Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 44 (1953)

Heft: 25

Artikel: Einfluss der Elektrolytgel-Behandlung von Erdelektroden auf den

Erdungswiderstand

Autor: Sanick, Ivar H.

DOI: https://doi.org/10.5169/seals-1059982

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Findelenbaches. Die Gornergratbahn nützt in ihrem Kraftwerk Findelenbach nur ein Nettogefälle von 105 m aus. Die Gemeinde Zermatt liess ein Projekt ausarbeiten für ein neues Kraftwerk am Findelenbach mit einem Gefälle von 540 m. Mit der Gornergratbahn wurde Rückerstattung der Energie für den Wasserentzug vereinbart.

Im November 1947 wurde mit dem Bau des neuen Kraftwerkes Findelenbach begonnen, und im November 1949 konnte das Kraftwerk, das durch Fernsteuerung vom Maschinenhaus Triftbach aus automatisch bedient wird, in Betrieb genommen werden. Das Maschinenhaus ist ausgerüstet mit einer 2380-PS-Bell-Turbine und einem Oerlikon-Generator von 1880 kVA sowie einer BBC-Schaltanlage.

Mit dem etappenweisen Ausbau des Elektrizitätswerkes und der Ausdehnung des Dorfes ist auch das Versorgungsnetz ausgebaut worden. Die Primärleitung führt seit 1937 bis Gornergrat zur Versorgung des Kulm-Hotels, und auch die Weiler Findelen, Blatten und zum See sind an das Versorgungsnetz angeschlossen, das auf 16 Transformatorenstationen mit einer Leistung von 5035 kVA erweitert worden ist. Ein Bild von der Entwicklung des EW Zermatt geben einige Zahlen aus der Energiestatistik.

	Energieerzeugung MWh	Fremdenergiebezug MWh
1924/25	480	-
1930/31	581	_
1937/38	1 088	23
1944/45	10 131	220
1948/49	11 954	397
1951/52	21512	744

Zermatt zählt heute 360 Haushaltungen, wovon 355 mit elektrischer Küche ausgerüstet sind. In den Wohnhäusern und Chalets sind 370 Heisswasserspeicher angeschlossen. Von 37 an das Versorgungsnetz angeschlossenen Hotels und Pensionen haben 34 eine elektrische Küche.

Dieser kurze Rückblick auf die Entstehung und Entwicklung der Energieversorgung in Zermatt zeigt, wie ein Bergdorf, in dem die Wiege der Walliser Elektrizitätswirtschaft stand, die Probleme der Energieversorgung an die Hand genommen und realisiert hat. Dabei ist die Entwicklung noch nicht abgeschlossen, denn ein weiterer Ausbau drängt sich auf, wobei die Stufe Zermatt-Täsch der Mattervisp im Vordergrund steht.

In diesem Zusammenhang sei noch kurz auf die Bedeutung der Zermatter Wasserkräfte für die schweizerische Energiewirtschaft hingewiesen.

Im unteren Zermattertal verfügt die Lonza A.-G. über eine Konzession mit der nutzbaren Stufe Randa-Ackersand. Das der Verwirklichung sich nähernde Projekt soll eine Energieproduktion von rund 250 GWh/Jahr ergeben.

Die grossen Mengen Sommerwassers in Zermatt haben das eidg. Amt für Wasserwirtschaft vor Jahren veranlasst, die Fassung und Zuleitung dieser Wassermassen in den Dixence-See generell zu prüfen. Die EOS hat dieses gewaltige Projekt aufgegriffen, ausgearbeitet und durch den Bau der Grande Dixence mit der Verwirklichung bereits begonnen. Von den benötigten 350 106 m³ Wasser pro Sommer ist durch bestehende Konzessionsverträge bereits vorgesehen, 175 106 m³ dem Einzugsgebiet der Mattervisp zu entnehmen.

Damit rücken unsere ausgedehnten Gletscher, die im Laufe eines Jahrhunderts grosse volkswirtschaftliche Bedeutung für den schweizerischen Fremdenverkehr erlangt haben, nun auch in das Blickfeld der schweizerischen Energiewirtschaft; sobald diese grossen Projekte verwirklicht sind, werden die Wasser des Zermattertales Segen spenden zum Wohle der engeren und weiteren Heimat und der schweizerischen Elektrizitätswirtschaft.

Adresse des Autors:

O. Julen, Gemeindepräsident, Zermatt (VS).

Einfluss der Elektrolytgel-Behandlung von Erdelektroden auf den Erdungswiderstand

Von Ivar H. Sanick, Leksand (Schweden)

621.316.993 : 541.182.5

Die Erdung elektrischer Anlagen oder von Blitzableitern stösst wegen des örtlich zu hohen spezifischen Erdungswiderstandes oft auf grosse Schwierigkeiten. Das Erden ist in solchen Fällen mit grossen Kosten verbunden. Da ihm aber wegen der Brand- und Explosionsgefahr grosse Bedeutung zukommt, ist es verständlich, wenn man nach Mitteln und Wegen sucht, hohe Erdungswiderstände mit wirtschaftlich tragbaren Methoden herabzusetzen.

Dieses Ziel verfolgend, kam der Verfasser Ende 1947 auf den Gedanken, die Umgebung der Erdelektrode mit einem chemischen Mittel von guter Leitfähigkeit, aber nicht wasserlöslich, zu durchtränken, dadurch den Erdübergangswiderstand auf eine grössere Fläche der Erde zu verteilen und so die Erdung zu verbessern.

Nach einiger Zeit gelang es auch, eine Gruppe chemischer Verbindungen zu finden, welche die ge-

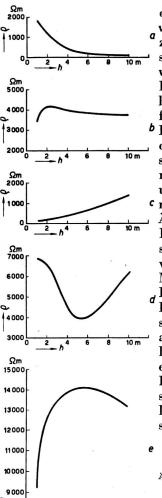
wünschten Eigenschaften besitzen, so dass sie möglicherweise für den vorgesehenen Zweck geeignet sein könnten. Bei den Versuchen erwies es sich, dass eine Verbindung von Kupfer-Ferrocyanid aussergewöhnlich gute elektrische Eigenschaften besass [1] 1). Bezüglich der Korrosion war diese Verbindung mit ihrem pH-Wert von 7...8 und mit ihren negativ geladenen Ionen auch geeignet, bei Erdkontakten aus Kupfer oder Eisen verwendet zu werden. Unter gewissen Bedingungen konnte diese Verbindung in Form einer zusammenhängenden gelartigen Masse — eines sog. Gels — erzeugt werden, welche durch ihre kapillare Struktur die Fähigkeit besitzt, in der Erde Feuchtigkeit aufzunehmen und diese längere Zeit zu binden. Dieses Gel erwies auch eine grosse Affinität zu starken Elektrolyten, welche, ebenfalls aus der Erde aufgenom-

¹⁾ siehe Literaturverzeichnis am Schluss.

men, das Leitvermögen des Gels zeitweise verbesserten.

Mit Unterstützung des Schwedischen Amtes für Wasserwirtschaft und der Generaldirektion der schwedischen PTT wurden im Jahre 1949 Versuche mit elektrolytgelbehandelten Erdelektroden durchgeführt. Die Ergebnisse einiger dieser Vorversuche wurden schon früher veröffentlicht [2]. Spätere Versuche bezogen sich auf die Verminderung von Schritt- und Berührungsspannungen in Unterwerken durch Behandlung der Erdoberfläche mit Elektrolyt-Gel. Bei diesen Versuchen in Träkvista und Älvnäs bei Stockholm wurden mehrere unbehandelte Erdelektroden als Kontrollelektroden verwendet, deren Erdungswiderstände zu Vergleichszwecken dienten.

Bei den vorgenommenen periodischen Widerstandsmessungen der Kontrollelektroden wie auch der gelbehandelten Elektroden konnte man in einigen Fällen eine vorübergehende Steigerung des Erdungswiderstandes beobachten. Diese Steigerung war aber bei den Kontrollelektroden stärker als bei den gelbehandelten Erdelektroden. Die Ursache dieser Erscheinung ist noch nicht völlig abgeklärt, sie ist aber allem Anschein nach beim Zusammenwirken mehrerer Faktoren physikalischer Natur sowohl in den Elektroden als auch in der Erde zu suchen.


Schwankungen des Erdungswiderstandes und die Möglichkeit ihrer Verringerung

Schon bei früheren Untersuchungen wurde festgestellt, dass Widerstandschwankungen von Erdungen mehr oder minder saisonbedingt sind, d. h. dass die Schwankungen des Erdungswiderstandes hauptsächlich eine Folge von Änderungen der Temperatur und der Erdfeuchtigkeit ist [4]. Untersuchungen über den Einfluss der Temperatur auf den spezifischen Erdwiderstand haben ergeben, dass die relative spezifische Widerstandänderung zwischen 0° und 18°C etwa 5% pro °C beträgt. Bei niedrigeren Erdtemperaturen, z. B. zwischen — 4° und — 8°C, kann diese Änderung bis zu 30% pro °C betragen.

Wird der Einfluss des Feuchtigkeitsgehaltes der Erde auf den spezifischen Erdwiderstand untersucht, so findet man, dass dieser bei einem Feuchtigkeitsverlust (Austrocknen) der Erde von 22 % auf 16 % auf den doppelten Wert ansteigen kann. Bei stärkerem Austrocknen, z. B. auf 11 %, kann der spezifische Erdwiderstand bis auf das zwanzigfache des Ursprünglichen ansteigen.

Die Tiefe der Verlegung von Erdelektroden spielt daher eine nicht zu unterschätzende Rolle bei der Stabilisierung des Erdungswiderstandes, da die durch die Jahreszeiten bedingten Temperaturschwankungen mit zunehmender Erdtiefe abnehmen. Die Feuchtigkeitsverhältnisse der Erde hängen im allgemeinen vom Grundwasserstand ab. Jahreszeitbedingte Grundwasserspiegelschwankungen können daher grosse Veränderungen des spezifischen Erdwiderstandes verursachen. Aus diesem Grunde würde man annehmen, dass Erdelektroden, welche in sumpfigem Boden oder in Wasseransammlungen

angebracht sind, einen verhältnismässig niedrigen Erdwiderstand aufweisen. Überraschenderweise ist das nicht immer der Fall; oft erhält man an solchen Orten einen höheren Widerstand als im naheliegenden, etwas trockeneren Boden. Die Ursache dieser merkwürdigen Erscheinung ist darin zu suchen, dass die Erde normalerweise grössere oder kleinere Mengen leicht dissoziierbarer Stoffe enthält, welche die Leitfähigkeit des Bodens erhöhen. In sumpfigem Boden werden diese Stoffe stark verdünnt, so dass sich der spezifische Erdwiderstand in extremen Fällen jenem des reinen Wassers (dessen spezifische Leitfähigkeit etwa 0,8·10-6 Ω-1 cm-1 beträgt) nähern kann.

8 000

2 - h4

Periodische Messungen des Erdungswiderstandes verschiedener Elektroden zeigten, dass der spezifische Erdwiderstand sowohl bei nahe beieinander liegenden Orten, als auch bei verschiedenen Erdtiefen, stark variieren kann. b Im allgemeinen spezifische \mathbf{der} stand der Erde mit zunehmender Tiefe ab. Fig. 1a und 1b zeigen Messergebc nisse in Sandboden. Die Änderung des spezifischen Erdwiderstandes sich aber auch umgekehrt verhalten. Fig. 1c zeigt Messungen bei felsigem Boden, wo dieser aus mit Erde bedecktem Fels besteht. Fig. 1d bezieht sich auf Sandboden mit einer leitenden Tonschicht in etwa 5 m Tiefe, und Fig. le auf eine aus ausserordentlich tiefen und losen Sandschichten bestehende Bodenart.

Bei beackertem Boden oder bei Weideland, wo der Erde reichlich Düngemittel zugeführt werden, sowie an Rändern von Strassen, die im Winter zwecks Verminderung der Glatteisgefahr mit Salz bestreut werden, kann — unabhängig von den geologischen Verhältnissen — der spezifische Erdwiderstand nahe der Erdoberfläche auffallend niedrig sein und erst mit zunehmender Tiefe wieder höher werden. Dasselbe Verhalten zeigt sich — zwar weniger ausgeprägt — in Böden, in denen chemischer Abbau des Zellulosegehaltes von Pflanzen stattfindet [8]. Durch das Einwirken gärungerregender

Bakterien (z. B. Bacterium lacto acidophilos und Bacterium aceti) auf die dabei gebildeten Kohlenhydrate wird der pH-Wert des Bodens durch das Entstehen von Milch- und Essigsäure und deren Salze beeinflusst [9, 10, 11]. Beim Zerfall der in der Erdoberfläche vorhandenen Eiweißstoffe durch Verfaulungsbakterien, z. B. Bacterium protëus vulgaris, werden dem Boden leicht dissoziierbare Salze, wie Nitrite und Nitrate, zugeführt [12]. Die dabei durch mikrobiologischen Einfluss entstehenden Elektrolyte durchdringen bei Niederschlägen den Boden. Mit zunehmender Tiefe und Verbreitung der Elektrolyte nimmt die Ionenkonzentration ab, wobei sich begreiflicherweise der spezifische Erdwiderstand entsprechend erhöht. In trockenem, unfruchtbarem Boden, z. B. in reinem Sandboden oder Tonsand, fehlen in den meisten Fällen die Voraussetzungen der Entstehung grösserer Mengen Zerfallsprodukte und daraus entstehender Elektrolyte. In solchem Boden nimmt der spezifische Erdwiderstand mit zunehmender Tiefe ab.

Früher war man der Auffassung, dass dort, wo die Schwankungen des Erdungswiderstandes nicht allein den Veränderungen der Temperaturund Feuchtigkeitsverhältnisse zugeschrieben werden können, diese durch die Veränderungen im Übergangswiderstand zwischen Elektrode und Erde verursacht werden. Es wurde angenommen, dass die Ursache dieser Veränderung die Oxydation der Elektrodenoberfläche sei. War z. B. die Erdelektrode aus Eisen, so bestand folglich die Oxydschicht aus Eisenoxyd. Untersuchungen zeigten aber, dass eine solche Oxydschicht wasserdurchlässig ist und somit keine isolierende Schicht bildet.

Bei den periodischen Widerstandmessungen von Erdelektroden in Träkvista und Älvnäs war es manchmal schwierig, genaue Widerstandwerte zu erhalten wegen der in der Erde vagabundierenden Ströme. Diese Schwierigkeiten machen den Gedanken nicht ganz abwegig, dass die Widerstandschwankungen von Erdelektroden unter gewissen Bedingungen auch galvanisch bedingt sein können.

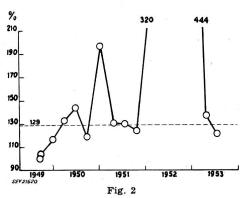
Dort, wo die Erdelektrode und die daran angeschlossene Erdleitung aus verschiedenen Metallen oder aus gleichen Metallen, aber verschiedener Reinheit, bestehen, muss man - besonders in sauren Böden - mit dem Entstehen von galvanischen Elementen rechnen. Durch Elektrolyse an der Oberfläche der Erdelektrode werden dabei Gase frei, welche eine Schicht von sehr hohem Übergangswiderstand zwischen der Elektrode und der Erde bilden. Auf die schädliche Einwirkung der Gasbildung auf den Übergangswiderstand wurde schon früher im Zusammenhang mit der Verwendung von Gleichstrominstrumenten bei Erdwiderstandmessungen hingewiesen [13]. Durch Zufuhr von gewissen depolarisierenden Stoffen in die die Erdelektrode umgebende Erde dürfte es möglich sein, die Gasentwicklung an der Elektrodenoberfläche zu vermindern und dadurch die Gasschicht, welche den Übergangswiderstand zwischen Elektrode und Erde beeinflusst, zu verringern.

Feldversuche mit elektrolytgelbehandelten Erdelektroden

An den in Träkvista und Älvnäs verlegten Erdelektroden wurden periodisch vom September 1949 bis Juli 1953 Widerstandmessungen durchgeführt. Für die Messungen standen Megger-, Metrawatt- und Siemens-Instrumente zur Verfügung. Die Messresultate sind in Tabelle I zusammengestellt. Die fetten Ziffern beziehen sich auf gelbehandelte Erdelektroden. Die nicht fetten geben die gemessenen Widerstandwerte der unbehandelten Erdelektroden an, welche als Kontrollelektroden dienten. Die Elektrode Nr. 1 bestand aus einem Kupferblech von 1 m² Fläche; bei Nr. 4 und 10 wurden genormte Stabelektroden des schwedischen Telegraphenamtes verwendet (3" verzinktes Winkeleisen, 2,5 m lang); Nr. 6 und 7 bestanden aus senkrecht in den Boden getriebenen Rundeisen (3/4" Durchmesser, 1,25 m lang, verkupfert). Die übrigen Elektroden waren

Periodisch gemessene Widerstände von Erdelektroden (in Ohm) auf dem Versuchsfeld von Träkvista und Älvnäs

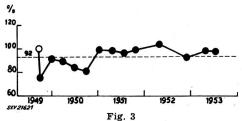
(Die fett gedruckten Zahlen beziehen sich auf gelbehandelte Erdelektroden)


Tabelle I

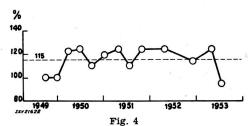
Datum	Elektrodennummer								pi.							
Datum	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
16. 9. 1949	31,0	24,0	22,5	14,2	16,7			105								
23. 9.1949	19,0	24,0	16,5	14,0	13,2	2380	2110	63,0	106							
30. 9.1949	19,0	25,2	17,0	14,5	15,5	1850	46,0	67,5	104			225	105	8		
12. 10. 1949	20,5	26,0	19,0	15,5	47,0	1950	47,3	105	140	> 3000	217	150	105	450		
28. 12. 1949	31,0	29,0	21,0	16,0	17,0	1600	310	91,0	120	620	96,0	120	105	110		
30. 3.1950	37,0	33,0	26,0	18,0	19,0	2600	512	88,0	120	1070	93,0	128	128	150	> 3000	
28. 6.1950	36,5	33,5	27,5	21,0	21,0	1450	380	105	132	760	112	130	130	180	885	
30. 8, 1950	31,5	28,0	21,0	15,5	15,5	1500	340	110	140	585	117	123	115	150	775	5 500
30. 9. 1950	33,0	27,0	21,5	16,0	16,0	1850	395	111	142	605	120	121	115	150	795	6 300
15. 1.1951	85,0	44,0	37,0	29,5	29,0	2050	700	122	142	1080	110	131	125	165	780	6 500
24. 4.1951	41,0	33,0	29,0	19,0	21,0	1350	540	110	142	1220	120	132	130	188	930	8 700
27. 7. 1951	40,5	30,0	27,0	19,0	20,0	3300	610	111	138	890	122	130	115	178	940	> 10000
31. 10. 1951	40,5	33,0	26,0	17,0	19,0	3250	615	120	150	1020	155	145	130	200	950	> 10000
2. 5. 1952	45,0		27,0	17,0	19,0	1000	460	99	135	1110	110		130	200	1110	5 000
26. 11. 1952			28,5	16,5	19,5	1470	705	110	120	1080	130		120	220	960	6 000
21. 4. 1953	42,0	33,5	32,0	19,0	21,5	1190	670	105	127	1390	132		130	255	1350	> 10000
15. 7. 1953	35,5	30,0	28,5	16,5	19,0	1310	610	110	137	980	140	117	100	170	1150	10 000

den Elektroden Nr. 6 und 7 ähnlich, ihre Länge jedoch betrug nur 2 m.

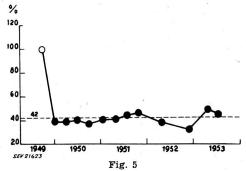
Der spezifische Erdwiderstand der verschiedenen Versuchsplätze in Träkvista und Älvnäs ist aus den Kurven der Fig. 1 ersichtlich. Die Erdelektroden Nr. 1...7 waren in einem Boden entsprechend einem spezifischen Erdwiderstand nach Fig. 1a eingebettet, Nr. 10 in einem Boden nach Fig. 1b. Der spezifische Erdwiderstand des Bodens der Elektroden Nr. 8, 9 und 11 entspricht Fig. 1c und jener der Erdelektroden Nr. 15 und 16 der Fig. 1e.


Um die prozentuale Änderung der Erdungswiderstände durch die Gelbehandlung zu erfassen, wurden die Messwerte in 3 Gruppen aufgeteilt: In die erste Gruppe fallen die Elektroden mit einem am Beginn der Versuchsperiode gemessenen Erdungswiderstand unter 50Ω , in die zweite jene mit einem Erdungswiderstand von $105...500 \Omega$ und in die dritte solche von über 1000 Ω. Die Auswertung der Messergebnisse in Tabelle I zeigen die Fig. 2...7. Die weissen Kreise beziehen sich auf Werte der Kontrollelektroden, die schwarzen Punkte auf jene der Versuchselektroden. Bei der Berechnung der prozentualen Widerstandänderungen der Versuchselektroden wurden die naturbedingten Widerstandänderungen der Kontrollelektroden berücksichtigt bzw. die Ergebnisse der Versuchselektroden entsprechend korrigiert. Damit konnte erreicht werden, dass beim Vergleichen der beiden Elektrodenarten die natürliche Änderung der Widerstandwerte ausser Betracht fällt.

Prozentuale Änderung der Erdungswiderstände der Kontrollelektroden Nr. 2 und 4 der Gruppe unter 50 Ω


Fig. 2 zeigt, dass der mittlere durchschnittliche Widerstand der Kontrollelektroden der Gruppe unter 50 Ω (Elektroden Nr. 2 und 4) von 19,1 Ω = 100 % des ursprünglichen Wertes (Messung 16. 9. 1949) während der Versuchsperiode sich stark änderte und im Mittel 24,4 Ω = 129 % betrug 2). Berücksichtigt man nun diese naturbedingten Änderungen bei den Versuchselektroden dieser Gruppe (Elektroden Nr. 1, 3, 5), so erhält man einen mittleren prozentualen Widerstandswert von 92 %. Die durch die Gelbehandlung erzielte Verminderung des Erdungswiderstandes beträgt daher in dieser Gruppe 100 — 92 = 8 %. Der Gewinn der Gelbehandlung von Erdelektroden ist also bei relativ niedrigem Erdungswiderstand nicht besonders gross.

In der 2. Gruppe (Erdungswiderstände zwischen 105 und 500 Ω) stand leider nur eine Kontrollelektrode (Nr. 13) zur Verfügung, weshalb ein Vergleich zwischen den gelbehandelten Erdelektroden mit dieser einzigen Kontrollelektrode nicht als allge-


Wie Fig. 2, aber bei elektrolytgelbehandelten Erdelektroden (Nr. 1, 3 und 5)

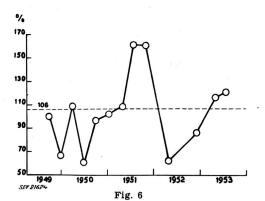
meingültig zu betrachten ist. Aus der Kurve in Fig. 4 geht hervor, dass der Durchschnittswiderstand dieser Kontrollelektrode während der Versuchszeit etwa 115 % betrug. Die entsprechende Kurve der gelbehandelten Erdelektroden (Fig. 5) weist einen mittleren prozentualen Widerstandwert von etwa 42 % auf. Unter Berücksichtigung des gemachten Vorbehaltes sollte die Gelbehandlung der Erdelektroden in dieser Gruppe eine prozentuale Verbesserung von 100-42=58 % bringen.

Prozentuale Änderung der Erdungswiderstände der Kontrollelektrode Nr. 13 der Gruppe 105...500 Ω

Die prozentualen mittleren Widerstandänderungen der dritten Gruppe (ursprüngliche Widerstände über $1000\,\Omega$) ersieht man aus Fig. 6. Während der Versuchszeit betrug der mittlere prozentuale Durchschnittswert der Kontrollelektroden $106\,\%$, jener der gelbehandelten Elektroden $28\,\%$ (Fig. 7). Der Erfolg der Gelbehandlung in dieser Gruppe ist also etwa $72\,\%$.

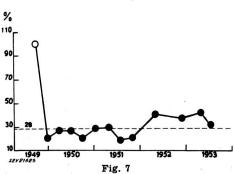
Wie Fig. 4, aber bei elektrolytgelbehandelten Erdelektroden (Nr. 11, 12 und 14)

Angaben über gelbehandelte Erdelektroden in verschiedenen schwedischen Kraftwerken sind in Tabelle II zusammengefasst. Leider fehlen Angaben


²⁾ Die beiden unerklärlichen Messwerte der Elektrode Nr. 2 am 2. 5. und 26. 11. 1953 wurden ausser acht gelassen.

Angaben über gelbehandelte Erdelektroden in verschiedenen Kraftwerken (Ohne andere Angaben wurden 301 Gel pro Elektrode verwendet)

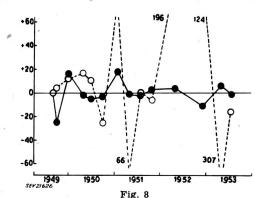
Tabelle II


Kraftwerk Nr.	Datum	Bodenart	Erdelektroden	Widerstand vor der Gel- behandlung Ω	Widerstand nach der Gel- behandlung Ω	Zeitabstand zwischen den Messungen d	
1	25. 9.1951	Tonsand	3/4'' imes 2 m Rohr	150	150	105	0 .
2	28. 11. 1951	Tonsand	1 m ² Kupferblech	7,5	4,5	50	40
3	20. 12. 1950	Sand	$3/4'' \times 2$ m Rohr	250	100	18	60
3	20. 3.1951	Tonsand	1 m² Kupferblech	60	50³)	277	17
3	30. 3.1951	Tonsand	i in Kupicibicen	45	50³)	277	
3	26. 7. 1951	Sandboden	60×60 Winkeleisen 2,5 m	80	65	5	19
3	31. 7. 1951	Sandboden		110	80	. 2	27
3	31. 1.1931	Schlammboden		65	34	2	47
3	28. 4. 1951	Lehm		40	25³)	61	37
3	28. 8. 1951	Lenm		85	75³)	61	12
3		Kies-Lehmgemisch		32	22	148	31
3	27. 9. 1951	mit Kies vermischter Lehm	1 m ² Kupferblech	60	25	148	58
3		Kalkschlamm		45	21	148	53
4	16. 12. 1950	Sand		100	20	0	80
4	12 12 1050	Moorerde und Sand		120	75	370	37
4	12. 12. 1950	toolerde und Sand		60	50	370	17
5	19. 12. 1951	Kiesige Erde	$0,75~\mathrm{m^2}$ Kupferblech, $2,5~\mathrm{m},~60~ imes~60$ Winkeleisen	75 28 21 ¹)	33 13	34 6	71
5		T. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$3/4'' \times 2$ m Rohr, 2,5 m 60×60 -Winkeleisen	350	30 11¹)	0	91 97
5	27. 12. 1951	Kiesboden-Moräne	2 St. 60×60 -Winkeleisen, à 2,5 m, $\frac{3}{4}$ " \times 2 m Rohr	120	121)	28	90
5			2,5 m, 60×60 -Winkeleisen	60	10	33	83
5		30 W	0,75 m ² Kupferblech	350	175	33	50
5	20. 12. 1951	Sandiger Kies	$\begin{array}{c c} 2.5 \text{ m, } 60 \times 60 \\ \text{Winkeleisen} \end{array} \qquad \begin{array}{c c} 2 \text{ St.} \\ \hline 1 \text{ St.} \end{array}$	80	45 ²) 34 18 ¹)	0	44
6	20. 7. 1951	Kiesboden	1 m ² Kupferblech	80	84)	53	90
6	8. 5. 1951	Sandige Erde	1 m ² Kupferblech	75	28	53	63

mit Kontrollelektroden, so dass es nicht möglich ist, die durch die Gelbehandlung erreichte relative Verbesserung nachzuweisen.

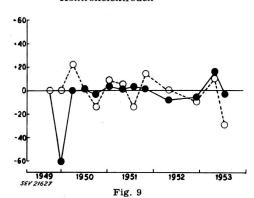
Prozentuale Anderung der Erdungswiderstände der Kontrollelektroden Nr. 6 und 16 der Gruppe über 1000 Ω

Aus den in Tabelle II angegebenen Widerstandwerten sieht man, dass die durch Gelbehandlung der Erdelektroden erzielte durchschnittliche Verbesserung etwa 49 % beträgt. In diesem Mittelwert sind auch die beiden Fälle, bei denen keine Ver-

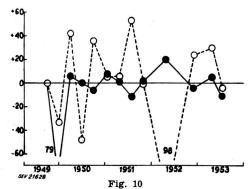


Wie Fig. 6, aber bei elektrolytgelbehandelten Erdelektroden (Nr. 7, 10 und 15)

besserung durch die Gelbehandlung erreicht wurde, miteingerechnet. Wenn man jedoch von diesen Fällen, in denen vermutlich durch eine etwas andere Gelbehandlung ein besseres Ergebnis hätte erzielt werden können, absieht, würde die durchschnittliche Verbesserung etwa 53 % betragen.


Die stabilisierende Wirkung der Gelbehandlung auf Widerstandschwankungen von Erdelektroden

Aus den erwähnten Kurven der Auswertung der Versuche in Träkvista und Älvnäs sieht man, dass die Gelbehandlung von Erdelektroden, ausser der



Prozentuale Widerstandsschwankungen von Erdelektroden der Fig. 2 und 3

elektrolytgelbehandelte Erdelektroden Kontrollelektroden

Prozentuale Widerstandsschwankungen von Erdelektroden der Fig. 4 und 5 Bezeichnungen siehe Fig. 8

Prozentuale Widerstandsschwankungen von Erdelektroden der Fig. 6 und 7 Bezeichnungen siehe Fig. 8

Herabsetzung des Ohmschen Widerstandes, auch eine deutliche Tendenz zur Verminderung der Widerstandsschwankungen zeigt. Wenn man die prozentualen Widerstandschwankungen der Kontroll-, sowie der gelbehandelten Erdelektroden ausrechnet und aufzeichnet (Fig. 8...10), so erhält man die Ergebnisse in Tabelle III.

Schwankungen des Erdungswiderstandes

Tabelle III

w .		Mittlere prozentuale Schwankungen des Erdungswiderstandes bezogen auf die ersten Messungen vom 16. 9. 1949						
Elektroden- gruppe	Figur	der gelbeh Erdelek		der Kontroll- elektroden				
		Erhöhung %	Senkung %	Erhöhung %	Senkung %			
Ursprünglicher Erdwiderstand unter 50 Ω	8	≈ 6	≈ 7	≈ 46	≈ 13			
Ursprünglicher Erdwiderstand 105500 Ω	9	pprox 2	≈ 6	≈ 8	≈ 8			
Ursprünglicher Erdwiderstand über 1000 Ω	10	≈ 7	≈ 9	≈ 24	≈ 29			

Schlussfolgerungen

Aus den durchgeführten Versuchen und deren mathematischer Auswertung geht folgendes hervor:

- 1. Die Gelbehandlung von Erdelektroden mit einem ursprünglichen Erdungswiderstand von etwa 30 Ω verursacht keine merkliche Verbesserung des Erdungswiderstandes.
- 2. Bei Erdelektroden mit einem ursprünglichen Erdungswiderstand von $105...500 \Omega$ kann die Gelbehandlung den Erdungswiderstand bis 58 % verringern.
- 3. Bei Erdelektroden mit einem Erdungswiderstand von über 1000 Ω kann eine Gelbehandlung den Erdwiderstand bis 72 % reduzieren.

Als weiteres Resultat der Gelbehandlung kann eine gewisse Stabilisierung des Edungswiderstandes vermerkt werden.

Literatur

- Sanick, I. H.: The stability of copper ferrocyanide gels against H₂O and strong electrolytes of NaCl and K₄Fe(CN)₈. Tekn. Skr. Stockholm Nr. 141, 1949.

- Sanick, I. H.: Nytt sätt att minska jordmotståndet vid elanläggningar. Tekn. Tidskr. Bd. 80(1950), Nr. 1, S. 7...9.

 Lundholm, R., und S. Rusck: Recent experience in the construction of pole- and station-earthing systems. CIGRE-Bericht Nr. 305 (1952).

 Wettstein, M.: Vorausberechnung der Masse, der Form und der Anordnung der Erdelektroden bei der Erstellung von Erdungsanlagen. Bull. SEV Bd. 42(1951), Nr. 2, S. 49 63. 49...63.
- Peters, O. S.: Ground connections for electric systems. Technolog. Paper Nr. 108, S. 107. US Depart. of Com-Commerce, Bureau of Standards, Washington 1949.
- [6] Ibid, S. 108.
- Glasstone, S.: Textbook of Physical Chemistry, S. 891. New York 1947.
- [8] Winogradsky, S.: The decomposition of cellulose in the soil. Compt. rend. Paris 183(1926), S. 691-4.
 [9] Bigger, J.: Handbook of Bacteriology, S. 217. Baltimore, Md. 1939.
- [10] Stitt, E. R.: Practical Bacteriology, Blood Work and Animal Parasitology, S. 227. 7. Aufl. 1923. Philadelphia, Pa.
 [11] Conn, H. J.: Abstr. Bact. Philadelphia, Pa. 5(1921), S. 8 und 9.
- Gerretsen, F. C.: Chem. Abstr. Washington 20(1926), S.217. Petersen, O. S.: Ground connections for electrical systems. Technolog. Paper Nr. 108, S. 9. US Depart. of Commerce, Bureau of Standards, Washington 1949.

Adresse des Autors:

Ivar H. Sanick, Box 612, Leksand (Schweden).