und Anschlüsse sind vollständig in Giessharz eingebettet und somit gegen Feuchtigkeit geschützt. Festangeschlossene Gummiaderschnur mit

2 P + E-Stecker. Leitereinführung durch Gummimanchette. Erdleitung am Spulenkern angeschlossen.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden. Verwendung: in nassen Räumen.

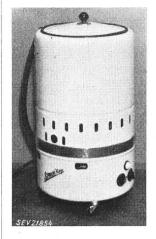
Gültig bis Ende Februar 1957.

P. Nr. 2385.

Gegenstand: Waschmaschine

SEV-Prüfbericht: A. Nr. 29389 vom 24. Februar 1954. Auftraggeber: H. Duvoisin, 12, Place de la Gare, Lausanne.

Aufschriften:


BLANCHE NEIGE

Magic

Numero 075103 Date 25. 11. 53

Volts 110/220 ~50 Watt 300

Pyror S.A. Genève V 3×380 W 4000 No

Beschreibung:

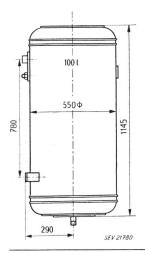
Waschmaschine gemäss Abbildung, mit Heizung. Heizstäbe unten im emaillierten Wäschebehälter. Die Waschvorrichtung, bestehend aus einer mit Rippen versehenen Scheibe, ist am Boden des Wäschebehälters exzentrisch angeordnet. Sie setzt das Waschwasser und damit auch die Wäsche in Bewegung. Antrieb durch ventilierten Einshasen-Kurzschlussankermotor Hilfswicklung, Zentrifugalschalter und Kondensator. Schalter für Heizung und Motor sowie Signallampe eingebaut. Fünfadrige Zuleitungen (3 P + N +E) fest angeschlossen.

Die Waschmaschine hat die Prüfung in sicherheitstechnischer Hinsicht bestanden. Verwendung: in nassen Räumen.

Gültig bis Ende Februar 1957.

P. Nr. 2386.

Gegenstand:


Heisswasserspeicher

SEV-Prüfbericht: A. Nr. 29300 vom 5. Februar 1954. Auftraggeber: Burri's Söhne, Heizungen, Malters (LU).

Aufschriften:

BUMA
Burri's Söhne
Apparatebau
Malters
No. PT 700 Volt 380~

Inhalt Lt. 100 Fe kW 1,2 Prüf- u. Betr.-Druck 12/6 Atü Jahr 1953 Fühlerrohrlänge min 600

Beschreibung:

Heisswasserspeicher für Wandmontage, gemäss Skizze. Ein Heizelement und ein Temperaturregler mit Sicherheitsvorrichtung eingebaut. Der Speicher ist mit einem Zeigerthermometer ausgerüstet.

Der Heisswasserspeicher entspricht den «Vorschriften und Regeln für elektrische Heisswasserspeicher» (Publ. Nr. 145).

Gültig bis Ende Februar 1957

P. Nr. 2387.

Gegenstand:

1 Hauptuhr

SEV-Prüfbericht: A. Nr. 29164a vom 19. Februar 1954. Auftraggeber: Zürcher & Bärtschi, Feldstrasse 36, Thalwil.

Aufschriften:

Zürcher & Bärtschi

Kontrolluhren Uhren-Anlagen Thalwil Tel. (051) 92 18 31 Type ZB 16--7/2LS No. 15286 V 220 VA 60 Hz 50 Nebenuhren 25 V= 1.2 A max. 45 V~ 1.2 A max. Signal

Beschreibung:

Hauptuhr gemäss Abbildung, in Gehäuse aus Eichenholz. Pendeluhrwerk mit Motoraufzug. Steuer- und Reguliereinrichtung für Nebenuhren mit 24 V Gleichstrom sowie Signaleinrichtung für 45 V Wechselstrom eingebaut. Speisung über Netztransformator mit getrennten Wicklungen und Doppelweg-Selengleichrichter.

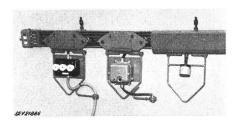
Die Hauptuhr entspricht den «Vorschriften für Apparate der Fernmeldetechnik» (Publ. Nr. 172).

Gültig bis Ende Februar 1957.

P. Nr. 2388.

Gegenstand: Stromabnehmerschiene

SEV-Prüfbericht: A. Nr. 29260a vom 24. Februar 1954.
Auftraggeber: Diethelm & Co. A.-G., Eggbühlstrasse 28.
Zürich.


Aufschriften:

Diethelm & Co. AG. Abt. Werkzeuge Zürich - Seebach Volt 500 Amp. 60 Per. 50

Beschreibung:

Stromabnehmerschiene für den Anschluss von Handwerkzeugen, Beleuchtungskörpern, Transporteinrichtungen etc., bestehend aus Tragprofil mit eingebauten Kontaktschienen und Stromabnehmern gemäss Abbildung. Vier Kontaktschienen aus Kupfer, durch Preßstoff isoliert und vor Berührung

geschützt. Stromabnehmer mit federnden Kohlekontakten, welche auf Eisenträger mit 4 Laufrollen montiert sind. Schwenkbare Halter für Steckdosen, Motorschutzschalter, Sicherungselemente etc. mit Bügel zum Anhängen der Apparate. Zugentlastungsvorrichtung für Zuleitungen. Anschlussund Erdungsklemmen am Anfang der Schienen. Erdung oder Nullung durch oberste Schiene.

Die Stromabnehmerschiene hat die Prüfung in sicherheitstechnischer Hinsicht bestanden. Verwendung: in Verbindung mit Installationsmaterial und Schaltapparaten, die den Vorschriften des SEV entsprechen, in trockenen und zeitweilig feuchten Räumen.

Gültig bis Ende Februar 1957.

P. Nr. 2389.

Gegenstand: Heizstrahler

SEV-Prüfbericht: A. Nr. 29035a vom 23. Februar 1954. Auftraggeber: ETHA, Fabrik für elektrotherm. Apparate, Trimbach b. Olten.

Aufschriften:

ETHA
Trimbach - Olten
V 225 W 1200 No. 2189

Beschreibung:

Heizstrahler gemäss Abbildung. Zwei Keramikstäbe von 13 mm Durchmesser und 250 mm Länge mit aufgewickelter Heizwendel übereinander angeordnet. Reflektoren aus vernickeltem Blech. Gehäuse aus Blech. Handgriffe aus Isolierpreßstoff. Eingebauter Drehschalter ermöglicht Betrieb mit zwei Heizleistungen. Versenkter Apparatestecker für den Anschluss der Zuleitung.

Der Heizstrahler hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

Gültig bis Ende März 1957.

P. Nr. 2390.

Gegenstand: Endschalter

SEV-Prüfbericht: A. Nr. 28944a/I vom 4. März 1954. Auftraggeber: Walter O. Frei, Ing., Oberengstringen (ZH).

Aufschriften:

METZENAUER & JUNG. GMBH

Type: E 31 250 V 5 A~ S—Nr: 706074

Beschreibung:

Endschalter gemäss Abbildung, zur Steuerung von Werkzeugmaschinen und dergleichen. Einpoliger Umschalter mit Tastkontakten aus Silber (Momentschaltung). Sockel aus Steatit mit Isolierpreßstoffkappe in ein Stahlblechgehäuse

eingebaut. Die Endschalter werden mit und ohne Rolle oder mit Rollenhebel ausgeführt.

Der Endschalter hat die Prüfung in Anlehnung an die Schaltervorschriften bestanden (Publ. Nr. 119). Verwendung: in trockenen und zeitweilig feuchten Räumen.

Gültig bis Ende Februar 1957.

P. Nr. 2391.

Gegenstand: «SAN Air»-Apparat

SEV-Prüfbericht: A. Nr. 29285 vom 22. Februar 1954. Auftraggeber: H. Leuenberger, Fabrik elektr. Apparate, Oberglatt (ZH).

Auf schriften:

SANAir

220 V 50 P 12 W Elektram AG. Zürich 5

Beschreibung:

Apparat gemäss Abbildung, zur Bakterientötung. Der Apparat besteht aus einer kleinen Ultraviolettlampe und einer Vorschaltdrossel, welche in einem ventilierten Blechgehäuse untergebracht sind. Der Apparat ist zum Aufhängen eingerichtet. Zuleitung Flachschnur mit 2 P-Stecker, fest angeschlossen.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden. Er entspricht dem «Radioschutzzeichen-Reglement» (Publ. Nr. 117). Verwendung: in trockenen und zeitweilig feuchten Räumen.

Gültig bis Ende März 1957.

P. Nr. 2392.

Gegenstand: Druckschalter

SEV-Prüfbericht: A. Nr. 28944a/II vom 4. März 1954. Auftraggeber: Walter O. Frei, Ing., Oberengstringen (ZH).

Bezeichnung:

Typ F1 F8 F18 F25 Druckbereich kg/cm² 0...8 0...8 1...18 5...25

Aufschriften:

F 18 SNr. 54763/847 250 V/5 A~ 541 SCHALTDRUCK min 1 atü max. 18 atü

Beschreibung:

Druckschalter gemäss Abbildung, zur Steuerung oder Signalgabe an Pumpenanlagen und dergleichen. Einpoliger Umschalter mit Tastkontakten aus Silber (Momentschaltung). Sockel aus Steatit mit Isolierpreßstoffkappe in ein Isolierpreßstoffgehäuse eingebaut. Die Schaltpunkte können an 2 Regulierschrauben eingestellt werden. Der Druckschalter ist mit Erdungsschraube versehen.

Der Druckschalter hat die Prüfung in Anlehnung an die Schaltervorschriften bestanden (Publ. Nr. 119). Verwendung: in trockenen und zeitweilig feuchten Räumen.

P. Nr. 2393.

Gegenstand: Staubsauger,

komb. mit Mixer und Saftzentrifuge

SEV-Prüfbericht: A. Nr. 29010 vom 2. März 1954.
Auftraggeber: August Geser, Elektrische Apparate,
Papiermühle, Bern.

Aufschriften:

GESA
Volt 220 Watt 300
Amp. 1,5 Type 3
No. 99202 24
Fabrik: Bern

Beschreibung:

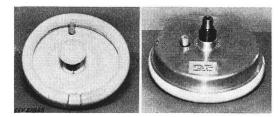
Staubsauger, Mixer und Saftzentrifuge gemäss Abbil-Einphasen-Seriemotor dung. zwei Geschwindigkeiten, mit Zentrifugalgebläse, isoliert in Gehäuse aus Blech und Preßstoff eingebaut. Führungsrohre vom Gehäuse isoliert. Traggriff isoliert. Zwei Kipphebelschalter eingebaut. Apparat auch zum Blasen verwendbar. Für den Antrieb des Mixers oder der Saftzentrifuge wird der Motor ausgebaut und auf einen Untersatz aus Pressstoff gestellt. Die Apparate werden dann auf das Motor-

gehäuse gesteckt. Antrieb über Kupplungsstück aus plastischem Material. Zuleitung durch Gummischlauch und Stopfbüchse eingeführt und fest angeschlossen.

Der Apparat entspricht den «Vorschriften und Regeln für elektrische Staubsauger» (Publ. Nr. 139) und dem «Radioschutzzeichen-Reglement» (Publ. Nr. 117).

Gültig bis Ende März 1957.

P. Nr. 2394.


Gegenstand: Beleuchtungskörper

SEV-Prüfbericht: A. Nr. 29038b vom 1. März 1954. Auftraggeber: S. A. R. I., S. A. de représentation industrielles, 12, rue Céard, Genève.

Aufschriften:

Luminaire SIRIUS ~ V 220 A 0,45 Tube W 32 Lampe V 140 W 60 Beschreibung:

Beleuchtungskörper gemäss Abbildungen, mit «Circline»-

Fluoreszenzlampe 32 W und einer Glühlampe 140 V 60 W als Stabilisator. Der Beleuchtungskörper ist zum Einschrauben in Lampenfassungen E 27 eingerichtet. Im verschraubten Blechgehäuse befinden sich ein Widerstand, welcher in Serie mit einem Glimmstarter geschaltet ist, ein Störschutz- und ein Zündkondensator. Starter von aussen auswechselbar. Gewicht mit Lampen 1,05 kg.

Der Beleuchtungskörper hat die Prüfung in sicherheitstechnischer Hinsicht bestanden. Verwendung: in trockenen und zeitweilig feuchten Räumen, zum Einschrauben in fest oder an Rohrpendeln montierten Lampenfassungen.

Vereinsnachrichten

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen der Organe des SEV und VSE

Kommission für Gebäudeblitzschutz

Die Kommission für Gebäudeblitzschutz des SEV hielt am 24. Februar 1954 in Olten, unter dem Vorsitz von F. Aemmer, Präsident, ihre 33. Sitzung ab.

Sie nahm vorerst eine ausführliche Orientierung von Prof. Dr. K. Berger über die Bestrebungen von Österreich, eigene Leitsätze für Gebäudeblitzschutz aufzustellen, zur Kenntnis. Auf Wunsch und Anregung von Österreich fanden einige Besprechungen und eine Tagung unter in und ausländischen Fachleuten statt. Für die Schweiz kann aus diesen Aussprachen der Schluss gezogen werden, dass die schweizerischen Leitsätze für Gebäudeblitzschutz bei möglichster Einfachheit die nötige Sicherheit bieten, und dass für eine materielle Revision kein Grund vorliegt.

Im weiteren wurde die Zulässigkeit von Isoliermuffen in den Ölleitungen von Ölheizungen vom Standpunkte des Blitzschutzes diskutiert. Das Problem stellt sich dadurch, dass in den Ölheizungen der Zündtransformator, allfällig auch die Umwälzpumpe, genullt sind. Durch den Nulleiter aber können Korrosionsströme aus Gleichstrombahnen in den Ölbehälter gelangen, um von dort wieder in den Boden auszutreten. An den Austrittstellen aber korrodiert der Ölbehälter. Der Einbau von je einem Isolierstoss in jede Ölleitung würde die Korrosionsströme vom Ölbehälter abtrennen. Vom Standpunkt des Gebäudeblitzschutzes aus wurden gegen diese Lösung keine Einwände erhoben, falls die Isoliermuffen so ausgebildet sind, dass ein allfälliger Blitzüberschlag durch den Isolierstoss die Rohrleitung nicht beschädigen kann.

In Zusammenhang mit einem konkreten Fall wurde beschlossen, den Absatz 5 des Artikels 6 (grosse Bedachungen) der Leitsätze für Gebäudeblitzschutz neu zu formulieren, so dass dieser Artikel zu keinen Härtefällen führt.

Es wurde auch der Blitzschutz von grossen oberirdischen Betonbehältern besprochen. Die Kommission kam nach eingehender Diskussion zur Auffassung, dass bei solchen Behältern die Armierung des Betons als Blitzschutz herangezogen werden soll. Diese soll am oberen Rand und am Fusse des Behälters metallisch zusammengefasst und gut geerdet sein (Wasserleitung).

Betreffend Fernsehantennen wurde festgestellt, dass solche das Gebäude nicht blitzschutzpflichtig machen. Sie werden ebenso behandelt wie Radioantennen. Die Kontrolle fällt in die Kompetenz der PTT.

In letzter Zeit werden immer häufiger einbetonierte Ablaufrohre als Ableitungen benützt. Sofern diese Rohre an ihren Stellungen einwandfrei metallisch verlötet oder verschweisst sind, kann gegen ihre Verwendung als Ableitung einer Blitzschutzanlage kein technischer Einwand erhoben werden. Allerdings sollten in diesem Fall nicht im gleichen Schacht andere Leitungen (elektrische Installationen, Zentralheizungen usw.) geführt werden.

Studienkommission für die Regulierung grosser Netzverbände

Die Studienkommission für die Regulierung grosser Netzverbände kam am 13. Januar 1954 unter dem Vorsitz ihres Präsidenten, Prof. Dr. E. Juillard, in Bern zur 15. Sitzung zusammen. Sie begann mit der Überarbeitung des von ihr

ausgearbeiteten Entwurfes «Recommandations au sujet du réglage de vitesse des groupes turbine hydraulique-alternateur». Da die in Lausanne durchgeführten Messungen über die Geschwindigkeit der Laständerung in Netzen demnächst beendet sind, wurde geprüft, wo die nächsten Messungen stattfinden sollten. Verschiedene Mitglieder übernahmen die Aufgabe, abzuklären, wo solche Messungen möglich sind. Die Studienkommission diskutierte hierauf ihr vorgelegte Fachliteratur.

An der 16. Sitzung, die am 8. März 1954 in Bern stattfand und ebenfalls vom Präsidenten, Herrn Prof. Dr. E. Juillard, geleitet wurde, orientierte Dr. H. Oertli über die Tätigkeit der von ihm präsidierten «Unterkommission für die Ausarbeitung einer Nomenklatur für die Regulierungstechnik». Die Unterkommission beschäftigt sich gegenwärtig mit der Bereinigung der Kapitel «Allgemeine Begriffe und Bezeichnungen», «Aufbau des Regelkreises» und «Wirkungsweise des Regelkreises; Kenngrössen». Für das nächste Kapitel «Einteilung der Regler» liegt ein Entwurf zur Diskussion vor. Die Studienkommission beendete die an der 15. Sitzung begonnene Überarbeitung des Entwurfes der «Recommandations» und diskutierte insbesondere die von Ing. F. Seeberger (Escher Wyss A.-G., Zürich) ausgeführte deutsche Übersetzung. Sie beauftragte einen Redaktionsausschuss mit der Bereinigung der beiden Texte und beschloss, sie vorbehältlich der Zustimmung des Vorstandes SEV im Bulletin den Mitgliedern des SEV zur Stellungnahme zu unterbreiten. Die Studienkommission begann hierauf mit der Durchsicht eines von Ing. P. Dumur (S. A. l'Energie de l'Ouest-Suisse, Lausanne) ausgearbeiteten umfangreichen Exposés über die Bedürfnisse des Verbundbetriebes.

Fachkollegium 26 des CES Elektroschweissung

Das FK 26 hielt am 16. März 1954 in Zürich unter dem Vorsitz von H. Hofstetter, Präsident, seine 10. Sitzung ab.

Vorerst gab der Sekretär des CES eine Orientierung über die Organisation der CEI und der ISO in Zusammenhang mit der bereits früher beschlossenen Mitarbeit des CES in den Sous-Comitees 4(Lichtbogenschweissmaschinen) und 6(Widerstandschweissmaschinen) des TC 44 der ISO. Nachher wurde nach einer gründlichen Diskussion beschlossen, dem CES zu beantragen, die Publikation Nr. 190 des SEV (Regeln für Gleichstrom-Lichtbogen-Schweiss-Generatoren und -Umformer) und Nr. 191 (Regeln für Lichtbogen-Schweisstransformatoren) den Anforderungen der modernen Schweisselektroden, bzw. den Beschlüssen der ISO, anzupassen. Da auch das Bedürfnis für Regeln für Widerstandschweissmaschinen seitens der Industrie sowie der Elektrizitätswerke festgestellt wurde, soll dem CES die Aufstellung solcher Regeln ebenfalls beantragt werden.

Fachkollegium 33 des CES Kondensatoren

Das FK 33 hielt am 12. März 1954 in Olten, unter dem Vorsitz von Ch. Jean-Richard, seine 27. Sitzung ab.

Das Haupttraktandum bildete die Beantwortung des Fragebogens «St. Germain». Dieser Fragebogen bezieht sich auf die Normung der Spannungen von elektrischem Material. Nachher folgte die Beratung des 5. Entwurfes der «Vorschriften für Kondensatoren mit Ausschluss der grossen Kondensatoren zur Verbesserung des Leistungsfaktors». Die von einigen Mitgliedern erhobenen Einsprachen machen die Ausarbeitung eines 6. Entwurfes nötig. Zuletzt wurde über eine allfällige Vertretung des FK 33 in den Sitzungen des Comitee d'Etudes 33 der CEI in Philadelphia diskutiert. Die diesbezüglichen Besprechungen konnten noch nicht abgeschlossen werden.

Internationale Beleuchtungskommission (IBK) Einreichung von Berichten

Anlässlich des letzten Kongresses der IBK, der 1951 in Stockholm stattfand, wurde die Einladung der Schweiz, den nächsten Kongress in diesem Lande abzuhalten, angenommen. Die Veranstaltung ist nun endgültig auf den 13. bis 22. Juni 1955 festgelegt worden.

Um die Sekretariats- und Einzelberichte (induvidial papers) rechtzeitig prüfen, drucken und herausgeben zu können, sind von der IBK die Termine festgelegt worden. Bis zum 20. August 1954 muss dem Sekretariat des SBK (Seefeldstrasse 301, Zürich 8) der Titel und eine Inhaltszusammenfassung im Umfang von 10 bis 15 Zeilen zugestellt werden.

Das von Mr. Arthur A. Brainerd präsidierte papers committee teilt ferner mit, dass für den Kongress von 1955 weniger Einzelberichte zugelassen werden als für den Kongress von 1951. Die Zuständigkeit für die Annahme von Einzelberichten liegt bei diesem Komitee. Die Berichte müssen bis zum 30. November 1954 dem Sekretariat des SBK abgeliefert werden, um beim Papers Committee der IBK rechtzeitig einzutreffen.

Diskussionsversammlungen des SEV

Auf den Herbst 1954 war ursprünglich eine Diskussionsversammlung über das Thema: «Begrenzung der Kurzschlussströme in Netzen unter 20 kV» vorgesehen. Der Programm-Ausschuss hat beschlossen, die Behandlung dieses Themas auf das Frühjahr 1955 zu verschieben. Alle an diesem Problem interessierten Kreise der Elektrizitätswerke und der Industrie werden eingeladen, allfällige Hauptreferate oder Diskussionsbeiträge dem Sekretariat mit Angabe des Titels bis 3. Mai 1954 bekannt zu geben.

Für den Herbst 1954 ist eine Diskussionsversammlung über das Thema «Elektrizität aus Kernenergie» vorgesehen.

Sonderdrucke

Richtlinien für die Anwendung der neuen Steckkontakte 10 A, 250 V, für Haushalt- und ähnliche Zwecke

Von der im Bulletin SEV 1953, Nr. 24, S. 1047 und 1048 erschienenen Mitteilung sind Sonderdrucke in deutscher und

französischer Sprache erhältlich, die gegenüber der Veröffentlichung einige Änderungen enthalten. Sie können bei der Gemeinsamen Geschäftsstelle des SEV und VSE, Seefeldstrasse 301, Zürich 8, zum Preise von Fr. 1.— für Nichtmitglieder und Fr. —.50 für Mitglieder bezogen werden (Mengenrabatt).

Änderungen und Ergänzungen vom 1. März 1954 zu den Hausinstallationsvorschriften

VI. Auflage 1946

(Publ. Nr. 152/2 des SEV)

Die auf den 1. März 1954 in Kraft gesetzten Änderungen und Ergänzungen zu den Hausinstallationsvorschriften (siehe Bull. SEV 1954, Nr. 5, S. 163...167) können als Publikation Nr. 152/2 bei der Gemeinsamen Geschäftsstelle des SEV und VSE, Seefeldstrasse 301, Zürich 8, zum Preise von Fr. 2.50 für Nichtmitglieder und Fr. 1.50 für Mitglieder bezogen werden. Einseitig bedruckte Bogen dieser Publikation sind für Tekturzwecke zum Preise von Fr. 2.— (1.—) erhältlich.

Normblätter der SNV

Dimensionsnormen für Stahlpanzerrohre und Zubehör

Die im Bulletin SEV 1953, Nr. 21, S. 939...944 zur Stellungnahme ausgeschriebenen Dimensionsnormen für Stahlpanzerrohre und Zubehör sowie das geänderte Normblatt für Isolierrohre, biegsam, mit gerillter Armierung, sind im Druck erschienen. Sie sind unter den folgenden SNV-Nummern bei der Gemeinsamen Geschäftsstelle des SEV und VSE, Seefeldstrasse 301, Zürich 8, erhältlich:

SNV 24721a Isolierrohre, biegsam, mit gerillter Armierung

SNV 24730 Stahlpanzerrohre, schwarz oder verzinkt, mit oder ohne Papierisolation

SNV 24731 Stahlpanzerrohre, Technische Lieferbedingungen

SNV 24732 Muffen für Stahlpanzerrohre

SNV 24733 Endmuffen für Stahlpanzerrohre

SNV 24734 Verbindungsmuffen für Stahlpanzerrohre

SNV 24735 Briden, zweilappig für Stahlpanzerrohre

SNV 24736 Stahlpanzerrohre, biegsam, gerillt, mit Isolation

Mitteilungen an die Abonnenten auf Ergänzungen zur Vorschriftensammlung

Nächstens werden wieder neue Vorschriften an die Abonnenten versandt. Wir benützen die Gelegenheit, die Abonnenten darauf aufmerksam zu machen, dass die verschiedenen Vorschriften gemäss dem blauen Lieferschein, welcher jeder Sendung beiliegt, in die betreffenden Vorschriftenbände einzuordnen und die überholten Publikationen daraus zu entfernen sind, Wir hoffen, mit dieser Mitteilung zu erreichen, die jeweils nach einem solchen Versand sich einstellenden Anfragen über den Standort der einzelnen Vorschriften etwas reduzieren zu können.

Gemeinsame Geschäftsstelle des SEV und VSE

Bulletin des Schweizerischen Elektrotechnischen Vereins, herausgegeben vom Schweizerischen Elektrotechnischen Vereins als gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins und des Verbandes Schweizerischer Elektrizitätswerke. — Redaktion: Sekretariat des Schweizerischen Elektrotechnischen Vereins, Seefeldstrasse 301, Zürich 8, Telephon (051) 34 12 12, Postcheck-Konto VIII 6133, Telegrammadresse Elektroverein Zürich. — Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet. — Das Bulletin des SEV erscheint alle 14 Tage in einer deutschen und in einer französischen Ausgabe, ausserdem wird am Anfang des Jahres ein «Jahresheft-herausgegeben. — Den Inhalt betreffende Mitteilungen sind an die Redaktion, den Inseratenteil betreffende an die Administration zu richten. — Administration: Postfach Hauptpost, Zürich 1 (Adresse: AG. Fachschriften-Verlag & Buchdruckerei, Stauffacherquai 36/40, Zürich 4), Telephon (051) 23 77 44, Postcheck-Konto VIII 8481. — Bezugsbedingungen: Alle Mitglieder erhalten 1 Exemplar des Bulletins des SEV gratis (Auskunft beim Sekretariat des SEV). Abonnementspreis für Nichtmitglieder im Inland Fr. 45.— pro Jahr, Fr. 28.— pro Halbjahr, im Ausland Fr. 55.— pro Jahr, Fr. 33.— pro Halbjahr. Abonnementsbestellungen sind an die Administration zu richten. Einzelnummern im Inland Fr. 3.—, im Ausland Fr. 3.50.