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Also nicht nur dimensionell, sondern auch quanti-
tativ sind die Lichtgeschwindigkeit und die Ein-
heitskugel als Ganzheiten (Naturkonstante, Ge-
staltfaktor) im §-Faktor konserviert, aber in einer
Form, die nur bei Systemwechsel quantitativen
Ausdruck findet.

Diese Bemerkungen haben ihren Zweck erfiillt,
wenn sie im einen oder anderen die Uberzeugung
wecken, dass ein Formalismus, der sich auf eine syn-
thetische und eine praktische Abart des zunichst

nicht scharf umrissenen Grossenbegriffes stiitzt, in
mancherlei Hinsicht klirend und ordnend wirken
kann.
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Probleme und Methoden der nichtlinearen Mechanik

Von Hans Schaffner, Urbana, Ill., USA

Manche Probleme der Schwingungserzeugung konnen mit den
gewdhnlichen linearen Methoden der Elektrotechnik nicht gelost
werden. Mathematisch fiihren diese Probleme auf nichtlineare
Differentialgleichungen. Die Methoden zu ihrer Bearbeitung sind
in der «nichilinearen Mechanik» zusammengefasst. Im folgenden
wird eine dieser Methoden, die sich besonders gut fiir den Elektro-
ingenieur eignet, an einem einfachen Beispiel erliutert.

1. Allgemeines

Die nichtlineare Mechanik und insbesondere ihre
Anwendung auf die Elektrotechnik ist noch sehr
jung. Besonders in den letzten 15 Jahren wurden
aber eine grosse Anzahl Arbeiten versffentlicht, die
Probleme der Schwingungserzeugung auf nicht-
linearer Grundlage behandeln. Leider ist der Gross-
teil dieser Arbeiten sehr mathematisch und abstrakt
gehalten, oder dann beschrinken sich diese auf rein
qualitative Beschreibungen. Manche bedeutende
Arbeiten sind zudem in russischen Zeitschriften ver-
6ffentlicht worden und sind darum nur schwer zu-
ginglich.

Erst vor kurzem ist es gelungen, die nichtlineare
Mechanik von einem komplizierten mathematischen
Apparat zu befreien und so zu vereinfachen, dass
ein durchschnittlicher Ingenieur sie verstehen und
anwenden kann. Besonders erwihnenswert sind in
dieser Hinsicht die Arbeiten der beiden russischen
Physiker Kryloff und Bogoliuboff und ihre Theorie
der «gleichwertigen Linearisierung» (equivalent
linearisation) [2]Y). Fiir den Elektroingenieur ist diese
Theorie besonders wertvoll, da sie sehr anschaulich
ist und die nichtlinearen Probleme auf einfache
Weise auf bereits bekannte lineare zuriickfiihrt.

Im folgenden sollen zur Einfithrung drei Pro-
bleme der nichtlinearen Mechanik erwihnt werden.
Diese konnen mit den klassischen linearen Metho-
den nicht quantitativ gelost werden.

a) Der Dynatron-Oszillator

Fig. 1 zeigt das bekannte Schema eines Dyna-
tron-Oszillators. Infolge der Sekundiremission weist

1) siehe Literaturverzeichnis am Schluss.

534.01 : 538.56

Maints probléemes relatifs aux oscillations ne peuvent pas
étre résolus par les méthodes linéaires utilisées d’ordinaire
en électrotechnique, car ils conduisent a des équations diffé-
rentielles non linéaires. Considérant un cas simple, a titre
d’exemple, Uauteur expose l'une des méthodes de mécanique
ondulatoire, qui convient particuliérement aux ingénieurs
électriciens.

die statische Anodenstrom-Anodenspannungs-Cha-
rakteristik des Dynatrons bei konstanter Schirm-
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T+
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Fig. 1
Schema des Dynatron-Oszillators

gitterspannung die in Fig.2 gezeigte Form auf.
Wenn die Anode gegeniiber dem Schirmgitter nega-
tiv ist und jedes auf die Anode auftreffende Elek-
tron mehrere Sekundirelektronen auslést, kann sich
die Richtung des Anodenstroms umkehren. Der fal-
lende Teil der Kennlinie kann nun zur Erzeugung

]G
Fig. 2
Die Anodenstrom-Anoden-
spannungs-Charakteristik

il
g v,

des Dynatrons
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von Schwingungen benutzt werden. Es erhebt sich’
nun die Frage nach den Amplituden der méglichen
Schwingungen des Dynatron-Oszillators. Eine Lé-
sung auf linearer Grundlage ist nicht méoglich. Die
erste analytische Methode zur Losung wurde 1921
von B. Van der Pol versffentlicht [4]. Neben den
analytischen Methoden existieren aber auch gra-
phische. . :
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Im folgenden wird fiir den «nichtlinearen Wider-
stand», das heisst fiir alle links vom Schwingkreis
liegenden Teile des Oszillators der Fig. 1, das Sym-

bol -mw- eingefithrt. Die Fig. 4 zeigt die
I
L Fig. 3
> ==G 20 Vereinfachter Dynatron-Oszillator

—{ AL _}= nichtlineares Element

SEVIZ41

Kennlinie eines solchen mnichtlinearen Widerstan-
des. Fig. 3 zeigt den Dynatron-Oszillator unter Ver-
wendung dieses Symbols. Die Kennlinie der Fig. 4
lisst sich z. B. in eine Potenzreihe entwickeln:

I=2XaqU*
i=1

(1)

Fig. 4
Kennlinie eines nichtlinearen Widerstandes

SEVITSIE

Beliebige Oszillatoren mit nur einem Schwingkreis
konnen auf die in Fig. 3 gezeigte Form zuriick-
gefithrt werden.

b) Die gleichzeitige Erzeugung
mehrerer Schwingungen [5, 6]

Unter bestimmten Umstdnden kann ein Oszilla-
tor mit zwei oder mehreren Schwingkreisen, die auf
verschiedene Frequenzen abgestimmt sind, gleichzei-
tig verschiedene Frequenzen erzeugen (Fig. 5). Diese

—F Fig. 5

EE Oszillator mit mehreren
ITE Schwingkreisen
3
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gleichzeitigen Schwingungen treten besonders bei
Generatoren fiir sehr hohe Frequenzen auf (Reflex-
klystron) und sind dort sehr unerwiinscht. Es stellt
sich nun folgendes Problem: Welches sind die Be-
dingungen dafiir, dass ein Oszillator auf zwei oder
mehreren Frequenzen gleichzeitig schwingt, und
welches sind die Amplituden dieser Schwingungen ?
Die Losung wurde erst in neuester Zeit gefunden.
Es ist interessant, festzustellen, dass der Grossteil
der Lehrbiicher die Moglichkeit der gleichzeitigen
Schwingungen iiberhaupt verneint.

c¢) Synchronisation eines Oszillators
durch eine dussere Wechselspannung [7, 8]

In einer Schaltung, wie sie in Fig. 6 gezeigt wird,
kann experimentell beobachtet werden, dass die
Frequenz der freien Schwingungen die Tendenz hat,
einen Wert

(2)

0):£ws

anzunehmen, wobei o, die Frequenz der dusseren
Wechselspannung ist und p und ¢ ganze Zahlen

sind. Dieses Verhiltnis bleibt auch bei einer kleinen
Anderung von w; bestehen. Die maximale Anderung
von ws, bei der dieses Verhiltnis erhalten bleibt,
nennt man die « Synchronisations-Bandbreite». Das

~O}
g
SEVITee NS

Fig. 6
Schwingkreis mit dusserer
Wechselspannung

nichtlineare Problem lautet nun: Berechne die Syn-
chronisations-Bandbreite fiir einen bestimmten
nichtlinearen Widerstand und bestimmte Werte
von p und gq.

Mathematisch fithrt dieses Problem wie die vor-
hergehenden auf nichtlineare Differentialgleichun-
gen, so zum Beispiel der Dynatron-Oszillator auf die
sogenannte «Van der Polsche Gleichung»:

xt+e(ltoax+px2+ . .)x+x=0 (3)

Nichtlineare Differentialgleichungen sind aber sehr
schwierig zu behandeln, und nur in Ausnahmefillen
ist es moglich, die Losung in geschlossener Form
darzustellen. Meist gibt man sich denn auch mit
einer guten Niherungslésung zufrieden.

Von allen Losungen einer nichtlinearen Differen-
tialgleichung sind die periodischen besonders wich-
tig. Ist T die Periodendauer, dann gilt fiir die perio-
dischen Losungen F(t):

F(t)=F(+ T) @)

Die periodischen Losungen entsprechen den mog-
lichen Schwingzustinden eines Oszillators, wobei
dann allerdings noch die Priifung nétig ist, ob diese
Zustinde auch stabil sind, d. h. ob sich nach einer
kleinen Stérung der urspriingliche Betriebszustand
wieder einstellt.

Diese drei Beispiele zeigen, dass sich die nicht-
lineare Mechanik hauptsichlich mit Schwingvor-
gingen beschiftigt, bei denen nichtlineare Ele-
mente beteiligt sind. Diese Nichtlinearitit kann
somit ebensogut in der Induktivitit (Eisenkern)
enthalten sein als im Widerstand.

2. Historisches

Dielnichtlineare Mechanik hat sich in drei Etap-
pen entwickelt. Der hauptsichlichste Vertreter der
ersten Etappe war der franzésische Physiker und
Mathematiker Henri Poincaré (1854...1912), der
nichtlineare Probleme der Astronomie behandelte.
Seine Arbeiten sind grundlegend, aber seine Metho-
den lassen sich leider nur auf Vorginge anwenden,
die sich relativ langsam abspielen; sie versagen
bei den hohen Frequenzen der Elektrotechnik. Die
zweite Etappe dauerte von 1921...1930, ihr Haupt-
vertreter war Balthasar Van der Pol. In ihr wurden
mit relativ einfachen mathematischen Mitteln Pro-
bleme, dhnlich den in unsern drei Beispielen gezeig-
ten, behandelt und oft erfolgreich gelsst. In der drit-
ten Etappe (1932...1940) versuchten einige Russen,
besonders L. Mandelstam und N. Papalexi, mit
grossem mathematischem Aufwand tiefer in die
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Probleme einzudringen, wobei sie denn auch einige
sehr interessante Entdeckungen machten.

In neuester Zeit ist das Schwergewicht der Ent-
wicklung nach Amerika geriickt. An mehreren ame-
rikanischen Universititen werden Vorlesungen iiber
nichtlineare Schwingungsprobleme speziell fir Elek-
troingenieure gehalten. Es fillt jedoch bei der
Durchsicht der Literatur auf, dass relativ nur sehr
wenig Experimente gemacht wurden, und dass bis
heute eine sorgfiltige experimentelle Untermaue-
rung der theoretischen Ergebnisse fehlt. Den heuti-
gen Zustand der nichtlinearen Mechanik kann man
als eine «Sammlung von Niherungsmethoden»
charakterisieren. So kann die oben angefithrte Van
der Polsche Gleichung (3) in guter Niherung gelost
werden, wenn der Parameter ¢ entweder sehr klein
oder sehr gross ist. Wenn man ¢ als sehr klein an-
nimmt, erhilt man eine annihernd sinusférmige
Schwingung, fiir ein grosses ¢ eine Kippschwingung

(Fig. 7).

AN N N0
vV VvV t

Fig. 7
Periodische Losungen der

™ [ [~ £*10 Van der Polschen Gleichung
D= =
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Sinusformige Schwingungen und Kippschwingun-
gen konnen somit auf die gleiche Differentialglei-
chung zuriickgefithrt werden. Im folgenden werden
ausschliesslich annihernd sinusfésrmige Schwingun-
gen behandelt (¢ klein). Insbesondere soll das Bei-
spiel a ), der Dynatron-Oszillator, berechnet werden;
dazu soll aber die schon erwihnte Methode der
gleichwertigen Linearisierung von N. Kryloff und
N. Bogoliuboff beniitzt werden [2]. Aus diesem Bei-
spiel werden die Grundgedanken der Methode so-
gleich klar.

3. Der Dynatron-Oszillator

InFig.3 bedeutet das nichtlineare Element.
Der Schwingkreis besteht aus der Induktivitat L,
der Kapazitit C und dem Leitwert G,, wobei die
Verluste in G, zusammengefasst seien. Wie schon
oben bemerkt, kann der Zusammenhang zwischen
den Momentanwerten von Strom I und Spannung U
durch die Potenzreihe Gl. (1) dargestellt werden.
Wenn der Giitefaktor ( des Schwingkreises nun
nicht zu klein ist, so ist die Spannung U annihernd
sinusformig. Man kann deshalb die Annahme

U =1 cos w,yt (5)

machen, wobei w, die Eigenfrequenz des Resonanz-
kreises ist.

Gleichgewicht herrscht nun, wenn die von aussen
her durch das nichtlineare Element an den Schwing-
kreis gelieferte mittlere Leistung gleich der mittle-
ren im Schwingkreis verbrauchten Leistung ist.
Diese ist bekanntlich:

ﬁ2
Py =—0s 6
5 ()

Die mittlere an den Schwingkreis abgegebene Lei-
stung ist:

2T 2r

P:L iu-d(wot):ificoswot-d(wot)
2n 2n
; 5 (7

P héngt in komplizierter Weise von i ab. Dabei soll
das Vorzeichen von P so festgelegt werden, dass
einem negativen P eine an den Schwingkreis abge-
gegebene Leistung entspricht. Die Bedingung fiir
Gleichgewicht ist somit:

P+ P,=0 8)

Die Abhingigkeit der Funktion (P + P.) von der
Schwingungsamplitude @ kann graphisch darge-

Fig. 8
Der Leistungsiiberschuss des
- Dynatron-Oszillators als
a Funktion der Spannungsam-
plitude 4

SEVI76t6

stellt werden und ergebe z. B. den in Fig. 8 gezeich-
neten Verlauf. Alle Werte der Schwingungsampli-
tude i, fiir die (P + P.) = 0, d. h. fiir die im nicht-
linearen Element gleichviel mittlere Leistung er-
zeugt wird, wie der Schwingkreis verbraucht, ent-
sprechen Gleichgewichtszustinden. Diese Werte
werden nachstehend mit i, bezeichnet. Es wird spa-
ter noch nétig sein, zu kontrollieren, ob diese
Gleichgewichtszustinde stabil oder labil sind. Da-
bei werden sich im Betrieb die stabilen Zustinde
von selbst einstellen.

_L Fig. 9
G G ; Der linearisierte Dynatron-
_F v Oszillator

Man fiihrt nun den «linearisierten Leitwert» G
ein. Dieser entspricht einem gewdhnlichen linearen
Leitwert, der die gleiche mittlere Leistung an den
Schwingkreis abgeben wiirde wie der nichtlineare
Widerstand. Die gleiche Konvention wie fiir P gilt
auch fiir das Vorzeichen von G; wenn Leistung ab-
gegeben wird, ist G negativ. Es gilt:

G linearisierter Leitwert

SEVIZ4r?

2@
{
G:I2P:%-lficoswot'd(wot) 9)
it :rz0

ﬂz

Mit Hilfe dieses linearisierten Leitwertes kann das
Schaltbild der Fig. 3 auf dasjenige der Fig. 9 redu-

ziert werden.

Fiir die Gleichgewichtslage gilt (8):
02 72 A8
P+R=G%+Q%=w+@%:0(m

oder fiir den nichttrivialen Fall @& == 0:
G+6G,=0

Die Leitwerte G und G, heben sich somit gegenseitig
auf und der Schwingkreis verhilt sich so, wie wenn
er nur aus der Induktivitit L und der Kapazitit C
bestehen wiirde.

(11)
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G kann mit Hilfe der Formel (9) aus Gl. (1) be-

rechnet werden. Fiir die Potenzreihenentwicklung
gilt z. B.:

G=a1+—§asﬁ2—i—iasl‘t4—[—... (12)
4 8
Die Gleichgewichtsbedingung ist somit:
G.,—l—m—{—%aaﬁz—l—%asﬁ“—{— .=0 (13)

d. h. die méoglichen Schwingungsamplituden sind
Losungen der Gleichung (13). Wenn die Gleich-
gewichtslage des Systems stabil ist, wird die Schwin-
gungsamplitude automatisch einen Wert anneh-
men, der die Gleichung (13) befriedigt.

Fig. 10

Schaltbild zur Messung des
linearisierten Leitwertes G

WA Wellenanalysator

SEVI7418

Fiir einen gegebenen nichtlinearen Widerstand
kann der linearisierte Leitwert auch auf einfache
Weise gemessen werden (Fig. 10). Wenn I, die Kom-
ponente des Stromes I mit der Frequenz w, ist,
dann gilt fiir G:

G = # (14)
7]
Dies geht aus der Gleichung (9) hervor, denn
2
l/icoswot-d(wot) — I, (15)
4]

0

ist ja nach Fourier gerade die Komponente mit der
Frequenz w, Es ist also nur mit dem Wellen-
Analysator der Anteil I; zu messen und durch den
Scheitelwert der Spannung zu dividieren.

4. Stabilitit

Wie erwihnt, sind nun nicht alle diese Gleich-
gewichtslagen stabil. Um zu priifen, ob eine Gleich-
gewichtslage stabil oder unstabil ist, verfihrt man
dhnlich wie in der klassischen Mechanik: man stért
das System; kehrt es nun in seine urspriingliche
Lage zuriick, nennt man es stabil, sonst unstabil.
So wird der in Fig. 11a gezeigte Korper nach einer

AR
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Fig. 11

Stabile (a) und unstabile (b)
Gleichgewichtslage

kleinen Stérung in seine urspriingliche Lage zuriick-
kehren, nicht aber jener in Fig. 11b. Die Gleich-
gewichtslage der Fig.1la ist somit stabil, die der
Fig. 11b unstabil.

Im Falle des Dynatron-Oszillators stért man das

Gleichgewicht, indem man die der Gleichgewichts-
lage entsprechende Spannungsamplitude &, um den

kleinen Betrag 3@ vergréssert; @ hat dann den Wert
i = ity + dii. Fir diesen Wert ist nun das System
nicht mehr im Gleichgewicht. Vorerst stellen wir
fest, dass die gesamte im Schwingkreis aufgespei-

cherte Energie von 7 @y? auf r (@t + 3 2)% ange-

wachsen ist. Damit sich der urspriingliche Zustand

- wieder einstellt, muss diese Energie wieder abneh-

men, d. h. es muss mehr Leistung im Schwingkreis
verbraucht werden, als das nichtlineare Element er-
zeugt. Die Summe (P + P,) muss also positiv wer-
den. Die in Fig. 12 gezeigte Gleichgewichtslage ist
nach dieser Bedingung stabil.

Fig. 12
Stabile Gleichgewichtslage i,

SEVIZ420

Eine Gleichgewichtslage ist also stabil, wenn:

d(P+P)_
U

Aus Fig. 8 kann man erkennen, dass stabile und un-
stabile Gleichgewichtslagen abwechseln.

Im folgenden sollen diese Uberlegungen noch et-
was prizisiert werden. Dies ist besonders deshalb
notwendig, weil in komplizierteren Fillen, wie etwa
bei der Behandlung gleichzeitiger Schwingungen,
qualitative Uberlegungen der obigen Art zur Lé-
sung nicht geniigen. Diese sollen deshalb nach-
stehend mathematisch formuliert werden.

Die erste Ableitung der im Schwingkreis aufge-
speicherten Energie nach der Zeit ist gleich der Dif-
ferenz der von aussen her dem Schwingkreis zuge-
fithrten und der im Schwingkreis selbst verbrauch-
ten mittleren Leistung. Also gilt, unter Beriicksich-
tigung des Vorzeichens:

d C
— —i2=—(P+ P,
3 (P+ P)

In der Umgebung eines Gleichgewichtspunktes
(& = 6y + d@) kann man die rechte Seite der Glei-
chung (16) in eine Taylorsche Reihe entwickeln:

(16)

d C i
5 5 (B0 38)* = — (P Py, —
5 [d_(l_'iJr_Iﬂ] S (17)
di a=i,

Far & = 4, ist (P + P,) = 0. Im folgenden soll &,
als eine Konstante und 3ii als eine Variable betrach-
tet werden. Fiir stabiles Gleichgewicht ist es not-
wendig, dass sich & dem Werte i, nihert, dass also
d7i mit zunechmender Zeit kleiner wird. Vernachlis-
sigt man alle hoheren Potenzen von i, so erhilt
man die lineare Differentialgleichung:

Ca, d 54 s d(P+ P

de da

(18)
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Die Losung der Gleichung (18) ist:
1 d(P+ Py

3t = Ae*', wobei y =—
ca, da

(19)

Wenn 3ii mit zunehmender Zeit kleiner werden soll,
muss g negativ sein. Damit erhilt man als Bedin-
gung fiar Stabilitit einer Gleichgewichtslage wieder:

d(P+ P) _

20
3 (20)
Wie man sich leicht iiberzeugen kann, gilt fiir den
Fall & <= 0 auch die Bedingung:

d(6+6,) d6G o

di da
Wir hoffen, mit diesem einfachen Beispiel die Me-
thoden der gleichwertigen Linearisierung geniigend
klargemacht zu haben. Mit &hnlichen Uberlegun-
gen und etwas grosserem Aufwand konnen auch die
in den Beispielen b) und c) erwiihnten Probleme der

gleichzeitigen Schwingungen und der Synchroni-
sation behandelt werden.

0 21)
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Uber zusiitzliche Verluste beim Parallelbetrieb von Leitungen

Von F. Schir, Olten

Am Beispiel je einer durch einen Transformator parallel
geschalteten 150-kV- und 50-kV-Leitung wird gezeigt, wie
sich das Minimum der zusdtzlichen Verluste leicht berechnen
lisst, und es wird das Ergebnis diskutiert.

Die heutigen Anforderungen an die Elektrizi-
tatsversorgungsunternehmen bedingen oft, insbeson-
dere im Hinblick auf die Betriebssicherheit, dass
grossere Netzteile als Maschennetze betrieben wer-
den miissen. Dabei kann es vorkommen, dass Lei-
tungen von verschiedener Nennspannung an beiden
Leitungsenden tiber Transformatoren parallel ge-
schaltet sind und derselben Energieuibertragung
dienen.

Je nach der Belastung der Knotenpunkte und,
wenn die Transformatoren mit Stufenschaltern aus-
geriistet sind, je nach deren Einstellung, verteilt
sich die Last auf die beiden Leitungen. Mit Riick-
sicht auf die Ubertragungsverluste ist es jedoch
nicht gleichgiiltig, wie sich der Strom auf die bei-
den Pfade verteilt. Die Verhiltnisse lassen sich am
besten an Hand eines Beispiels etwa nach Fig. 1
tiberblicken.

I =200A 150 kV I, 5
A R=68%
40 MVA
ZSMVA 'R;'SQ 94=3ﬂ.
& 50 kv T c
SEvizeps R2=12ﬂ 12
Fig. 1

Teil eines vermaschten Netzes
Energietransport von A nach B

Ohmsche Widerstinde der Ubertragungsleitungen
auf die 150-kV-Seite bezogene Ohmsche Widerstidnde
der Transformatoren

Ry, R:
Rs3, R

621.3.017.29:621.315.016.32

L’auteur montre, a Uaide de U'exemple de deux lignes a
150 et 40 kV couplées en paralléle par un transformateur,
qu’il est facile de calculer le minimum des pertes addition-
nelles. Il procéde ensuite a la discussion des résultats.

Die im Knotenpunkt A zufliessende Energie
(U = 150 kV, I = 200 A) sei nach dem Knoten-
punkt B zu uibertragen, wobei der Einfachheit hal-
ber die Belastungen durch die Zweige ¢ und b un-
beriicksichtigt bleiben sollen.

Die giinstigste Verteilung des Stromes von 200 A
auf die beiden Leitungen ist offenbar dann vorhan-
den, wenn die Ubertragungsverluste ein Minimum
sind. Die totalen Verluste zwischen den beiden Kno-
tenpunkten A4 und B betragen, wenn man von den
Eisenverlusten der Transformatoren, der Ableitung
und den Koronaverlusten absieht:

Poi= Py+ Poy = 3[12(Ri+ Re) + I (Ro + R:«x(')}
1

In dieser Gleichung bedeuten:

P,; die totalen Leitungsverluste,

P,, die Verluste iiber den 150-kV.-Strang ein-
schliesslich Kupferverluste im Transformator,

P,; die Verluste iiber den 50-kV-Strang ein-
schliesslich Kupferverluste im Transformator,

R, den auf die 50-kV-Seite bezogenen Ohmschen

Widerstand des 25-MVA-Transformators.

Die Bedeutung der iibrigen Symbole geht aus Fig. 1
hervor.

Driickt man noch den Strom I, durch I, aus,

wobei die Transformatoriibersetzung an beiden
Transformatoren der Einfachheit halber gleich an-
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