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39. Jahrgang Nr. 23 Samstag, 13. November 1948

BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Phénomènes transitoires dans une machine électrique soumise
à une tension de choc de front de durée finie

621.3.015.33 : 621.313
Par F. Jalla, Zurich

Après un rappel des résultats obtenus par K. W. Wagner,
qui s'intéresse au comportement d'une machine électrique
soumise à une tension de choc de front de durée nulle, l'auteur

étudie à l'aide de l'intégrale de Duhamel le cas
analogue, lorsque la durée du front n'est pas nulle.

Grâce à cette étude, il déduit une formule approchée, au
moyen de laquelle il est possible de calculer la sollicitation
maximum surgissant entre spires voisines, en fonction des
grandeurs qui définissent l'enroulement et la tension de
choc 1J.

K. W. Wagner hat die Ausgleichsschwingungen einer
elektrischen Maschine beim Auftreffen von rechteckigen Stoß-
spannungen studiert. Vom Verfasser wird in ähnlicher Weise,
durch Anwendung des Duhamelschen Integrals, das
Auftreffen von Stoßspannungen mit endlich steiler Front
untersucht.

Als Resultat dieser Arbeit wird eine Formel abgeleitet,
mit der die maximale Beanspruchung zwischen benachbarten
Windungen für Stoßspannungen mit beliebiger steiler Front
berechnet werden kann.

1. Introduction
On trouve de nombreux ouvrages dans la littérature

technique pour calculer les sollicitations
soumettant l'isolement des spires d'une machine
électrique, frappée par une tension de choc de front de
durée nulle. En réalité, la tension de choc de front
de durée nulle est un cas limite, car toutes les ondes
de choc ont pratiquement un front de durée très
petite, mais non nulle. Ainsi, il nous semble digne
d'intérêt d'étudier le problème de l'influence de la
durée du front sur les sollicitations entre spires
voisines, dans le désir d'obtenir un résultat quantitatif,
applicable en pratique, et non seulement un résultat
qualitatif.

Pour arriver à ce but, nous avons utilisé la théorie
des ondes stationnaires, en suivant le sillon tracé
par 1Vagner, et étudié, à l'aide de l'intégrale de
Duhamel, les phénomènes transitoires qui surgissent
dans une machine électrique, sous l'action d'une
tension de choc de front de durée variable.

D'autres auteurs [4, 5] 2 étudièrent le même
problème en se servant de la théorie des ondes
mobiles; ils obtinrent des résultats qui concordent bien
avec les nôtres.

2. Hypothèses et notations principales
Les résultats obtenus par Wagner [1, 2] nous

servent comme point de départ; il nous semble par
conséquent utile de rappeler les hypothèses et les
notations correspondantes.

On assimile un transformateur (ou, en général,
une machine électrique) à line ligne électrique, sans

pertes (fig. 1), affectée d'inductance propre
uniformément répartie (soit L' par unité de longueur),

11 Le travail fut suggéré par le Dr. M. Krondl.
-) Voir bibliographie à la fin du texte.

de capacité à la terre uniformément répartie (soit
C par unité de longueur) et de capacité entre
éléments successifs uniformément répartie (soit A' par
unité de longueur).

û C'k-T

LLC L C L

K' | K' | K' \ Rf' K'
ic' tc'rirrr r xx

sev 15 51b
1=1

Fig. 1

Réseau récurrent
(selon K. W. Wagner)

Ainsi, si l est la longueur de l'enroulement, et
si L, C et K sont respectivement l'inductance propre
totale, la capacité totale à la terre et la capacité
totale entre éléments successifs, on a les relations
suivantes :

L IL' C IC' K Y (1)

Nous admettons aussi que l'impédance de sortie est
infinie.

Par désir de brièveté, nous n'étudions pas quelle
valeur a l'approximation, que nous utilisons, car un
grand nombre d'ouvrages a été voué à ce sujet. Ici,
nous désirons simplement souligner que nous nous
servirons de ce schéma pour obtenir une solution
simple, claire (nous respectons ainsi les désirs de la
pratique) et en même temps rigoureuse, au point de
vue théorique, qui donne une image ressemblant
aux phénomènes réels.

3. Tension de ehoc de front de durée nulle

Quand à l'instant t 0 le réseau récurrent est
soumis, aux bornes d'entrée (x 0), à une tension
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de choc, de durée de front nulle (c'est-à-dire de
raideur de front infinie), d'amplitude û et de

queue infiniment longue, un phénomène transitoire
complexe commence, modifiant l'état initial du
réseau pour l'amener aux conditions de régime. Les
surtensions maxima, soit contre terre, soit entre
spires voisines, apparaissent pendant cette période
transitoire.

Il est commode, au point de vue physique, de
considérer ce phénomène comme composé de deux
parties.

Nous nommons la première, qui a un caractère
électrostatique, «période de charge», et la seconde,
à caractère électromagnétique, «période des oscillations».

a) «Période de charge»

Pour t 0 le réseau récurrent, considéré
comme un condensateur complexe (fig.2), est chargé

*' K1 K1 K' K' K'

Liretfj'i5-»
SEE15515 »

Fig. 2

Réseau récurrent considéré comme condensateur complexe

SEE 1S516 £

Fig. 3

Répartition de la tension pour r 0, en fonction de f
et du facteur <x

(Tension de choc û de front de durée nulle)

et a la répartition de tension suivante (voir fig. 3) :

cosh a (l — i$)
u (§) û

cosh a
(2)

| — est la coordonnée relative de longueur;

u (£) est la tension contre terre au point $ et à

l'instant t 0;
û est la tension de choc, de front de durée

nulle et

oc rac^ne du apport de la ca¬

pacité totale à la terre à la capacité totale
entre éléments successifs, est un facteur
sans dimension, qui caractérise l'aptitude
d'un enroulement à supporter plus ou
moins bien une tension de choc.

De l'éq. (2), on obtient le gradient de tension:

du
d<$

u a
sinh a (1—<$)

(3)
cosh a

qui a son maximum pour $ 0. Pour oc > 3,
cas pratiquement général, on obtient la formule
très approchée:

du
d<$

— u a (4)

c'est-à-dire le gradient de tension a son maximum
Sm à l'instant t 0 immédiatement après l'entrée
de la machine; il est oc-fois celui qu'on aurait si la
répartition de tension était linéaire dans l'enroulement

[û (1 —$) u]
On démontre que l'éq. approchée (4) est aussi

valable quand les bornes de sortie (f 1) sont
mises à terre; ainsi le gradient maximum est
indépendant de l'impédance sur laquelle le réseau
récurrent est couplé, et il est uniquement fonction du
facteur oc

b) «Période des oscillations»

Pendant la «période des oscillations» la tension
a l'expression suivante:

U (<$, t) û 1— An sin bn i$ cos ßn T

n~ 1

(5)

qui est une forme plus générale de l'éq. (2) ; celle-ci
représente le cas particulier pour % tendant vers
zéro.

u ($, t) est la tension au point et à l'instant t ;

f - et t — sont les coordonnées relatives
l Ti

d'espace et de temps 3) ;

An (6)
6„{1 4-(*>„/« )2}

amplitude de l'harmonique d'ordre n (n 1, 3, 5,

7, c'est-à-dire impair) ;

bn
n

constante de déphasage de l'harmonique d'ordre n;

b„
ßn

j/l + (6n/<*)2

pulsation de l'harmonique d'ordre n;
1

J/L'C'

(7)

(8)

est la limite de la vitesse de propagation de

l'harmonique d'ordre n, pour K' tendant vers zéro ; c'est
la vitesse maximum de propagation 4) ;

3) Dorénavant, nous exprimerons toutes les relations que
nous déduirons, à l'aide de ces coordonnées relatives, sauf
dans quelques cas indiqués clairement au long de notre
ouvrage.

4) Cette relation est exprimée en fonction de x et de t, et
non de f et de r.
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T, - (9)
v

est la limite de la durée du parcours (de x — 0 à

x l de l'harmonique d'ordre n pour K' tendant
vers zéro 4).

SEV15520

Fig. 7

Amplitude des harmoniques en fonction de l'ordre n
et du facteur ot

(Tension de choc û de front de durée nulle)

L'éq. (5) est formée d'un nombre infini de
termes qui représentent chacun une onde stationnaire.

On obtient en effet de l'éq. (5), en appelant
la longueur d'onde de l'harmonique d'ordre n:

A ' 7 Er û A *
^ ^ 2 7T

An Sin bn S COS ßn T A„ Sin g COS Vn T
Àn À"

(10)
An 2 a ft \ An 2jt— sin -r- (*~V»T) + — sia -r- (#+»« T)
2 An 2 An

Répartition de la tension en fonction de t et de £,

pour oc 10

(Tension de ehoc û de front de durée nulle)

c) Discussion des résultats

Il est intéressant de se rendre compte de l'allure

de la fonction u, en faisant varier <x l

(0 =f= l =f= oo), de la valeur zéro (C' 0) à l'infini
(K' 0).

La fig. 4 (comme aussi les fig. 5, 6 et 7) en donne
une claire vision. Nous soulignons ici que la
tension de choc subit toujours une déformation en
entrant dans le réseau récurrent, sauf dans le cas où
<x oo C'est le cas bien connu d'une onde de
front de durée nulle, qui frappe une ligne électrique
(K' 0).

En pratique oc est généralement > 3, et, alors,
on peut observer que :

1° la pente est maximum pour r 0 et f 0;
pour r et ^ quelconque, elle n'atteint plus ce maximum.

2° au point f 1 la tension de choc est réfléchie et cause
la surtension maximum contre terre.

Fig. 4

Répartition de la tension pour r — 1/3 en fonction de £

et du facteur oc

(Tension de choc û de front de durée nulle)

Fig. 6

Répartition de la tension en fonction de r et de £,

pour oc 100

(Tension de choc û de front de durée nulle)
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Les éq. (10) montrent que chaque onde stationnaire
peut être décomposée en une onde progressive et
une onde régressive.

La présence des unes est liée à celle des autres.
Elles ont des longueurs d'onde égales et même
amplitude; leurs constantes de phase sont opposées.

Les harmoniques sont d'ordre impair; leur
longueur d'onde est:

4 2 k
b„

K -
n

(îi)

En particulier, la première harmonique (n 1

a la longueur d'onde 2-, 4, c'est-à-dire elle oscille
en quart d'onde.

La vitesse de propagation des harmoniques est:

A
b,

1

1/1+ (bnl«)> y i- Él
ßl

(12)

En augmentant l'ordre de l'harmonique, la vitesse
diminue et devient nulle pour n oo c'est-à-dire,
comme nous l'indiquons plus bas, pour la fréquence
critique fK de pulsation ßK (voir fig. 8).

0,5

\ <X=100

II o

\ öC*1 \
—

1 3 5 7 9 19 29 39

Fig. 8

Vitesse de propagation des harmoniques en fonction
de l'ordre n

La pulsation de l'harmonique d'ordre n est

b„
ßn

i/i+(*>„;«)
(13)

en augmentant l'ordre n de l'harmonique, elle tend
vers une valeur finie, la pulsation critique:

ßK lim ßn — a (14)
n—co

2 tt/oc appelée «période critique»de période :

(voir fig. 9) 5).

Nous ne parlerons pas ici du thème de la
fréquence critique, car d'autres ouvrages ont été
publiés à ce sujet (voir p. ex. [5] et [6]). Nous désirons

simplement rappeler que le réseau récurrent
considéré se comporte comme un filtre dont la cons-

5) La pulsation critique, en fonction de t et non de t
r a 1

(et. note 4), est n—
T, VL'K'

tante d'affaiblissement est nulle pour 0 < / < /*
infinie pour / — et décroissante pour />//<; la

f(y~
constante d'affaiblissement tend vers la limite 1/ -=v-

j K'
pour / tendant vers l'infini. Or, nous avons déjà vu
plus haut que nous ne pouvons pas avoir de
fréquence d'oscillation libre supérieure à la fréquence
critique; par conséquent, celle-ci représente, au
point de vue physique, une fréquence de coupure.

'0,5

/ *=10

*=100

Ol«a
1 3 5 7 9 29 39

SÊV 15522

Fig. 9

Pulsation des harmoniques en fonction de l'ordre n

Observation: Les différentes grandeurs qui
apparaissent dans les expressions employées ne sont
pas indépendantes les unes des autres. Leur corrélation,

indiquée déjà dans les paragraphes précédents,
peut être également exprimée par des relations
déduites de celles qui sont sus-mentionnées.

Ainsi, nn réseau récurrent, du type schématisé
à la fig. 1, est déterminé de manière univoque par
quatre des grandeurs suivantes:

L' C' K' L C Kl v <x T, Tk ßK fK

p. ex. les courbes des fig. 5, 11, 12 et 13 sont
valables pour oc — 10, lorsque la tension incidente a

une durée de front déterminée, et le réseau récurrent

trois grandeurs variables.

4. Tension de elioc de front de durée finie
Dans le paragraphe précédant, nous avons

examiné le cas on la tension de choc incidente est de
front de durée nulle (c'est-à-dire de raideur
infinie) ; nous étudions ici le cas on la tension de choc
a un front de durée finie (de raideur finie), égale
à Ts ; elle diffère seulement en cela de l'onde dont

Fig. 10

Tension de choc u* de front
de durée finie Ts

— S -S£V 1SS23

nous nous sommes occupés précédemment, c'est-à-
dire (voir fig. 10) :

0 < r < Ts

T_ < r < t>o

u* (t) — û —
Ts

u* (r) û — const.

(15)
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a) Généralisation des résultats obtenus par Wagner
pour un front de durée quelconque 6)

Pour calculer la répartition de tension dans le
réseau récurrent, donnée par l'onde de front de
durée finie, appliquons l'intégrale de Duhamel:

u(§,t) f u*(£) • u, (t—£) d£ (16)
o

où u1 est la tension au point | et à l'instant r sous
l'action de la tension de choc û — 1 V, de
front de durée nulle;

u (£, r) est la tension au point £ et à l'instant r sous
l'action de la tension de choc u*{r);

u* (r)
d u* (r)

d^r

g est une variable auxiliaire de temps. En tenant
compte que ut est donnée par l'éq. (5) et u* (t) par
l'éq. (15), nous obtenons ainsi les solutions
suivantes :

r <71
— Y, Bn sinbnif siaßnT (17)

où B„ —

r^ Ts

U û

ßn Ts

1— Y C"sin b" Ç cosßn(T — ^r
». i V 2

(18)

où C„ A„

T• s ns,n J /3n

ßn

b) Discussion des résultats

Examinons maintenant le phénomène transitoire
dû à la tension de choc de front de durée finie, en
étudiant les éq. (17) et (18), soit analytiquement,
soit graphiquement, à l'aide des courbes des fig. 11,
12 et 13 (tracées pour oc 10 et pour différents
Ts).

L'éq. (5) est une solution particulière des éq.
(17) et (18); ces dernières représentent la solution
générale.

Ainsi, en passant à la limite de l'éq. (18), pour
T, tendant vers zéro, nous obtenons:

lim u - lim û

TrO 7V0
1— Y CnSinbr>£ 006 ß" T~ ~

n l \ 2

û up car lim Cn An c. q.f. d.
TrO

6) Einhorn [3] a étudié, entre autres, le problème traité
dans le présent article. Il prend en examen une tension de
choc à front exponentiel, et déduit une relation exprimant
la pente de la tension dans le réseau récurrent: mais, ne
déduisant rien d'intéressant de la relation susmentionnée, il
préfère s'occuper du problème au point de vue expérimental.

Les éq. (17) et (18) sont composées d'une
infinité de ternies, dont chacun représente une onde

Fig. 11

Répartition de la tension pour <x 10 et Ts — 1/6 en fonction
de r et de £

(Tension de choc U* de front de durée finie)

fonction

Fig. 13

Répartition de la tension pour oc — 10 et Ts — 2/3 en fonction
de r et de £

(Tension de choc il* de front de durée finie)

stationnaire ; les observations faites, dans le
paragraphe 3c, sur la longueur d'onde, la vitesse de
propagation, la pulsation et la fréquence critique sont
valables pour chacun d'eux.

Fig. 12

Répartition de la tension pour oc 10 et Ts 1/3 en
de r et de £

(Tension de choc il* de front de durée finie)
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Il est intéressant de noter que l'on ne peut plus,
pour Ts 0, considérer comme phénomènes
distincts la période de charge et la période des oscillations.

En effet, pour x 0 (et Ts ^ 0), la tension
incidente a une valeur nulle sur tout l'enroulement
(elle rejoint son maximum seulement pour % Ts).

Comparons les éq. (17) et (18) avec l'éq. (5):
la solution obtenue pour Ts 0 diffère de celle
obtenue pour Ts =j= 0, parce que chaque harmonique
de cette dernière est multipliée par le facteur

sin ßn

T-* s

T ßn

(19)

et a un déphasage constant
T1 S

2

d u— S —û ^ Dncosb„§ sin ßn x
d fe n 1

Bnbn

S — û ^ Dn sin ßn x
n= l

> T. S - û £ En cosßn Ix —

II est difficile de déduire directement, des éq.
(17) et (18), les particularités des fonctions qu'elles
représentent; il convient plutôt de les dessiner pour
les étudier ''

s

c) Gradient de tension (Pente)
Nous obtenons, des éq. (17) et (18), la valeur

du gradient de tension

Ainsi (17) donne pour r ^ Ts:

(20)

(21)

où Dn An _JL_
s Pn

et (18) donne pour x Ts :

d U n oo

—- =S — M £ EnCOsbng cosßn(x—~
dS n=l \ 2

où En Cn bn

Des éq. (20) et (21), on déduit que le gradient
est maximum pour | 0, c'est-à-dire à l'entrée de
la machine; les courbes des fig. 11, 12 et 13 le
confirment également.

(Dans un réseau récurrent, tant qu'il n'existe
aucune liaison d'induction mutuelle, la pente maximum

est toujours dans les premiers éléments [3]).
Les éq. (20) et (21) pour | 0 donnent:

(22)

(23)

Nous devons encore déterminer l'instant r tm
pour lequel la pente est maximum [soit relativement

au temps, soit relativement à l'espace (£ 0)].
Pour trouver la valeur de xm on s'est servi de

méthodes graphiques et analytiques, en calculant

7) Une partie des calculs numériques fut effectuée par
W. Sax.

tout d'abord S pour différents instants et différentes
durées de front, et en cherchant ensuite l'instant
T vi pour lequel S est maximum.

Lorsque « =.3 à 100 il résulte que

pour Ts

pour Ts
0,44 Tk
0,44. TK

Uw

UM

T.
0,44 TK

(24)

Observation. L'instant pour lequel nous avons
la pente maximum ne peut donc être plus grand
que Ts : par conséquent, pour la calculer, il faut
se servir de l'éq. (22), qui est toujours valable.

d) Formule approchée pour le calcul du gradient
maximum de tension (Sm)

En nous servant de l'éq. (22), nous calculons la
valeur du gradient maximum de tension Sm (c'est-à-
dire la pente pour f 0 et x — x^)

SëVt552f 1*

Fig. 14

Gradient de la tension en fonction des grandeurs
caractéristiques de l'enroulement et de la tension de choc

pour différentes valeurs de Ts et de ot, et dessinons
ensuite (fig. 14, courbe ABC) la fonction

u a
F (25)

qui est indépendante du facteur ot.
La courbe obtenue peut être considérée, avec une

bonne approximation, comme divisible en deux
parties: l'une exponentielle (A—B) et l'autre
hyperbolique (B-C). Le point B, passage de la partie
exponentielle à la partie hyperbolique, a pour

Ts Sm
abscisse —- 0,44 et pour ordonnée —— 0,5.

Tk ûa
Ainsi, nous pouvons substituer à la courbe réelle

une courbe qui en suit approximativement le tracé,
et qui est exprimée analytiquement par les équations

suivantes :

JL II
2 n

pour 0

pour 0,44 Tk

u a

0,44 Tk-,

Srn

_ 1 0,44 Tk

ûa 2 Ts

Ts < OO

(26)

(27)

On peut aussi écrire l'éq. (27) de la manière
suivante :
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1,39 (28)

où Xs — Ts — longueur d'onde de la tension de
choc incidente8).

Les éq. (26) et (27) montrent clairement quelle
est l'influence de la durée du front de la tension
de choc incidente, sur la pente maximum de la
tension dans l'enroulement, c'est-à-dire sur la sollicitation

maximum des spires. Nous avons ainsi non
seulement une donnée qualitative, mais aussi une
donnée quantitative.

La pente maximum de tension dépend
d'éléments soit internes, soit externes, par rapport à la

machine, c'est-à-dire du facteur <x =iY%
(subdivision des capacités) et du rapport —— de la

TK
durée du front à la période critique (et non pas
seulement de la durée du front de la tension de choc
incidente

Si l'on augmente la durée du front jusqu'à
0,44 Tß, la sollicitation maximum diminue tout
d'abord rapidement, puis lentement. En pratique,
les ondes ont des durées de front très petites, mais
finies. On déduit des éq. (26) et (27) qu'il y a une
diminution de sollicitation sensible et immédiate
dès que la durée de front augmente (à partir de

zéro).

5. Ondes stationnaires et ondes mobiles

Il est bien connu que la théorie des ondes
stationnaires est équivalente, au point de vue
mathématique, à celle des ondes mobiles.

L'une ou l'autre peut être plus ou moins apte à

résoudre des problèmes différents, ou capable de
donner une bonne image d'un phénomène déterminé.

Mais il est certain qu'en se servant de l'une ou
de l'autre théorie, un problème déterminé (c'est-à-
dire un problème dont les hypothèses sont définies
de façon précise aura en général une seule et même
solution; celle-ci est transformable, tout en restant
équivalente, que l'on suive l'une ou l'autre
méthode.

Rüdenberg [4] s'est intéressé au problème des

phénomènes oscillatoires, surgissant dans une
machine électrique soumise à une tension de choc de
front de durée nulle, en se servant d'un schéma de

principe (fig. 1) identique au nôtre et en appliquant
la théorie des ondes mobiles.

Il obtient aussi une solution simple, qui donne
une image suggestive de la tension de choc entrant
dans un réseau récurrent. Il fit également quelques
remarques à propos de l'influence de la durée du
front de la tension de choc incidente sur le
gradient de tension.

Wellauer [5] reprend l'argument et le complète,
en suivant la route tracée par Rudenberg. Il obtient

8) En fonction de x et t (cf. note 4) A,s(x, t) v Ts (x, t)

une solution très analogue à la nôtre, quoiqu'un peu
différente (fig. 14, courbe A' B' C'). Nous confronterons

avant tout sa solution et la nôtre, en faisant
ensuite quelques considérations sur l'origine
probable des divergences.

Nous reportons, l'une à côté de l'autre, les deux

courbes ——- F (—\ qui proviennent des deux
û a \ Tk]

méthodes différentes (fig. 14).

Comparons directement ci-dessous les deux
résultats :

Solutions, suivant la théorie
des ondes mobiles

Solutions, suivant la théorie
des ondes stationnaires

/ rjl \La courbe Sm â a F -s est composée de
\TkJ

deux parties:

1° une exponentielle
2° une hyperbolique

Pour —- quelconque, Sm déduit à l'aide de la
Tk

théorie des ondes mobiles a des valeurs
inférieures à celles déduites à l'aide de la théorie
des ondes stationnaires.

pour Ts 0,5 T£ :

pente maximale

Sm — pente de la
As

tension de choc

pour 0,44 Tk :

pente maximale

Sm 1,39 — pente
As

de la tension de choc

Au point de vue strictement théorique, nous
pourrions supposer que les résultats, en tant que
solution d'un problème déterminé, résolu par deux
méthodes différentes, mais équivalentes, devraient
être les mêmes. Nous confrontons en réalité deux
solutions approchées, et non deux solutions exactes;
ceci explique et justifie, à notre avis, les analogies
ainsi que les divergences mentionnées.

En adoptant la méthode des ondes stationnaires,
nous avons suivi une voie rigoureuse, mais nous
nous sommes servis en partie de procédés graphiques,
et nous n'avons pas pu tenir compte du nombre
infini d'harmoniques; la tension de choc a un front
linéaire.

En appliquant la théorie des ondes mobiles,
Rüdenberg et Wellauer, dans le désir de trouver
une voie plus simple, durent absolument faire des

approximations, entre autres supposer que le
déphasage des harmoniques est nul (c'est-à-dire
considérer la vitesse de propagation constante pour
toute la bande de fréquence comprise entre la
fréquence nulle et la fréquence critique) et se servir
d'expressions approchées pour exprimer le sinus
intégral. Puis Wellauer [5] suppose que la tension
incidente a la forme d'un sinus intégral (qui
comprend les fréquences variant de zéro à une fréquence
déterminée
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Toutefois, nous pensons que notre approximation
s'écarte moins que l'autre de la réalité, car il ne
nous semble pas juste que l'onde pour Ts ä 0,5 T^
entre sans déformation dans l'enroulement [5]. En
effet, comme nous l'avons vu plus haut, l'onde
traverse le réseau récurrent en subissant toujours (sauf
pour oc oo) une déformation, quand la tension
de choc a un front de durée nulle; quelle que soit
la forme de l'onde, le résultat est certainement le
même.

Au point de vue pratique, l'examen des deux
solutions, ainsi que la comparaison des mesures de
Wellauer [5] prouve que les résultats obtenus par
les deux méthodes concordent d'une manière
satisfaisante °).

9) Norris [7], dans son travail «The ligthning strength of
power transformers», paru après l'envoi en rédaction du
présent article, étudie la même question, en suivant la théorie
des ondes mobiles. Il obtient une solution, laquelle, bien que
d'approximation plus grossière, concorde passablement avec
celle de Wellauer [5] et avec la nôtre.
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Die Wirtschaftlichkeit von Drehstrom-Hochleistungsübertragungen
mit Betriebsspannungen von 110...440 kV*)

Von E. Senn, Innsbruck 621.315.1.025.3

Durch eine systematische Untersuchung im Bereiche der
Betriebsspannungen von 110...440 kV und zusammenhängend
damit im Bereiche der praktisch in Frage kommenden
Leiterquerschnitte soll eine übersichtliche Darstellung der Kosten
von Hochleistungsübertragungen erreicht werden. Daraus
ergibt sich auch ein übersichtliches Verfahren zur Ermittlung
der wirtschaftlichsten Ausführung.

Une étude systématique du domaine des tensions d'exploitation

de 110 à 440 kV et des sections de conducteurs
entrant pratiquement en considération doit permettre de se
rendre nettement compte du coût des lignes de transport
d'énergie électrique de grande puissance et de déterminer
plus facilement quelle est l'exécution la plus économique.

Allgemeines
Wir gehen bei diesen Untersuchungen von einer

Grundthese aus, die Piloty [1] 1) folgendermassen
formulierte :

«Wirtschaftliche Untersuchungen von
Fernleitungsprojekten beziehen sich stets in erster Linie
auf die Ermittlung der Fernleitungskosten. Diese
setzen sich zusammen aus den Anlagekosten
sowie aus den Kosten für die Verluste und
verursachen eine Verteuerung der Einheit der elektrischen

Arbeit.»
Dalier muss man folgerichtig die jährlich

anfallenden Kosten für die Anlage und für die Verluste
ermitteln und durch die jährlich übertragene
Energiemenge dividieren.

Es ist zuerst festzulegen, auf welche Grundlagen
wir alle Berechnungen beziehen wollen.

Unsere Wahl fiel darauf, die übertragene Leistung
(Höchstleistung) als Bezugsgrösse zu wählen, denn
die Anlagekosten hängen direkt mit der übertragenen

Leistung überhaupt nicht zusammen und die
Verlustleistungen lassen sich daraus schnell
berechnen, ebenso die übertragene Energiemenge,
wenn die Vollastbenützungsdauer bekannt ist. Weil
aber gerade die Vollasthcnützungsdauer, bei der

*) Nach einem Vortrag des Verfassers im Österreichischen
Ingenieur- und Architekten-Verein Wien.

') Siehe Literatur am Schluss.

die gleichen Verluste auftreten wie beim tatsächlichen

Belastungsverlauf, sehr schwer im vorhinein
festzulegen ist, unterteilen wir die Rechnung in zwei
Arbeitsgänge. Im ersten Arbeitsgang stellen wir die
billigste überhaupt mögliche Leitungsausführung in
Abhängigkeit von der Übertragungsleistung fest; im
zweiten Arbeitsgang nehmen wir eine bestimmte
Vollastbenützungsdauer an (z. B. 12-Stundentag)
und ermitteln die Fernleitungskosten pro übertragene

Kilowattstunde. Ändert sich die Vollastbenützungsdauer,

so lässt sich dies, wie wir sehen werden,
durch eine einfache Änderung des Maßstabes
berücksichtigen; man braucht aber diese unsichere
Grösse nicht während des ganzen Rechnungsganges
mitzuschleppen.

Die angeführten Überlegungen gelten für den
Fall, dass von einem Kraftwerk die Energie über
eine einzige Leitung fortgeschafft wird. Handelt es
sich bei der Errichtung einer Leitung um die
Erweiterung eines bestehenden Netzes, so sind noch
andere Überlegungen nötig, die von Fall zu Fall
verschieden sind. Beispielsweise wird durch eine
neue Leitung meistens nicht nur ein neues Absatzgebiet

erschlossen, sondern es werden im ganzen
bessere Preise erzielt, besonders wenn durch die
neue Leitung die Abhängigkeit von einem einzigen
Abnehmer aufgehoben ist. Auf derartige Probleme
soll hier nicht eingegangen werden, sondern wir
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