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41. Jahrgang

Nr. 14

Samstag, 8. Juli 1950

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Moderne Methoden zur Behandlung nichtstationidrer Vorginge
in elektrischen Maschinen

Von Th. Laible, Ziirich *)

Es werden einige methodische Hilfsmittel zur Behandlung
nichtstationirer Vorginge in elektrischen Maschinen behandelt.
Die mathematische Erfassung dieser Vorginge geschieht mit
Hilfe der Matrizenrechnung, mit der Laplace-Transformation
und mit numerischen und mechanischen Integrationsmethoden.
Anhand einiger Beispiele wird die Anwendung dieser Hilfs-

methoden erortert. Ein reiches Literaturverzeichnis erginzt die

Arbeit.

Einleitung

Das gesamte Gebiet der nichtstationdren Vor-
ginge in elektrischen Maschinen ist so gross, dass es
sich nur darum handeln kann, einen ganz skizzen-
haften Uberblick zu geben. Wie schon der Titel an-
deutet, werden wir uns weniger um die Vorginge
selbst als um die Hilfsmittel zu ihrer mathema-
tischen Erfassung kiimmern. Die Beispiele dienen
nur zur Illustration und kénnten fast beliebig ver-
mehrt werden.

Die wichtigsten methodischen Hilfsmittel sind:

1. Die Matrizenrechnung zur iibersichtlichen Schreibweise
der Gleichungen und zur Vornahme der nitigen « Koordina-
ten»-Transformationen.

2. Die Laplace-Transformation zur Behandlung der linea-
ren Probleme.

3. Numerische und mechanische Integrationsmethoden zur
Behandlung nichtlinearer Probleme.

Ich setze diese Methoden als mehr oder weniger
bekannt voraus und beschrinke mich darauf, ihre
Anwendung auf das hier behandelte spezielle Gebiet
zZu erortern.

Matrizenrechnung

Von der Matrizenrechnung brauchen wir nur
einen verhiltnismissig kleinen Teil, der repetitions-
weise hier kurz zusammengestellt sei.

Unter einer Matrix versteht man eine Zusammen-
fassung von n - m Zahlen ay in der Form

ay; 0y aym “ .
Qg Ao Aom \‘ 1 =Ll

A ismsnarss [ =lawl g1 D
Any Angy Qo ||

Die Matrix A enthilt n Zeilen und m Kolonnen
(Spalten). Als besonders wichtig seien die quadra-

*) Vortrag, gehalten im Kolloquium fiir Ingenieure iiber
moderne Probleme der Elektrotechnik an der ETH am
3. Dezember 1949,

621.313.01

Exposé de quelques moyens méthodiques pour I'étude des
processus non stationnaires dans les machines électriques,
notamment du calcul matriciel, de la transformation de La-
place, ainsi que des méthodes d’intégration numériques et
mécaniques. L’emploi de ces diverses méthodes est illustré
par quelques exemples. Une bibliographie détaillée termine
cet exposé.

tischen Matrizen (m = n), die Kolonnenmatrizen
(m = 1) und die Zeilenmatrizen (n = 1) erwihnt.
Unter der transponierten Matrix A' = || ver-
steht man diejenige, die aus A4 durch Vertauschen
der Zeilen und Kolonnen hervorgeht. Die Transpo-
nierte einer Kolonnenmatrix ist eine Zeilenmatrix.
Das Produkt zweier Matrizen A4 = | ai| wund
B = ||bi]|| ist eine neue Matrix C, definiert durch

m
Cik = Z air * by
r=1

Die Kolonnenzahl des ersten Faktors A4 muss
gleich der Zeilenzahl des zweiten Faktors B sein.
Auch wenn das Produkt B -4 existiert ist es im
allgemeinen ungleich mit A - B. Das kommutative
Gesetz gilt fiir die Multiplikation der Matrizen nicht,
wohl aber das assoziative, d. h.

(4-B)-C=A-(B-C)=A-B-C
A-B=C
B - At = (Ct

@)

3)
Ferner folgt aus
(4)

Eine spezielle quadratische Matrix ist die Ein-
heitsmatrix

100 0
010 0

E= 001 0 (5)
000 1

Sie ist mit allen Matrizen (gleicher Zeilen- bzw.
Kolonnenzahl) vertauschbar:

E-A=A4A-E=A4 (6)

Ist die Determinante |A|=|ai| einer quadra-
tischen Matrix von Null verschieden, so existiert
auch die inverse Matrix

525
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1= || Dis | (7)

141

Darin bedeuten die Dy; die Unterdeterminanten der |

Elemente von A. Es ist stets
A A1 =A1-A=F (8)

Die Elemente einer Matrix brauchen nicht ge-
wohnliche Zahlen zu sein, sondern konnen selbst
wieder Matrizen sein. Solche Untermatrizen erhilt
man, indem man zwischen den Zeilen und Kolonnen
einer Matrix einige waagrechte und senkrechte
Trennlinen zieht und alle so entstehenden Recht-
ecke als einzelne Matrizen auffasst.

Transformationen

Sdmtliche Stréme in den Zweigen eines Netz-
werks lassen sich zu einer Kolonnenmatrix |z
zusammenfassen und ebenso simtliche Spannungen
(z. B. die Spannungen aller Knotenpunkte gegen
einen bestimmten Bezugspunkt) zu einer Spannungs-
matrix |u||. Sie sind untereinander durch eine
quadratische Matrix Z, die Impedanzmatrix, bzw.
die Admittanzmatrix Y = Z-! verkniipft. Die Strome
und Spannungen einer Schaltung kénnen mit den-
jenigen einer andern in eindeutiger und umkehr-
barer Weise verkniipft sein. Eine solche Verkniip-
fung wird dargestellt durch eine quadratische
Transformationsmatrix C. Die eine Schaltung stellt
eine Ersatzschaltung fir die andere dar. Die
Matrizenrechnung erméoglicht fiir jede Etappe der
Rechnung den bequemen Ubergang auf diejenige
Schaltung, in der die Rechnung am einfachsten
durchfiihrbar ist.

Unter allen méglichen Transformationen be-
schrinken wir uns willkiirlich auf eine Auswahl
durch die Forderung nach «Leistungsinvarianz»
und «Impedanzinvarianz». Die erste Forderung
bedeutet, dass die Leistung

P = |luf*- i (9)

unverindert bleiben soll, die zweite, dass fiir ein
symmetrisches Netz ohne Kopplungen die spezielle
Impedanzmatrix

Z=z:E (10)

unverindert bleiben soll. Beide Forderungen zu-
sammen ergeben, dass die Transformationen ortho-
gonal sein miissen, d.h. dass die Matrix C der
Bedingung

C'-C=E oder C*'= C! (11)
geniigen muss. Ein in der Starkstromtechnik viel
gebrauchtes Beispiel einer solchen Transformation
ist der Ubergang auf symmetrische Komponenten.
In einem m-phasen-Netz erhilt man 'die symme-
trischen Komponenten der Spannung aus
[w]l = C- [ull (12)

27

j [—] ~(—1)«te—1)
Cik = L_ e ( m )

VYm

(13)

Die Komponente u,’ ist die Nullspannung, u,” die
Mitspannung und u,’ die Gegenspannung. Ent-
sprechendes gilt fiir den Strom.

«Park»-Koordinaten

Bei der Anwendung auf rotierende Maschinen
ist eine wesentliche Aufgabe der Transformationen,
durch Ubergang auf geeignete Koordinaten die zeit-
lich variablen Induktivititen zwischen bewegten
Wicklungen zu eliminieren. Wir beschrinken uns
hier der Einfachheit halber auf kollektorlose Ma-
schinen, da diesen die grisste praktische Bedeutung
zukommt. Der allgemeinste Vertreter dieser Gat-
tung ist die Synchronmaschine mit ausgeprigten
Polen und Dampferwicklung. Fig. 1 zeigt das zwei-

a-Achse

d-Achse

S c-Achse

SEV 17281

Fig. 1
Zweipoliges Ersatzbild der Synchronmaschine

b, ¢ wirkliche Statorwicklung )
d, q Ersatzwicklungen fiir die Statorwicklung a, b, ¢

a,

D, @ Ersatzwicklungen fiir die Dampferwicklung
f Feldwicklung

polige Schema einer solchen Maschine. Die Polachse
oder Lingsachse wird als d-Achse (franzésisch:
axe directe, englisch: direct axis) bezeichnet, die
darauf senkrechte als Querachse (franzésisch: axe
transversale, englisch: quadrature axis). Den Uber-
gang von den Strangstromen is iy, i auf die d,
g-Komponenten erhilt man durch die «Park»-
Transformation. Park hat sie 1929 zum erstenmal
systematisch angewandt [21]!). Dreyfus [14] und
Blondel [16] haben schon friiher, aber in etwas ver-
steckter Form dasselbe gemacht. iy und i, sind bis
auf ein Ubersetzungsverhaltnls k durch die Bedin-
gung gegeben, dass sie in jedem Augenblick dasselbe
Luftspaltfeld wie ia, i, . erregen miissen, also:

2 2
=k I:ia -cost -+ 1b - cos (19—;[) ~+1i.+cos (19+ 3ﬂ)]
(14)
Dasselbe gilt fiir iy mit (ﬂ + %) statt . Die dritte

Komponente soll keinen Beitrag zur Grundharmo-

1) siehe Literatur am Schluss der Arbeit.
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nischen des Luftspaltfeldes geben. Diese Bedingung
erfilllt der Nullstrom der symmetrischen Kompo-
nenten. Aus der Orthogonalititsbedingung C' - C=FE

folgt k :l/% Park wihlte secinerzeit von einem

anderen Gesichtspunkt aus k= 2/3. Wir haben
daher die Transformationsmatrix

G =

H

1z

12
cos (19—2??) cos (19 —1—2?%)

/)2
cos (9)

|
—sin () ———sin(ﬂ—zgn) —sin(ﬂ—{—zj)

(15) |
und ihre Inverse '
C;l =G =

1/)2 cos () ——sin (9)
% 1/]2 cos (19—23—”) —sin (19-——2;)
1/y2 cos (19+2n) —sin (ﬁ—l—z—ﬂ)
3 3
(16)

Parksche Gleichungen

Das Induktionsgesetz gibt fir irgendeinen Stator-
strang die Gleichung
. d¥,
Ua = —Ris—

4 (17)

Y, ist die gesamte Flussverkettung dieses Stranges.
Die entsprechenden Gleichungen aller Stringe zu-
sammengefasst ergeben die Matrizengleichung

d|| ¥
dt
Wir driicken die Spannungen, Stréme und Fluss-

verkettungen durch ihre Park-Komponenten u,,
U4, Ug USW. aus:

lull=— R |li] — (18)

., d (G- |¥
G vl = —R- G i) —EIEN )
dz
Nun multiplizieren wir vorn mit der Matrix C,:
, y d (G- 1?7
' = — R i) — G- LG 1T
de
LA ac
— Ry —20ED _ g 25 gy (a0
de dz

In C;'ist nur ¢ von der Zeit abhingig. d ddt = o
ist die momentane Winkelgeschwindigkeit der Ma-

schine. Daher wird
d¢;)} a¢'

C =owC
P4, p

-

— W

Da die mit w multiplizierte Matrix noch éfters vor-
kommt, schreiben wir fiir sie zur Abkiirzung K. Die
Spannungsgleichungen der Synchronmaschine lau-
ten also in Matrizenform

, y d||¥ ,
il =—R i — ke 22)
di
oder in Komponenten ausgeschrieben :
) d ¥
uy=—Ri,— —E—O
wz—Rm-§%+w% (23)
dt
ug =— R, L o P
dt

| In der Form von Gl. (23) wurden sie von Park ge-

geben.

Es fehlen noch die Beziehungen zwischen den
Flussverkettungen und den Strémen. Wenn wir von
Sattigungserscheinungen absehen sind sie linear.
Man verwendet daher zu ihrer Herleitung mit Vor-
teil die Methode der Laplace-Transformation.

Laplace-Transformation

Definitionsgemiss wird einer Funktion F(¢) eine
Funktion f(s) zugeordnet durch

o

ungWLme

0

(24)

Von Doetsch [7] wurde dafiir die symbolische
Schreibweise

f(s) oo F () (25)
vorgeschlagen. Die bisher in der mathematischen
Literatur iiblichen Unterscheidungsmethoden zwi-
schen Originalfunktionen und Bildfunktionen eignen
sich nicht fiir die Elektrotechnik. Ich benutze daher
folgende Schreibweise ?)

uqg o—e l;d; id o—e Zd; Td o—e i’d Usw. (26)
Im folgenden sind nur diejenigen Sitze und Formeln
der Laplace-Transformation kurz zusammenge-
stellt, die wir fiir unsere Zwecke brauchen. Es sind

dies die Differentiationsregel

G, s 2} — F ) @7)
de
der Verschiebungssatz
e F (1) oo f (s + «) (28)

2) Nachtriglich habe ich gefunden, dass E. E. I. Pilcher
genau die gleiche Bezeichnungsart vorschligt [The Metro-
politan-Vickers Gaz. Bd. 23 (1949), Nr. 374, S. 101].
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der Faltungssatz

1) :].F1 (t—2) - F,

f F, (s) - Fy (t—32) dso—e £ (s) - £ (5)

0

F, (1) (2) d=

(29)

und die Beziehungen zwischen den Grenzwerten
(falls die Grenzwerte rechts existieren)

lim [s - f (s)] = lim [F (t)]
- - (30)
lim 5 (5)] = lim [F (1)

$—00

ferner eine kleine Auswahl an Entsprechungen
zwischen speziellen Funktionen:

l o—e l e-of 0_.il,,,
s s+a
cos (vt) o— 52—7— . sin (vt) o—e o (31)
e cos (vt) o—e il o ;eatsin(vi)o—e —— v
(s+a)*+ 2 (s 4 )2 4-»2

Nach dieser kurzen Abschweifung kehren wir zur
Synchronmaschine zuriick.

Flussverkettungen der Lingsachse

Da die Querachse und die Langsachse aufeinander
senkrecht stehen, beeinflussen sie sich nicht. Man
kann jede fiir sich behandeln. Die d-Achse hat drei
Wicklungen: die Ersatzwicklung d fiir den Stator,
die Ersatzwicklung D fiir die Dampferwicklung und
die Feldwicklung f. Die Beziehungen zwischen den
Stromen und den Flussverkettungen dieser drei
Wicklungen sind in der Matrizengleichung

|Las Lap Lag|| | 74
Lnd Lop Loy ip (32)
Tf | ]Lfd Lip Ly if

zusammengefasst. Die Dampferwicklung ist immer
kurzgeschlossen. Daher gilt fiir sie

0=—Rpip— i P (33)
di
oder im Bildbereich
0= —Rpip—s o+ ¥no (34)

Yo ist der Anfangswert der Flussverkettung ¥p.
Fiir die Feldwicklung haben wir die entsprechenden
Gleichungen

up = — Bipip— S (35)
dt
:lf = — Ry 1}— s 'i]f + %o (36)

Transformiert man Gl. (32) auch in den Bildbereich

und setzt ¥p aus Gl. (34) und ¥ aus Gl. (36) darin
ein, so erhilt man

¥, Laa Lap Las id
'S R .
SDO —||Lpe © Lpp+ —= Loy ip
: K
Weo—u : R N
fo—sui Lpa Lo Lff+*si iy
(37)

Daraus kann man die Untermatrix bestehend aus
den beiden uns nicht interessierenden ip und is eli-

. minieren. Man erhilt

-~ |-1
W, — (de_”LdD Layl| " Lop+Rp/s Loy
| Lyp L+ Ryfs,
Lnall; 5 o
} Dd ) * ta+ || Lap Lay|| ‘ Loo+Rofs Loy ;
Lya Lo Lyr+Ryfs
4
o
(Pro—uy) s

Wir fithren als Abkiirzungen die Streukoeflizienten
ein:

s 1 Las Ly oip — 1 — Laip Lpa
Las Ly Lau Lop
' (39)
Lyp Los
Lys Lop
ferner die Zeitkonstanten:
Tp = Loo Ty = LF und
Rp Ry

die beiden Wurzeln ~g42 > x41 der quadratischen
Gleichung

om-Tr Tp-al—(Tr+ To)xa +1 =0 (41)

. und die beiden Zahlen 441 und Ag2, die man aus dem

Gleichungspaar

orp (Aar+ Aas2)

=2—ay—ou—2) T—ou) T—amn) (1—om) |,
0fD (Adl a2+ Aas (Xdl) — (1 ;Z“f) L4 (I—T;)',JD)

erhilt. Die Werte ¥po und ¥yo driicken wir ausser-
dem durch die Anfangswerte der Stréome Izo, Ipo und
I;o aus. Dann erhalten wir nach ausmultiplizieren

von Gl (38)

— ? LdD D (S) (43)

Die Funktion Lg (s) hat die Form
S 4,8
s+ xa1 s + aqz

T () = L [1 — An ] (44)
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Der Vergleich mit Gl. (31) zeigt folgende Beziehung

zum Originalbereich

La(s), de(1 — Agie Ay -e*““’) —1a(1)
) (45)
Daraus lisst sich leicht ablesen:
lim L4 (S) = lim 14 (t) = L
s—0 1—00 (4())
lim Ld (S) =lim 1,1 (t) = de (I—Adl——A,n) = L”,M

500 t—0

Fiir stationdre Vorgidnge und angenihert auch fiir
alle langsam verlaufenden hat die Funktion Lq (s)
den Wert Lgq4, fiir rasch verlaufende Vorginge hin-

gegen den Wert L. Mit Hilfe der Wurzeln f42 > fa1
der quadratischen Gleichung

L'

dd

oo Ty Tp f3— (04 T+ oap To) fu+1=0 (47)

kann man auch schreiben

_ Laa(s + fun) - s+ fu)

La (s) (48)
(s + o) - (s 4 aaz)
und
1 1 1 1 s
1oLl 3y 0
La (s) Laa L'aa  La/ s+ far
1 1
e - ™
aa Llaa) s+ Paz
mit der weitern Abkiirzung
L'u = L'u bz — P (50)
a1 g fui— Xd1 Kd2
Paz
Aus GI. (49) folgt
1 1 1 1 —Baxt
*—o — (— — *) e
s-La(s) Laa L'aa  Laa
1 1 —,det
o ( — ) g 51
T (1) (51)

Die Funktion G (s) kommt meistens nur in der Kom- }

bination G (s)/La (s) vor. I'iir diese erhalten wir mit
praktisch geniigender Anniherung

Gls) B
La(s)  Laa(s+ far)

Genau genommen kime noch ein zweites Glied von
dhnlichem Aufbau hinzu, das aber mit den in der
Praxis vorkommenden Zahlenwerten vernachlis-
sigt werden darf.

Auf die Funktion D (s) gehen wir nicht niher ein.
Im stationdren synchronen Betrieb fliesst in der
Dampferwicklung kein Strom. Ipy ist nur dann von
Null verschieden, wenn unmittelbar vor dem unter-
suchten Ausgleichvorgang ein anderer stattgefunden

(52)

e—0— €

hat, der noch nicht abgeklungen ist. Da solche

Probleme verhiltnismissig selten sind, lassen wir

fiir das Folgende das Glied mit Ipo in Gl. (43) weg.

Ihre Auflésung nach iq ergibt dann

L '~_lPdo) 1 wp Iy G(s)
W=t (5"'* ERATC) *(Rﬁ';) L Lats)
(53)

Mit Hilfe des Faltungssatzes kann man diese Glei-
chung sofort auch im Originalbereich schreiben

d¥, us ' ~Bat
* Aa(t R I K
de "()+(Rf+ ’”) (54)

Eﬂdle

dd

tg= Iq0 4

Querfeld
Fur die ¢-Achse geht die Rechnung ganz ent-

sprechend. Sie wird nur einfacher, weil man nur
zwei Wicklungen ¢ und Q hat. Entsprechend dem
Operator Lq (s) erhdlt man einen Operator L, (s):

L, (s) = Lo (09 s + ) — L a9 (s :{»_ﬁl (55)
s + oy s + xq
oder
_I_ZL_F (1,_ 1 )fsf (56)
Ly (s) Ly L' Ly / s+ pq
und daher
1 1 -3
ot (Lo — ) = a0 6
s Ly (s) Ly L Ly
und
dv, .
tg = Ipy + L g (1) (58)
di
Nullsystem

Fiir das Nullsystem kann man geniigend genau
mit einer konstanten Induktivitit L, rechnen und
erhilt daher einfach

(59)
Es spielt iibrigens selten eine Rolle.

Bewegungsgleichung

Mit den Gleichungen (54), (58) und (59), die 7,
g, ig durch ¥,, ¥4, ¥, ausdriicken, werden die
Gleichungen (22) bzw. (23) zu einem System von
Integrodifferentialgleichungen fir ¥, Yi ¥, Ist
die Geschwindigkeit o gegeben oder konstant, so
geniigt dieses Gleichungssystem zur Bestimmung
der Losung. Im andern Fall ist als weitere Gleichung
die Bewegungsgleichung der Maschine erforderlich.
Zur Bestimmung des Drehmoments bilden wir die
Leistungsbilanz. Wir bilden die Transponierte der
GL. (22) und multiplizieren sie hinten mit der Strom-
matrix [|7']|:

. ot .y 1 | ’ o
fw' |- 1 = — Ry |l H_(d; (k4 H’) jEN Iy
. i

+ o [P - K- 1) (60)

Links haben wir die ins Netz abgegebene Leistung.
Das erste Glied rechts stellt die Jouleschen Verluste
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in der Statorwicklung, das zweite die zur Anderung
der magnetischen Energie benétigte Leistung, das
dritte die mechanische Leistung dar. Diese ist gleich
®/p (mechanische Winkelgeschwindigkeit!) mal das

Drehmoment. Dieses ist daher
PIYP | - K li'|| = p (Pqia — Paiy)

Setzen wir den Ausdruck in die Bewegungsgleichung
ein und dividieren noch durch die Polpaarzahl p so
haben wir schliesslich

J do

J Muntrieb
p?  dt

-+ (Fyia— W iq) (62)

Klassifizierung der Probleme

Nachdem wir die allgemeinen Grundlagen haben,
lassen sich die Probleme einigermassen iibersehen.
Sie gliedern sich vom mathematischen Standpunkt
aus in drei Klassen.

1. Die erste Klasse umfasst die Probleme, bei
denen die Geschwindigkeit konstant bleibt oder
wenigstens mit geniigender Naherung als konstant
betrachtet werden kann. In diesem Falle sind die
Gleichungen linear. Man geht dann mit Vorteil auch

mit Gl. (22) in den Bildbereich uber:
| ’\ i | s0 0| ||¥ L
;l‘;d e Bl g || —|| 0 &~0 ol -+ || Pao
E 11” : iy 0w s! 7, SU,HE

Die Bewegungsgleichung braucht man nicht. In
diese Klasse fallen z.B. Kurzschlussvorginge,
Spannungs- und Winkelfehler beim Synchronisieren,
Spannungsinderungen bei Belastungsstossen mit
oder ohne Einwirkung von Spannungsreglern.

2. Die zweite Klasse umfasst solche Vorginge,
bei denen w zwar verinderlich ist, bei denen aber
alle Gréssen nur um kleine Betrige von einem sta-
tioniren Zustand abweichen. Man kann dann, indem
man diese Abweichungen (Stérungen) als neue
Variable einfiihrt, in bekannter Weise die Gleichun-
gen fiir den stationidren Zustand abspalten und den
Rest durch Vernachlissigung der Produkte von
Stérungsgliedern linearisieren. Typische Beispiele
fir diese Klasse sind : Kleine Pendelungen unter dem
Einfluss von periodisch schwankendem Antriebs-
(Dieselgeneratoren) oder Lastmoment (Kolbenkom-
pressoren), Reguliervorgénge unter dem Einfluss des
Kraftmaschinenreglers und Stabilititsuntersuchun-
gen.

3. Die dritte Klasse bilden solche Probleme, bei
denen wesentliche Geschwindigkeitsinderungen vor-
kommen. Das Gleichungssystem ist dann wegen den
Gliedern » ¥ in den Spannungsgleichungen und ¥'i
in der Bewegungsgleichung nichtlinear. Geschlossene
mathematische Losungen fiir Probleme dieser Klasse
sind mir nicht bekannt. Man ist auf numerische und
mechanische Methoden (Bush-Maschinen) ange-
wiesen. Einige Beispiele sind: Anlaufvorginge,
Synchronisieren mit grossem Frequenzfehler, In-
Tritt-ziehen von Synchronmotoren.

(61)

Zur Illustration soll ein ausgewihltes Beispiel aus
jeder der drei Klassen behandelt werden.

Dreistringiger Kurzschluss

Als Beispiel fir ein Problem der ersten Klasse
wihlen wir den dreistringigen Kurzschluss der
Synchronmaschine ausgehend von einer beliebigen
Vorbelastung. Dieses Problem ist zwar altbekannt
und oft behandelt worden, hat aber den Vorteil,
dass es nicht nur als Beispiel dient, sondern auch
einen guten Einblick in die Bedeutung der ver-
schiedenen Konstanten gibt, die eine Maschine
kennzeichnen.

Der bessern Ubersicht halber fithren wir von
Anfang an eine Vereinfachung ein. Der Stator-
widerstand ist praktisch stets klein. Das Glied
R - ||7’|| spielt nur die Rolle einer kleinen Korrektur.
Zur Berechnung von iy und iy in diesen Gliedern
benutzen wir daher nicht die genauen Ausdriicke,

| sondern eine konstante Induktivitit 2 L’ - L/
(L"aa 4+ L"¢). Mit der Abkiirzung
AR = R (L d’t,‘ + L ‘1'1) (64)
2 L" L”qq
haben wir dann statt (63) die Gleichungen:
. ' R 3
U s+— 0 0 Y Yo
o 0 s
wi|| — 0 star -w v, Yo
U, 0 w  s+ar| ||¥, Yoo
(65)

Im Kurzschluss ist ||u]|= 0. Gl (65) lasst sich nach

den ¥ auflésen. Bei symmetrischer Vorbelastung
ist ¥y, = 0. Daher wird auch ¥, = 0 und i, = 0.
Der Rest gibt

‘p'.z s+ ar - . T W
!i’q ) s+ ar ‘ Yol
1 s —+ ar w ‘ Pao
—_—— . e—o
(s + r)* + 0? l_w star| ||[¥o
—agt || cos(wt) sin(w l'l’do
e—0 €
|| —sin (wt) cos ( ‘ Yo

VYor dem Kurzschluss war

ug=U,) 3 sindy=wW¥p; u="U,)'3 - cosdy=—aw%Pio

(67)
also wird
Vy=— Uowl 3 e_akt- cos (wt 4 0,) l
(68)
Y, = ——U"a} 3 B g (@t 60) J

Darin ist ¢, der der Vorbelastung entsprechende
Polradwinkel. Durch Einsetzen in Gl. (54) und (58)

erhalten wir die Komponenten des Kurzschluss-

| stroms
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3 I I ) —,3 t
) d1
Xd

T (x’d

=11
ig=lio+ Uy |3 [7

Xd

3 —QRt
Uo) 3 e ! cos(wt + ) +

"
X d

t

ur(t—= —Bnz
f[ f(;f )+If0] e "z (69)

0
, \ -4
L + (—l,r—i—) e ltJ sin 9, -+
x x

q q Xq,

Ldf
Lad

+ Bar -

ig= Io—Uo| 3 [

—U—l 3 “ER sin (ot 4+ 0y)

0
_|_ x// (70)

q

Die Gleichungen sind bereits ein wenig vereinfacht
unter Beriicksichtigung der Tatsache, dass unter
den praktisch vorkommenden Verhiltnissen alle «
und B klein gegen o sind. An Stelle der Induktivi-
titen haben wir die Reaktanzen eingefiihrt:

@ L”dd _ x”d;

w Lag = x4 w L'y = x'd;

0 Log = x5 L' = x"g (71)
Das letzte Glied von Gl. (69) gestattet das Eingrei-
fen eines Spannungsreglers oder besonderer Schnell-
erregungs- oder Entregungs-Einrichtungen zu be-
riicksichtigen. Sind keine solchen vorhanden, so
bleibt uf = — Ry I;o konstant und dieses Glied ver-

schwindet.

Den im Stator auftretenden wirklichen Strom
finden wir mit Hilfe der inversen Park-Transforma-
tion

Il ia e
i || = Cpt } i (72)
e | {7

Wir konnen uns auf einen beliebigen Strang z. B.
a beschrinken, da sich die andern nur durch den
Schaltwinkel ¢, unterscheiden:

2/3 - (i4 cosP—igsind) =

=23
= | 2/3 [ia cos (wt +-By)—igsin (wt +9,)] =

= Iy} 2cos (vt —¢ + g+ 9g—0y) +

cos? ), sin2 ¢,
+U12V T =

-q

© €S [(u t+9,—

— arctg (% tg 50)] -+
q /

—if ]_ 1 ‘ ‘“‘j(ht
+T0;) 2 (—,— ~Jcos 9y - e -cos (ot + )+
X d Xd

531
11 1\, o
+U0|2 ( )005260+( '{)Sinzé".
CRE
1 1
_q " -
Piat s| ot+Jy—arctg xlq xl‘»l—tgfso —
Xy x4
1 —apt
- U 2 // + x//q € * COS (290_ 60)_
T ' 1 1 —QaRt q
MUOVZ (E_x”q) e cos (2wt -+ 9+ o)

(73)

Der Strom i, besteht aus fiinf Gliedern. Das erste
Glied bildet den stationdren Kurzschluistrom (zu
dem auch der Vorbelastungsstrom gehort). Er
bleibt nach geniigend langer Zeit allein iibrig. Das
zweite Glied ist ein Wechselstrom der gleichen Fre-
quenz, dessen Amplitude aber mit einer Zeit-
konstanten 1"y = 1/ f41 exponentiell abnimmt. Man
nennt dieses Glied den «transienten» Anteil des
Kurzschluflstroms, T’; die «transiente» Zeitkon-
stante. Das dritte Glied hat den gleichen Charakter,
nur ist seine Zeitkonstante 1" = 1/f42 bedeutend
kiirzer. Man nennt es den «subtransienten» Anteil,
"y die «subtransiente» Zeitkonstante. In der
deutschen Literatur findet man gelegentlich die Be-
zeichnung «Stoss»-Kurzschluflstrom fir den zwei-
ten und «fliichtiger Stoss»-Kurzschluflstrom fiir den
dritten Anteil. Das vorletzte (vierte) Glied von
Gl. (73) ist ein abklingender Gleichstrom, das letzte
ein Wechselstrom doppelter Frequenz. Beide haben
die gleiche Zeitkonstante Tr = 1/ar. Die Grosse
der einzelnen Glieder ist ausser durch die Vorbe-
lastung hauptsichlich durch die verschiedenen
Reaktanzen bestimmt. x; und x,, die fir die Grosse
des stationiren Kurzschluflstroms und auch sonst
fiir den stationdren, also synchronen Betrieb mass-
gebend sind, heissen die synchronen Reaktanzen.
Nach den Gliedern, auf die sie hauptsiichlich Ein-
fluss haben, heissen x'y die «transienten», x”¢ und
x"q die «subtransienten» Reaktanzen. Das Gleich-
stromglied ist zum Unterschied von allen andern
in seiner Grésse auch vom Schaltwinkel & abhéngig.
Die Spannung am betrachteten Strang war unmittel-
bar vor dem Kurzschluss

Uq) =— — Uo ]/2 = sin (190 = (So) (74)
Das Gleichstromglied ist am griossten, wenn diese
Spannung gleich 0 war (Kurzschlussmoment grosster
Asymmetrle Fig. 2a). In diesem Fall tritt auch die
zweite Harmonische entsprechend dem letzten
Glied am deutlichsten hervor. Wenn die Spannung
uqo ihren Maximalwert erreicht hat, verschwindet
das Gleichstromglied (symmetrischer Kurzschluss-
moment; Fig. 2b). Hier ist die zweite Harmonische
fast micht zu erkennen, trotzdem ihre Amplitude
gleich geblieben ist. Sie hat ihre Maxima in Nihe
des Nulldurchgangs der Hauptkomponenten.

Typische Werte der Konstanten. An dieser Stelle

ist es vielleicht niitzlich. eine kleine Zusammen-
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Charakteristische Konstanten von Drehstrom-Maschinen Tabelle I
71, — L —_— " H
x4 x’d x”d Xy ﬁdl L: T”d iZTR ﬁ x”q kWs
T 4 T, |Bas &R xd xXd TVA
Turbogeneratoren 2,0...2,310,25...0,30/0,15...0,20| 4...7 0,6...1 [0,02...0,04/0,10...0,25| 0,8...0,9 1 Seied
Wasserkraftgeneratoren
Ohne Dimpferwick-
lung 0,9...1,6| 0,3...0,4 |0,25...0,35| 3..7 | 0,8...2 0,01 0,4...0,6 |0,55...0,70| 2...3 2...4
Polgitter 0,9...1,6/ 0,3...0,4 |0,25...0,30| 3...7 | 0,8...2 |0,03...0,08| 0,2...0,4 |0,55...0,70{2,5...3,5| 2...4
Vollstindige Dimp-
ferwicklung 0,9...1,6/ 0,3...0,4 |0,20...0,25| 3..7 | 0,8...2 {0,03...0,080,15...0,30|0,55...0,70/0,9...1,3|  2...4
Massive Pole 0,9...1,6| 0,3...0,4 |0,20...0,30| 3...7 | 0,8...2 0,04 0,2..:0,4 |0,55...0,70[1,2....1,5| 2.4
Synchronmotoren 1,0...1,5/0,25...0,50|0,15...0,35| 2...3 |0,5...1,5/0,01...0,02|0,02...0,10 0,6...0,8 1 0,5...1,5
Asynchronmotoren 3.5 — 0,20...0,40| — — 0,01...0,05|0,01...0,1 1 0,05...1,5
stellung der Konstanten verschiedener Maschinen- Stabilititsproblem

arten zu geben (Tab. I). Die Reaktanzen sind im
sog. «per-Unit»-System ausgedriickt, d.h. die
Werte in Ohm sind mit dem Nennstrom multipli-
ziert und durch die Nennspannung dividiert. Diese
Art der Darstellung hat den Vorteil, dass die Zahlen
fur bestimmte Maschinenarten nur in méssigen

Fig. 2
Kurzschlussoszillogramme des Statorstroms einer Synchron-
maschine mit Polgittern

a Kurzschlussmoment grosster Asymmetrie
b symmetrischer Kurzschlussmoment

Grenzen schwanken und fiir Maschinen beliebiger
Spannung und Leistung vergleichbar sind. Die Zah-
len beziehen sich auf schweizerische Maschinen. In
der Literatur findet man bis jetzt solche Tabellen
fast nur amerikanischer Herkunft, die fiir unsere
Verhiltnisse nicht ohne weiteres zutreffen. Es wire
erwiinscht, wenn solche Daten in vermehrtem Masse
publiziert wiirden, z. B. bei der Beschreibung neuer
Kraftwerke.

Synchronisierfehler. Die Resultate fiir den drei-
strangigen Kurzschluss lassen sich leicht auf den
Fall einer ungenauen Synchronisierung iibertragen,
wenigstens sofern es sich um Spannungs- und
Winkelfehler handelt. Fiir einen reinen Spannungs-
fehler hat man §, = 0, fiir einen reinen Winkel-

fehler 6, = g . Statt U, hat man die (geometrische)

Differenz zwischen Maschinenspannung und Netz-
spannung einzusetzen.

Als Beispiel fiir ein Problem der zweiten Klasse
werde ich den Rechnungsgang einer Stabilitiits-
untersuchung skizzieren. Eine Maschine sei iiber
eine Leitung mit dem Widerstand R und eine Serie-
kapazitit ¢ an ein starres Netz angeschlossen
(Fig. 3). Die Aufgabe besteht darin, den Bereich der
R-und ¢-Werte abzugrenzen, bei denen die Maschine
stabil, d. h. ohne zu pendeln, lauft. u® ist die Span-

10

NN
A DR
- w \ww‘
‘ NN
. -

;&;&.wﬁ

naueStabilitd :
SRt engue Stabilitdtsgrenze

Stabil
0
SEDW”H3 0,05__’ R 010 015 0,20
Fig. 3
Stabilitit eines Generators mit Seriekapazitit
nach Concordia & Carter
zg =105 ac’d =0,30; x”; =0,22; xq = 0,6;
" —_ 1/ s 1 74 — . 1/ — 5
xq70,31 T',=08s; 77, = 0,029 s; Tq70,021 S

nung an den Maschinenklemmen, u(® ist die feste
Netzspannung. Der innere Widerstand der Ma-
schine sei vernachlissigt oder mit R zusammen-
gelasst. Die Gleichung der Maschine kennen wir
in Park-Koordinaten:

wmwz(wK—E)www (75)
de

Die Gleichung der restlichen Schaltung lisst sich
hingegen einfacher in Strangspannungen und Linien-
stromen schreiben. Wir bezeichnen die Ladung des
Seriekondensators mit (). Dann ist

1 :
lu = R 1§+ 1QI+1u®|  (76)

oder

0,25
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1 d d
(¢ Ragg) Vil =g v —wp (1)

Damit wir diese Gleichung mit (75) kombinieren
kénnen, setzen wir in (77) Park-Komponenten ein:

[u')| = Cp- |u®M | 5 |l = Gy - ||i]l
O
w0 = G- ju | = | U)3 -sin s | 8
Ul3 - -cosd
( + R) Gl = 5 Gt [ —
(79)

Hierin ersetzt man ||u)’|| durch Gl. (75
pliziert vorn mit C,

1 d .
[;—R(mK—I)] i =

d d |
—(wK— d{) : [(wK—W) Al ——|!u(2)'|]]

(80)
Diese Gleichung gilt noch fiir beliebige Vorginge,
ist aber nicht linear bei verinderlichem . Nun
fihren wir die kleinen Stérungen ¢ fiir den Polrad-
winkel, | A7| fir den Strom und || AY| fir die
Flussverkettungen ein. Die stationdren Werte wer-
den durch den Index 0 gekennzeichnet. Wir haben
also

) und multi-

0= 0,4 €; w=wy,+ Sf
|| = (14 eK) - [[u'yl (81)
1 N=1Tll4+ 1 ALl 12 I=1¥I+1 AP
| @ |
u's|=U] 3 || sin & 1Tl =] Jao|
\cosé | T |l
0 (81a)
| ]l = || Pao
‘qu(’\

Nach dem Einsetzen in Gl. (80) und ausmultiplizie-
ren kéonnen wir den stationiren Teil

(xe — RK)- | Iyl + 0o K2+ || ¥yl =K - || u',l (82)
abspalten. Darin haben wir die kapazitive Reak-

tanz x. =

eingefithrt. Als Rest bleiben bei

wy €
Vernachlissigung der Produkte kleiner Grossen
lineare Integro-Differentialgleichungen. Wir schrei-

ben direkt die entsprechende Matrizengleichung im
Bildbereich an:

R ~ 1 7
(xc+— RS _RK) -1l 61+ (s—apK) | AP) =
w ) Wy

0

252 ’ ‘R ! ’
= k|2 s (R g — 2k e +
Wy N

+K nu’on}é (83)

Bei konstanter Spannung des Erregers hat man

‘ I IE
IIA‘PH—wo“Ld )| -1l ail = \[ 4 (s) -1l ATl
)| ST
Setzt man das ein, so erhilt man aus Gl. (83) Al

und Al, als Funktionen von ¢ ( Ai, wird Null). Die
Bewegungsgleichung wird nach Abspaltung des

stationiren Teils
-~ P2 ~
JsZe - ;— {[wo g'—’qo — Iqoxd (S)] Nitd —
o

— [0 Yio— Luoxg(9)] AT} =0 (85)
Setzt man darin Afd und Aiq ein und bringt auf
gleichen Nenner, so erhilt man eine Gleichung von
der Form

F. (s) - £ = (@os"+ a1 s+ ...
Das Polynom F, (s) ist vom 7. Grad fiir Maschinen

ohne, und vom 9. fiir Maschinen mit Dimpferwick-
lung. F, (s) = 0 ist die charakteristische Gleichung
des Problems. Stabilitit bedeutet, dass keine expo-
nentiell anwachsenden Schwingungen unter den
Lésungen sind, dass also alle 7 bzw. 9 Wurzeln der
Gleichung F,(s) = 0 negativen Realteil haben.
Das ist dann der Fall, wenn bei ¢, > 0 alle Hurwitz-
schen Determinanten positiv sind:

an1s—+a.)e=0 (86)

a, a, 0 ... 0

D, =% @ & e 0 >0 v=12,..n
¥ 3 LT 87
A2v-1 A20-2 A2p-3 +.+. ay ( )

Schon die Koeflizienten a, selbst sind zum Teil
ziemlich lange Ausdriicke. Die Determinanten D,,
besonders die héherer Ordnung, sind explizite kaum
anschreibbar. In unserem und in manchen &ihn-
lichen Fillen hilft aber oft ein kleiner Trick. Eine
notwendige, wenn auch nicht hinreichende Bedin-
gung dafiir, dass die Realteile der Wurzeln negativ
werden ist, dass die Koeffizienten a, selbst alle
positiv sind. Das ist immerhin schon viel einfacher
zu kontrollieren. Man zeichnet also die Kurven
ay, = 0 in Funktion derjenigen Parameter, deren
Einfluss auf die Stabilitit untersucht werden soll.
Die labilen Zonen, die sich so ergeben sind auf alle
Fille zu vermeiden. Zur Kontrolle der Sicherheits-
marge, die man dariiber hinaus braucht, geniigt es
meistens fiir einen einzigen ausserhalb liegenden
passend gewihlten Punkt festzustellen ob er stabil
sei. Das ist aber viel einfacher, da dazu nur noch
eine Gleichung mit bestimmten numerischen Koeffi-
zienten gelost werden muss, wofiir ja viele praktische
Methoden bekannt sind. Fiir die hier behandelte
Aufgabe zeigt Fig. 3 ein solches Diagramm. Es ist
einer Arbeit von Concordia und Carter [33] ent-
nommen. Die Parameter sind hier R und x.. Es zeigt
sich, dass das Nullsetzen von a4 und a, labile Zonen
gibt. Eine Kontrolle ergab, dass der Punkt R = 0,1;
x. = 0,6 noch knapp stabil ist, dass sich also offen-
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bar bei grosseren x. die wirkliche Stabilititsgrenze
sehr eng der durch a; = 0 und a, = 0 bestimmten
Kontur anschmiegt.

In andern Fillen ist es praktischer die Methode
der kleinen Schwingungen anzuwenden und die
Frequenzgangkurven in der komplexen Zahlen-
ebene nach einem der bekannten Stabilitdtskrite-
rien (Nyquist, Leonhard) zu untersuchen. Der Uber-
gang von den Gleichungen im Bildbereich der
Laplace-Transformation zum Freguenzgang ist sehr

einfach infolge der Beziehung
F (2 =[s-£(s)]=ja

Anlauf eines Asynchronmotors

(88)

Als Abschluss soll noch ein Beispiel aus der dritten
Klasse gezeigt werden. Je nach der angewandten
Integrationsmethode miissen die Gleichungen zuerst
in eine passende Gestalt gebracht werden. Zur nu-
merischen Integration ohne mechanische Hilfs-
mittel ist das Verfahren von Runge-Kutta praktisch,
da es bei geniigender Genauigkeit die Wahl von
grossen Intervallen erlaubt. Zu seiner Anwendung
miissen die Gleichungen als System simultaner
Differentialgleichungen erster Ordnung geschrieben
werden. Fiir die einfache Differentialgleichung

(89)

zeigt Tabelle IT das Schema.

Schema von Runge-Kutta zur numerischen Integration

Tabelle IT
x y f(x,y) k
o Yo f, |ky=fi-h
h k
X+ 9 Yot ?1 fy |ky=f,-h i
k k k:g(k1+2k2+2ks+k4)
2+ £} Yot ?2 fy k=1,
%o+-h Yotk f, |ky=£f,-h
xy=x9+h|y,=yo+k|....|.0oo...

Dieses lasst sich ohne Miihe auf den Fall mehrerer
Variablen erweitern.

Die Spannungsgleichungen fiir ¥; und ¥, und die
Bewegungsgleichung fiir w haben bereits die pas-
sende Form. Es ist nur noch eine geeignete Umfor-
mung der Beziehungen zwischen den ¥ und den ¢
notig. Der Asynchronmotor, der uns hier als Bei-
spiel dient, ist ein Spezialfall der Synchronmaschine.
Die Feldwicklung fehlt und die Konstanten der
Lings- und Querachse sind gleich. Daher ist

1 __l 11 n 1 1 s
La(s) Lg(s) L (L" L) s+ p
Also gilt fiir die Strome:

A, (1 /1 1\ -6
"} . = S 91
! 0+(dt) [L+(L” L)e ] i

v=d,q
Differenziert man (91) nach ¢ und addiert die mit

(90)

multiplizierte urspriingliche Gleichung dazu, so hat
man bereits die gewiinschte Form:

i, 1 8 1 aw,
e Ly N (B, L AP
pio+ = ﬂ(o 3 o)+(L +< d,)

(92)

Wir haben also das folgende System von fiinf Diffe-
rentialgleichungen nach dem Runge-Kutta Schema
zu behandeln:

d¥;
de
¥,
dt
dig
d:
di,
di
do
dr
Die Rechnung wurde durchgefiihrt fiir den Leer-
anlauf eines Kifigankermotors. Dabei dient das
ganze Drehmoment zur Beschleunigung des Rotors.
Die Geschwindigkeitsinderung und ihr Einfluss auf

den Vorgang werden daher sehr gross. Die Zahlen-
werte der Konstanten sind

=—uw—R—is+ oV,

|
I
=
|
=
|
g
=

_d¥
dt¢
~dY,
dt

Zﬁ(Ido—id—-; (93)

=6(Iqo—iq——

2
- Pj (Vaig—¥yia)

x¢= wL=3,57; x"¢4=owl”=0218; R=0,032;
77— L _ 0,0186 5
B
. |
H= % = 0,046 kWs/kVA

Fig. 4 zeigt das Ergebnis der Rechnung. Links (4a)
ist das Drehmoment als Funktion der Geschwindig-
keit, rechts die Geschwindigkeit als Funktion der
Zeit aufgetragen. Zum Vergleich ist in 4a auch das

/\

3 1 7 / \
2 \ Z o

X

=N,
Al
\
06
, L/wl:\
g

—

02 U.u 06 0
-1 } B
gy,

syn 0 o,uz’u,ntf 006 008 010
a b
Fig. 4
Leeranlauf eines Asynchronmotors
a Drehmoment-Drehzahl-Charakteristik
I Drehmoment beim Leeranlauf
II stationdres Drehmoment
b Drehzahl-Zeit-Charakteristik

SEVI7284

stationire Drehmoment, wie es aus dem Kreis-
diagramm erhalten werden kann eingezeichnet. Je
mehr man den Anlauf verlangsamt, z. B. durch

g2s
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Ankuppeln zusétzlicher Schwungmassen oder durch |

Belastung an der Welle, desto mehr nihert sich das

Drehmoment diesen stationiren Werten. Bemer- |
kenswert an den in Fig. 4 gezeigten Ergebnissen

sind vor allem folgende drei Tatsachen:

1. Der Verlauf und die Grisse des Drehmoments bei sehr |

raschem Anlauf sind vom stationiren Drehmoment véllig ver-
schieden.

2. Es treten am Anfang sehr hohe, rasch pulsierende Dreh-
momente auf.

3. Der Endzustand wird nicht stetig, sondern in Form einer
gedampften Schwingung erreicht. Die synchrone Geschwindig-
keit wird voriibergehend iiberschritten.

Alle diese Erscheinungen sind auch schon experi-
mentell festgestellt worden (z. B. R. Schiz, E.u.M.
Bd. 59(1941) S. 553). Besonders die Aufnahme der
raschen Drehmomentschwankungen bietet aber
betrichtliche messtechnische Schwierigkeiten. Die
erste Spitze des Drehmomentes kann mit guter
Niherung berechnet werden, indem man den Motor
als stillstehend annimmt. Das ist dann eine Aufgabe
der ersten Klasse. Im Beispiel liefert diese Rechnung
als erste Spitze 2,86 statt dem genauen Wert 2,82.
Frequenz und Diampfung der Schwingung am
Schluss kénnen ebenfalls annihernd berechnet wer-
den. Man fithrt das Problem auf ein solches der
zweiten Klasse zuriick, indem man sowohl den
Schlupf wie auch die Abweichungen des Stromes
und der Flussverkettung von den stationiren Leer-
laufwerten als klein annimmt. Bei Vernachlidssigung
des Statorwiderstandes erhilt man so die charakte-
ristische Gleichung

oA+ ()
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Das Thermoelement als Energieumformer

Von L. Geiling,

Unter vereinfachenden Annahmen wird untersucht, wie hoch
der Wirkungsgrad eines aus Thermoelementen gebildeten Um-
formers sein kann. Der theoretische Grenzwert wird zu 66239,
gefunden, was héher ist, als man bisher annahm (50%,), und
durch die Eigenart des Thermoumformers bedingt ist, in dem ein
Teil der Jouleschen Wirme wieder in elektrische Energie iiber-
gefiihrt wird. Der praktisch erreichbare Wirkungsgrad liegt we-
sentlich niedriger und hingt im wesentlichen von der Kiihlung
der kalten Litstellen ab, er liegt unter 69,. Praktisch kann der
Thermoumformer etwa zur Verwertung der Abgaswdirme von
Krafiwerken oder auch als T hermokiihlmaschine Verwendung
finden. Der Materialaufwand ist gross.

Das Thermoelement ist die einfachste Maschine
zur Umformung von Wirme in elektrische Energie.
Es hat keine bewegten Teile, wenig Verschleiss,
braucht fast keine Wartung und wire demnach
vorziiglich geeignet, auch im grossen als Energie-
umformer eingesetzt zu werden. Als Energiequellen
kommen in erster Linie die Brennstoffe in Frage,
die Abwirme von Kraftwerken, aber auch Sonnen-
energie oder die Wirme von heissen Quellen usw.
Die direkte Erzeugung elektrischer Energie aus
Brennstoffen kann auch in der «Brennstoffkette»
geschehen?), die durch hohen Wirkungsgrad ausge-
zeichnet ist (609,), in ihrer praktischen Ausfithrung
jedoch sehr kompliziert und teuer ist, weshalb sie
bis heute keine praktische Anwendung gefunden
hat. Zur Verwertung von «Abfallwirme» oder
Strahlungswirme ist das Thermoelement allein
geeignet.

Die Patentliteratur ist reich an Vorschligen fiir
die Herstellung solcher Thermoumformer; trotzdem
hat noch keiner bis heute praktische Bedeutung er-
langt. Der Grund ist der schlechte Wirkungsgrad,
der allen Thermoumformern anhaftet. In der vor-
liegenden Arbeit soll nun der Wirkungsgrad eines
Thermoumformers errechnet werden.

Einer genaueren Berechnung stehen Schwierig-
keiten entgegen, die in der Temperaturabhiingigkeit
der Materialeigenschaften liegen. Exakt kénnte die
Rechnung nur fiir ein ganz bestimmtes Metallpaar
durchgefithrt werden, dessen Kennwerte fiir den
ganzen betrachteten Temperaturbereich bekannt
sein miissen. Da es hier aber darauf ankommt, eine
Ubersicht iiber das Verhalten der Metalle zu erhal-

1) siehe E. Baur: Uber das Problem der elektrotechnischen
Verbrennung der Brennstoffe. Bulletin SEV, Bd. 30(1939),
Nr. 17, S. 478...481.
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621,362
Les recherches sur le rendement d’une thermopile comme

.

transformateur seront faites a partie d’hypothéses simplifica-
trices. La limite théorique du rendement a été trouvée de 66%/,9
ce qui est une valeur plus élevée que ce qui a été admis jusqu'ic
(50%) et qui est conditionnée par les propriétés du transforma-
teur thermoélectrique, dans lequel une partie de Ueffet Joule est
réutilisée sous forme d’énergie électrique. Le rendement pratique
que l'on peut atteindre est essentiellement plus bas et dépend du
refroidissement des soudures froides, il est en dessous de 6%,. En
pratique, le transformateur thermoélectrique peut utiliser les gaz
d’évacuation des usines ou peut servir de machine réfrigérante.
La quantité de matiére premiére est importante.

ten, miissen, um zu verhiltnismissig einfachen und
iibersichtlichen Formeln zu kommen, vereinfa-
chende und verallgemeinernde Annahmen gemacht
werden.

Kurz seien noch die thermoelektrischen Effekte
in Erinnerung gebracht.

Der Seebeck-Effekt: Im Jahre 1821 entdeckte
Th. J. Seebeck, dass in einem geschlossenen Strom-
kreis, der aus zwei verschiedenen Metallen besteht,
die an zwei Stellen, den sogenannten «Létstelleny,
verlstet sind, ein Strom fliesst, wenn die eine dieser
Létstellen erwirmt wird.

Sind die Temperaturen der Létstellen T; und
T,, so ist die den Strom I hervorbringende elektro-
motorische Kraft E

E=u(T,—Ty) V M)

Der Proportionalitatsfaktor u (V/Grad) wird als
«Thermokraft» oder «Seebeckkoeflizient» bezeich-
net.

Der Peltier-Effekt : Schickt man einen elektri-
schen Strom durch die Verbindungsstelle (Lot-
stelle) zweier Metalle, so wird ausser der Jouleschen
Wirme auch eine positive oder negative Warme
entwickelt, die mit der Stromrichtung ihr Zeichen
umkehrt (entdeckt 1834 von J. C. Peltier). Die er-
zeugte Wirmemenge () ist proportional der Strom-
wirme I und der Dauer ¢ des Stromdurchflusses.

Q=1-1 1 T cal (2)

Zwischen dem Peltierkoeffizienten und dem See-

beckkoeffizienten besteht ein Zusammenhang der
Form:

- 1. 9%

T (3)
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