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Die Spannungsbeanspruchung der Eingangsspulen von Wicklungen beim
Auftreten von Stoßspannungen verschiedener Steilheit

Von M. Wellauer, Zürich 621.3.015.33 : 621.313.045

Bei der Konstruktion elektrischer Maschinen und
Transformatoren ist es wichtig, die Grösse der Windungsspannungen

zu kennen, die z. B. beim Auftreten von Gewitterüberspannungen

entstehen können. Der Autor entwickelt,
ausgehend von den einfacheren Verhältnissen einer
Zweiwindungsspule, die für die Praxis geeigneten Berechnungsgrundlagen.

Anschliessend wird durch Messergebnisse die Ueber-
einstimmung zwischen Theorie und Praxis nachgewiesen.

Pour la construction de machines électriques et de
transformateurs, il est important de connaître la valeur des
tensions entre spires, qui peuvent se présenter par exemple
lors de l'apparition de surtensions atmosphériques. Partant
du cas le plus simple d'une bobine composée de deux spires,
l'auteur établit les bases d'un calcul pratique. Les résultats
de mesures prouvent que la théorie concorde bien avec la
pratique.

1. Einleitung
Für die Kenntnis der Sicherheit der Maschinenisolation

gegenüber Gewitterüberspannungen ist es

nötig, sich über die Spannungsbeanspruchungen
zwischen den Windungen beim Eintreffen einer
Stoßspannung am Eingang der Wicklung ein genaues
Bild zu machen. Nur bei Kenntnis der dabei
auftretenden Windungsspannungen kann der Konstrukteur
die Windungsisolation richtig bemessen. Es ist allgemein

bekannt, dass die Beanspruchungen um so
gefährlicher sind, je steiler die ankommende Ueber-

spannung ist. Bekannt ist auch, dass die Steilheit der
ankommenden Stoßspannung beim Einziehen in die
Wicklung abgeflacht wird. Langsam ansteigende
StoßSpannungen sind für die Windungsisolation
ungefährlich. Diese allgemeinen Vorstellungen nützen
aber nicht viel, wenn die Beziehungen zwischen der
Stirnzeit, der Grösse der Windungsspannungen und
den Eigenschaften der Wicklung nicht bekannt sind.
Es ist der Zweck der vorliegenden Arbeit, diese
Zusammenhänge der Rechnung zugänglich zu machen.

Die Windungsspannungen lassen sich einigermas-
sen genau berechnen, wenn ein Rechteckstoss, d. h.
eine Stoßspannung mit der Stirnzeit Null und
unendlich langem Rücken auf die Wicklung trifft. Für
diesen Fall stellt die Wicklung einen Kettenleiter
dar, bestehend aus Windungs- und Erdkapazitäten,
wie dies Fig. 1 zeigt. Die Spannungsverteilung längs

if:2

Fig. 1

Kondensatorkette
der Ersatzschaltung
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der Wicklung ist dann ganz ähnlich wie z. B. in
einem Hängeisolator und lässt sich einfach berechnen.

Natürlich sind die Längs-(Windungs") und
Qüer-(Erd-)kapazitäten nicht so einfach zu bestimmen

wie bei einem Hängeisolator. Aber hei gleich-
mässigen Wicklungen, z. B. der eines Generators mit
Einlagenspulen, lassen sich die Windungs- und
Erdkapazitäten doch praktisch genügend genau berechnen.

Bei bekannter Erd- und Windungskapazität
kann die Spannungsverteilung längs der Wicklung
einfach berechnet werden und man erhält, wenn Uo

die Höhe des auftreffenden Rechteckstosses ist:

bei isoliertem Ende der Wicklung,

cosh(n—m)g
Um, 0 G \cosh Tig

bei geerdetem Ende der Wicklung.

sinh (n—m) g
*m, 0 u

(1)

(2)
sinh ng

V berechnet sich aus dem Reflexionsgesetz

U=Vo Zm/(Z+Zm) (3)

wo Z und Zm die Wellenwiderstände der Leitung
bzw. der Wicklung sind.

In (1) und (2) ist n die totale Windungszahl der
Wicklung pro Strang, m gibt die Windungsnummer
an, gezählt vom Wicklungsanfang (m 0) an. Den
Uehertragungsfaktor g erhält man aus

cosh g 1 cj 2 cu (4)

wo ce die Erdkapazität (pro Windung) und cw die
Windungskapazität sind. Da das Produkt ng praktisch

immer viel grösser als 1 ist, lässt sich schon
für ng>4 der folgende einfache Ausdruck für die
grösste Windungsspannung, die an der ersten
Windung auftritt, gewinnen:

U (1—e"®) (5)

Für kleine Werte von ce/2cw kann man die
Windungsspannung uwl an der ersten Windung aus (4)
und (5) wie folgt angenähert berechnen. Es ist

cosh g 1 -)- ce 12 cw ^ 1 + g2 / 2 (4a)

Dadurch wird g «=< \/cejcw und

G (1-e~«)~U [1- (1-g)] ~ Utcjcw (6)

Diese einfachen Ausdrücke sind nur gültig für
einen Rechteckstoss.

In Netzen treten nun keine Rechteckstösse auf
und auch im Laboratorium sind Stoßspannungen mit
Stirnzeiten von 0,1 jus und weniger sehr schwer
herzustellen. Auch bei Ueberschlägen, d. h. bei
abgeschnittenen Stoßspannungen erhält man Stirnzeiten
von mehr als 0,2 jus. Wie man aber sehen wird,
kommt es bei der Windungsbeanspruchung weniger
auf die absoluten Werte der Stirnzeit an, sondern
darauf, in was für einem Verhältnis diese Stirnzeit
zu den Eigenschaften der Wicklung steht.
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2. Die Zweiwindungsspule
Die genaue rechnerische Behandlung einer Spule

(Wicklung) mit vielen Windungen mit Selbst- und
gegenseitiger Induktivität und mit Windungs- und
Erdkapazität ist schwierig und umständlich, weil
man die magnetischen Verkettungen nicht mehr
vernachlässigen kann. Die Wicklung erscheint als

schwingungsfähiges Gebilde, das durch einen Span-
nungsstoss in Eigenschwingungen gerät. Die Stärke
dieser Anregung hängt natürlich von der Form der
Stoßspannung ab, in erster Linie von ihrer Steilheit,
d. h. der Länge der Stirnzeit. Aus diesen Gründen
soll zuerst versucht werden, ob man aus der Berechnung

der Windungsspannungen an einer
Zweiwindungsspule einige Festsellungen machen kann, die
für die Kenntnis der Verhältnisse bei Spulen mit
vielen Windungen nützlich sind.

Fig. 2

Ersatzschaltung für die
Zweiwindungsspule

U angelegte Stoßspannung;
L Selbstinduktivität einer

Windung;

M gegenseitige Induktivität;
Cw Windungskapazität;
C• Erdkapazität.

Bei der Zweiwindungsspule (Fig. 2) sei L die
Induktivität einer Windung und M die gegenseitige
Induktivität zwischen den beiden Windungen, Cw die
Windungskapazität und Ce die Erdkapazität jeder
Windung. Die Stoßspannung zwischen Anfang und
Ende der Spule soll die Form einer exponentiell
ansteigenden Spannung der Höhe U mit der Zeitkonstanten

T und unendlich langem Rücken haben
(Fig. 3). Sie entspricht der Gleichung

u=U (1 —e-"7) (7)

T ist ein Mass für die Stirnzeit dieser Stoßspannung.
Bezeichnet man die Stirnzeit (oft auch Frontdauer

5)

t

0 \T ZT 3 T AT
sevti.i,ta «

Fig. 3

Stoßspannung mit exponentiellem Anstieg
u Stoßspannung, gemessen zwischen Anfang und Ende der

Wicklung; U Maximalspannung; T Zeitkonstante; t Zeit.

genannt) mit Ts und berücksichtigt man deren
Definition '), so erhält man

Ts 2,74 T (8)

Für eine solche Stoßspannung lassen sich die
Windungsspannungen genau berechnen und man erhält
z. B. für die Windungsspannung der ersten Windimg
(siehe Anhang)

1 Regeln für Spannungsprüfungen, SEV Publ. Nr. 173.

uwi (1cos 2 7t 11 Tk -|-

—f- A2 sin 2 ji tj Tk-\-A3 e~,/7) (9)

Die Koeffizienten A1, A2, As sind nur abhängig
vom Kapazitätsverhältnis 2 Cw/Ce und vom Verhältnis

T/Tk.Tk ist die Periode der Eigenschwingung
der Spule, die aus später erkennbaren Gründen als
«kritische Periode» bezeichnet und aus dem folgenden

Ausdruck (10) berechnet wird.

Tk 2 Jt y + Cwj L (1-/4 (10)

wo ju M/L die Verkettung der beiden Windungen
angibt. Das Verhältnis T/Tk setzt also die Zeitkonstante

der Stoßspannung in Beziehimg zur Periode
der Eigenschwingung der Spule. Bei gegebenem
Kapazitäts-Verhältnis Cw/Ce werden die
Windungsspannungen nur durch das Verhältnis T/Tk
bestimmt, wie dies aus den folgenden Fig. 4 bis 8 für
ein Verhältnis Cw/Ce 1 gut zu erkennen ist.

T

///
/

/

//

0 „t 27* 37*
3£V1*ft9

Fig. 4

Zeitlicher Verlauf der Windungsspauiiung der ersten Windung
(für den Fall T/Tk 1)

Wwi Windungsspannung; a Exponentialkurve des mittleren
Spannungsanstiegs; U angelegte Stoßspannung; T Zeit-

konstante; Tk Eigenschwingungsperiode; t Zeit.

Fig. 4 zeigt den zeitlichen Verlauf der Windungsspannung

uwl für ein Verhältnis T/Tk 1, d. h. die
Stirnzeit der Stoßspannung ist gleich gross wie die
kritische Periode der angeregten Eigenschwingung
der Spule. Die exponentiell ansteigende Kurve a
entspricht einer Spannung, die ohne jede Schwingung

T S1

1^7% y

////
1/

0 _. 17* ZTk 3Tk
sevt**so

Fig. 5

Zeitlicher Verlauf der Wlndungsspannuiig der ersten Windung
(für den Fall TITy -- %)

Bezeichnungen wie in Fig. 4

vom Anfangszustand Null in den Endzustand übergeht,

bei dem die Spannung einer Windung natürlich

gleich der halben totalen Spannung — sein
z

muss. Man sieht, dass die Windungsspannung uwl
schwach, um diesen exponentiellen Anstieg schwingt.

CeT= Ce=^=

SEV K

T
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Die Periode dieser Schwingung ist Tk. Die
Windungsspannung der zweiten Windung uw2 sieht ähnlich

aus, nur befindet sich die überlagerte Schwingung

in Phasenopposition (siehe Fig. 6 und 7). Die

T Xwf yf

P /~UW1
' /'/IV

/ \

0,5 Th ' h

r\N.

=>hi

0
S£vt**at

0,5 7« 1 7*

r=U-
2 C,„

Fig. 8 gibt den Verlauf der Maximalwerte der
Windungsspannungen in Abhängigkeit von T/Tk
für zwei Kapazitätsverhältnisse Cw/Ce wieder.

Aus der Berechnung der Zweiwindungsspule kann
man nun folgendes feststellen:

2) Man muss sich bewusst sein, dass diese Zweiwindungsspule
eine Idealisierung darstellt, denn es gibt keine Spule

mit konzentrierten Windungskapazitäten und Windungsinduktivitäten.

Dieses Schema verliert seine Brauchbarkeit,
wenn wir zu Vorgängen übergehen, bei denen die Spule als
Gebilde mit verteilter Kapazität und Induktivität angesehen
werden muss. Dies ist der Fall, wenn die Stirnlänge der
Stoßspannung gleich einer Windungslänge wird (siehe
Anhang).

0 — h
S£V 1**91

Fig. 6

Windungsspanming einer Zwelwindungsspule
(TIT k 0,1)

Bezeichnungen wie in Fig. 4

folgenden Fig. 5 und 6 zeigen die Windungsspannungen
für Verhältnisse T<Tk, d. h. für kürzere

Stirnzeiten als die Periode Tk der Eigenschwingung der
Spule, bei denen die überlagerte Schwingung immer
ausgeprägter wird. Fig. 7 enthält die Windungsspannungen

für einen Rechteckstoss. Natürlich ist das
Ersatzschema der Spule für sehr kurze Stirnzeiten
nicht mehr brauchbar 2). Trotzdem erhalten wir aus

Fig. 7

Windungsspanniingen einer Zweiwindungsspule
(T 0)

Bezeichnungen wie in Fig. 4

Gleichung (9) den richtigen, durch die kapazitive
Spannungsteilung bestimmten Wert der
Windungsspannungen. Für T — 0 ist

Ce-Y-Cu,
(11J

a) Die Vergrösserung der Windungsspannungen über die
halbe Stoßspannung hängt bei gegebenem Verhältnis C„/C,
nur vom Verhältnis T/Tk ab. Je kleiner dieses Verhältnis
ist, desto mehr nähert sich die maximale Windungsspannung
dem der kapazitiven Spannungsverteilung entsprechenden

i i i i i i

0,01 0,02

sei"*+93

0,05 0,2 0,5 10

Fig. 8

Maximalwerte der Winduugsspanniiugeii einer Zweiwindungs¬
spule in Funktion des Wertes TITk

a) Kurve für den Fall Cw/C« 1,
Ce + Cw

bei T 0 wird ««ma* U _ _Ce "T" ^ Cw

b) Kurve für den Fall C«,/C. 4,
Ce + Cw

bei T — 0 wird »...,= [/
Ce + 2 Ce,

— 0,607 V

0,555 U

Wert. Für grössere Werte als T/Ty^2 ist die Spannungsverteilung

für alle Verhältnisse Cw/C, ungefähr linear, d. h. die
Windungsspannungen sind gleich gross und gleich der halben
Stoßspannung.

b) Die kritische Periode Ty ist von L, C„, C, und p
abhängig. Bei sehr guter Verkettung beider Windungen, d. h.
/J, 1 wird die kritische Periode sehr klein. Die Stoßspannung

muss also dann eine sehr kurze Stirnzeit haben, damit
die Windungsspannungen den linearen Wert übersteigen.

c) Bei einem ldeinen Verhältnis T/T, erreicht die
Windungsspannung schon innerhalb der ersten Periode das Maximum,

so dass bei grosser Dämpfung ein Unterschied der
Maximalwerte der beiden Windungsspannungen uwl und
uW2 eintreten kann. Die Dämpfung wirkt sich aber eher in
dem Sinne aus, dass sie den anfänglichen Unterschied der
beiden Windungsspannungen rascher ausgleicht.

3. Die Wicklung mit Zweiwindungsspulen
Geht man nun einen Schritt weiter und betrachtet

man eine ganze Wicklung mit hintereinandergeschalteten

Zweiwindungsspulen, wie sie schematisch

in Fig. 9 dargestellt ist, so soll angenommen

Ci.

C"

Ci. Ci.

..Cl

~c ~?~r f~r t ~t ~f~r

C"
• ^ uz

C'l

Fig. 9

Ersatzschaltung für Wicklung, bestehend aus
mehreren Zwciwindungsspulcn
Bezeichnungen wie in Fig. 2

werden, dass nur eine Verkettung der
nebeneinanderhegenden Spulen vorhanden ist. Fig. 10 und 11

zeigen zwei praktische Ausführungen, wobei die
erste Figur Teile einer Maschinenwicklung, die
zweite Teile einer Transformatorenwicklung wieder-
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gibt. Bezeichnet man die Konstanten der Windungen
einer Spule mit L', M', Cw', p und Tk' und die
entsprechenden Werte einer ganzen Spule (wobei eine
Spule als Einheit zählt) mit L" usw., so können
folgende allgemein gültige Aussagen gemacht werden:

Fig. 10

Anordnung einer Maschinenwicklung,

bestehend aus Zwei-
windungsspulen

Ci, Ci Erd- und Windungskapa¬
zität einzelner Windungen;

Ci, M" Windungskapazität und
gegenseitige Induktivität
zwischen zwei Spulen;

L' Selbstinduktivität einer
Windung;

L" Selbstinduktivität einer
Zweiwindungsspule.

a) Maschinenspule. Man erkennt aus Fig. 10 die
folgenden Beziehungen Cw'/Ce' <=« 1, die Windungen

liegen nahe aneinander und damit ist p » 1.

Man erhält damit

+ Cw L' (1 — p')

Für die Verhältnisse zwischen den Spulen gilt
C'w<<'/•: da die Kapazität zwischen den Spulen viel
kleiner ist als die Erdkapazität einer Spule. Die
magnetische Verkettung ist infolge der Rotorrück-

Fig. 11

Anordnung einer Transformator-

wicklung, bestehend aus Zwei¬

windungsspulen

Bezeichnungen wie in Fig. 10

wirkung und der schlechten Leitfähigkeit des Eisens
bei den in Frage kommenden Frequenzen klein und
die Verkettung ist auf den Spulenkopf begrenzt, wo
sie infolge des grossen Abstandes der Spule klein ist,
daher p" <<: 1. Damit erhält man

Vergleicht man nun beide kritischen Perioden,
C"

so wird, da Cû ^ £ und G" >> L' (1—P'), nul1

Ti << T'k'. f
b) Transformatorspule. Hier ist (siehe Fig. 11)

CJ,pC'e,p'^l und damit T'k^ 2 ri\C'w L' (1 — p')

C'é î p" <C 1 und damit T'hC" C-)L

Da C'w ^ und L" L' (1 — p) gilt für die
Transformatorspule ebenfalls n < t>'

Die kritische Periode der Windungen einer Spule
ist also in den meisten Fällen wesentlich kleiner als
die kritische Periode einer Spule der Wicklung.
Daraus schliesst man, dass eine Stoßspannung mit
genügend kurzer Stirnzeit in den Windungen einer
Spule eine lineare Spannungsverteilung mit gleichen

Windungsspannungen erzeugt, während die
Spannungsverteilung längs den Spulen der Wicklung
bereits einen vom linearen abweichenden Verlauf
annimmt 3).

4. Die gleichmässige Wicklung mit vielen
Windungen und Erdkapazität

a) Die «kritische Frequenz» einer Wicklung
Wagner und Rudenberg [1, 2, 3] 4) haben eine

Spule mit Erd- und Windungskapazität als einen
Kettenleiter nach Fig. 12 aufgefasst und die
Spannungen heim Auftreffen einer Rechteckstoßspannung

?=f= ^ Ce=r

I I

Sfyl4+S7

Fig. 12

Ersatzschaltung einer Wicklung mit vielen Windungen
U angelegte Stoßspannung: l, c«, e« Selbstinduktivität,

Windungskapazität und Erdkapazität einzelner Windungen.

berechnet. Sie haben gefunden, dass dieser Kettenleiter

mit so viel Eigenfrequenzen schwingt, als er
Glieder hat. Die höchste Eigenfrequenz bezeichnen
sie als kritische Frequenz. Deren Periode (die wir
als kritische Periode bezeichnen) berechnet sich
nach Rudenberg aus

Th— 2l cw-mce (12)

und wenn l m und cw ce ist, wird

2 7t \rr (13)

Nach Versuchen von Rücklin [4] ist die kritische
Frequenz so aufzufassen, dass, bei dieser Frequenz
angefangen, die Induktivität der Wicklung den
Spannungen einen überwiegenden Widerstand
entgegenstellt und die Wicklung mit zunehmender
Frequenz als kapazitiver Kettenleiter wirkt, oder
anders ausgedrückt, der kapazitive Querström wird
überwiegend und gibt der Spannungsverteilung einen
exponentiell verlaufenden Charakter. Jedoch
existiert natürlich keine scharfe Grenze zwischen
sinusförmiger (linearer) und exponentieller (hyperbolischer)

Spannungsverteilung. Man kann höchstens
von einem kritischen Gebiet sprechen. Die aus der
Kettenleitertheorie sich ergebende kritische
Frequenz fällt in dieses Gebiet (siehe Anhang).

Wie bei der Berechnung der Zweiwindungsspule
gezeigt wurde, decken sich die dort erhaltenen
Ergebnisse sehr gut mit dieser Auffassung.

b) Zusammenhang zwischen der kritischen Periode
einer Spule und der Stirnzeit der auftreffenden

Stoßspannung
Nachdem im vorhergehenden Abschnitt die

Bedeutung der kritischen Frequenz für die Spannungs-

3) Dies ist bei normalen Transformatoren bei
Beanspruchung mit der genormten Stoßspannung 1/50 ps der Fall.

4) Siehe Literaturverzeichnis am Schluss.
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Verteilung in einer Spule dargelegt wurde, soll nun
untersucht werden, was für ein Zusammenhang
zwischen der dieser Frequenz entsprechenden kritischen
Periode und der Stirnzeit der auftreffenden
Stoßspannung besteht.

Zu diesem Zweck wird angenommen, dass die
Stoßspannung die Form eines Sinusintegrals habe:

u=Uf2 -f-TJfn ^ ^w
Jo w

Damit wird den tatsächlichen Verhältnissen gut
entsprochen, was man sofort aus Fig. 13a entnehmen
kann. Eine solche Stossfunktion enthält alle Frequenzen

co von Null bis Q. U ist der aus dem Reflexionsgesetz

(3) zu bestimmende Scheitelwert der Stoß-

1,0 "I

*
53 Xu*

l b)

Fig-. 13

Darstellung der Integralsinusfunktlon
ß

U U f sin tut
u t + TJ du

o) Spannung u in Funktion von t ß höchste
berücksichtigte Frequenz, t Zeit) ;

b) Spannung u (höchste Frequenz ß) und u*
(höchste Frequenz 0)k, wo < ß)
(<i)k kritische Frequenz).

Spannung. Der Zusammenhang zwischen der höchsten

Frequenz Q dieses Integrals und der Stirnzeit
der Stoßspannung, die es ersetzen soll, kann sofort
angegeben werden. Berücksichtigt man nämlich,
dass der Verlauf des Sinusintegrals für kleine Werte
von Q t nahezu linear ist und ersetzt man den
Anstieg der Funktion durch den Anstieg der Tangente,
so erhält man für den Wert von Q t vom mittleren
Nullwert bis zum Schnittpunkt der Tangente mit
dem mittleren Scheitelwert U den Ausdruck

und damit
12 T JT

Jt

T=ß

(15)

(16)

Wird nun für den Wert r einfach die Stirnzeit Ts
eingesetzt, so wird

Ts= —
Q

(17)

Trifft nun auf eine Wicklung, die eine kritische
Frequenz a>k besitzt, eine Stoßspamiung der Form
(14) mit der höchsten Frequenz ü, so lässt die
Wicklung von allen Spannungen, die die Gleichung
(14) enthält, nur diejenigen mit den Frequenzen

5) Es wurde im vorigen Abschnitt erklärt, dass diese
Grenze tatsächlich nicht scharf ist.

Null bis zur kritischen Frequenz a)Ä der Wicklung
hineinlaufen5). Ist die Stoßspannung so steil, dass

ü > a>k ist, so hat die in die Wicklung einlaufende
Spannung die Form (Fig. 13b):

u*=Ul2 + Uln P —— dc
Jo to

(18)

während die nicht in die Wicklung einlaufende
Spannung dem Ausdruck entspricht:

,.** ça
U/n \

Jak

ä sin co t
d oj

CO

(19)

Darin sind also die Frequenzen von cok Eis ü
enthalten. Für die Spannung u** stellt die Wicklung
einen reinen kapazitiven Kettenleiter dar und diese
Spannung erzeugt in der Wicklung eine stehende
exponentiell abfallende Spannungsverteilung.

Die einziehende Spannung u* läuft mit einer
Geschwindigkeit v in die Wicklung hinein, die sich
nach Messungen von Riicklin mit guter Annäherung
aus dem Ausdruck

* w (20)

berechnen lässt. Daraus ergibt sich, da die Dämpfung

vernachlässigbar ist, dass die Spannung u*
olme grosse Aenderung die Eingangswindungen
durchläuft. Sie erzeugt in allen Windungen gleiche
Windungsspannungen, d. h. man erhält durch die
Spannung u* in der Wicklung eine lineare
Spannungsverteilung. Darüber lagert sich die exponentielle

Spannungsverteilung der Spannung u~*. Es
kann also festgestellt werden, dass in der Wicklung
nur dann eine nicht lineare Spannungsverteilung
entsteht, wenn die ankommende Stoßspannung eine
genügend kurze Stirnzeit hat, so dass eine Spannung
u** vorhanden ist.

Mit diesen Annahmen erhält die kritische
Frequenz die Eigenschaft eines Grenzwertes, in dem
Sinne, dass Stoßspannungen mit einer höchsten
Frequenz cok eine lineare Spannungsverteilung, d. h.
gleichmässige Windungsspannungen hervorrufen,
während Stoßspannungen mit einer höchsten
Frequenz Q > <Ok eine ungleichmässige exponentiell
abfallende Spannungsverteilung in den
Eingangswindungen erzeugen, die sich der linearen
Spannungsverteilung überlagert. Eine Stoßspannung,
bei der Q viel grösser als cok ist, erzeugt eine
Anfangsspannungsverteilung, die im Abschnitt J. für
den Rechteckstoss berechnet wurde.

Es ist eindringlicher, an Stelle der Frequenzen Q
und cx>k die Stirnzeit Ts der Stoßspannung und die
kritische Periode mit den Windungsspannungen in
Beziehung zu setzen. In diesem Falle kann festgestellt

werden:
In den Eingangswindungen einer Wicklung

entsteht eine exponentiell abfallende
Anfangsspannungsverteilung, wenn die Stirnzeit Ts der auf
treffenden Stoßspannung wesentlich kleiner ist als die
halbe kritische Periode der angestossenen Wicklung.

In Formeln ausgedrückt: Es entsteht eine
exponentielle Spannungsverteilung, wenn Q > co^ ist.
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Da aber Q n/Ts und (x>k 1nlTk ist, erhält man
für diese Grenze auch

Ts < 0,5 Tk (21)

Ist die Stirnzeit gleich oder grösser als die halbe
kritische Periode der Wicklung, so treten gleiche
Windungsspannungen auf. Aus den Messungen muss
man schliessen, dass eine exponentielle Spannungsverteilung

nur auftritt, wenn Ts viel kleiner als 0,5
Tk ist.

Ein analoger Zusammenhang wurde bereits bei
der Zweiwindungsspule gefunden.

c) Berechnung der Windungsspannungen bei ver¬
schiedenen Stirnzeiten

Mit den aufgestellten Beziehungen können nun
die durch die Spannungen u* und u** erzeugten
Windungsspannungen u*w und u"'* abhängig von der
Stirnzeit der auftreffenden Stoßspannung berechnet
werden (siehe Anhang 36). Für die Maximalwerte
der durch die einziehende Stoßspannung erzeugten
Windungsspannungen erhält man

^t/üi
7i ] cw r

(22)

als Funktion vom Verhältnis r
n/2

Diese Windungsspannungen sind für alle
Windungen gleich gross.

Für den Maximalwert der durch u** erzeugten
Windungsspannung an der ersten Windung ergibt
sich

—l/—/>)
71 Cw

ebenfalls eine Funktion von r.

rrW

(23)

Fig.14
Berechnete Maximalwerte der

Windungsspaiinungen in Funktion
T%

des Verhältnisses r -

1 Uw max Windungsspannung, her¬

vorgerufen durch die
einlaufende Stpßspannung
u*.

Mw i max Windungsspannung an der
1. Windung, hervorgerufen
durch die exponentielle
Spannungsverteilung.

3 Uw l max Totale WTindungsspannung
an der 1. Windung

Fig. 14 zeigt diese beiden Windungsspannungen
Ts

in Abhängigkeit vom Verhältnis r * Die Or-
i b'2

dinate ist als Vielfaches von
71 f l

aufgetragen,

so dass die Darstellung für jede Wicklung gilt.

Für r= 1 wird uwmax uwmax — 1/Jit und
Jt ] cw

für wachsende Werte von r wird die Windungsspannung

umgekehrt proportional mit Ts kleiner.
Für Werte von r kleiner als 1 steigt die Windungsspannung

an und erreicht für Ts 0 (Rechteck-
stoss) den Wert

ÏV- 2,84
U

1,11
(24)

Infolge der gemachten Annahmen erhält man einen
etwas kleineren Wert als im ersten Abschnitt Gl. (6).

5. Vergleich der Theorie mit Messungen an
Spulen und Wicklungen G)

Einige Spulen und Wicklungen wurden mit Stoss-

spannungen mit verschiedener Stirnzeit gestossen
und die Windungsspannungen mit dem Kathoden-
strahloszillograph gemessen. (Die Messanordnung
ist im Anhang angegeben.)

Fig. 15

Maßskizze der für die Messungen verwendeten Polspule
mit 25 Windungen

Die Fig. 16a...c enthalten die Oszillogramme der
Windungsspannungen, die an einer Spule mit 25
Windungen nach Fig. 15 aufgenommen wurden. Die
Spule hatte eine berechnete kritische Periode von
Tfc 2,6 jus. Die Oszillogramme der Fig. 16a wurden

mit einer Stoßspannung mit einer Stirnzeit von
2,5 jus erhalten. Da Ts wesentlich grösser als 0,5 Tk
ist, liegen die Messungen im linearen Bereich der
Spannungsverteilung. Entsprechend den Feststellungen,

die an der Zweiwindungsspule für ein Verhältnis

T > Tk (die Berechnung für diesen Fall ist in
Fig. 4 dargestellt) gemacht wurden, ist in den
Windungsspannungen die Eigenschwingung schwach
ausgeprägt und der Verlauf ist ähnlich dem der
angelegten Stoßspannung UA. Bei den folgenden Os-

zillogrammen 16b und c wurde die Stirnzeit auf
0,3 jus herabgesetzt. Man erhält somit ein Verhältnis

Ts/Tk 0,115. Die Messungen liegen also im
Uebergangsgebiet zur nichtlinearen Spannungsverteilung,

da TJTk kleiner als das kritische Verhältnis

0,5 ist. In der Windungsspannung erscheint nun
die Eigenschwingung, wie dies in Fig. 5 und 6 für
das Verhältnis T < Tk gezeigt wurde. Die Eigen-

6) An diesen Messungen hat sich Herr Dr. M. Krundl
durch Diskussion und Anregungen in dankenswerter Weise
beteiligt.
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Schwingungsamplitude ist in Fig. 16b höher, da in
diesem Fall die Erdkapazität wesentlich grösser war.
Die Windungsspannungen schwingen sich in einen

Obwohl eine Spule mit 25 Windungen vorlag,
decken sich die gemessenen Windungsspannungen
gut mit dem theoretisch gefundenen Verlauf hei

Fig. 16

Oszillograinine der Windungsspanmingeii an einer Polspule
Oben : Oszillogramm der Stoßspannung Ua

Unten: Oszillograranie der Windungsspannungen an den 8 ersten Windungen der Spule.
a) Stirnzei.t: b) Stirnzeit: c) Stirnzeit:

T, 2,5 ßs Ts 0,3 ßs T. 0,3 us,
das Verhältnis

C„
-p,— ist hier grosserte

als im Fall b).

stationären Wert von 4,8 bzw. 3,7 °/o der totalen
Stoßspannung ein. Dieser Wert entspricht gut einer
linearen Spannungsverteilung, die bei 25 Windungen

einer Windungsspannung von 4% entspricht.

einer Zweiwindungsspule. Fig. 17 enthält die
Endwerte der Windungsspannungen hei einer Stirnzeit
der Stoßspannung von 0,3 jus mit und ohne Erdung
des Erdkap azitätsbel ages.



In den folgenden Messungen

wurden die Windungs-
spannungen in der Eingangsspule

eines Generators
Gestimmt. Die Spule enthielt 8

Windungen und ist in Fig. 18

skizziert. Sie stellte in diesem
Fall nur einen Teil der ganzen

Wicklung dar. DieOszillo-
gramme der Windungsspan-
nungen für eine Stirnzeit von
0,5 jus und 1,1 jus sind in
Fig. 19 ersichtlich. Die kritische

Periode lässt sich infolge
der komplizierten Form der
Spule und deren Einhau im
Eisen nicht berechnen. Die
gemessenen Maximalwerte
der Windungsspannungen
sind in Fig. 18 aufgetragen.
Alle Windungsspannungen
sind praktisch gleich gross
und haben einen mittleren
Wert, der sich aus der
gemessenen Spannung an der
Spule und der Windungszahl
der Spule ergibt. Dabei ist
zu berücksichtigen, dass beim
steileren Stoss die
Spulenspannung etwas höher ist.
Aus dieser Spannungsvertei-
lung kann man schliessen,
dass in diesem Falle selbst
bei der Stirnzeit der Stoss-

spannung von 0,5 us noch
der lineare Bereich Ts >
0,5 Tk vorlag. Die Kurve 1 in
Fig. 18 zeigt den aus der
Anfangsspannungsverteilung
berechneten Verlauf der
Windungsspannungen, wie er sich
hei einem Rechteckstoss
ergeben würde.

Fig. 20 enthält die
Maximalwerte der Windungsspannungen

an den 5 Eingangsspulen

eines grossen Generators

mit drei Windungen je
Spule. Die Stirnzeiten der auf-
treffenden Stoßspannungen

Fig. 19

Oszillogramme der Windungs-
spannungeii an einer Generator¬

spule
Oben:
Oszillogramm der Stoßspannung
Ua, links mit einer Stirnzeit Ts
0,5 ßs, rechts mit Ts 1,1 us.

XJnten:
Oszillogramme der
Windungsspannungen der 8 Windungen.
Die Betriebsdaten des für diese
Messungen verwendeten Generators

waren 2350 kVA und 6 kV.
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waren 0,5, 1,2, 2,8 u. 8,7 jus. Man sieht, dass die Win-
dungsspannungen in jeder Spule ungefähr gleich gross
sind. Die Höhe der Windungsspannungen hängt aber

5 10
Windungsnummer

Fig. 17

Endwerte der
Windungsspannungen an einer

Polspule nacli Ausklingen der
Eigenschwingungen

Windungsspannungs-
Endwert in % der
angelegten Stoßspannung;

1 bei Erdung;
2 bei Isolierung des Erd-

kapazitätsbelages.

von der Stirnzeit der Stoßspannung ab. Bei der
kürzesten Stirnzeit nehmen die Windungsspannungen
der einzelnen Spulen gegen das Wicklungsinnere hin
ab. Es liegt der Fall vor, der im Abschnitt 3 diskutiert

wurde. Man schliesst aus dieser Messung, dass
die Stirnzeit von 0,5 fis für die Einzelspulen über
dem kritischen Wert von 0,5 Tk liegt, so dass in den
Windungen eine lineare Spannungsverteilung resultiert,

während für die ganze Wicklung dieselbe

Fig. 18

Maximalwerte der

Windungsspannungen an
der Eingangsspule

eines Generators
Mw max Windungs-
spannungs - Maximalwert

in % der
angelegten Stoßspannung;
1 berechnete Werte

bei Rechteckstoss
(Tt 0); 2 Messwerte

bei Stirnzeit
Ts 0,5 us; 3
Messwerte bei Stirnzeit
T, =1,1 fi.s; 2' und

Mittelwerte der 8

Windungen; oben:
Skizze der untersuchten

Wicklung.

15

10

1

^ \
s

3. 6. 9.
Windungsnummer

12. 15.

Fig. 20

Maximalwerte der Windungsspannungen an den
Eingangsspulen eines Generators

Uwmax Windungsspannungs-Maximalwert in % der angelegten
Stoßspannung mit den Stirnzeiten T» 0,5, 1,2, 2,8 und 8,7 pa.

Für diese Messungen diente ein grosser Generator mit
Spulen zu je 3 Windungen.

Stirnzeit bereits im nicht linearen Bereich liegt.
Erst die grösseren Stirnzeiten ergeben für die Spulen
der ganzen Wicklung dieselbe Spannung. Sehr deut-

100
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r i

\[^2
\I1

- / V
4,5V
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Fig. 21

Maximalwerte der Spulenspannungen in einer
Generatorwicklung

Ma max Spulensparinungs-Maximalwert in % der angelegten
Stoßspannung in Funktion der Stirnzeit Ts der Stoßspannung.
Die Kurven 1...5 beziehen stich auf die 5 Eingangsspulen des

Generators.

Fig. 22

Maßskizze der für die Messungen

verwendeten Transformatorspule

A Abteilungsspulen mit je 10 Windungen;

E geschlitzte Eisenringe (an Stelle des

Eisenkerns).

lieh zeigt Fig. 21 den Einfluss der Stirnzeit der auf-
treffenden Stoßspannung auf den Verlauf der
Spulenspannungen. Für Ts > 1 jus sind die
Spulenspannungen sämtlicher 5 Eingangsspulen gleich

25

%

20

15

10

1

1

1

1

1

1
0 1

/
5

4 f/
1

1

1

1

1

1

1

1

1

•

0,5 1,0 1,5 2,0 ;js 2,5

SEV14 508 9

Fig. 23

Maximalwerte der Spulenspannungen in einer
Transformatorenwicklung

m8 max Maximalwerte der Spannungen (in % der angelegten
Stoßspannung), gemessen an den ersten 5 Doppelabteilungen
(Kurven 1...5) der Transformatorwicklung. Ts Stirnzeit der

Stoßspannung.



664 Bull. Schweiz, elektroteclin. Ver. Bd. 38(1947), Nr. 21

gross. Unterhalb 1 /us beginnt die ungleichmässige
Spannungsverteilung in der Spulenwicklung.

Abschliessend sollen noch einige Messungen an
einer Transformatorwicklung nach Fig. 22 gezeigt
werden. Da es sich um Messungen an einem Modell
handelte, wurde an Stelle des Eisenkerns ein
Eisenzylinder mit gleichem äusseren Durchmesser
verwendet. Fig. 23 zeigt die Spannungen an den ersten
5 Doppelahteilungen in Abhängigkeit von der Stirnzeit

der Stoßspannung. Die Spannungsverteilung
längs der Wicklung geht bei einer Stirnzeit der
Stoßspannung von etwa 1,5 jus in die lineare Form über,

2,5

2,0

fO,5

0

Sff tfSO»

0.5 1,0 1,5 2,0 ps 2,5

Fig. 24

Maximalwerte der Windungsspannungen in einer
Transformatorw ickiung

Uw max Windungsspannungs-Maximalwert in % der angelegten
Stoßspannung. 7", Stirnzeit der Stoßspannung.

wo die Spannungen an sämtlichen Abteilungen
gleich gross werden. (Die Höhe der Spannung an der
1. Doppelabteilung ist etwas niedriger. Wahrscheinlich

ist dies auf die unsymmetrische Lage der 1.

Abteilung zurückzuführen.) Die kritische Periode dieser

Wicklung wurde zu 3,3 jus berechnet. Den Verlauf

der Windungsspannungen innerhalb der ersten
Abteilung ist in Fig. 24 wiedergegeben. Die Messungen

zeigen, dass bis zur kleinsten angewandten Stirnzeit

praktisch der lineare Bereich der Spannungsverteilung

vorliegt.

6. Anhang
a) Berechnung der Zweiwindungsspule

Besteht an den Klemmen einer idealisierten Zweiwin-
dungsspule nach Fig. 1 mit den Konstanten L (Induktivität
einer Windung), M (Gegenseitige Induktivität der Windungen),

p — M/L, Cw (Windungskapazität) und C„ (Erdkapazität

einer Windung) eine Stoßspannung der Form

u U (1 — e-'IT) (7)

so erhält man z. B. für die Windungsspannung u„t in
Operatorenform

n„, ü p2(C» + C„) (L-M) + l
p2(Ce + 2C„) (L—M)+ 2

(25)

Nach Ueberführung dieser Unterfunktion in die Zeitfunktion
wird

uw, — (l + A, cos

Darin bedeuten :

Irr t „ .2 TT ti Aî sin —= - As e (9)

A i

A s

1

1 -f- 2 CJQ
1

1 + «

A3 -
1 + 2 C./C. 1+s2

1 1 + 2 s2 2 C„/C„

1+2 C./C. 1 + s2
1 1+2 C./C.

Der Wert für die Periode Tk ist

und s T/Tk

(26)

Tk 2 Jrl/(^+ + C») L (1- + (10)

Die Windungsspannung uwl ist demnach nur abhängig von
den Verhältnissen C./C. und T/Tk, wo das zweite das Verhältnis

der Zeitkonstanten der Stoßspannung zur Periode der
Eigenschwingung der Zweiwindungsspule ist. Für einen
Rechteekstoss ist T 0, also s — 0 und damit (siehe Fig. 7)

u„, U/2 [1 + C./(C. + 2 C.) cos 2 TT t/Tk] (27)

Für Werte s2 » 1, d. h. einer im Verhältnis zur Periode /',
langsam ansteigenden Stoßspannung wird

U
I i1 1 —

2-2 C./C.
1+2 C./C. 1+2 C„/C„

+ T-8in2jr^/-)]

COS 2 TT tjTi< —{-

(28)

1
2 — 2 C„/C,
1+2 C./C,

IIT
1 + 2CJCeCOs2n Tk

d. h. mw1 besteht aus einer wie die Stoßspannung exponen-
tiell ansteigenden Spannung, die von einer cos-Schwingung
mit der Periode Tk überlagert ist (siehe Fig. 4).

b) Bemerkungen zur kritischen Frequenz

Hak [3] sagt: «Jede Berechnung, in der für das Element
eine Windung der Spule angenommen wird und in der also
auch der Strom und die Spannung längs einer Windung
konstant angenommen werden muss, führt zu einer kritischen
Frequenz, die als die obere Grenze der möglichen
Eigenschwingungen erscheint. Oberhalb dieser Grenze wird die
Frequenz imaginär, d. h. es ergibt sich keine lineare,
sondern eine hyperbolische Spannungs- und Stromverteilung.
Nicht nur die Berechnungen nach Wagner und Rüdenberg
(die die gegenseitige Induktivität weitgehend vernachlässigen,
Bern, des Verf.), sondern auch die viel allgemeineren
Grundgleichungen führen auf eine solche Frequenz. Wenn man
aber die Spulenwicklung als eine Raumspirale auffasst, was
der Wirklichkeit äusserst nahekommt, erkennt man sofort,
dass eine Windung keine besondere Eigenschaft besitzen
kann, die einen so grossen Einfluss auf die Eigenfrequenz

haben könnte. Die kritische Frequenz würde sich
immer höher verschieben, wenn man für das Leiterelement
die Hälfte, ein Viertel usw., einer Windung in die Rechnung
einführen würde. Die Theorie wurde von Rücklin einer
eingehenden experimentellen Untersuchung unterworfen (nur
an Einlagenspulen, Bern, des Verf.). Es ergab sich, dass

trotz der quantitativen Nichtübereinstimmung der berechneten

mit den versuchsweise aufgenommenen Werten die
Gleichung (13) die Periodenwerte gut kennzeichnet, an der
die kapazitive Wirkung einen überwiegenden Einfluss auf die
Spannungsverteilung und damit eine Aenderung der
Spannungsverteilung eintritt. In diesem Grenzgebiet liegt nämlich
die aus der Rechnung von Rüdenberg sich ergebende
kritische Frequenz.»

Dass man sich bei der kritischen Frequenz an der Grenze
der Zulässigkeit der gemachten Annahmen befindet, zeigt
sofort die folgende kurze Rechnung: Nach Rüdenberg
berechnet sich die Wellenlänge X der Eigenschwingungen des

angenommenen Kettenleiters aus

À 2 Jt F I Cw 6)2

Ce l
(29)

Setzt man für die kritische Frequenz den entsprechenden
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Wert für ft>k aus (13) ein, so wird die Wellenlänge der
kritischen Eigenschwingung unendlich klein, was unzulässig
ist, da sie nicht kleiner sein darf als die Windungslänge.

c) Berechnung der Windungsspannungen hei Annahme
einer Stoßspannung entsprechend einem Sinusintegral

Die durch die einziehende Spannung

* ,n„ I U Cao sin or t
u U 2 -\ d

n J o a
(30)

hervorgerufene Windungsspannung u* berechnet man wie
folgt:

Da eine mit der konstanten Geschwindigkeit v einziehende
Spannung u* angenommen wird, kann u* als Funktion von
x ausgedrückt werden, wo x die Wicklungslänge (mit x 0

am Wicklungsanfang) bedeutet. Mail erhält

« TT'n i
G f"° sin mx/u /oi\u U/2-\ '— da (31)
n J „ o

coo ist die grösste in u* enthaltene Frequenz und muss kleiner

sein als ft)k. Die Steilheit s* dieser Spannung erhält
man durch Differentiation nach x.

S* du*jdx -
U (Oqx/V

(32)

Die Steilheit erreicht den grössten Wert für x — 0 und wird

— U (DqIjiv (33)

Wird noch ft>o durch die Stirnzeit T, ersetzt, so erhält man,
da ft)o fv n/Ts ist

S*ma< ~ - U/vT. (34)

wo T, /> Tk/2 sein muss. Da v in Windungen je Sekunde
ausgedrückt ist, ergibt sich S* als die maximale Steilheit in
Volt je Windung, d. h. man erhält direkt die maximalen
Windungsspannungen ul Diese hängen also ab von den
Eigenschaften der Wicklung, die in v zum Ausdruck kommen,

und sie sind umgekehrt proportional der Stirnzeit i.
Den grössten Wert der Windungsspannungen erhält man
durch Einsetzen der kleinsten Stirnzeit Tk/2, die noch in die
Wicklung einzieht. Damit wird, wenn gleichzeitig der Wert
für v nach (20) eingesetzt wird

•Smax — Wa n
J7

JT Mi (35)

Die Windungsspannungen der exponentiell abfallenden
Spannungsverteilung erhält man wie folgt:

Für die Spannung u** verhält sich die Wicklung wie ein
Kettenleiter, bestehend aus den Kapazitäten cw und ce. Man
berechnet die Spannung der ersten Windung aus (5) oder (6)
durch Einsetzen von u** an Stelle von U und man erhält

uîî i=« u" (1 — e s) u**VcB/c„ (36)

Ebenso lassen sich die weiteren Windungsspannungen
berechnen.

Man erhält die grösste Windungsspannung, wenn für u** der
zeitlich grösste Wert eingesetzt wird. Nun ist nach (19)

u**= U/n fß 8ln — dm U/n [Si (St) — Si (mkt)]
J ft)k a

A Si
JT

wo Si (Q t) das Symbol bedeutet für ein Sinusintegral mit
den Grenzen Null und ü. Das entsprechende gilt für Si
Ki).'

Man erhält nun den Maximalwert von u**, indem man
in (19) setzt

— à SL [(19 a)

Dieser Wert in (35) eingesetzt ergibt

Mi— A Sim (37)

A Sim„ wurde berechnet und die Windungsspannung u',,* in
Fig. 14 aufgetragen.

Man kann auch u* als Funktion von r erhalten, indem
(34) wie folgt umgeformt wird

u* U/vT,
u\lccTy _ U

Ts2n V(c„

Mïi
Mi 2 T,

(22)

dj Messung der Windungsspannungen

Fig. 25 zeigt die verwendete Meßschaltung, und zwar
Fig. 25a den Stosskreis, Fig. 25b die Anschlußschaltung des
Kathodenstrahloszillographen bei Messung der Stoßspannung
gegen Erde und Fig. 25c die Schaltung bei Messung der
Windungsspannungen. Die Belastungskapazität, die der Ka-
thodenstrahloszillograph darstellt, ist kleiner als 50 pF. Die

Fig.25
Schaltungen für die Spannungsinessungen

a) Stosskreis: Cs' Stosskondensator, K Kabel, Ri
Abgleichwiderstand, S Spule.

b) Schaltung des Kathodenstrahloszillographen KO für
Messungen der Stoßspannung gegen Erde (R'd

Dämpfungswiderstand).
i

I i

c) Schaltung des Kathodenstrahloszillographen KO für
Messungen der Windungsspannungen (ßd, ßd"
Dämpfungswiderstände).

Kapazität des Anschlusskabels ist ungefähr ebenso gross.
Die Widerstände haben einige 100 Ohm und sind so gross,
dass der Anschlusskreis für sich selbst nicht schwingt. Der
Vergleich der Windungskapazitäten mit den angeschlossenen
Kapazitäten zeigt, dass deren Anschluss die Messungen nicht
wesentlich beeinflusste.
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