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fasser die oben gestellte Frage verneinend
beantworten. Die Sicherheit, mit der der Konstrukteur
rechnet, scheint für alle Fälle genügend zu sein.
Das zeigen die angeführten Versuche von Rikli und
hauptsächlich die Betriebsfunktion von vergüteten
und durch früher beschriebene Fehler heiasteten
Rotorkörpern, die in der Lehrzeit erzeugt wurden.
Man kann behaupten, dass diese Schmiedestücke
trotz der Kontrolle durch Aclisialbohrung qualitativ

viel schlechter waren, als die später erzeugten,
und dass bloss aus dem Grunde, dass die
Fabrikationserfahrungen der Erzeuger sowie die
Kontrollmethoden der Verbraucher qualitativ weit hinter
den heutigen lagen.

Durch die Beseitigung der Aclisialbohrung wäre
nicht nur die Hüttenfabrikation grösserer Einheiten

erleichtert, sondern auch die Verwendung von
Stählen mit besseren magnetischen und Schweiss-
eigenschaften ermöglicht. Auch würde dadurch der
Notbehelf, die magnetischen Eigenschaften durch

Einpressung von Weicheisen in die Bohrung zu
verbessern, erspart werden.

Nachdem die Kontrolle der Rotorsclnniedestückc
durch achsiale Bohrung eine internationale
Gewohnheit darstellt, wäre eine internationale Diskussion

zwischen dem Verbraucher und dem Erzeuger
sehr erwünscht.

Möge diese Abhandlung als Anregung dazu
dienen.
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Die Eigenfrequenzen der einlagigen Zylinderspule bei Spannungsstössen
Yon B. Heller, J. Hlâvka und A. Veverka, Prag 621.318.4.015.33

Es werden die Eigenfrequenzen der einlagigen Zylinderspule

bei Spannungsstössen unter Berücksichtigung der
gegenseitigen Induktivität der einzelnen Windungen sowohl
für die Spule mit geerdetem Wicklungsende, als auch mit
freiem Wicklungsende berechnet. Die abgeleiteten
Frequenzbeziehungen, welche die Abhängigkeit der zeitlichen
Frequenz von der räumlichen Frequenz darstellen, werden
eingehend besprochen.

Uauteur s'occupe du calcul des fréquences propres d'une
bobine cylindrique à une seule couche, soumise à des chocs
de tension, en tenant compte de l'inductance mutuelle des
spires, dans le cas où Vextrémité de la bobine est mise à la
terre et dans celui où Vextrémité est libre. Les rapports entre
la fréquence dans le temps et la fréquence dans l'espace font
ensuite l'objet d'une analyse détaillée.

Bekanntlich verhält sich eine Spule gegenüber
Spannungsstössen wie ein kompliziertes, aus
Induktivitäten und Kapazitäten zusammengesetztes
Gebilde. Zu Beginn des Stossvorganges überwiegt
der Einfluss der Kapazitäten, während später
die Strom- und Spannungsverhältnisse hauptsächlich

durch die Induktivitäten festgelegt werden.
Im Zwischenbereich treten Ausgleichvorgänge auf,
welche einen kontinuierlichen Ubergang des
Anfangszustandes in den Endzustand vermitteln.

Wird in erster Näherung die Spule als
leitungsähnliches Gebilde aufgefasst und trifft ein
rechteckiger Spannungsstoss von der Grösse Ut auf die
Spule auf, so ist nach bekannten Gesetzen die
Spannung am Spulenanfang

Dabei bedeutet Zs den Wellenwiderstand der Spule
und Zx den Wellenwiderstand der Leitung. Da
Zs > Z\ ist, wird folglich

U =2 Ux

Für das Folgende wird [7=1 angenommen (Ein-
heitsstoss).

I. Die Konstanten der einlagigen Zylinderspule
Jede Windung der Spule besitzt pro Längeneinheit,

bezogen auf die Spulenachse, Kapazität

gegenüber Erde von der Grösse Cx und Kapazität
gegenüber benachbarten Windungen von der Grösse
C2. Weiter ist jede Windung mit einem magnetischen

Feld verkettet, welches aus dem Eigenfeld
der betrachteten Windung und den Feldern,
verursacht durch die übrigen Windungen der Spule,
besteht. Für das resultierende magnetische Eeld,
welches mit der Windung am Ort x (gemessen
längs der Spulenachse) verkettet ist, gilt daher:

l

0(x) f M(xJ)i(i) d| (2)
i)

Dabei bedeutet M (x, |) den Koeffizienten der
gegenseitigen Induktion zweier Windungen, welche
sich an den Orten x und | befinden, i (£) ist der
Strom in der Windung (£). Weiter ist die axiale
Länge der Spule der Einfachheit halber gleich eins

angenommen.
Da der Stromverlauf in der Spule sich von

Windung zu Windung ändert, folgt aus Gl. (2), dass es
nicht möglich ist, jeder Windung einen eindeutigen
Induktionskoeffizienten zuzuordnen.

Wird die Eigeninduktivität einer Windung mit
M

M0 bezeichnet, so gilt für das Verhältnis in Ab-
M„

hängigkeit vom Verhältnis — (a Windungsabstand,
r

r Spulenradius) in Luft der Verlauf nach Fig. 1.
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Befindet sich innerhalb der Spule massives
Metall oder eine kurzgeschlossene Sekundärwicklung,

wodurch das magnetische Feld innerhalb der
Spule zum Teil abgeschirmt ist, so wird in diesem

M
Fall der Verlauf von durch Fig. 2 dargestellt.

Mr,

strates
Fig. 1

Verlauf der Gegeninduktivität zweier Windungen in Luft

Um zu einfachen mathematischen Beziehungen zu
gelangen, wurde versucht, die Kurven in Fig. 1 und
Fig. 2 durch Exponentialfunktionen zu approxi-

M 3 15
mieren. In Fig. 1 ist die Funktion e ' r

M„

und in Fig. 2 die Funktion M
M„

— 2,2
k gestrichelt

eingetragen. Die Exponentialfunktionen stellen eine
gute Näherung an den tatsächlichen Verlauf dar.

S£Vf66e<t b
Fig. 2

Verlauf der Gegeniuduktivität zweier Windungen bei
Abschirmung des Feldes im Spuleninnern

Allgemein kann daher angesetzt werden :

M (x, I) M0 e

Da eine Spule von der Länge eins zugrunde gelegt
ist, so gilt für eine Spule von der Länge l in Luft

X 3,15
/

Und für eine abgeschirmte Spule

X 2,2 -

II. Der Ausgleichvorgang
der einlagigen Zylinderspule

Im ersten Augenblick nach Auftreffen des Stos-
ses auf die Spule bildet sich eine Spannungsverteilung

u (x, 0) aus, welche nur durch die Anordnung
der Kapazitäten bestimmt ist. (In Wirklichkeit
tritt diese Spannungsverteilung erst nach rund
0,15 s auf, da das magnetische Feld des
Verschiebungsstromes keine plötzliche Spannungsänderung
gestattet.) Der darauffolgende Ausgleichvorgang
wird dadurch ausgelöst, dass die Endverteilung mit
der Anfangsverteilung der Spannung längs der
Spule im allgemeinen nicht übereinstimmt.

Für die einlagige Zylinderspule gilt das
Ersatzschema Fig. 3. Für ein Spulenelement, bezogen auf
die axiale Länge dx, gilt dann:

5 i _ r7)u 7>3u
— Ci -f-

7)x 7)t 7>x -7)t

_ A"L=iV~
7) x 7>t

(4)

(5)

0 lNM0tT'M"-®i(£) df+J NM0 e—Av~*'i(!)d|
* (6)

N bedeutet dabei die Windungszahl der Spule.

Aus Gl. (6) folgt nach zweimaliger Differentiation

:

i+èid*
/ ix

I'K
L£«,

II II

C,dx

II
I

Cz d/c
dx

C,dx

II

Çi
dx

C,dx=

//////////////////////////////// ///'/- X
S£Vti62S

Fig. 3

Ersatzschema der einlagigen Zylinderspule

ô20

5x2
A20 — 2 XNM0i

Aus Gl. (4), (5), (7) erhält man durch Elimination
folgende Differentialgleichung :

1

n-M.. \IV2 M0 \ 2 7>x

X 7>2& 1 340 \ 520

2 X 7) xi ~ 1
7) t2

ö40

7)x27>t2

(8)

Analoge Gleichungen gelten für Strom i und Spannung

u. Zu Lösung von Gl. (8) wurde angesetzt:
0= Konst. e'1** e Durch Einsetzen in Gl. (8)
folgt folgende Beziehung zwischen « und co :

Xoc2 +
2 IV2M0 (Cx + C2x2)

(9)
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bzw. a2 —
A2- 2 N2 M0ft>2 C,A

/

y
A2 — 2 N2~M0tt)2 C2 A

+

+ 2 AIV2 M0 o/ Cx (10)

Aus Gl. (10) folgt, dass jedem to2 > 0 zwei Werte
entsprechen, wobei ax2 > 0, oc22 < 0 ist.M2,

Daher hat das allgemeine Integral von Gl. (8) die
Form:

0 J] (oiv e30ilvX + a'u,e jai"* +
V

a2vei« + a\ve~^x)

2 N2M0 (C1 + C2x2)

während nach Blume-Boyajan gilt

O)

IC, 1 +
Ci

(12b)

Im Gegensatz zu Blume-Boyajan berücksichtigen
Wagner und Rüdenberg nur eine gegenseitige
induktive Beeinflussung von räumlich sehr nahe
beieinander liegenden Windungen. Dem entspricht ein
Wert A > 1. Solange die Ungleichung

OC^

Ax2 — gilt, kann nach Gl. (9) geschrieben
A

werden :

A2«2

2 N2M0 (Cj + C2«2)
(13a)

welche Gleichung vollkommen der Frequenzbeziehung
nach Rüdenberg

or
LCJ 1

C.

Cr

2 2

(13b)

entspricht. Wie erwähnt, liegt der Ableitung von
oft

Gl. (13a) die Ungleichung A«2 > - zugrunde. Für
A

Werte ix A ist diese Ungleichung nicht mehr
erfüllt. so dass dann Gl. (13a) keine Geltung besitzt.

Der Verlauf der Funktion a> co (tx) nach Gl. (9)
C 1

ist für —^1= und A 1 in Fig. 4 und für A 20
C, 100

in Fig. 5 dargestellt; ferner sind für diese Werte
die entsprechenden Kurven nach Blume-Boyajan
[Gl. (12a)] und Rüdenberg [Gl. (13a)] eingetragen.
Wie aus Fig. 4 und 5 zu ersehen ist, ist für A 1

200

(H)

und enthält sowohl harmonische als auch
hyperbolische Funktionen des Ortes.

Wie aus Gl. (10) zu ersehen ist, gilt mit w^oo
ebenfalls a2-^oo. Eine Grenzfrequenz, welche die
Theorie von Wagner und Rüdenberg fordert,
existiert daher nicht.

Wie eine nähere Diskussion von Gl. (9) zeigt,
geht diese bei geeigneter Wahl des Parameters A in
die Frequenzformeln von Blume und Boyajan, bzw.
von Wagner und Rüdenberg über.

Die Theorie von Blume und Boyajan enthält die
Annahme einer sehr guten Kopplung auch räumlich

sehr weit entfernter Windungen miteinander.
Dem entspricht nach früherem ein Wert A 1.

Damit folgt aus Gl. (9)

(12a)

100

//y/x/ /
\ / 4x

7/
\ /y

v yX
yy

RüdenP*£S

0 1

ffr/6626
Fig. 4

Abhängigkeit der zeitlichen Frequenz von der räumlichen
Frequenz bei starker magnetischer Kopplung der einzelnen

Windungen
Die räumliche Frequenz ist im quadratischen Maßstab

aufgetragen

der Frequenzverlauf nach Gl. (9) fast identisch mit
dem nach Blume-Boyajan, während umgekehrt für
Â — 20 im Bereich — — 7 die Rüdenbergsche

7t 71

Formel eine viel bessere Näherung an Gl. (9)
darstellt als die Beziehung nach Blume-Boyajan. Zum
Vergleich der verschiedenen Frequenzbeziehungen

sind in Tabelle I die Werte — —, — ,gerechnet
ft). CO, CO,

3|3

Blume uni Boyqjan

/

1

1

1

1

Rii —

- c 0

1

1

1/f/

X x*//y

Fig. 5

Abhängigkeit der zeitlichen Frequenz von der räumlichen
Frequenz bei schwacher magnetischer Kopplung der

einzelnen Windungen
Maßstab wie in Fig. 4

nach Gl. (9), Gl. (12b) (Blume-Boyajan), Gl. (13b)
(Rüdenberg) und gemessen von Bewley an einem
dreiphasigen 5000-kVA-Transformator (Discussion-
Transactions AIEE 1940, S. 1257) eingetragen. Wie
aus Tabelle I zu ersehen ist, gibt Gl. (9) die
experimentellen Daten gut wieder, selbst für die sechste
Harmonische, für welche grosse Abweichungen
sowohl nach Blume-Boyajan als auch nach Rüdenberg

gegenüber der Messung auftreten.
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Vergleich der verschiedenen Frequenzbeziehungen
Tabelle I

(t) 2

0)1

0)3

(Ü!

61g

0)l

Gl. 9 3,3 6,7 11,9

Gl. 12b 3,6 7,1 19

Gl. 13b 1,8 2,4 3

Yersuch 3,3 7,2 13

Existiert der Grenzwert

oc

lim — V (14)
X-»o X

so folgt aus Gl. (9), dass die Spule mit der Frequenz

V
(15)

2N2M0C1
schwingt.

Wie im Anhang näher erläutert ist, gilt für die
Spule mit freiem Wicklungsende:

CO

N2 M0 Cj

lim — 6
-> o X

(16)

(17)

Die Frequenz nach Gl. (15) ist identisch mit der
Frequenz, welche nach Willheim als Grundschwingung

bei einer Spule mit freiem Wicklungsende
auftritt (Elektrotechn. und Maschinenbau 1932, S. 16).

Aus diesen Ausführungen folgt, dass Gl. (9)
grundsätzlich alle in der Literatur angeführten
Frequenzbeziehungen als Spezialfälle enthält.

Die Lösungen der Differentialgleichung (8) von
der Form ei** e>ü", wo oc und co reelle Grössen
sind, können physikalisch sowohl als stehende Wellen

als auch als fortschreitende Wellen aufgefasst
werden.

Die Geschwindigkeit der fortschreitenden Wellen

beträgt dabei

co

OC

A + -

2 1V2M0 (G, + C2oc2)
(18)

Aus Gl. (18) folgt, dass die Geschwindigkeit der
einzelnen Wellen eine Funktion der räumlichen
Frequenz ist. Es besteht daher Dispersion, und die
Wellenform verändert sich dauernd. Für hohe
Werte von oc besteht eine Grenzgeschwindigkeit

1

2 N2 M0 X C2
(18a)

Wird in erster Näherung angenommen, dass alle
hochfrequenten Wellen sich mit dieser Geschwindigkeit

fortpflanzen, so ist es möglich, die maximale

Beanspruchung der einzelnen Windungen
gegeneinander in Form einer fortschreitenden Welle
darzustellen, da für die Windungsbeanspruchung
in erster Reihe die hochfrequenten Wellen mass¬

gebend sind. (Dies gilt allerdings nur, wenn die
hyperbolische Verteilung vernachlässigbar ist.) Die
hochfrequenten Wellen, welche grossen Werten «
entsprechen und praktisch die gleiche Geschwindigkeit

besitzen, werden sehr bald gedämpft, und
es bleiben nur die niederfrequenten, mit verschiedenen

Geschwindigkeiten fortschreitenden Wellen
übrig.

Im allgemeinen bietet daher die Annahme von
fortschreitenden Wellen keinen Vorteil gegenüber
der Annahme stehender Wellen, ganz abgesehen
von den hyperbolischen Gliedern in Gl. (11), welche
prinzipiell immer vorhanden sind und deren Erklärung

durch fortschreitende Wellen mit grossen
Schwierigkeiten verbunden ist.

Gilt für eine Spule die Beziehung:

so folgt aus Gl. (9)

1

Cr

1 + X2 <x2X

2 N2M0C1 C2 2IV2 M0C1

(19)

(20)

In diesem Fall verschwinden in der räumlichen
Verteilung die hyperbolischen Glieder, die
Geschwindigkeit der einzelnen Wellen

co

|/:2 N2 M0Cj
(21)

ist konstant und unabhängig von oc. Es findet daher
keine Dispersion statt und ein Wellenzug schreitet
innerhalb der Spule ohne Verzerrung fort. Eine
Spule, deren Konstanten die Gl. (17) erfüllen, soll
daher im folgenden als verzerrungsfreie Spule
(analog zur verzerrungsfreien Leitung) bezeichnet
werden.

Wegen der Wichtigkeit dieses Ergebnisses soll
noch eine direkte Ableitung auf Grund der
Differentialgleichung (8) gegeben werden. Differentialgleichung

(8) kann in folgender Form geschrieben
werden :

2 N2 M0C1 Dx2
0- l à2d> \

X2 7>x2 /
*1
üt2

0. c2

Cx dx2 J

(8a)
Gilt Gl. (19), so kann eine neue Veränderliche

X2 ~bx2

eingeführt werden.

Dann gilt:
ï>2i

C12N2M0 7>x2

7>2i

c)t2
(22)

Gl. (22) ist aber schon die Wellengleichung, der
Strom i ist daher als fortschreitende, unverzerrte

Welle mit der Geschwindigkeit v k2 N2M0
dar-
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stellbar. Das gleiche gilt für die Spannung u und
den Fluss <J>.

Mit 0 f x —

--N
2 CN2M,

\ 2 N'C,M,

:Jr

erhält man :

0=NMo

2 2

2 X
(^4cos«j«-f- Bsinajx) -f-

X2 — «„2

X2 + «!2

P cosh «2 x R sinh «2 x) gj"' (27)

' d.v
Damit folgt für die Spannung durch Integration
von Gl. (5)

I/2 C.M.'i"I

W—1 1

ix2 2XN 2 XN

2 N2C1M0

[Pf— f"]

n N2Mn

2 — (A sinaj.x — B cos oc1x)

«i " X2 + x,2 +

Für den Wellenwiderstand der Spule gilt dann:

2— (Psinh«2« -)- R cosh«2«)

22 / CO £• (28)

Z — 1V
l v2 G, M0

f 2 21V

Pf—f" (23)

Der Wellenwiderstand der verzerrungsfreien Spule
ist daher im allgemeinen nicht konstant, sondern
eine fortschreitende Welle und als solche eine Funktion

der Zeit und des Ortes. Nur im Falle, wenn
gilt: f (x — vi) A e@ 6—*") reduziert sich der
Wellenwiderstand auf einen konstanten Wert. Trifft
ein Spannungsstoss auf eine verzerrungsfreie Spule
auf, so bildet sich im ersten Augenblick eine
Spannungsverteilung längs der Spule aus, welche nur
durch die Längs- und Querkapazitäten festgelegt
ist. Wird für diese in erster Näherung ein exponen-
tiell abklingender Verlauf angenommen, so folgt,
dass bei der verzerrungsfreien Spule der
Wellenwiderstand für die einziehende Welle konstant ist.

III. Die Spule mit geerdetem Wicklungsende

Das allgemeine Integral der Differentialgleichung

(8) für den Strom hat entsprechend Gl. (11)
die Form:

i A cos«! x + B sin«!« -)- Pcosh«2« -)- R sinh«2«
(24)

Zur Bestimmung der Integrationskonstanten stehen
auf Grund der Randbedingungen x 0 u 0,
« 1 -» 11 0 zwei Gleichungen zur Verfügung.

Weitere zwei Gleichungen folgen aus Gl. (6),
wenn in diese für den Strom nach Gl. (24) eingesetzt
wird und die entsprechenden Ausdrücke mit der
Lösung nach Gl. (11) verglichen werden. Damit
erhält man:

Aus den Randbedingungen u (0) 0, u (1) 0

folgt:
— B R

o (29)
«1 (P + «12) (P -<x22)

A sin«, -—B cos«i |
Psinh«2 -f- R cosh«2

«1 (P + «12)
+

«2 (P «22)

Die Gleichungen (25), (26), (29), (30) stellen ein
System von vier homogenen Gleichungen für die
Konstanten A, B, P, R dar. Damit dieses System
von null verschiedene Lösungen zulässt, muss die
Determinante des Systèmes identisch verschwinden.

Diese Bedingung führt zu einer Gleichung
für «. Damit erhält man:

P«l«2 (cos «! cosh «2 1)

2«2 («i2 -f- «22) sinaj cosh«2

2«i («12 -f- «22) cos«i sinh«2 —

P + («l2 + *22)2 u— sm «i sinh«2 0 (31)

Weiter müssen die zum gleichen co gehörenden zwei
räumlichen Frequenzen «15 «2 wegen Gl. (9)
folgende Beziehung erfüllen:

«12 + 22
(32)

A 2 f- B«, P2 — R«2
0

«12 + 22 22 — «22

sin«! (ai^ — 2 B) — cos«i (ÀA -f- «j B)
22 + «!2

sinh«2 («2 P -f- 2 R) + cosh«2 (2 P 4- x2 R)

P—«22

Daraus folgt für den Fluss

(25)

Die räumlichen Frequenzen der Spule mit geerdetem

Wicklungsende sind dann die Wurzeln der
Gl. (31) und (32).

£
Da das Verhältnis — bei den angeführten Spulen

Ci

<é 1 ist 1, gilt für die niedrigen räum-
\ 25 900/

C
liehen Frequenzen: — «[,, 1; damit folgt in die-

Ci
sem Bereich :

(26) «2V 3Ë <X?V + P (33)

Auf Grund dieser Vereinfachung wurde für die
räumliche Grundfrequenz ocu das Gleichungssystem
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(31) und (32) für verschiedene Werte A gelöst und
die erhaltenen Wurzeln txn als Funktion des
Parameters A in Fig. 6 eingetragen.

Wie aus Fig. 6 zu ersehen ist, ist die Abweichung
der räumlichen Grundfrequenz von n im ganzen
Bereich von A nur gering. Die hyperbolischen Glie-
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rend für grosse Werte A mit A gilt:
71

2 2 A

2 A

1

Kurvenverlauf

Kurven - 0,99 ]/A und

f (A) zwischen den beiden

2 Atx

71

2

2 A —1
und

schmiegt sich in den entsprechenden Bereichen diesen

Näherungen gut an. Aus Fig. 7 ist zu ersehen,
7t

dass für A > 1, für <xn in erster Näherung txn —

folgt. Die Spule schwingt für A > 1 in Vielfachen
7t

von —. Für Werte A < 1 ist diese Annahme aber
2

o

22226626

Fig. 6

Verlauf der räumlichen Eigenfrequenz in Abhängigkeit von
der magnetischen Kopplung der einzelnen Windungen für die

Spule mit geerdetem Wicklungsende

der spielen nur eine untergeordnete Rolle. In erster
Näherung kann daher angenommen werden, dass
die Spule mit geerdetem Wicklungsende räumlich
in Vielfachen von ji schwingt.

IV. Die Spule mit freiem Wicklungsende

Zur Bestimmung der Konstanten A, B, P, R
sind hier die Randbedingungen u (0) 0, i (1) 0

zu benützen. Damit erhält man :

1,4

w

oCii=AV

0,5

\ ^ A
2A-1

0C\6 A a'

///
—

- 0 (34)
«J (A2 -|- oq2) x2 (A2 — «J2)

AcosAj-J- Bsinaq A Pcosh x, A Psinh«2 0 (35)

Durch Nullsetzen der Determinante folgt weiter:

A2 [*22 (<x22 — A2) A Äi2 (Äi2 + ^2)] ~!~

sin<x1cosh«2 [( x,2 A \22) (2 A2 — <*22)] *i +
cosfx1cosha2 [a22 (x22 A 4 a-p A A2) A
*i2 (Äi2 — ^2)] ^ + cos x1sinh«2 [(<xt2 A <x22) •

(2 A2 A «j2)] «2 A sinxj^sinh«;; A3«!«2 0

(36)

Für verschiedene Werte von A wurde das
Gleichungssystem (33) und (36) numerisch für die
räumliche Grundfrequenz xu gelöst und die erhaltenen

Werte in Fig. 7 eingetragen. Für kleine

Werte A gilt nach Gl. (17): /
'

N
0,99 |/A, wäh-

"0 1 23456789 10

SEy26629
*

Fig. 7

Verlauf der räumlichen Eigenfrequenz in Abhängigkeit von
der magnetischen Kopplung der einzelnen Windungen für die

Spule mit freiem Wicklungsende

nicht statthaft, für die Grundfrequenz der räumlichen
7t

Verteilung gilt—> <xu > 0, die hyperbolischen
2

Glieder sind nicht mehr vernachlässigbar. Die
Spule schwingt in diesem Bereich guter magnetischer

Kopplung zeitlich mit der Frequenz

1

N M0 C,
entsprechend Gl. (16).

Anhang
Die Frequenz der freien Schwingungen der
einlagigen Zylinderspule mit freiem Wicklungsende und

unendlich guter magnetischer Kopplung

Hier gilt:

S u

ix

0 — JVM0 f idx N M0 a
ô

50-N-—, — C,~it 7)X it f c2
i3u

ix2 it

Wie aus Fig. 7 zu ersehen ist, liegt der tatsächliche

Durch Elimination folgt, da a von x unabhängig

ist:

5 u

i X
N2M„

d a

df

1 i2i
Cj 5 x2

- N2 Mc
d2a
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Durch Integration erhält man :

i N2 M0 C, ^ 1- rnx -f- n
dt2 2

u — — x + pdt

wobei m, n, p Integrationskonstanten sind.

Auf Grund der Randbedingungen folgt:

für x 0, u — 0, daraus p — 0

N2M0C1 d2a

dt2

Damit : u — N2 Mn x,

für x 1, i 0, daraus u

d a

d t

N2 M0 Cj d2a
i (x2 — 1) 4- m (x — 1)

2 dt2

Durch Einsetzen dieser Ausdrücke in die
Ausgangsgleichung erhält man:

N2M0C1d2af 2 \ _ N2 M0C1 d2a

3
0, a

d f2 dt2

Aus dieser Differentialgleichung für a folgt, dass a
zeitlich durch eine harmonische Schwingung mit

3
der Frecfuenz m'2 dargestellt wird.

N2 M0 C±

Durch Vergleich mit Gl. (15) folgt weiter:

oder r] lim — 6
2 N2M0C1 N2 M0 Cj ;.->o X

Zusammenfassung

Zuerst wird das resultierende magnetische Feld
der einlagigen Zylinderspule hei Berücksichtigung
der gegenseitigen Induktivität auch entfernter
Spulenelemente voneinander bestimmt und
gezeigt, dass es möglich ist, den Koeffizienten der
gegenseitigen Induktivität durch eine Exponentialfunktion

mit geeignet gewähltem Dekrement
darzustellen. Der Ausgleichvorgang führt auf ein
System von Integral-Differentialgleichungen,
welches als exakte Fösung die Summe von räumlich

harmonischen und hyperbolischen Funktionen
besitzt.

Es wird gezeigt, dass die abgeleitete Frequenzbeziehung

(9), welche die Abhängigkeit der
zeitlichen Frequenz von der räumlichen Frequenz
darstellt, die Frequenzbeziehungen nach Wagner-
Rüdenberg, nach Blume-Boyajan und nach Willheim

als Spezialfälle enthält, in welche Gleichung
(9) bei geeigneter Wahl des Parameters übergeht.
Der Ausgleichvorgang kann physikalisch sowohl
durch stehende als auch durch fortschreitende Wellen,

welche aber beim Eindringen in die Spule ver¬

zerrt werden, dargestellt werden. Eine
Grenzfrequenz für fortschreitende Wellen, welche die
Theorie von Wagner-Rüdenberg fordert, existiert
nicht. Als nächstes wird die Spule behandelt, deren
Konstanten Gl. (19) erfüllen. In einer solchen
«verzerrungsfreien» Spule besteht für fortschreitende
Wellen keine Dispersion. Die Eigenschaften dieser
Spule werden näher untersucht, und es wird
gezeigt, dass Spannung, Strom und Wellenwiderstand
sich bei einer solchen Spule als fortschreitende,
unverzerrte Wellen darstellen lassen. Weiter werden
die Sonderfälle der Spule mit geerdetem und freiem
Wicklungsende eingehend behandelt, und wird ihre
exakte Fösung angegeben. Es wird gezeigt, dass bei
der Spule mit geerdetem Wicklungsende sich die
räumliche Verteilung von Spannung und Strom in
guter Näherung durch harmonische Funktionen
darstellen lässt, deren Wellenlänge ganze Vielfache
von 7i beträgt. Die hyperbolischen Glieder sind hier
vernachlässigbar. Bei der Spule mit freiem
Wicklungsende dagegen ist die räumliche Grundfrequenz
in weiten Grenzen veränderlich. Für Werte X > 1

kann in erster Näherung die Grundfrequenz gleich
7Z
— gesetzt werden, während für Werte À < 1 dies

auch angenähert nicht möglich ist. In diesem Falle
müssen auch die hyperbolischen Glieder berücksichtigt

werden, da ihre Vernachlässigung zu ganz
falschen Resultaten führen würde.
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