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39. Jahrgang N° 6 Samstag, 20. März 1948

BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Mathematische Statistik und Tarifwesen II1)
Von Ch. Morel, Feldmeilen

In diesem zweiten Aufsatz werden zunächst die wichtigsten

Eigenschaften der Gaußschen Fehlerfunktion gestreift,
da diese die Grundlage bildet, auf die sich die praktischen
Verfahren zur Auswertung und Prüfung von Statistiken
aufbauen. Eine besondere Rolle spielt dabei das Fehlerintegral,
dessen graphische Darstellung eine S-förmige Kurve ergibt.
Durch eine Maßstabtransformation erhält man das
Wahrscheinlichkeitsnetz, in welchem die Fehlerintegralkurve, auch
Summenhüufigkeit genannt, als Gerade, und die glockenförmige

Fehlerkurve als eine Art Hyperbel erscheint, was die
Lösung der meisten sich stellenden Aufgaben wesentlich
erleichtert und auch die Analyse der erhaltenen Kurven ohne
mathematische Hilfsmittel auf einfachste Weise gestattet.
Beispiele praktischer Anwendung dieser Methoden auf das
Tarifwesen ergänzen^die Darstellungen.

5. Die Gatißsche Felilerfunktion und die
Summenhäufigkeiten

a) Geometrische Eigenschaften
Die Grundform der Gaußschen Felilerfunktion

/ e
s ]/2 ji

(v-v2)
2 s» (26)

kann, wie bereits angedeutet, durch Setzen von

y 2 y2 TT sf und x
V V

(27)

in die reduzierte oder normale Form

twy. fw2

V-4S V-3S V-2S V-S V+2S V+3S V+4S

Fig. 5

Grundform der Felilerfunktion

fm
:l/2i

/wl /w 2 —
1

<\2.

*) siehe den I. Teil im Bull. SEV Bd. 38(1947), Nr. 6,
S. 141...149.
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Dans ce deuxième article, l'auteur expose brièvement les
principales caractéristiques de la fonction d'erreurs de Gauss,
qui est à la base des procédés pratiques d'utilisation et de
contrôle des statistiques. Dans ce domaine, l'intégrale des

erreurs, représentée graphiquement par une courbe en S, joue
un rôle particulier. A l'aide d'une transformation d'échelle,
on obtient un réseau de probabilité, dans lequel la courbe
intégrale des erreurs (appelée également courbe de
fréquences cumulées) devient une droite, tandis que la courbe
en cloche se présente sous la forme d'une sorte d'hyperbole,
ce qui facilite grandement la solution de la plupart des
problèmes posés et permet l'analyse des courbes, sans avoir
recours à des procédés mathématiques. Cet exposé est
complété par des exemples d'application dans le domaine de la
tarification.

x'

y 2e" 2
(28)

übergeführt werden.
Charakteristisch für den Verlauf der Kurve sind

ihre Maxima, Minima und Wendepunkte. Um diese
zu finden, setzt man die erste, bzw. die zweite
Ableitung der Funktion nach der Variahehl gleich
null. Diese Operationen führen zu folgenden Werte11:

Tabelle VI

Funktion : /==
l

s Vjïn

(V-V)2
2 s»

*2

9
~~ 2

y - le

Maximum Vm
1

Xm — 0 ym — 2- V Jm
V2 n

Wendepunkte Viv v ~H S Xw—Zt 1

/"
1

S \Jï 71

~ 2 yw=2 e
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Wendetangenten

— Schnittpunkte

mit Abszissenaxe
i) ii-f2 s x ~h 2

Fig. 5 gibt diese Beziehungen für die Grundform,

Fig. 6 für die Normal- oder reduzierte Form
der Fehlerfunktion wieder.

h) Die einfache Summenhäufigkeit (F-Integral)
In der Auswertung von Statistiken stellt sich oft

die Frage, wieviele Einzelwerte der Variabein
einen bestimmten Wert v dieser Variabein nicht
übersteigen, mit andern Worten, wie gross die
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Summe aller Häufigkeiten der Variabein zwischen
ihrem untersten Wert (—oc) und dem bestimmten
Wert v ist. Diese Summe, die einfache
Summenhäufigkeit F, schreibt sich

F (v) I f (v) dr (29)

Die Summenhäufigkeit stellt zugleich die
Wahrscheinlichkeit für das Auftreten irgendeines Einzel-
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,'ird
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— u'
e du

oder F (t>)
— u*

e du
- «2

Das bestimmte Integral zwischen
bekannt:

o
U2

e du n

Fig. Ii

Reduzierte Form der Fehlerfunktioii

ym '2 j/.i •! 2 e 1

wertes der Statistik zwischen den Grenzen — oo

und v dar. Erstreckt sich die Summierung auf die
ganze Statistik, also zwischen den Grenzen — co
und -|- oo so wird die Wahrscheinlichkeit zur
Gewissheit, da jeder beliebige Einzelwert innert dieser

Grenzen liegen muss. Infolgedessen wird

(31)

du

und 0 ist

(30)

Für die Grundform der Fehlerfunktion gemäss
Gleichung (29) lautet das Integral:

So erhält man

F(v) -

jt

— U2

e du (32)

Das verbleibende bestimmte Integral zwischen
0 und u kann nur durch Reihenentwicklung
gelöst werden. Es bestehen jedoch Tafeln, wie für
die Logarithmen, aus denen die einzelnen Werte
von

2

cp (u) V* f - «2

e du

herausgelesen werden können (siehe z. B. Tab. VII).
Tabelle Vit

a f («) Diff. u 9 (") Diff.

0,00 0,000 56
56
56
55
53
53
50
49
47
45
43
41
38
36
33
31
29
26

0,90 0,797
24
22
37
30
24
18
14
10
8
5
/I

0,05 0,056 0,95 0,821
0,10 0,112 1,00 0.843
0,15 0,168 1,10 0,880
0,20 0,223 1,20 0,910
0,25 0,276 1,30 0,934
0,30 0,329 1,40 0,952
0,35 0,379 1,50 0,966
0,40 0,428 1,60 0,976
0,45 0,475 1,70 0,984
0,50 0,520 1,80 0,989
0,55 0,563 1,90 0,993 9
0,60 0,604 2,00 0,995

Z
9

0,65 0,642 2,10 0,997
Z

l
l
0
1

0,70 0.678 2,20 0,998
0,75 0,711 2,30 0,999
0,80 0,742 2,40 0,999
0,85 0,771 2,50 1,000
0,90 0,797

Numerische Werte der Funktion
u

2 f -u2
(«)

-y=r
I e du

Für die reduzierte Form der Fehlerfunktioii
erhält man nach Einsetzen von

1/2
*

2
F(x) fin 1

yn

— u*
e du (33)

Die Funktion F (u) ist in Fig. 7 graphisch
dargestellt.

c) Die Summenhäufigkeit der absoluten Fehler
(JF-Integral, W-Funktion)

Man kann sich auch fragen, wieviele Einzelwerte

um nicht mehr als einen bestimmten absoluten

Betrag z (v — v) vom Mittelwert abweichen.
Diese Anzahl nennt man die Summenhäufigkeit IF
der absoluten Fehler, bzw. der absoluten
Abweichungen vom Mittelwert. Die symbolische Formel
dafür lautet:
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I> + (v-v)
W j v — v | j f (v) du

V — (v — v)

(34)

Dieser Ausdruck entspricht der Wahrscheinlichkeit
des Auftretens eines Einzelwertes der Statistik

zwischen v-(v-v) und v-\-(v~v) bzw. v—z und v-\-s.
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Fi«. 7

Grundform der Kehlerfuiiktlnii und ihrer Sumiiieiihäiififfkeiten

Für die Gaußsche Fehlerfunktion (26) kann man
schreiben, wenn (v—v) z gesetzt wird:

+z
_

Z!

W (z) f e
' 2s' dz

I 2.T
— Z

oder, da die Funktion symmetrisch ist:
z r!

2
1F(z)

:J/2jt
2s*

e dz (35)

Macht man die Substitution u
r 2 s

so erhält man

W(z)
F'tt

du (36)

Die numerischen Werte von W können den
bereits erwähnten Funktionen-Tafeln entnommen
werden.

Für die reduzierte Form der Fehlerfunktion (28)
x

y¥
ergibt sich, wenn u gesetzt wird

W( *|) 2]/2 TT •

TT
/—U2* du (37)

Die Kurve der IT-Funktion ist ebenfalls in
Fig. 7 eingezeichnet.

d) Die Summenhäufigkeit der einen bestimmten
Wert übersteigenden absoluten Fehler (Pdntegral)

Oft begegnet man der Frage, hei wieviel Einzel-
werten der Fehler einen bestimmten Betrag z

(v—v) übersteigt, oder wie gross die Wahrscheinlichkeit
ist, dass ein Einzelwert um mehr als diesen

Betrag z vom Mittelwert v abweicht. Man sieht
ohne weiteres, dass diese Funktion, die P (z)
geschrieben wird, die Funktion W (z) zu 1 ergänzt:

P(z) 1 - 1V(z) (38)

Für die normale Verteilung gemäss (26) kann man
also setzen, wenn z (v—v)

P(z) 1

oder, wenn u —
I 2 s

P(z) 1

2

S I 2 JT

Z

/'
_Z2
2s2

dz (39)

ist

2 fe "du
jr

(40)

Aehnlich gilt für die reduzierte Fehlerfunktion (23 I

Tabelle Vitt
p 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 P

0,00 oo 1,644 854 1,281 552 1,036 433 0,841 621 0,674 490 0,524 401 0,385 320 0,253 347 0,125 661 0,00
0,01 2,575 829 1,598 193 1,253 565 1,015 222 0,823 894 0,658 838 0,510 073 0,371 856 0,240 426 0,113 039 0,01
0,02 2,326 348 1,554 774 1,226 528 0,994 458 0,806 421 0,643 345 0,495 850 0,358 459 0,227 545 0,100 434 0,02
0,03 2,170 090 1,514 102 1,200 359 0,974 114 0,789 192 0,628 006 0,481 727 0,345 126 0,214 702 0,087 845 0,03
0,04 2,053 749 1,475 791 1,174 987 0,954 165 0,772 193 0,612 813 0,467 699 0,331 853 0,201 893 0,075 270 0,04

0,05 1,959 964 1,439 531 1,150 349 0,934 589 0,755 415 0,597 760 0,453 762 0,318 639 0,189 118 0,062 707 0,05
0,06 1,880 794 1,405 072 1,126 391 0,915 365 0,738 847 0,582 841 0,439 913 0,305 481 0,176 374 0,050 154 0,06
0,07 1,811 911 1,372 204 1,103 063 0,896 473 0,722 479 0,568 051 0,426 148 0,292 375 0,163 458 0,037 608 0,07
0,08 1,750 686 1,340 755 1,080 319 0,877 896 0,706 303 0,553 385 0,412 463 0,279 319 0,150 969 0,025 069 0,08
0,09 1,695 398 1,310 579 1,058 122 0,859 617 0,690 309 0,538 836 0,398 855 0,266 311 0,138 304 0,012 523 0,09
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P (x) 2 | 2 TT 1
2

I TT

u

I —u£ \
e du I, wobei

] 2
(41)

In Fig. 7 ist die der Funktion P (z) entsprechende
Kurve eingetragen.

Für die Funktion P (x), die bei der Prüfung von
statistischen Masszahlen eine wichtige Rolle spielt,
findet man in Tabelle VIII für verschiedene Werte
von P (x), bezogen auf P (0) 1, die entsprechenden

Werte von x.

e) Die Bedeutung der verschiedenen
Summenhäufigkeiten

Liegt eine Statistik vor, so interessiert in erster
Linie, oh ihre Verteilung normal ist, d. h. ob sie
dem Gaußsclien Fehlergesetz gehorcht. Mit Hilfe
der abgeleiteten Summenhäufigkeits-Funktionen
lassen sich gewisse Normen aufstellen, die eine
summarische Ueberprüfung der Verteilung
gestatten.

So findet man hei numerischer Auswertung der
W-Funktion (35) für die entsprechenden
Integrationsgrenzen, dass hei einer normalen Verteilung
0,683 oder rund aller absoluten Fehler, bzw.
Abweichungen vom Mittelwert, kleiner als die mittlere
quadratische Abweichung s sein, d. h. innerhalb
der Grenzen v + s liegen müssen. Ferner müssen
0,954 oder rund 95°/o aller absoluten Fehler kleiner

sein als 2 s und 0,997 oder 99,7 % kleiner als
3 s. Praktisch dürfen also nicht mehr als 3 °/00

aller Einzelwerte um mehr als ± 3 s vom Mittelwert

abweichen.
Auf diese Weise kann man auch ermitteln, innerhalb

welcher Grenzen ein bestimmter Prozentsatz
aller Einzelwerte einer Statistik sich hei normaler
Verteilung befinden müssen. Die Ausrechnung
ergibt z. B., dass

50 % aller Werte innerhalb der Grenzen v ± 0,675 s

90 °/o aller Werte innerhalb der Grenzen v ± 1,645 s

95 °/o aller Werte innerhalb der Grenzen v ± 1,956 s

98 °/o aller Werte innerhalb der Grenzen v ± 2,326 s

99 °/o aller Werte innerhalb der Grenzen v ± 2,576 s

liegen müssen.

Kann die Verteilung einer Statistik zum
vorneherein als normal angenommen werden, so lässt
sich auf einfache Weise die mittlere quadratische
Abweichung in erster Annäherung errechnen. Man
ermittelt die Grenzen v -(- z und v — z, innerhalb
welcher z. B. 95 °/o aller absoluten Fehler liegen,
und dividiert den so erhaltenen Grenzfehler z
durch 1,956.

6. Die Prüfung von statistischen Masszahlen

u) Die Sicherheitsschwelle
Jede Statistik muss als eine Stichprobe aus einer

Grundgesamtheit betrachtet werden. Entnimmt

man dieser Grundgesamtheit eine Anzahl
voneinander unabhängiger Stichproben, so werden
ihre statistischen Masszahlen nicht in allen Fällen
mit denjenigen der Grundgesamtheit übereinstimmen;

sie werden streuen mit einer Verteilung, die
derjenigen der Grundgesamtheit entspricht. Im
Falle einer normalen Verteilung ist somit theoretisch

zu erwarten, dass z. B. der Durchschnitt v
oder die Streuung s2 der einzelnen Stichproben
innerhalb der Grenzen — oo und -}- oo um den
Durchschnitt /,i oder die Streuung a2 der
Grundgesamtheit herum streuen werden. Praktisch kann
aber nicht jede Abweichung als zufällig hingenommen

werden. Es muss eine Grenze definiert werden,

innerhalb welcher der Fehler als zufällig gilt
und hei deren Uebersclireitung die Abweichung als
wesentlich oder gesichert zu betrachten ist. Diese
Grenze nennt man Sicherheitsschwelle.

In der mathematischen Statistik ist es nun üblich
zu sagen, ein Fehler oder eine Abweichung vom
Mittelwert sei wesentlich, wenn der entsprechende
P-Wert kleiner als 0,01 (l°/o) und zufällig, wenn
der entsprechende P-Wert grösser als 0,05 (5°/o)
ist. Mit anderen Worten, eine Abweichung gilt als
gesichert, wenn sie grösser als 2,576 s und als
zufällig, wenn sie kleiner als 1,956 s ist. Für Werte,
die dazwischen liegen, muss erst eine besondere
Untersuchung zeigen, oh die Abweichung gesichert
ist oder nicht. Für praktische Berechnungen und
um sich diese besondere Untersuchung zu ersparen,
kann man mit der einen Grenze von P 0,05

5 °/o auskommen. Damit nimmt man in Kauf,
dass in 5°/o von allen möglichen Fällen eine
Abweichung als wesentlich betrachtet wird, die an
sich rein zufällig ist. Mit dieser Grenze wird bei der
Prüfung von Abweichungen ein strengerer Massstab

angelegt, als mit der Grenze P 0,01.

b) Die Prüfung von Durchschnitten
Die am häufigsten verwendete statistische Mass-

zalii ist der Durchschnitt. Hat man den Durchschnitt

v einer Stichprobe zu N Einzelwerten
ermittelt, so kann man sich fragen, wieweit dieser
Durchschnitt mit dem für die Grundgesamtheit zu
erwartenden Durchschnitt u_ übereinstimmt. Allein
dieser letzte Wert ist in der Regel unbekannt.
Trotzdem weiss man von ihm, dass er gleich ist dem
Durchschnitt /«.- aus allen Durchschnitten v der
möglichen einzelnen Stichproben. Ist nun ö2 die
Streuung der Grundgesamtheit, so wird die Verteilung

der Durchschnitte der Stichproben eine Streu¬
er2

ung ö—2 -^aufweisen, da jede Stichprobe N Einzelwerte

umfasst. Die Gleichung für die Verteilung
der Durchschnitte wird also lauten

/<!>)

(_!>-/£)«_

| 2TT

(42)

wobei die Variable nun v ist.
Geht man von der Sicherheitsschwelle P 0,05

aus, so muss nach Abschnitt 5,lit.e, der Durchschnitt
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v innerhalb der Grenzen fx ± 1,956 o~liegen, wenn
er nur zufällig von im abweicht. Im Grenzfall ist
also

/Li + 1,956 o—

oder da ß— —
VN

fx 1,956
yn

Ist für die gewählte Stichprobe N gross genug,
so kann man, ohne einen grossen Fehler zu
begehen, für die Streuung o2 der Grundgesamtheit,
die Streuung s2 der Stichprobe in die Gleichung
einsetzen, die dann lautet:

v — a ± 1,956 ——
\'N

(43)

Da von einem P 0,05 (W 0,95) ausgegangen

wurde, besagt die Gleichung (43), dass in
95 °/o aller Stichproben ein Durchschnitt zu erwar-

g
ten ist, der um höchstens ± 1,956 —= von dem

y N
für die Grundgesamtheit theoretisch zu erwartenden

Urdurchsclinitt abweicht. Mit andern Worten,
der errechnete Durchschnitt wird mit 95 %> Wahr-

g
sclieinlichkeit um nicht mehr als ± 1,956 —— vom

y n
Urdurchsclinitt abweichen. Wird diese Wahrscheinlichkeit

auf 99% erhöht (P 0,01), so vergrös-
sert sich die Grenze der möglichen Abweichung

auf ± 2,576
VN

Für das im ersten Aufsatz erwähnte Zahlenbeispiel

aus dem Tarifwesen, mit N 225
Einzelwerten, war der mittlere spezifische Energieverbrauch

q zu 36,5 kWh pro Parametereinheit
(Grundeinheit GE) und die mittlere quadratische

Abweichung s zu 13,03 (s2 169,99) ermittelt

worden.
Für P — 0,05 gilt in diesem Falle die Relation

- 3<; c ^ 1,956 • 13,03
q 36,5 u ± — u± 1,7

| 225

Mit 95 °/oiger Wahrscheinlichkeit kann der
errechnete Durchschnitt von 36,5 um höchstens ± 1,7,
d. h. um höchstens ± 4,65 °/o vom theoretischen
Urdurchsclinitt abweichen.

Setzt man die höchstzulässige Abweichung zum
vorneherein fest, so kann man ohne weiteres aus
der ebenfalls als bekannt angenommenen Streuung
den erforderlichen Umfang der Stichprobe ermitteln.

Dabei ist leicht festzustellen, dass, um eine
zulässige Verringerung der Abweichungsgrenze auf
die Hälfte zu erreichen, der Umfang der Stichprobe
auf das Vierfache erhöht werden muss.

Ist der Durchschnitt der Grundgesamtheit
bekannt, so kann ohne Schwierigkeit ermittelt wer¬

den, ob der errechnete Durchschnitt der
Stichprobe von jenem wesentlich oder nur zufällig
abweicht. Aus Formel (43) geht hervor, dass der Aus-

Vn
druck {v—u) höchstens ± 1,956 (hei P 0,05' s

betragen darf. Ergibt die Ausrechnung einen höheren

Wert, so gilt der Unterschied als gesichert und
die Stichprobe entspricht mit 95 °/oiger
Wahrscheinlichkeit nicht der Grundgesamtheit.

c) Die Prüfung von Streuungen
Ist a die Streuung der Grundgesamtheit und s

die Streuung von Stichproben grösseren Umfanges,
so ist die Verteilung der Streuungen s normal, mit

einer Streuung o 2

2 N
Geht man wiederum von einem P 0,05 aus,

so kann man, wie für den Durchschnitt im
vorangehenden Abschnitt, setzen:

s — ß ± 1,956 ßs

oder s ß(l±)^6)
V V2NJ

(44)

Aus dieser Gleichung geht hervor, dass die aus
der Stichprobe errechnete Streuung mit 95 °/oiger

Wahrscheinlichkeit um höchstens ±
^

von der
y2N

Streuung der Grundgesamtheit abweichen darf,
wenn sie innerhalb der Zulässigkeitsgrenze bleiben
soll. Mit andern Worten: Man nimmt in Kauf, dass
in 5 °/o aller möglichen Fälle eine Streuung s zu
erwarten ist, die bei

N 100 um
N 1000 um
N 5 000 um
N 10 000 um

oder mehr von der Streuung

13,8 %
4,4 %
2,0 °/o

1,4 °/o

o der Grundgesamtheit
abweicht. Für das

lautet die Relation (44) :

erwähnte Zahlenbeispiel

13,03 0 1 ±
1,956

| 2 225 j a (1 ± 0,092)

Mit 95 °/oiger Wahrscheinlichkeit wird für das
gewählte Beispiel die Streuung s um nicht mehr
als 9,2 % von der Urstreuung o abweichen.

Nun kann der kleine Fehler korrigiert werden,
der in der Gleichung (43) dadurch entstand, dass

statt ö nur s gesetzt wurde. Die neue Gleichung
sollte demnach korrekt lauten

v /x. ± 1,956 ~ 1 ± (45)
yw\ y 2 n) v

Für das Zahlenbeispiel ergibt sich:

v n ± 1,7 • (1 + 0,092)

v fi ± 1,86.

Die mit 95 °/oiger Wahrscheinlichkeit zu erwartende

höchste Abweichung des aus der Stichprobe
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errechneten Durchschnittes vom Urdurchsclmitt hat
sich durch Berücksichtigung der Abweichungsniög-
lichkeit der Streuung von 1,7 auf 1,86, d. h. um rund
9 °/o erhöht. Auf den errechneten Durchschnitt von
36,5 bezogen bedeutet dies eine Erweiterung der
Grenze von ± 4,65 auf ± 5,10 °/o, was tatsächlich
unbedeutend ist und für eine erste Annäherung die
einfachere Formel (43) durchaus rechtfertigt,
besonders wenn der Umfang der Stichprobe (N)
gross ist.

7. Eine graphische Lösung:
Das Wahrscheinliclikeitsnetz

ii)Die Entstehung des Wahrscheinlichkeitsnetzes
Die Transformation einer praktisch erhaltenen

Häufigkeitskurve (Treppenkurve) auf den Massstab

der normalen Häufigkeitskurve ist bereits
erläutert worden. Diese, eine Beurteilung der
Verteilung einer Statistik oder Stichprobe ermöglichende

Operation ist jedoch umständlich, da sie
eine grosse Rechenarbeit verlangt. Es wurde
deshalb nach einer einfachen graphischen Methode
gesucht, welche die Verteilung einer Statistik und
die mit dieser Verteilung eng zusammenhängenden
Summenhäufigkeiten zu kontrollieren gestaltet.
Diese Methode beruht auf der Anwendung des
Wahrscheinlichkeitsnetzes, in welchem — normale
Verteilung vorausgesetzt — die Summenhäufigkeitskurven

als Geraden und die Häufigkeits- oder
Fehlerkurve als eine Art Hyperbel erscheinen.
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Nimmt man eine normale Summenhäufigkeits-
kurve (z.B. diejenige von Fig. 5) und zieht eine
beliebige, schräge Gerade d durch die Mitte der
Kurve (entsprechend der Abszisse v), so ist jedem

Punkt F der Kurve mit Abszisse v ein Punkt D der
Geraden d mit der gleichen Abszisse zugeordnet.
Die Punkte D ergeben eine neue Teilung der Ordi-
natenachse, die von der Mitte aus nach oben und
nach unten immer gestreckter wird, etwa wie eine
umgekehrte logarithmische Teilung. In Fig. 8 sind
die entsprechenden Punkte F der Kurve (normale
Teilung) und der Geraden D Wahrscheinlichkeitsteilung)

zur Verdeutlichung mit gleichlautenden
Indices versehen. Zudem ist im linken Teil der Figur
die alte und im rechten Teil die neue Teilung
eingezeichnet. Das auf diese Weise erhaltene Netz,
das sich theoretisch nach oben und nach unten bis
ins Unendliche erstreckt, praktisch aber nur etwa
zwischen 0,1 und 99,9 verwendet wird, nennt man
das Wahrscheinlichkeitsnetz. Aus praktischen Gründen

werden die Einzelwerte von F in Prozenten
der Endsumme angegeben.

In diesem Netz erscheint also die F-Kurve
(einfache Summenhäufigkeit) als eine Gerade (bei
normaler Verteilung), deren Neigung vom Massstab

der Variabein v und von der Streuung s2

abhängt. Bei gleichbleibendem v-Maßstab wird die
Gerade um so steiler, je kleiner die Streuung s2 ist.

b) Die Hiiufigkeitskurve
Zeichnet man die normale Häufigkeitskurve in

die untere Hälfte des Wahrscheinlichkeitsnetzes
ein, so erhält man nicht mehr die bekannte,
glockenförmige, sondern eine hyperbelartige Kurve, deren

Fig. 9

Darstellung ilcr l'elileil'iiiiktion im Walirschclnllchkeltsnetz
(einfache Häufigkeit)

äussere Äste infolge der Dehnung der Teilung
angenähert zu Geraden gestreckt sind (Fig. 9). Die
neue Kurve ist leichter zu zeichnen und gibt, vor
allem für die extremen Werte der Variabein, eine
bessere Uebersicht der Häufigkeitsverteilung.

c) Die P- und W-Kurven
Bei zweckmässiger Anpassung des Maßstabes der

Ordinatenteilung [lU0/o 2 (F — 50) °/o] und
Verwendung der oberen Netzhälfte wird auch-die W-
Kurve (Summenhäufigkeit der absoluten Fehler)
zu einer durch den Ursprung gehenden geneigten
Geraden iFig. 10).
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Auch hier ist ohne weiteres ersichtlich, (lass für
einen bestimmten Maßstab der Variabein die W-
Gerade um so steiler wird, je kleiner die Streuung
ist.
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In der untern Hälfte (les Wahrscheinlichkeits-
netzes wird schliesslich nach Anpassung des
Massstabes (P°lo 2 F°/o) auch die P-Kurve
(Summenhäufigkeit (1er einen bestimmten Wert
übersteigenden absoluten Fehler) zu einer Geraden
(Fig. 11).
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d) Die Wühl des Maßstabes für die Variable
im Wahrscheinlichkeitsnetz

In allen diesen Fällen ist die Wahl des Maßstabes
für die Variable (v hei den /- und F-Kurven, und
z bei den W- und P-Kurven) theoretisch nur durch
die Breite des verwendeten Wahrscheinlichkeitsnetzes

beschränkt. Sollen jedoch mehrere Statistiken

einander gegenübergestellt werden, so ist es

zweckmässig, einen gemeinsamen Maßstab zu neh¬

men. Eine für überschlägige Untersuchungen geeignete

Methode besteht darin, die einzelnen Werte,
bzw. Klassenmitten und Klassengrenzen der Variabein,

in Prozenten des Durchschnittes auszudrücken.
So erhält man leicht vergleichbare Kurven, aus
deren Verlauf und vor allem aus deren Neigung
qualitative Schlüsse über die Streuung gezogen
werden können. Sind die Streuungen der einzelnen
Statistiken bekannt (was aller selten der Fall ist),
so kann für jede Statistik die Variable als ein
Vielfaches der mittleren quadratischen Abweichung s

ausgedrückt werden; die einzelnen Kurven müssen
dann untereinander und mit einer zum voraus leicht
zu zeichnenden Standard-Kurve identisch sein,
wenn hei allen Statistiken die Verteilung normal
ist, d. h. wenn diese Statistiken den Gesetzen der
Wahrscheinlichkeitsrechnung genügen. Eine
andere praktisch bewährte Vergleichs- und
Untersuchungsmethode soll weiter unten näher erläutert
werden.

8. Praktische Anwendung
des Wahrscheinlichkeitsnetzes

i

a) Allgemeines
Im ersten Teil dieser Studie ist bereits auf die

wesentliche Vereinfachung hingewiesen worden,
welche die Gruppierung der N Einzelwerte einer
Statistik oder Stichprobe in M Klassen von der
Breite iv mit Klassenmitte Vj und Klassenhäufigkeit
rij für die Berechnung der statistischen Masszahlen
mit sich bringt. Für die praktische Prüfung der
Verteilung und für die Ermittlung der Summen-
liäufigkeiten ist diese Gruppierung geradezu
unentbehrlich.

Es ist bereits auf den Vorteil hingewiesen worden,

die Klassenbreite mit der mittleren quadratischen

Abweichung s in Beziehung zu bringen, um
Vergleiche zu erleichtern. Da aber die Berechnung
der Streuung s2 umständlich ist, zieht man in der
Praxis einen Wert vor, der in einem festen Verhältnis

zu ihr steht, aber leichter zu ermitteln ist: die
Grundspanne.

Ist gj die obere Grenze der Klasse j mit Mitte v-n
so entspricht dieser Grenze gj die einfache
Summenhäufigkeit Fj, in Analogie zum P-Integral (1er

Fehlerfunktion. Ist weiter ra, die Häufigkeit der
Klasse j, so wird

^ i »,
/'= i

Im Grenzfall, d. i. für j M, erhält man

M

FM N
/'=!

Zweckmässig wird Fj, wie auch nt in Prozenten von
N ausgedrückt.

Als Spanne G bezeichnet man die absolute
Differenz zwischen zwei in bezug auf v symmetrischen
Grenzwerten g, deren entsprechende F-Werte {in
Prozenten von N ausgedrückt) zusammen 100
ergehen. Die Spanne zwischen gs, entsprechend F
f> #/o und g,,- entsprechend F — 95 °/o heisst die
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Grundspanne G90. Sie umfasst 90 °/o aller Einzelwerte

der Statistik und entspricht hei normaler
Verteilung dem JF-Integral für den absoluten Fehler

z " 8r, | I V ^05 I 2)-
Der Klassengrenzwert g50 ist identisch mit dem

Medianwert m und bei normaler Verteilung auch
mit dem Durchschnitt v. Diesem Grenzwert
entspricht theoretisch die Spanne G0.

Die Spanne G50 gibt bei normaler Verteilung
die obere und untere Grenze des wahrscheinlichen
Fehlers an, d. h. des Fehlers, für welchen die
Summenhäufigkeit W gleich 0,5 oder 50 % ist, während
die mittlere quadratische Abweichung s, bzw. die
Grenzen v ± s der Spanne G6S entsprechen.

drangen vom Mittelwert als zufällig betrachtet,
während ausserhalb dieser Spanne fallende
Abweichungen als gesichert gelten. Es wäre somit
naheliegend, die Klassenbreite w mit dieser Spanne
G95 in eine einfache Beziehung zu bringen. Die
Erfahrung hat aber gezeigt, dass es zweckmässiger ist,
von der zuverlässiger ermittelbaren Grundspanne
G90 auszugehen, und diese je nach Feinheit der
vorzunehmenden Untersuchung in 5, 10 oder 20 gleich
grosse Teile zu teilen, so dass sich zum Beispiel
bei der 10er Teilung eine Klassenbreite

IV —
90 #95 — #5

10 10

Tabelle IX
Klassenmitte v. obere Häufigkeit ni pro Klasse in °/0 von N Summenhäufigkeit Fi in °/o von N

Klassengrenze
5er Teilung 10er Teilung 20er Teilung Bl 5er Teilung 10er Teilung 20er Teilung 5er Teilung 10er Teilung 20er Teilung

10 10 10
12,5

10
15

0,15 0,15 0,15
0,10

0,15 0,15 0,15
0,25

15 17,5
22,5

20
25

0,27 0,17
0,26

0,42 0,42
0,68

20 25 27,5
32,5

30
35

0,91 0,64 0,38
0,56

1,06 1,06 1,06
1,62

35 37,5
42,5

40
45

1,35 0,79
1,11

2,41 2,41
3,52

40 45 48,5 50 3,94 2,59 1,47 5,00 5,00 5,00

52,5 55 1,93 6,93
55 57,5

62,5
60
65

4,41 2,48
3,07

9,41 9,41
12,48

60 65 67,5
72,5

70
75

11,18 6,77 3,70
4,37

16,18 16,18 16,18
20,55

75 77,5
82,5

80
85

9,36 4,99
5,53

25,54 25,54
31,07

80 85 87,5
92,5

90
95

20,92 11,56 6,03
6,36

37,10 37,10 37,10
43,46

95 97,5
102,5

100
105

12,90 6,54
6,54

50,00 50,00
56,54

100 105 107,5
112,5

110
115

25,80 12,90 6,36
6,03

62,90 62,90 62,90
68,93

115 117,5
122,5

120
125

11,56 5,53
4,99

74,46 74,46
79,45

120 125 127,5
132,5

130
135

20,92 9,36 4,37
3,70

83,82 83,82 83,82
87,52

135 137,5
142,5

140
145

6,77 3,07
2,48

90,59 90,59
93,07

140 145 147,5 150 11,18 4,41 1,93 95,00 95,00 95,00

152,5 155 1,48 96,48
155 157,5

162,5
160
165

2,59 1,11
0,79

97,59 97,59
98,38

160 165 167,5
172,5

170
175

3,94 1,35 0,56
0,38

98,94 98,94 98,94
99,32

175 177,5
182,5

180
185

0,64 0,26
0,17

99,58 99,58
99,75

180 185 187,5 190 0,91 0,27 0,10 99,85 99,85 99,85 '

190 190 190 190 0,15 0,15 0,15 100,00 100,00 100,00

b) Wahl der Klassenbreite
Bei der Prüfung von statistischen Masszahlen

werden alle innerhalb der Spanne G05 (entsprechend

W 0,95 oder P 0,05) liegenden Abwei-

2) Der Grund, warum für die Spanne das Symbol G und
nicht W gewählt wurde, liegt darin, dass W seinem Wesen
nach das Integral der Fehlerhäufigkeiten zwischen zwei in
bezug auf v symmetrischen Abszissenwerten ist, während die
Spanne G die Strecke der Abszissenachse zwischen diesen
zwei Werten misst.

ergibt. Diese Klassenbreite gilt selbstverständlich
auch für die Bereiche ausserhalb der Grundspannc.

c) Die Häufigkeitsteilung
In Tabelle IX sind die bei normaler Verteilung

zu erwartenden Häufigkeiten und Summenhäufigkeiten

für eine Statistik mit Durchschnitt v 100
und Streuung s2 923 (s 30,4) bei 5er, 10er
und 20er Teilung der Grundspanne G90 zusammengestellt.
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In der Praxis werden sich je nach der Streuung
der betrachteten Statistik andere Klassenbreiten iv,
Klassenmitten Vj und Klassengrenzen gj ergeben.
Die relativen Werte der Häufigkeit und der
Summenhäufigkeit (in Prozenten des Statistikumfanges
N) werden aber bei normaler Verteilung immer
den Tabellenwerten entsprechen.

Hieraus ergibt sich nebenbei eine einfache
Methode zur angenäherten Berechnung der Streuung.
Für die Statistik von Tabelle IX liegen die Grenzen

g- und gB5 bei 50 und 150. Die Grundspannc
G00 beträgt 100 und die entsprechende absolute
Abweichung 50. Nach Abschnitt le) müssen bei
normaler Verteilung 90 °/o aller Werte innerhalb der
Grenze v ± 1,645 s liegen. Kann man annehmen,
dass die Verteilung der zu untersuchenden Statistik
normal ist, so entspricht die absolute Abweichung
50 der Grenze ± 1,645 s. Somit erhält man

s — 30,4 und s2 923
1,645

Auch wenn die Verteilung nur angenähert normal

ist, was praktisch meistens der Fall ist, liefert
diese einfache Rechnung für die Streuung einen
für überschlägige Betrachtungen hinreichend
genauen Wert.

Bei der graphischen Darstellung pflegt man die
Klassenhäufigkeit iij der Klassenmitte Vj und die
Summenhäufigkeit F; der oberen Klassengrenze g:
zuzuordnen (Fig. 12).

d) Numerisches Beispiel
Zur Illustrierung der geschilderten graphischen

Methode sei das frühere Beispiel herangezogen
(Tabelle IV). Die 225 Werte umfassende Statistik
(N 225) besass nach der «klassischen»
Berechnungsweise folgende Charakteristiken:

Umfang N 225

Durchschnitt q 36,5

Streuung s2 _= 169,99

mittlere quadratische Abweichung s 13,03.

Das Ordnen der Statistik nach steigendem Wert
von q zeigt, dass 5 °/o aller Werte die Grenze

c b a
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95.50 vKs=69,6 v=g50 P+S-130,4 ggs-150

^ ^ resp g

Fig.12
Darstellung der Normalvertellung nach Tabelle IX

Tabelle X

Teitungs-
klassen

Obere Klassengrenze g\ Klassenmitte q\ Klassenhäufigkeit n\ Summenhäufigkeit F\ Normalverteilung

absolut % von q absolut % von q absolut % von N absolut % von N n] °/0 von N Fi o/o von N

0,2
0 0 0,2

3,1 5,8 0 0 0,9
äussere 6,4 17,5 0 0 1,1

10,7 29,3 11 4,9 3,9
15,0 41,1 11 4,9 5,0

19,3 52,9 19 8,4 11,2
23,6 64,7 30 13,3 16,2

27,9 76,4 59 26,3 20,9
32,2 88,2 89 39,6 37,1

36,5 100,0 66 29,3 25,8
innere 40,8 111,8 155 68,9 62,9

45,1 123,6 34 15,1 20,9
49,4 135,3 189 84,0 83,8

53,7 147,1 25 11,1 11,2

gM 58,0 158,9 214 95,1 95,0

62,3 170,7 7 3,1 3,9
66,6 182,5 221 98,2 98,9

70,9 194,2 0 1,0 0,9
75,2 206,0 223 99,2 99,8

äussere 79,5 217,8 1 0,4 0,2
83,8 229,6 224 99,6 100,0

88,1 241,4 1 0,4
92,4 253,1 225 100,0



170 Bull. Schweiz, elektrotechn.Ver. Bd. 39(1948),Nr. 6

g5=15 und 95 °/o die Grenze g95 58 nicht
übersteigen. Die Grundspanne errechnet sich somit zu

G90 58 — 15 43

Für eine überschlägige Untersuchung genügt eine
5er Teilung der Grundspanne. Somit wird die
Klassenbreite

w — 90
43

5
8,6

Die sich daraus ergebenden oberen Klassen-

f'enzen gj und Klassenmitten qj, sowie die aus der
uszählung resultierenden Klassenhäufigkeiten n}

und Summenhäufigkeiten Fj sind in Tabelle X
zusammengestellt. Um die graphische Darstellung zu
erleichtern, figurieren daneben die relativen Werte,
bei Klassenmitten und Klassengrenzen in Prozenten
des Durchschnittes, bei den Häufigkeiten in
Prozenten des Umfanges der Stichprobe. Zur Kontrolle
sind die bei normaler Verteilung zu erwartenden
Häufigkeitswerte in Prozenten von N angeführt.

Im Wahrscheinlichkeitsnetz von Fig. 13 sind die
Werte der Tabelle X graphisch aufgetragen.
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Darstellung der Mlschverteilung nach Tabelle X
——— Misehverteilung

Normal Verteilung gleicher Grundspanne
(bzw. Streuung)

a einlache Häufigkeit b Summenhäufigkeit

Im Bereiche der Grundspanne G90, d. h.
zwischen den Grenzen g5 und g95 weichen die tatsächlichen

Kurvenwerte (volle Kurve) nicht sehr stark
von den für eine normale Verteilung zu erwarten¬

den Werten ab (gestrichelte Kurve). Wenn der
Umfang der Stichprobe wächst, tritt auch in den
äusseren Teilungsklassen eine weitgehende Angleicliung
an die Normalwerte ein.

Aus der Kenntnis der Grundspanne G90 lässt
sich die mittlere quadratische Abweichung s
kontrollieren. Die Grundspanne G90 entspricht dem
Bereich q 4- 1,645 s, innerhalb welchem bei
normaler Verteilung 90 °/o aller Werte liegen müssen.
Somit ist

g5 — q — 1,645 s

Ä95 q + 1,645 s

36,5 —1,645 s

36,5 + 1,645 s

oder in Zahlen

8r> 15,0

g95 58,0

woraus sich ergibt

s 13,08
und s2 171

Gegenüber den «klassisch» errechneten Werten
beträgt der Unterschied 0,05 oder 0,4 °/o für s und
rund 1,0 oder 0,6 % für s2. Diese Unterschiede
sind also vernachlässigbar klein.

Aber auch rein graphisch kann die Streuung
direkt ermittelt werden. Bei normaler Verteilung
müssen 68,3 °/o aller Werte innerhalb der Grenzen

q + s liegen. Auf der Summenhäufigkeitskurve
(bzw. -geraden im Wahrscheinlichkeitsnetz)
entspricht also q + s einem F q + s 84,15 °/o und
q — s einem F q _ s 15,85%. Die Spanne
zwischen den Abszissen dieser beiden F-Punkte ist
somit gleich 2 .s. In Fig. 13 ist diese Spanne rund
70% von q oder 25,6, womit s 12,8 wird. Bei
grösserem Statistikumfang würde auch dieser rein
graphisch ermittelte Wert sich dem theoretischen
Wert besser nähern.

Der Vorteil der geschilderten graphischen
Methode liegt in ihrer Einfachheit, aber auch darin,
dass es genügt, die leicht zu erhaltenden Häufig-
keits- und Summenhäufigkeitskurven im
Wahrscheinlichkeitsnetz zu zeichnen, um auf den ersten
Blick zu erkennen, ob die Verteilung normal oder
annähernd normal ist, oder ob sie Unregelmässigkeiten

aufweist, die auf eine Mischverteilung
hindeuten. Die Zerlegung solcher Mischverteilungen
in eine Anzahl normaler Verteilungen ist erst durch
die Anwendung des Wahrscheinlichkeitsnetzes auf
eine einfache und elegante Art möglich gemacht
worden. Diese Zerlegung erlaubt, wertvolle Schlüsse
auf die Auswirkung von Faktoren, die bei der
Untersuchung vorerst nicht berücksichtigt wurden, zu
ziehen.

9. Analyse von Häufigkeitsverteilungen mit
Hilfe des Wahrscheinlichkeitsnetzes

a) Allgemeines
Das Beispiel von Fig. 13 zeigt, dass, zumal beim

Energieverbrauch, wo stets mehr als ein Faktor im
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Spiele steht, die die Verteilung der spezifischen
Verbrauchswerte wiedergebende Häufigkeitskurve
stets mehr oder weniger von der normalen Verteilung

nach der Gaußschen Formel abweicht. Die
Erfahrung zeigt ferner, dass die «Anomalien» der
Kurven in der Regel auch hei starker Vermehrung
des Statistikumfanges weiter bestehen bleiben.
Wohl verschwinden mit zunehmendem Umfang
infolge zuverlässigerer Mittelwertbildung die kleinen

Unregelmässigkeiten, vor allem bei den untersten

und obersten, meist schwach besetzten Klassen,

aber die grossen, typischen Abweichungen vom
normalen Kurvenverlauf behaupten sich.

Diese Erscheinung darf keineswegs als ein
Versagen der Gaußschen Fehlertheorie gedeutet werden.

Läge z. B. für den Beleuchtungsenergieverbrauch

nur ein beeinflussender Faktor, z. B. die
Raumzahl, vor, so müsste die Häufigkeitsverteilung
unbedingt normal ausfallen. Sobald sich aber weitere

Faktoren hinzugesellen, z. B. die Raumgrösse,
die Ausdehnung der Installation, die Lebensgewohnheiten

der Abnehmer usw., so müssen diese eine
Veränderung der Verteilung hervorrufen. Diese
Einflüsse weitgehend herauszuschälen und zu deuten

gestattet die nachfolgend beschriebene analytische

Methode.
Wie jede Schwingungskurve nach der Fourier-

schen Analyse als eine Summe reiner Sinuskurven
verschiedener Phasen, Frequenzen und Amplituden
betrachtet werden kann, so lässt sich auch jede
beliebige Häufigkeitskurve (als Bild eines beliebigen
Urkollektivs) in einzelne normale Häufigkeitskurven

(als Bilder normaler Teilkollektive) mit
verschiedenen Durchschnitten, Streuungen (bzw.
Grundspannen) und Scheitelwerten (bzw. Umgängen)

zerlegen. Die Deutung der charakteristischen
Grössen der Teilkollektive erlaubt dann, auf die
Eigenschaften des Urkollektivs Rückschlüsse zu
ziehen.

Nebst statistisch-mathematischem, also rein
handwerksmässigem Geschick verlangt diese
graphisch-rechnerische Analyse, und noch viel mehr
die Deutung der Ergebnisse, eine gründliche
Beherrschung der untersuchten Materie und viel
Verständnis für ihre inneren Zusammenhänge.

b) Das Werkzeug
Von wesentlicher Bedeutung für die Kennzeichnung

einer normalen Häufigkeitskurve sind die
Grundspanne G90, die ein praktisches Mass für
die Streuung bildet, und der Umfang des durch die
Kurve dargestellten Kollektivs.

Zu den beiden Endpunkten der Grundspanne
G90 einer normalen Häufigkeitskurve, als Abszissen

genommen, gehören zwei gleich grosse Ordinateu,
die in einem bestimmten Verhältnis zu dem dem
Durchschnitt q zugeordneten Scheitelwert nm der
Kurve stehen.

Nach Tabelle VI hat der Scheitelpunkt der Kurve
die Ordinate

f —
1

J rn r—
s | 2jt

Die Endpunkte g5 und g95 der Grundspanne G90

entsprechen den Abszissenwerten q — 1,645 s und

q -f- 1,645 s. Setzt man diese Werte in Formel (26)
ein, so erhält man

1 _
1,6452

— fg 95/.05
; Y 2 jt

und das gesuchte Verhältnis ergibt sich zu

/90 —
fg05

1,6452

- 2

fm
0,258 oder rund 0,26

(46)
Das Wertvolle an dieser Beziehung ist, dass der
Faktor y90 konstant und von der Streuung
unabhängig ist.

Ebenso kann nachgewiesen werden, dass bei
normaler Verteilung der Umfang N in einer bestimmten

Beziehung zum Scheitelwert fm steht, die aber
von der Streuung abhängt. Die Beziehung lautet

N fm s \2jj
Für praktische Berechnungen, bei denen die
Variabein in Klassen von der Breite tu eingeteilt sind,
wobei die grösste Klassenhäufigkeit (Scheitelwert)
mit rim bezeichnet wird, schreibt sich die Formel

n —— s y 2 TT

w

Da aber G90 2 1,645 s und ]/ 2 71 rund 2,5
ist, so erhält man

N 0,76 G90HU w
(47)

Für die rasche Skizzierung einer normalen
Häufigkeitskurve im Wahrscheinlichkeitsnetz ist es
noch nützlich zu wissen, dass ausserhalb der Grundspanne

die beiden Kurvenäste praktisch gradlinig
verlaufen.

c) Die Darstellung
Bei der graphischen Darstellung ist es hier nicht

nötig, von der Grundspanne des Urkollektivs
auszugehen, und diese in 5, 10 oder 20 Teile zu teilen,
um die Klassenbreite zu erhalten. Es ist sogar
vorteilhafter, hiefür eine runde ganze Zahl zu wählen,
1, 2, 5 oder 10, je nach Grösse der Variabein.

Wichtig ist nur, die Breite der Klassen nicht
zu klein zu wählen, da sonst auf jede Klasse,
besonders auf die äussersten, zu wenig Einzelwerte
entfallen, so dass die Kurve unter Umständen
zackig wird. Anderseits darf die Unterteilung nicht
zu grob sein, sonst verschwinden die charakteristischen

Unregelmässigkeiten der Kurve. Mit einiger
Uebung ist es nicht schwer, die Klassenbreite dem
gewünschten Feinheitsgrad der Untersuchung
anzupassen.

Für die rasche und genaue Aufzeichnung der
Teilkollektive mit normaler Verteilung kann die
5er oder 10er Teilung der Grundspanne gute
Dienste leisten, da die einzelnen Punkte aus der
Tabelle IX herausgelesen werden können. Dabei
muss aber der abgelesene Tabellenwert entspre-
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chend dem Verhältnis der Klassenbreite des
darzustellenden Teilkollektivs zur Klassenbreite des
vorhandenen Urkollektivs und vom Umfang des

Teilkollektivs zum Umfang des Urkollektivs, sowie
dem für die Häufigkeit gewählten Maßstahe,
umgerechnet werden.

Da für die Darstellung der Kurven die untere
Hälfte des Wahrscheinlichkeitsnetzes (0...50 °/o) j

verwendet wird, wählt man als Maßstab für die
Klassenhäufigkeit, die zweckmässig in absoluten
Zahlen ausgedrückt wird, ein ganzes Vielfaches des
vorhandenen Prozentmaßstabes, dermassen, dass der
Kurvenscheitel nicht über die 50 °/o-Linie hinausragt,

aber möglichst nahe an diese herankommt
(hei nm 120 setzt man z. B. 125 50 % und hei
nm 160, 200 oder 250 50°/o).

In den meisten Fällen ist es angezeigt, die
Häufigkeitskurve des Urkollektivs auszugleichen, vor
allem wenn sie wegen zu kleinen Umfangs etwas
zackig ausfällt. Sehr oft genügt eine Verschiebung
der Klassengrenzen um eine halbe Klassenbreite,
um nach erneuter Auszählung eine weitere Punkt-
reihe zu erhalten, die es erlaubt, eine stetige Kurve
zu zeichnen. Genügt dies nicht, so können noch die
Klassen je zu zweien •zusammengenommen werden,
was im entsprechenden Maßstab eine weitere Punkt-
reilie ergibt. Mitunter kann es auch nötig sein, die
Summenhäufigkeitskurve zur Ausgleichung
heranzuziehen, indem man die auffällig daneben géra- |

tenen Punkte berichtigt und hierauf die einfache
Flänfigkeitskurve zurückkonstruiert.

d) Das Vorgehen bei der Analyse

In der Regel verrät das Aussehen der die Misch- |

Verteilung darstellenden, ausgeglichenen Urkurve, j

wo das wichtigste, oder vielleicht auch schon, wo
die anderen Teilkollektive liegen können. Anhaltspunkte

dafür liefern die verschiedenen Buckel und
der Verlauf der äussersten Kurvenäste.

Ist nur ein Teilkollektiv ohne weiteres erkennbar,

so wird dieses zunächst von Hand einskizziert,
mit Scli eitel und ungefährer Oeffnung. Die unter
b) abgeleiteten Beziehungen erlauben, die Grundspanne

und dann den Umfang zu bestimmen,
worauf die Kurve genau gezeichnet werden kann,
sei es durch Heranziehung der 5er oder 10er
Teilung der Grundspanne, oder über den Umweg der
Summenhäufigkeitsgeraden. Mit der durch
Subtraktion erhaltenen Restkurve wird gleich verfahren,

Iiis alle Teilkollektive ermittelt sind. Wenn
nötig, werden an den einzelnen Teilkollektiven
noch Korrekturen angebracht, bis die Summenkurve

mit der Urkurve praktisch übereinstimmt.

Wenn sich die Teilkollektive alle sofort erkennen

lassen, so werden sie miteinander einskizziert.
Aus Scheitelwert und Grundspanne wird der
Umfang jedes Teilkollektivs ermittelt; die Summe
muss den Umfang des Urkollektivs ergeben. Diese
erste Kontrolle vor dem genauen Zeichnen der
Teilkurven erspart in der Regel spätere Korrekturen.
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e) Zahlenbeispiel
Als Beispiel diene wiederum die schon mehrfach

verwendete Statistik (Tabelle IV) mit folgenden
Charakteristiken :

Umfang N 225

Durchschnitt q 36,5

Streuung s2 169,99.

Wenn die Klassenbreite w zu 20°/o des gleich
100 °/o gesetzten Durchschnittes q gewählt wird, so

ergibt sich folgende Urverteilung:
Tabelle XI

Obere Klassengreiizegi 30 50 70 90 110 130 150 170 190 210 230 250

Klassenmitte qi 20 40 60 80 100 120 140 160 180 200 220 240

Klasseiihänfigkeit n,- 6 12 20 53 57 30 27 13 4 1 1 1

Nach dem Ausgleichen durch Verschieben der
Klassengrenzen und durch Zusammenlegen je
zweier Nachbarklassen ergibt sich die in Fig. 14

gestrichelt gezeichnete Kurve. Entsprechend dem
grössten Wert von n: 57 wurde für den
Häufigkeitsmaßstab 50 °/o 100 gesetzt.

%

Zerlegung einer Mischverteilung U
in drei Normalverteilungen 1, II und III

K einfache Häufigkeit S Summenkäufigkeit

Die gestrichelte Häufigkeitskurve des spezifischen

Energieverbrauches pro Raum ist unregelmässig.

Es liegt also eine Mischverteilung vor. Der
Kurvenverlauf lässt vermuten, dass es sich hier um
mindestens drei Teilkollektive handelt. Die
Auswertung nach dem geschilderten Verfahren bestätigt

in erster Annäherung diese Annahme lind führt
zu folgendem Ergebnis:
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Scheitelwert nm
Abszisse qm des Sclieitel-

wertes (Durchschnitt)
Grundspanne Ggo

Umfang N

Kurve I
30

125
90

103

Kurve II Kurve III
47

86
56

100

12

40
48
22

Die drei Teilkurven K I, K II und K III sind in
Fig. 14 voll ausgezogen, ebenso die zugehörigen
Summenhäufigkeitsgeraden S I, S II und S III. Der
Umfang des durch Summierung /1er drei Teilkurven

erhaltenen neuen Kollektivs T (Fig. 14)
errechnet sich zu 225. Aus der zugehörigen
Summenhäufigkeitskurve S lässt sich die Grundspanne des
neuen Summenkollektivs T zu Ggo 118 °/o oder
43,1 kWh/GE ermitteln.

Das Ergebnis der rechnerischen Kontrolle zeigt
Tabelle Xli.

apparate aufweisen. Dies geht auch aus dem relativ

schwachen spezifischen Energieverbrauch dieser

Gruppe pro Flauptraum hervor. Das mittlere
Kollektiv K II, das rund 44°/o aller Abonnenten
umfasst, stellt mit grosser Wahrscheinlichkeit die
Abnehmer dar, die neben der Beleuchtung einen
regen Gebrauch von ihren Kleinapparaten, z. B.

von Bügeleisen, Staubsauger und Radio, machen.
Der mittlere spezifische Verbrauch dieser Gruppe
stellt sich auf 31,4 kWh pro Hauptraum, was für
eine Wohnung mit 5 Haupträumen (4 Zimmer mit
Küche, ohne Bad oder 3 Zimmer mit Küche und
Bad) einem mittleren Jahresverbrauch von 157

kWh entspricht. Das Kollektiv K III schliesslich
dürfte diejcnigenAbonnenten gruppieren, die neben
der Beleuchtung und den Kleinapparaten auch noch
Raumheizung in mässigen Grenzen betreiben; sie

Tabelle XII

Obere Klassengrenze gj 30 50 70 90 110 130 150 170 190 210 230 250

Klassenmitte qj 20 40 60 80 100 120 140 160 180 200 220 240

Klassenhäujigkeiten n, (absolut)
ausgeglichene Urkurve U 5,8 11,8 19,8 53,0 57,0 30,8 26,8 13,4 4,2 1,4 0,7 0,3

Teilkurve KI
Teilkurve K II
Teilkurve K III 5.5

0,3

1,8

11,0

2.0

15,5

5.1

8,0

41,7

0,4

19,9

32,8

28,8
7,7

25,3

0,5

13,5 4,3 0,8 0,1

Summenkurve T 5,5 13,1 22,6 50,1 52,7 36,5 25,8 13)5 4,3 0,8 0,1

Aus der Grundspanne G,,0 43,1 des Summen- j

kollektivs T errechnet sich die mittlere quadratische

Abweichung zu

s ——= 13,08
2 -1,645

was mit dem früher ermittelten \\ erte (13,03) sehr j

gut übereinstimmt.
Die Deutung des Ergebnisses ist hier nicht

schwer. Das Urkollektiv kann als die Summe von
drei Teilkollektiven normaler Verteilung angesehen
werden, die sich um die spezifischen Verbrauchswerte

40 °/o 14,6 kWli^GE, 86 °/o 31,4 kWh/GE
und 125 °/o 45,7 kWh/GE scharen (1 GE 1

Hauptraum). Das Kollektiv mit dem kleinsten
spezifischen Verbrauch (K III) ist schwach besetzt,
die beiden anderen ungefähr gleich stark. Die
Kollektive K III und K II weisen eine ziemlich starke
Konzentration auf, während das Kollektiv K I
wesentlich stärker streut.

Da es sich hei dieser Untersuchung um den am
Licht - Doppeltarifzähler gemessenen Energieverbrauch

im Haushalt handelt, unter Ausschluss von
Küche und Warmwasserbereitung, können die drei
ermittelten Teilkollektive nur Abonnentengruppen
mit verschiedenen Verbrauchseigenschaften darstellen.

Das Kollektiv K III, mit dem kleinsten
Umfang (rund 10°/o des Gesamtumfanges) dürfte
diejenigen Abonnenten umfassen, die neben

_
dem

eigentlichen Beleuchtungsverbrauch keinen
nennenswerten oder gar keinen Konsum für Klein¬

machen rund 46 °/o aller Abnehmer aus. Für eine
Wohnung mit 5 Haupträumen beträgt in diesem
Falle der mittlere Jahresverbrauch 228,5 kWh.

Nimmt man mangels genauerer Angaben an, die
Verteilung der verschiedenen Wohnungskategorien
sei in allen drei Teilkollektiven identisch und gleich
der Verteilung im Gesamtkollektiv, so ergeben sich
die in Tabelle XIII zusammengestellten Werte.

Tabelle XIIT

Kollektiv
Anteil am

Gesamtkollektiv

%

Anzahl der
Haupträume

Mittl. spez.
Verbrauch

pro Hauptraum
kWh

jahres-
verbrauch

pro Kollektiv
kWh

III 10 103 14,6 1504

II 44 454 31.4 14256

I 46 475 45,7 21707

Total 100 1032 36.3 37467

Diese Werte stimmen mit den früher auf andere
Arten ermittelten Werten ziemlich gut überein
(mittl. spez. Verbrauch 36,5 lcWh/GE und
Gesamtverbrauch 37 293 kWh).

Die durchgeführte Analyse erlaubt weiter, den
mutmasslichen mittleren Energieverbrauch pro
Hauptraum, je für Beleuchtung, Kleinapparate und
Zusatzheizung in der Uehergangszcit (denn 1938
wurde noch nicht so intensiv elektrisch geheizt, wie
während und nach dem zweiten Weltkrieg) zu
ermitteln. Die Differenzbildung zwischen den drei
Teilkollektiven ergibt für
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Beleuchtung: 14,6 kWh/Hauptraum
Kleinapparate : 16,8 kWh/Hauptraum
Zusatzheizung : 14,3 kWh/Hauptraum

Mit diesen Zahlen fällt es nicht schwer, für jede
Wolinungsgrösse die entsprechenden Werte zu
berechnen.

f) Schlussbemerkung
Eine solche mathematisch-statistische

Untersuchung des Haushaltenergieverbrauches ist
unseres Wissens noch nie durchgeführt worden. Es
dürfte sicher von Interesse sein, oh die so ermittelten

Zahlen mit den praktischen Erfahrungen
übereinstimmen. Sollte dies zutreffen, so wäre mit der
geschilderten Methode ein wirkungsvolles Instrument

geschaffen, um die Struktur des Energieverbrauches

ohne umfangreiche und langwierige
statistische Erhebungen (im landläufigen Sinne des

Wortes) zu untersuchen.
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Studie über den Parallelbetrieb der Kraftwerke der Bernischen
Kraftwerke A.-G.

Von Ch. Jean-Richard, Muri (BE) 621.3.016.32:621.311.21(494.24)

Der Parallelbetrieb der einzelnen Kraftwerke der BKW
(Bernischen Kraftwerke A.-G.) erfolgt über ein 45-kV-Netz, das
aus mehreren parallel geschalteten Maschen besteht. An drei
Stellen dieses Netzes ist es angezeigt, die Spannung bei einem
mittleren Leistungsfaktor konstant zu halten. An den übrigen
Stellen sollte die Blindleistung in Abhängigkeit der 1Virk-
leistung so reguliert werden, dass die Blindleistung in Richtung

der Verbraucher fliesst.
Die systematische Verwendung automatischer Regler, seien

es Spannungs- oder Blindleistungsregler, und von «Deltavar»-
Relais für die automatische Wahl der Regulierart tveist den
Vorteil auf, den Betrieb der Netze gleichzeitig einfacher,
wirtschaftlicher und ausgeglichener zu gestalten.

La marche en parallèle des centrales des Forces Motrices
Bernoises s'effectue au moyen d'un réseau à 45 kV, formé
de plusieurs mailles, mises en parallèle. A trois endroits de
ce réseau il est opportun de maintenir la tension constante
pour une valeur moyenne du facteur de puissance. Aux autres
endroits il y a lieu de régler la puissance réactive en fonction
de la puissance active dans le but d'orienter le flux de la
puissance réactive vers les consommateurs.

L'emploi systématique de régulateurs automatiques, soit
de tension soit de puissance réactive et de relais «Deltavar»
pour le choix automatique du mode de réglage, présentera
l'avantage de rendre l'exploitation des réseaux à la fois plus
simple, plus économique et plus stable.

Die Bernischen Kraftwerke A.-G. (BKW) betreiben

8 Kraftwerke. Zwei davon befinden sich am
einen Eckpunkt eines dreieckförmigen 150-kV-
Netzes. Ihre verfügbare Leistung beträgt 260 MW
und die jährlich mögliche Energieerzeugung
800 000 MWh. Die Ausdehnung des Netzes umfasst
628 km (einfache Leitungslänge). In der Regel sind
auf den Masten zwei Stränge montiert. Die relative
Nachleistung beträgt 41 MVar hei 150 kV.

Die sechs anderen Kraftwerke befinden sich
längs der grossen Wasserläufe, die den Kanton
Bern durchziehen. Ihre Leistung beträgt 79 MW
mit einer jährlich möglichen Energieerzeuguna von
460 000 MWh.

Die grösste Belastungsspitze der Netze der BKW
betrug im August 1947 329 MW.

Die sechs Kraftwerke sind miteinander durch
ein mehrfach vermaschtes 45-kV-Netz verbunden.
Ausserdem speist jedes Kraftwerk, wie auch ver¬

schiedene 45/16-kV-Unterstationen, je einen Teil
eines 16-kV-Netzes. »

An den 16-kV-Sammelschienen dieser Kraftwerke
ist die Spannung nach einem Wochenprogramm
vorgeschrieben, welches von Hand eingestellt und
durch automatische Spannungsregler einreguliert
wird. Dieses Verfahren kann mit Recht als das klas-

i sische bezeichnet werden. Es wurde schon im
Anfang des elektrischen Netzbetriebes angewendet,
als die Bedürfnisse noch durch Abnehmer bestimmt
wurden, deren Energiekonsuni sich nach, einem
festen Tagesprogramm abwickelte.

Es ist klar, dass die Verwendung von
automatischen Spannungsreglern an den 16-kV-Sammel-
schienen der Unterstationen gute Resultate liefert.

Die beiden Kraftwerke, welche an das 150-kV-
Netz angeschlossen sind, weisen eine genügende
Leistung auf, um dem ganzen Netz die Spannung
in der Weise aufzudrücken, dass sie an einem
bestimmten Punkt desselben konstant bleibt.
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