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speicherung eines Halbspeicherofens entspricht. Es
zeigte sich auch, dass téglich mehrere Sperrzeiten
von 1..2 h Dauer ohne weiteres sich einfiigen
lassen.

Der Energieverbrauch und die Energiekosten
wihrend der Tmonatigen Heizperiode im Winter
1949/50 sind aus Tabelle I ersichtlich:

Tabelle I
Energieverbrauch in kWh Energie-
Tag Nacht Total Fr.
1949
Oktober . 220 130 350 22.15
November . 1180 650 1830 102.80
Dezember 2400 800 3200 180.50
1950
Januar 2020 1070 3090 165.80
Februar . 1680 1330 3010 153.20
Miirz 1120 1030 2150 110.60
April 890 410 1300 55.85
Total . 9510 5420 14930 790.90
Jahresmiete fiir
Schaltapparate 12—
Gesamtsumme 9510 5420 14930 802.90
Mittel pro
Monat . 1359 174 2133 114.70

Aus den Gesamtsummenzahlen der Tabelle er-
rechnen sich bei total 212 Tagen wihrend der
Tmonatigen Heizperiode mittlere tigliche Werte des

Energieverbrauchs und der Energiekosten von

70 kWh bzw. Fr. 3.73, entsprechend einem mittle-

ren Energiepreis (Tag/Nacht) von 5,35 Rappen.
Der mittlere Energiebedarf fiir diese Heizanlage be-
tragt rund 39 kWh pro m® Ladenraum, welcher
Wert als ausserordentlich giinstig anzusprechen ist,
wenn man bedenkt, dass zufolge des fortwihrenden
Offnens der Tire immer wieder grossere Mengen
Kaltluft in das Ladeninnere eindringen.

Zusammenfassend darf gesagt werden, dass die
mit der beschriebenen neuen Decken-Strahlungs-
heizung wihrend der ersten Heizperiode gemachten
Erfahrungen als sehr erfreulich bezeichnet werden
diirfen. Das Ladenpersonal hat die Wirkung dieser
Heizung als dusserst angenehm empfunden und sich
als damit zufrieden erklirt. Ganz besonders ist auf-
gefallen, dass die Verstaubung im Raum zufolge
Wegfalls starker Luftbewegung, wie dies bei der
Konvektionsheizung bekanntlich auftritt, bei dieser
Decken-Strahlungsheizung praktisch kaum fiihl-
bar ist.

Abschliessend sei erwiihnt, dass die befiirchtete
Rissbildung an der Decke nirgends beobachtet
wurde und dass sie wohl kaum je in Erscheinung
treten diirfte, weil die Deckentemperatur héch-
stens ungefihr 45° C erreichte.

Adresse des Autors:
H. Hofstetter, Chef des Beratungsbiiros des Elektrizititswerkes

.Basel, Margarethenstrasse 40, Basel.

Contribution a I’étude d’un réglage automatique

Par M. Cuénod, Genéve *)

On demande de plus en plus d’un réglage automatique non
seulement qu’il soit stable mais que la variation de la grandeur &
régler par rapport a sa valeur de consigne a la suite d’une pertur-
bation soit réduite @ un minimum. Le calcul opérationnel permet
de déterminer théoriquement cette variation. Il donne ainsi la
possibilité de dissiper certains malentendus concernant la notion
un peu vague de rapidité de réglage, et d’apprécier I’influence des
différents facteurs qui interviennent dans le circuit de réglage. Il
met en évidence que la tenue de la grandeur a régler dépend non
seulement des caractéristiques dynamiques du régulateur mais
également des caractéristiques dynamiques des autres chainons de
ce circuit de réglage, en particulier de celles de ’excitatrice et du
générateur dans le cas du réglage de la tension.

Les méthodes modernes de calcul employées pour I’étude de ré-
glage automatique, sont un exemple du parti pratique que l’on
peut tirer de certains développements mathématiques d’apparence
un peu abstraite, tels que ceux auxquels conduit la théorie des
fonctions de variables complexes sur lesquelles est basé le calcul
opérationnel.

Grdce aux courbes de Nyquist ou aux fonctions de réponse, la
détermination des conditions de stabilité ou des variations de la
grandeur a régler est grandement facilitée, ce qui rend possible une
étude théorique des problémes de réglage automatique complétant
heureusement les résultats obtenus par une expérience pratique.

Introduction
Le but de cette étude est de décrire I'application
pratique de certaines nouvelles méthodes de calcul
utilisées pour I’étude d’un réglage automatique.
Leurs avantages par rapport a la méthode analy-
tique, peuvent étre résumés de la fagon suivante:

*) Date de réception du manuscript: 7 juin 1949.

621.316.7.078

Immer mehr verlangt man von einer automatischen Regu-
lierung nicht nur, dass sie stabil, sondern auch, dass die Ab-
weichung der zu regulierenden Griésse vom eingestellten
Wert bei einer Storung minimal sei. Die Operatorenrechnung
gestattet, diese Abweichung theoretisch zu bestimmen, und
ermoglicht, gewisse Missverstindnisse iiber den etwas ver-
schwommenen Begriff der Reguliergeschwindigkeit zu besei-
tigen, sowie den Einfluss verschiedener Faktoren zu erfassen.
welche den Reguliervorgang beeinflussen. Es erhellt daraus,
dass das Verhalten der zu regulierenden Grésse nicht nur
von der dynamischen Charakteristik des Reglers, sondern
ebenso von den dynamischen Charakteristiken der anderen
Glieder des Regulierkreises, besonders des Erregers und des
Generators bei Spannungsregulierung, abhingt.

Die modernen, hier angewandten Rechnungsmethoden
stellen ein Beispiel fiir den praktischen Nutzen dar, den man
aus bestimmten, scheinbar ziemlich abstrakten mathemati-
schen Entwicklungen ziehen kann, so z. B. aus der Theorie
der Funktionen komplexer Variabeln, auf welcher die Opera-
torenrechnung beruht.

Dank den Kurven von Nyquist (oder Antwortfunktionen)
wird die Bestimmung der Stabilititsbedingungen oder der
Abweichungen der zu regulierenden Grésse erheblich er-
leichtert. Dies erméglicht eine theoretische Untersuchung der
automatischen Regulierprobleme, welche die aus der prakti-
schen Erfahrung gewonnenen Ergebnisse gliicklich erginzt.

1) Elles permettent de traiter des cas ou la méthode classique
de Hurwitz, conduirait a des calculs inextricables, sinon impos-
sibles a effectuer, en remplagant les développements mathéma-
tiques par une construction graphique ou semi-graphique.

2) Elles permettent de se faire une représentation trés con-
créte des phénoménes dynamiques intervenant dans les problémes
de réglage.

3) Elles facilitent le calcul de la variation de la grandeur a
régler résultant d’une perturbation du dispositif de réglage.
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Si leur établissement et leur démonstration fait
appel a des mathématiques supérieures, leur utili-
sation par contre ne nécessite que trés peu sinon
aucun calcul, ce qui les rend trés pratiques pour
I’exploitant aux prises avec des problémes de ré-
glage. Loin de supprimer le role de I'intuition, elle
la compléte et permet d’exprimer quantitativement
les différentes grandeurs dont il faut tenir compte.

1. Description d’un réglage automatique

Considérons ’exemple du réglage a tension con-
stante d’un générateur représenté schématique-
ment par la fig. 1.

7]

o0

|1 R
R
) -
G E
SEV 17456 ?
Fig. 1
Schéma de principe d’un réglage de tension
G Générateur
E Excitatrice
R Régulateur
u Tension aux bornes de la génératrice (grandeur a régler)
u’ Tension auxiliaire

T Course du régulateur
e Tension d’excitation
VA Impédance de charge
Ki, K2 Interrupteurs

Soit G, le générateur excité au moyen de I’exci-
tatrice E et réglé au moyen du régulateur R. Le but
du réglage est de maintenir la tension constante in-
dépendamment des variations de la charge Z.
L’étude du réglage est de déterminer les caracté-
ristiques a donner au régulateur R de maniére a
assurer en premier lieu un réglage stable, en second
lieu un écart de la grandeur a régler par rapport a
la grandeur de consigne aussi faible que possible;
par exemple la variation de tension résultant d’une
variation de charge doit étre aussi faible et aussi
courte que possible.

La méthode classique consiste a établir des équa-
tions différentielles reliant les variables u, r, Z et de
résoudre le systéme d’équations différentielles qui
en résulte. ‘

Si I'on se borne a déterminer les conditions de
stabilité, il suffit de lui appliquer le critére de Hur-
witz qui établit les conditions que les coefficients de
I’équation différentielle doivent remplir pour que le
réglage soit stable. L’établissement de ces équations
différentielles et I’application du critére de Hurwitz
conduisent souvent a des calculs laborieux sinon inex-
tricables, s’ils doivent étre faits sans simplification
abusive; ils peuvent étre avantageusement remplacés
par une méthode semi-graphique.

Dans le n° 3 de la Revue Brown Boveri de 1946,
M. Frey donne la démonstration mathématique du
critétre de Nyquist dont nous rappelons le principe.

2. Définition de la courbe de Nyquist
et du critére de Nyquist

Nous envisageons I’essai suivant:

L’interrupteur K, est ouvert, 'interrupteur K,
est fermé. Le régulateur R est branché a la tension
auxiliaire u' que nous maintenons constante. Nous
faisons varier la charge Z autour d’une valeur
moyenne Z, avec une pulsation » et une ampli-
tude Z,. La tension u oscillera aussi autour d’une
valeur moyenne u, selon la méme pulsation »; cette
oscillation est caractérisée par une certaine ampli-
tude u, et un certain déphasage y par rapport a
Poscillation de Z.

K}
\;V=cn Zo

SEVI7447

Fig. 2
Etablissement de la courbe de Nyquist Iz

Selon la figure 2, nous représentons ces deux oscil-
lations sous forme vectorielle; la valeur absolue des
vecteurs est égale a 'amplitude relative des oscilla-

. ‘u ‘. .

tions —* et —, ’angle y inscrit entre ces vecteurs est
Zy uy

celui du déphasage des oscillations. Si I'on fait le

méme essai pour différentes pulsations et que ’on

- _ u o
rejoint l'extrémité des vecteurs —1, on obtient la
Uy
courbe de Nyquist de la tension du générateur par rap-
port aux variations de charge Iz, Si la pulsation y
est trés lente, le déphasage sera négligeable; d’une
fagon générale, plus la pulsation » augmente, plus

Uy

le déphasage augmente et plus I’amplitude o
0

diminue.

Nous envisageons un deuxiéme essal; nous main-
tenons la charge Z constante, mais faisons osciller
la tension u’ autour de sa valeur moyenne, la tension
du générateur u oscillera a son tour et nous pouvons
mesurer la courbe d’allure I... du réglage ouvert.

Supposons que les variations de Z et de u’ se
fassent simultanément.

Les variations de u seront données par la somme
de ses deux composantes.
!
uy Z, u'y
— = Iz — + Lvu—
Ug Z, Uy

(1)
Nous admettons que l'interrupteur K, soit fermé
et K, soit ouvert, cela revient a poser:
u=u

I’équation (1) devient:

Z u
“ZIM‘J+IMM—1 2
o @)

Uy 0 Uy
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d’ot1 nous calculons:

Z

j g
w_ "7
Uy ].—qu

Ainsi que l’a démontré mathématiquement
M. Frey dans I'article que nous avons déja cité, les
conditions de stabilité peuvent se déduire de 1’étude
du dénominateur de ce rapport, c.-a-d. de la courbe
d’allure du réglage ouvert Iu..

+J'CD
1,
au Fig. 3
Critére de Nyquist

f=0

SEVIT448

— (41, jo) +

Selon la figure 3, nous pouvons représenter cette
courbe d’allure, relevée expérimentalement, dans le
plan complexe de Gauss, en prenant le demi-axe
réel positif comme origine du déphasage des vec-
teurs, un retard étant porté dans le sens négatif
(sens de rotation des aiguilles d’une montre).

Le critére de Nyquist énonce que le réglage est
stable, si, lorsque I’on parcourt la courbe de Nyquist
de v=+o00ay =—oco, elle entoure le point
(+ 1, j,) dans le sens des aiguilles d’une montre,
autant de fois que le systéme ouvert a de racines
labiles. Si le systéme ouvert est stable, c.-a-d. si a
toute tension u’ correspond une tension u bien dé-
finie, la courbe de Nyquist ne doit pas «entourer»
le point (+ 1, j,).

La signification physique du critére de Nyquist
est évidente; considérons a4 nouveau le schéma de
principe représenté par la fig. 1. Pour une certaine
pulsation de u’, les oscillations de la tension u auront
la méme phase que celles de u'; si leur amplitude est
plus petite que celle de u’, le réglage amortira de
lui-méme les oscillations qui résulteraient d’une per-
turbation, il sera stable, sinon le réglage aurait ten-
tance a s’exciter lui-méme, et serait instable.

Considérons par exemple I’ensemble formé par le
régulateur R et I’excitatrice E, et proposons nous
de déterminer I’oscillation de la tension d’excita-
tion e résultant d’une oscillation de la tension u. Au
déphasage introduit par le régulateur R s’ajoutera
celui introduit par I’excitatrice E.

La grandeur absolue (1..) définit le rapport entre
Pamplitude de I’oscillation de r et celle de u, la gran-
deur absolue (I,.) définit le rapport entre I’ampli-
tude de loscillation de r et celle de e; on en déduit
immédiatement que le rapport entre I’amplitude de
Poscillation de e et celle de u est donné par le produit
de ces deux grandeurs absolues

e e

u

|'r
Ll = 1T 1=

r

Si I'on a soin de représenter les courbes de
Nyquist sous forme cartésienne en portant la pul-
sation v en abscisse, la grandeur absolue et I’argu-
ment en ordonnée, et si I’on choisit une échelle

logarithmique pour les grandeurs absolues, le pro-
duit se raméne a deux sommes et se laisse aisément
effectuer graphiquement tel que cela est représenté
par la fig. 4. Cette représentation est pratiquement
la plus commode.

AMQIIT“ . ]
0 \\\\ {-15%
A\N 7
ALY
N \
s \VEEEN e
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Fig. 4

Courbes d’allure du réglage a tension constante d’un générateur
synchrone, sous forme cartésienne

1 Courbe d’allure du régulateur § = 15 %, 45 %
Tr = 0,3 s

2 Courbe d’allure de l'excitatrice
Te = 2 s

3 Courbe d'allure du générateur
Ta = 58S

4 Courbe d’allure de réglage

Nous avons établi ces courbes de Nyquist pour
les valeurs numériques suivantes, correspondant a
un cas normal:

constante de temps du générateur T¢ =55

» » delexcitatrice Tg =25
» » durégulateur Tr =0,3s
statisme passager du régulateur ¢ = 159%,,459,

Nous voyons que sans avoir besoin de faire le
moindre calcul, en partant des courbes de Nyquist
Ly Ite, Iow qui peuvent étre relevées expérimen-
talement, il est possible de tirer des conclusions sur
la stabilité du réglage complet et de juger qualita-
tivement et quantitativement de 'influence des dif-
férents dispositifs de réglage sur la stabilité du ré-
glage. Nous pouvons constater par exemple que le
réglage est stable pour un statisme passager de
159, instable pour un statisme passager de 45 9%,.

3. Définition de la fonction de transfert
et de la courbe de réponse

Lacourbede Nyquistpermet detirerdes conclusions
intéressantes sur l'influence de 1’élément considéré
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sur la stabilité du réglage; elle ne donne pas une
image immédiate de ses caractéristiques dyna-
miques. D’autre part, son relevé expérimental risque
d’&tre parfois assez laborieux, car il faut relever la
courbe de Nyquist point par point, et attendre avant
chaque mesure qu’on ait atteint le régime station-
naire.

Il peut étre plus avantageux de procéder a ’essai
suivant: considérons un des éléments du circuit de
réglage, par exemple l’excitatrice; a partir d’une
position d’équilibre, nous faisons varier sa grandeur
d’entrée d’une fagon donnée r (t). Nous enregistrons
les variations corrélatives de la grandeur de sor-
tie e(t). Toutes les caractéristiques dynamiques de
Iexcitatrice et en particulier sa courbe de Nyquist,
peuvent se déduire de la comparaison de e(t) et de
r(z).

Pour cela, il faut déterminer e(z) et r(t) sous forme
opérationnelle e(p) et r(p). Nous définissons la fonc-
tion de transfert comme étant le quotient de ces deux
grandeurs:

_e(p)
(pre _

r(p)
L’expression mathématique de la courbe de Nyquist
I, s’obtient en remplacant p par j» dans I’expres-
sion @re.

Ire (jV) = (Pfe (p)|P=jV

A partir de e(t) et r(t) il est donc aisé de calculer
la courbe de Nyquist correspondante.

r(H) rit) ﬂ [y
T T T
a ' b F o " d g
SEV17450 " * -y t L t n F
" b c d’
Fig. 5

Détermination de la fonction de réponse de l'excitatrice
4

a) r(t):{%o s a) e) =e Te
r(p) =p e(p) = -ITZ;)—TG
) __t
b) (1) = b) ety = 1—¢ T
r(p) = e(p) = I;IW
t I
t Te _ T
o) M)=1—¢ T & el = —o ;6_5:"
1 ‘ 1
") = T P = BT T D GT T D
t B
) i) = 7 &y elt) - %—(l—e Te)
1 1
") = o, “P) = ST 0+ pTe)

La fig. 5 donne les courbes e(f) pour quelques
courbes caractéristiques de r(t). Nous réservons le
nom de courbe de réponse e(t) = @,.(t) dans le cas (b)
correspondant a une variation impulsive de r(t);
le quotient est alors particuliérement aisé a calculer

puisque le dénominateur est égal 4 1; en fait, les
cas (a) et (b) sont en toute rigueur impossibles a réa-
liser. Il semble avantageux de se servir de courbes
r(t) telles que le représentent les cas (c) et (d).

Le passage des fonctions temps aux fonctions
opérateur s’effectuent aisément si I’on fait appel aux
tables de transformation du calcul opérationnel.

Courbes de réponse et courbes de Nyquist se
complétent; la courbe de Nyquist permet de juger
de I'influence de tel ou tel organe de réglage sur la
stabilité de I’ensemble et de déterminer les caracté-
ristiques dynamiques résultants de différents or-
ganes de réglage en série;

la courbe de réponse permet de se faire une image
trés concréte de ses propriétés dynamiques et se
trouve, selon les cas, plus commode a relever.

4. Calcul de la variation de la grandeur a
résultant d’une perturbation

Le calcul opérationnel est trés avantageux lors-
qu’il s’agit de déterminer non seulement les condi-
tions de stabilité, mais encore les caractéristiques a
donner au régulateur pour que la grandeur a régler
soit maintenue la plus constante possible.

Le calcul de la variation de la grandeur en fonc-
tion du temps a la suite d’une perturbation impul-
sive, @,(t) s’effectue en appliquant la formule de
Heaviside a la fonction de réponse du réglage

fermé ¢.(p).

régler

gulp) = ——
1 - (puu
Psu oP!
d(puu
dp
racines de ’équation ¢u. = o
fonction de transfert décrivant le
comportement du générateur a la
suite d’une perturbation lorsqu’il
n’est pas réglé
fonction de transfert du circuit de ré-
glage ouvert
®su(0), uu(0) = fonctions @eu, @u. dans lesquelles on
pose p = o

@u(t) = 1 _(ps;(::)(o) _PZP

Pi---Pn
Psu

QPun

Nous considérons & nouveau l'’exemple d’un ré-
glage automatique de tension, représenté par la
fig. 1, et nous nous proposons de déterminer le sta-
tisme passager optimum a donner au régulateur R.
Nous admettons que les courbes de réponse sui-
vantes ont été relevées et déterminons les fonctions
de réponse correspondantes:

1) Fonction de réponse du générateur
a) par rapport a la perturbation (voir fig. 6a)

t
— g b
= —_— T = e
@su—a—f—b(l e G) Psu a+l+PTG
T¢ = constante de temps du générateur

b) par rapport a Uexcitatrice (voir fig. 6b)

1
ek 1
Tg —
Du=1—e Peu =7 Te
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2) Fonction de réponse du régulateur (voir fig. 6¢)

1 t 1 1
¢ur:_ = up = — |+
( u ) v (6 +pTR)

0 Tr
Tr = constante de temps du régulateur

Lozu Toeu 1q>ur ¢re
|

i — L —
t r t r
| b N d
SEV 17457
Fig. 6
Courbes de réponse du réglage de tension d’un régulateur
synchrone

a  Courbe de réponse de la tension du générateur par rapport

a la variation de la charge

b Courbe de réponse de la tension du générateur par rapport
a la variation de la tension d’excitation

¢ Courbe de réponse de la course du régulateur par rapport
a la variation de la tension du générateur

d Courbe de réponse de la tension d’excitation par rapport
a la course du régulateur

Le signe négatif signifie que le régulateur inter-
vient en sens inverse de I’écart de réglage, de fagon
a le corriger.

d est le statisme passager; il est déterminé par la
rigidité du ressort reliant le disque amortisseur avec
le systéme mobile, par exemple si ’on bloque le
systéme mobile et que pour 29, de variation de la
tension le régulateur parcourt 209, de son domaine
de réglage, le statisme passager est donné par le rap-
port de ces deux écarts.

o)
b= 2% _ 199,

= 200, =
3) Fonction de réponse de l’excitatrice (voir fig. 6d)
t
— 1
Te — ]- - Te re’— T/~
() e @ 15575

Te = constante de temps de ’excitatrice= 1,5 s
Fonction de réponse du réglage ouvert

Quu = QPur Pre Peu =

L1y
((5 PTR) (1-|—pTE) (1+PTG)

Fonction de réponse du réglage fermé

_ (psu —
(Pu_ ]-_(puu
b
*+ 1T pTe
1 1 1 1
1*(3+an) ' (1 +pTE) ' (1 +pTc)
Pu =

p*aTrTsTe+p*[(a--b) T Te+aTrTc) - p Tr(a+b)]

P*TcTrTe+ p*Tr(Te+ TE)+pTR(1 + %) +1

Le dispositif d’essai comportait les valeurs numé-
riques suivantes:

Tr = 03s
Te = 14 s (Excitatrice avec auto-excitation, ce
qui explique cette constante de temps

relativement élevée.)

Te¢e = 0,55
a=b=0,5
0 = statisme passager réglable de 5 a 259,.

Nous introduisons ces valeurs numériques et ob-
tenons:

p:0,1 + p20,5+ p0,3 __Y(p)

=7z
p30,2—i—p20,57+p0,3(1—}—%)—|—1 (p)

Pu =

Nous appliquons la formule Heaviside et obte-
nons la fonction de réponse du réglage fermé dans le
domaine temps

Y (p) e
dju t) = - =
@ P1§P3 dZ

dp

y _ (PPO1+p05+03)er

PP 0,6 p* + 1,04 p + 0,3 (1 _e %)
s Py Py 50 Tes: Tavines di polynome Z{p) = o
Z(p) = p*0.2 + p*0,57 + p 0,3 (1 +%) 11=u

Les calculs ont conduit aux résultats suivants
représentés par la fig. 7.
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Fig. 7

Courbe de réponse du réglage fermé décrivant les variations de
la tension aux bornes du générateur a la suite d’'une augmen-
tation brusque de sa charge

; g - zg :J,?:; Courbes calculées
3 6= 20% Courbe mesurée

Pour 6=259%, D.(t) ~e—5:0,65 cos (270,39 t—40°)

courbe 1
0= 59, Du(t)~e—2850,34cos(270,851—24°)

courbe 2

Nous constatons que le réglage ne peut empécher
la tension de faire un saut immédiatement aprés la
perturbation, et que la période de Ioscillation de
réglage diminue en méme temps que le statisme
passager.

La courbe 3 est une courbe mesurée pour un sta-
tisme passager 0 de 209, et prouve que les calculs
coincident avec les mesures d’une facon satisfai-
sante.

L’oscillogramme d’ou la courbe 3 a été tirée donne
aussi les variations du courant de charge I et du
courant d’excitation i et montre que au moment de
I’augmentation de I, le courant i augmente de lui-
méme avant que le réglage n’intervienne. Cepen-
dant laissé a lui-méme, il reprendrait sa valeur ini-
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” Fig. 8

Relevé du comportement du générateur a la suite d’une brusque variation de la charge

u = Tension du générateur
i = Courant d’excitation
I = Courant de charge

tiale; le réglage entre en action pour lui faire
piendre la valeur nécessaire pour que la tension
retrouve sa valeur de consigne.

Annexe

Détermination des caractéristiques dynamiques du générateur

Les courbes de réponse que nous supposons avoir été rele-
vées expérimentalement peuvent également étre calculées a
partir des équations différentielles qui caractérisent le compor-
tement de l'organe de réglage considéré. Ainsi les courants et
tensions du générateur sont donnés par le systéme d’équations
différentielles suivant:

Iw (L, + L) + ioM = o

dI di .
M—dT—l—lE—l—lr—u
Iw Ly, + ioM =U

Courant statorique

Courant d’excitation

Tension aux bornes du générateur
Tension d’excitation

Impédance de charge (supposée inductive)
Impédance synchrone

Inductivité mutuelle entre rotor et stator
Inductivité du circuit d’excitation
Résistance du circuit d’excitation
Pulsation de la tension

avec

e
8 ~ NESHEE q~.'~|

Nous obtenons le résultat suivant:

Réponse de la tension par rapport aux variations partielles de

charge:
¢
_ ., T __ m
Do) —a+b (1—e g T
t
1 Om 1o T

1+/10_0'm+;~o

M2 5 ; ;
avec O0p, = 1 — 1 Coefficient de dispersion du générateur
m
Ly . 5 s
Ao= T coefficient définissant 1’état de charge du
: m générateur. A pleine charge nous obte-
nons:
1
Ao =—
£G
avec g&¢ Tension de court-circuit du générateur
l o A
Te=— it el Constante de temps du générateur
r 144,
1l en résulte que @ — —2™
. qu Om + 4o

b= (; _ ;""._._)
a 1 + '1'0 Om + ;‘0
Réponse de la tension par rapport aux variations de la tension

d’excitation
t

Qeu(t)zl_e T

avec Te = é g{"—_:_;;ﬂ

A partir de ces fonctions de réponse calculées, il est aisé de
déterminer théoriquement les courbes de Nyquist correspon-
dantes. Il suffit d’exprimer la fonction de réponse sous forme
opérationnelle puis de remplacer ’opérateur p par jv. Ainsi
nous obtenons:

b b
Pu=tt o1 =t T T
-1 oo A

%"ZPTG-I-l_) jvTe + 1
La courbe I,, est représentée sur les fig. 4 et 5 avec Tg = 5s.
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