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Zur Theorie des Doppelkäfigmotors
Von W. Michael, Bern 621.313.333.4

Die Stromgleichungen des Doppelkäfigmotors werden
gewöhnlich mit Hilfe eines Ersatzschaltbildes ermittelt,
meistens unter Einführung gewisser Vernachlässigungen, um die
Theorie zu vereinfachen [U [II] 1). Im Gegensatz hierzu
wird in der folgenden Untersuchung von einem Bezugsbild
des Motors in Verbindung mit einem Raumvektordiagramm
der Drehflusskomponenten ausgegangen und die Theorie nur
unter Vernachlässigung der Eisenverluste entwickelt. Dieser
Weg erscheint zunächst etwas umständlicher, führt aber ebenso

schnell zum Ziel und bietet den Vorteil, einen unmittelbaren

Einblick in die elektrodynamischen und mathematischen

Zusammenhänge der in der Maschine wirkenden Grössen

zu gewähren, die durch das Ersatzschaltbild verschleiert
werden. Dieses bedarf eben selbst wieder einer Begründung,
die schliesslich auf den hier eingeschlagenen Weg führt. Vom
theoretischen und didaktischen Standpunkt aus dürfte der
hier eingeschlagene Weg daher den Vorzug verdienen. —
Ausser den Stromgleichungen und dem Stromdiagramm werden

in einfacher Weise die Leistungen und das Drehmoment
des Motors allgemein ermittelt. — Die Ergebnisse werden
durch ein Zahlenbeispiel veranschaulicht. Zum Vergleich
wird der Einkäfigmotor herangezogen.

1. Bezugsbild und Raumdiagramm
der Drehflüsse

Fig. 1 stellt einen Querschnitt durch einen
Doppelkäfigmotor halbschematisch dar. Der Ständer S

trägt eine normale Dreiphasenwicklung, deren
Phasen je nur durch ihre mittlere Windung
angedeutet sind. Wir greifen eine beliebige Phase a—a'
im Ständer heraus und bezeichnen ihre magnetische

Achse mit A.

Fig. 1.

Bezugsbild für den

Uoppelkäfigmotor

Der Läufer L weist einen äusseren und einen
inneren Käfig auf, deren Stabzahl (Phasenzahl)
verschieden (wie gezeichnet) oder auch gleich sein
kann. Der äussere Käfig besitzt einen grösseren
Ohmschen Widerstand, aber eine kleinere
Streureaktanz als der innere Käfig; der erste dient als
Anlaufswicklung, der zweite als Arbeitswicklung.
Die beiden Käfige können getrennte oder gemeinsame

Seitenringe aufweisen, welche die Stäbe zu je
einer Mehrphasenwicklung verbinden. Wir nehmen
im folgenden getrennte Ringe, d. h. elektrisch ganz
getrennte Käfige an.

Bei den Käfigen stellt jeder Stab eine Phase
dar, deren Wicklung aus einer halben Windung
besteht. (Die Stabzahl kann gerade oder ungerade
sein.) Wir greifen aus jedem Käfig eine beliebige
Phase, z. B. die Stäbe b und c heraus und zeichnen
die entsprechenden magnetischen Achsen B und C.
Die in der Windung a—a' bzw. in den Stäben b
und c angegebenen positiven Zählrichtungen bilden
mit den positiven Zählrichtungen auf den ent-

Les équations du courant des moteurs à double cage d'écureuil

sont généralement déterminées à l'aide d'un schéma
équivalent et l'on néglige le plus souvent certains points, dans
le but de simplifier la théorie [I] [II] 1). L'auteur de la
présente étude part d'une image de référence du moteur en
combinaison avec un diagramme vectoriel des composantes du
flux tournant et ne néglige que les pertes dans le fer. Ce
procédé, qui peut paraître à première vue un peu compliqué,
permet cependant d'arriver tout aussi vite au but et présente
l'avantage d'indiquer directement les relations électrodynamiques

et mathématiques des grandeurs qui entrent en jeu
dans ce genre de tnoteur et qui n'apparaissent pas nettement
lorsque l'on se base sur un schéma équivalent. Celui-ci doit
en effet être motivé et c'est précisément ce qui a conduit au
procédé qu'indique M. Michael et qui est préférable aussi
bien au point de vue théorique que didactique. Outre les
équations et le diagramme du courant, l'auteur détermine les
puissances et le couple du moteur d'une manière simple et
générale. Les résultats sont illustrés par un exemple numérique.

Le moteur à simple cage d'écureuil sert de comparaison.

sprechenden Achsen je ein Rechtssystem. Die so
ergänzte Fig. 1 stellt das Bezugsbild für die in der
Maschine auftretenden elektrischen und magnetischen

Grössen dar.
Um die Beziehungen zwischen diesen Grössen

mathematisch ohne Ersatzbilder und Ersatzgrössen
erfassen zu können, wurde in Fig. 2 das
Raumvektordiagramm des resultierenden Drehflusses <P

gezeichnet, der von den primären und sekundären
Drehamperewindungen gemeinsam erzeugt wird.
Die Grösse dieses Drehflusses wird im wesentlichen
durch die aufgedrückte Primärspannung bestimmt,
denn er muss in der Primärwicklung eine EMK in¬

duzieren, die, abgesehen von den geringen Ohmschen

und induktiven Spannungsverlusten in dieser
Wicklung, der aufgedrückten Klemmenspannung
das Gleichgewicht halten muss. Man kann <J> als
den resultierenden Drehfluss der (fiktiven)
Komponenten <2»!, d>2, <I>2, welche von den
Drehamperewindungen der Ständerwicklung bzw. des
inneren und des äusseren Käfigs erzeugt werden,
bezeichnen.

In Fig. 2 sind ferner die drei magnetischen
Achsen A, B, C (Fig. 1) übernommen. Die Achse A

1) Die römischen Ziffern in Klammern beziehen sich auf *) Les chiffres romains entre crochets se rapportent à la
die Literaturangaben am Schlüsse. bibliographie figurant à la fin de l'article.
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ist fest im Räume, während sich die Achsen B und C

mit der Läufergeschwindigkeit Q drehen, so dass

die Winkel &' und &" von A nach B und C, die
die Augenblickslage der bewegten Achsen bestimmen,

lineare Funktionen der Zeit sind. Dagegen
ist & von B nach C konstant. Der Fluss 0 und seine

Komponenten drehen sich im Räume, d. h. relativ
zum Ständer, mit der Kreisfrequenz oj der
Primärspannung dividiert durch die Polpaarzahl p, die
wir hier gleich 1 annehmen. Relativ zum Läufer
dreht sich 0 mit der Geschwindigkeit

o — oj— û. (11

Führt man den Schlupf s — ein, so ist a — s - o)
OJ

zu setzen. 0 stellt den Hauptfluss der Maschine
dar, der den Luftspalt durchsetzt und mit allen drei
Wicklungen verkettet ist. Daneben treten noch
Streuflüsse auf, die man in bekannter Weise durch
Einführung der Streureaktanzen berücksichtigt.

Wir wollen nun die Flusskomponenten 0V 0?
und 0'2' durch die sie erzeugenden Ströme
ausdrücken. Es gilt [III] :

3 m'
'0\ ~~ M (fejAj) ijmax ; 02 Ai^max '

02 Ai2 max (2)
4

Darin bedeutet: A der magnetische Leitwert der
Maschine für sinusförmig im Luftspalt verteiltes
Feld (Grundwelle) ; k1 und N1 Wicklungsfaktor
und Windungszahl einer Primärphasenwicklung ;

m'2 und m2 Stab- oder Phasenzahl des inneren
bzw. des äusseren Käfigs. (Für diese ist k 1 und

1
A

-jz- zu setzen.)

Der Drehfluss einer Mehrphasenwicklung dreht
sich relativ zu dieser bekanntlich so, dass die Achse
des Drehflusses mit der magnetischen Achse der
betreffenden Phasenwicklung zusammenfällt, wenn
in einer Phase der Strom seinen Maximalwert
erreicht. Umgekehrt, wenn der Strom null wird, stehen
die beiden Achsen senkrecht aufeinander. Mit
andern Worten: die Projektion des Drehflusses auf die
magnetische Wicklungsachse stellt einen zeitlich
sinusförmig schwingenden Fluss dar, der zeitlich
in Phase mit dem betreffenden Phasenstrom ist,
der ebenfalls eine Sinusfunktion der Zeit ist. Be-
zeichnen wir also die Projektion von

01 auf A mit flA, von 0'2 auf B mit f'2B und von
'I>2 auf C mit f2C, so gelten die Gleichungen

3 m'o
fiA ~~ A (fejAj)ij ; f'2B — —— Ai2;

2 4

(3)
4

welche eine Beziehung zwischen den Momentan-

XXXVI. Jahrgang

werten des Stromes in einer Phasenwicklung und
des in deren Achse schwingenden Flusses darstellen.

2. Einführung komplexer Grössen

Statt nun mit Momentanwerten zu rechnen, ist
es bekanntlich sehr zweckmässig, an ihre Stelle
Zeitvektoren (Zeiger) zu setzen, die man durch
komplexe Grössen darstellen kann [III]. Diese
Zeitvektoren sind dann Drehvektoren in der komplexen
Zahlenebene, die aber nicht mit den räumlichen
Drehvektoren in Fig. 2 zu verwechseln sind, denn
zu jeder Phase bzw. Achse gehören andere
Zeitvektoren. Wir bezeichnen sie wie üblich mit grossen
Frakturbuchstaben und entsprechenden Indices.

Nach diesen Bemerkungen ist die folgende
Darstellung leicht zu verstehen. Wir denken uns 0 und
seine Komponenten je auf die drei Achsen A, B und
C projiziert. Die Projektionen von 0 bezeichnen wir
mit fA, fn und /c. Sie sind auch gleich der
algebraischen Summe der Projektionen von 0'2 und
02 auf die betreffenden Achsen. In Fig. 2 sind
nur einige dieser Projektionen eingezeichnet, damit
die Figur nicht überlastet wird. Es liefert

0X die Projektionen flA, fB, fic
02 11 11 f'2Alf'2Blf'2C
02 ii il fïAl f'2Bl fic

Aus Fig. 2 ist weiter zu entnehmen:

/i A 01 cos (dA + 7X) ; fiA 02 cos (dA + y'2) ;

fiA =02 cos (dA + y'i) (4)

Entsprechende Gleichungen gelten für die Grössen
mit den Indices B und C.

Für die Winkel êA, und •>}( von At, B und C
nach 0 ist zu setzen:

Aa $ao + b — ßso $c $co ~f~

(&Ao beliebiger Wert zur Zeit t 0.)

Den reellen Grössen (4) (Momentanwerten) kann
man nun die komplexen Grössen (Zeitvektoren oder
Zeiger) zuordnen:

j (öa + yù HSA+Y»)
%A 0Ie i &A= 02 e ;

cv,, /m it^A + yi")
%2A 02 e (5)

Für die Grössen mit den Indices B und c gelten
entsprechende Gleichungen. Den reellen Gl. (3)
entsprechen die komplexen oder vektoriellen
Gleichungen :

3 JTL '
&A jA{klN1)31; &B -^-A$;

A&'. (6)
4

Ferner bestehen zwischen den komplexen Grössen

(5) die folgenden durch Division je zweier
Vektoren leicht zu findenden Beziehungen.

BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1945, Nr. 19
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-Ji9' j i5'
A2.4 — Aï«e ; — 82ceSis — SlA e

t?ic 3'l21e ; l^2C ^2Be

Hierin ist nach Fig. 2 :

d' — ,dA — dB — dA0 — &B0 -|- Qt ;

D"= dA—dc dA0— t9c.0 —f- i? t| ;

ji3"

t?2B — "Ö2C e

1? dR - dr V" n
Mit Hilfe der Beziehungen (6) und (7) können
wir alle Komponenten der in den Achsen A, B und
C schwingenden Flüsse und damit auch diese seihst
durch die Stromvektoren Qu S2' und 3."
ausdrücken, indem wir bilden:

$Vl— 3'M+3'M+ %2A $121 +$25 e +&2Ce'

3"ß— +S2B+ S2Ce

Jl3" "jV
2C

(8)

Sc= SlC+^C+S^C =3'lßC +$2Be +$;
Die komplexen Grössen Sc stellen also die
resultierenden, in Richtung der Achsen A, B, C

schwingenden Flüsse dar, und zwar schwingt S4
mit der Kreisfrequenz co, Sß und Sc mit der
Kreisfrequenz a. Die Faktoren e±'® und e± sorgen
für den Frequenzausgleich zwischen den verschie-
denachsigen Zeitvektoren.

3. Berechnung der Haupt-EMKe und der Ströme

Durch den Fluss Sa wird in der Phasenwicklung
a—a' die primäre Haupt-EMK:

gl/l -joAkx Nx)Sa

induziert. Ebenso induzieren die Flüsse Sß und Sc
in den Stäben b und c, beziehungsweise die sekundären

HauptEMKe (k 1, N — V2):

@2/.= —JÖ^-Sb und @2h=—Jö-^Sc-
Z z

Unter Berücksichtigung der Gl. (8) und (6) ergibt
sich:

(£

+ mi(k1N1)S>2eiß' i j

&'2h=—jcA

mö &

—joA

(W&e

4 o

j#

— (KNi)3ie
4

-J>9 m.
8

$2

(9)

Wir führen die folgenden, auf die Primärfrequenz a)

bezogenen Haupt- und Gegenreaktanzen ein:

3 3
^ift — coA 5 Xi2=Xi'2=x12= coA (kj Nj)

coA

Xn'h— Ol A

m2

8

m'2'

8

coA mi (W
xi[= coA-A. (fejNj)

4
(10)

Damit ergeben sich folgende Ausdrücke für die
Haupt-EMKe:

@1 h ~j [*1 h $1 + *21&e,ir A-x'2'i ftj'e-"9"]

®2h ~j [*12 Si e ' Ä2h S2 ~t~ *2h S2' e""3] S

@2/!= —7 [-*'12 -vAie
3 4~*2ft\j2e J

S

(11)

Um die Spannungsgleichungen der Maschine
aufstellen zu können, müssen noch folgende Grössen
gegeben sein:

Ul primäre Klemmenspannung
ri Ohmscher Widerstand einer Primärphase
Vi, Streureaktanz einer Primärphase
t Ohmscher Widerstand einer Phase des inneren Käfigs
x Streureaktanz einer Phase des inneren Käfigs
r" Ohmscher Widerstand einer Phase des äusseren Käfigs
x" Streureaktanz einer Phase des äusseren Käfigs
x" gegenseitige Streureaktanz zweier benachbarter Phasen

der beiden Käfige.

Bei der Berechnung der sich auf die Käfige
beziehenden Grössen sind Stab- und Ringanteil in
bekannter Weise zu berücksichtigen [III]. Die
Spannungsgleichungen für je eine Phase des Ständers

bzw. Läufers lauten dann:

Ut + Sift (u+7*is) &
®2H (r' +jsx') $ +jsx'" ej»

@2„ (r"+jsx") +jsx"' % e-j»
Setzt man für die EMKe die Werte (11) ein und
ordnet man nach den gesuchten Strömen, so
erhält man:

[U +j (xlh4-*is)] 3i +jxi, e]ê' +
+jxiiSi'e''*" =%

j s xl2 e--"9'-]- [r'A-js {x'2hA-x')\ % +
+J •(*&+«"') 3fi' eid 0

-}*>

(12)

jsxlt%e 1 +js(x'2hA-x"')&e:
+ [r"+J«(*ii+«")]3S' 0

Zur Vereinfachung führen wir noch die folgenden
Grössen ein:

xn=xlh-\-xls totale primäre Reaktanz einer Phase,
x'22 x'2h-\-x' totale Reaktanz einer Phase des in¬

neren Käfigs,
X22 xihA-x" totale Reaktanz einer Phase des äus¬

seren Käfigs,
x'g x'2h~\-x"' Gegenreaktanz des inneren Käfigs

auf eine Phase des äusseren Käfigs,
Xg x2'h-j-x"' Gegenreaktanz des äusseren Käfigs

auf eine Phase des inneren Käfigs.
(13)



652 BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1945, Nr. 19 XXXVI. Jahrgang

Die Gl. (12) gehen damit über in:

(ri+J*n) x'2i^2e'^ ~\~jx'2'1 $2 e'"5 Uj

.7 * *12^1 e~jß +[r'+jsx22]%2-hjsx'g eJ<j — 0

j sr]2 e
jfl? -hjsxg^sJe [r"-\-jsxä] $2' 0

(14)

Aus den Gl. (14) lassen sich nun die Phasenströme
S2' und S2" am besten mittels Determinanten

leicht bestimmen. Zu dem Zwecke bilden wir
zunächst die Systemdeterminante

A (ri+j*u) [(r'+jx'izs) (r"+jx22s)-j2Xgx'g's2] -
-jxl2se~]^ ljx'21 e"3 (r"-\-jxns) —j2x2\x'gse1^ _,9)]

A~jxi2se jß [pxnx'g'se'(Ä +d) -jx'2\ e^ (r'-+-jx&s)].

Die Ausrechnung ergibt, wenn man beachtet, dass

y2 —1 xmdd" — D d d" (Abb. 2) ist:

A rj [r' r"+ {x'g x'J — x22 x22) s2] + [r' x12 x2l +
+ r"x12x2, - x4 (r' x'22 —r" x22)] s +j {rt (r' x22 +
4- r" x'22) s + Ain r' r"+ [xn (vé% — *12 «22) —
— X12 (Xu Xg — X2I X22 + X2I Xg — X'2\ *22)] S2} (15)

Für die Ströme ergeben sich folgende Ausdrücke:

3i

jr' r"+ (x'g x'g~x'22 x22) s2 +j (r' *22 + r" «22) (16)

$2 ^7- *12 \(x'22 — xg)s2 — jr" s\e

»2

A

-_Ä_

(17)

*12 I (*22 — Xg) S2 jr' s e (18)

Diese Gleichungen stellen bizirkulare Quartiken
dar. Die Faktoren erHP und e'1^" in den Gl. (17)
und (18) sind durch den Frequenzunterschied
zwischen der Primärspannung 11-, und den Sekundärströmen

32' und 2s 2" bedingt. Durch Multiplikation
der Gl. (17) und (18) mit e'A' bzw. e'&" und je mit
dem entsprechenden Uebersetzungsverhältnis
zwischen den Käfigwicklungen und der Ständerwicklung

kann man die Sekundärströme auf die
Primärfrequenz und Primärwindungszahl reduzieren2).
Da wir jedoch die Sekundärströme für die weiteren
Berechnungen nicht benötigen, brauchen wir uns
mit ihnen nicht weiter zu befassen.

4. Leistungen und Drehmoment
Die primäre Leistung berechnet sich nach der

Formel
Pt m1 U1 /3 cos çjj,

worin 1/j und /, die Effektivwerte der Klemmenspannung

bzw. des Primärstromes und cos cp1 den

2) Wenn man dann noch auf der rechten Seite der Gl.
(16), (17) und (18) Zähler und Nenner durch s- dividiert, so
treten die Verhältnisse r'/s und r"/s auf, während die sek.
Reaktanzen den Faktor s nicht mehr aufweisen. Hierauf gründet

sich die Einführung des bekannten Ersatzdiagrammes,
das, wie man sieht, ein recht abstraktes Hilfsmittel darstellt.

Leistungsfaktor bedeuten. I3 cos cp± ist die
Wirkkomponente des Stromes, die wir mit Ilw bezeichnen.

Man erhält sie aus Gl. (16), indem man darin
U1 durch U1 ersetzt und den reellen Teil der rechten

Seite ausrechnet. Den (mit ]/2 dividierten)
Bezugsvektor llj lässt man nämlich mit der positiven
reellen Achse zusammenfallen, so dass Ilw — /, cos <p3

als die Projektion von /3 auf die reelle Achse
erscheint. Der imaginäre Teil der Gl. (16) liefert
dann den Blindstrom Ilb Ix sin cp^. Wir können
also auch schreiben (mt 3) : P1 3 Ut Iuv.
Ziehen wir davon die primären Kupferverluste
Pvl =3 rxl\ ab, (die EisenVerluste bleiben hier
unberücksichtigt), so erhalten wir die durch das
Drehfeld auf den Läufer übertragene Drehfeldleistung

Pa P1"—PVi 3 (U1I1W— ril\).
Diese Leistung ist auch gleich dem Drehmoment M
multipliziert mit der Geschwindigkeit 00 des
Drehfeldes (bzw. o)/p bei der Maschine mit p
Polpaaren). Man kann sich nämlich das Drehfeld auch
durch einen Magneten erzeugt denken, der mit der
Geschwindigkeit a) bzw. a>/p angetrieben wird und
auf den das Drehmoment M wirken muss, um das

vom Läufer ausgeübte Gegendrehmoment zu über-
p

winden ; es ist also Pri M • oj und somit M =—ü)

Ist Û die Läufergeschwindigkeit, so ist die
erzeugte mechanische Leistung Pm=MQ=Mœ (1—s).
In Wärme umgewandelt werden die sekundären
Kupferverluste Pv2 Pj — Pm== Pd's-

Um die Rechnung übersichtlich zu gestalten,
führen wir die folgenden Konstanten ein:

K0 r' r"
Kl X22 x'22 Xg Xg

K2 xn (r'x'A -\~r" x'21)

K3 r' X22 r" x22

K4 xl2 (x2l x'22 — x'2'\ x'g + x'2'1 x'i2 — X'2l x'J)

(19)

Mit diesen Konstanten schreiben sich die Gl. (15)
und (16) wie folgt:
A r, K0 + (K2 - xn K3) s-riKlS2 +

+j {*1 i K0 + rj K3 s + (K4 - Xi 1 Kt s2}

81 =^[K0-KiS2-hjK3s]

(15a)

(16a)

Um Im zu berechnen, muss man in Gl. (16a) den
Nenner reell machen, indem man den ganzen
Bruch rechter Hand mit dem konjugierten Wert A
erweitert. Für den Nenner erhält man dann den
reellen Ausdruck:

AÄ IA\2 [n K0 + (K2- K3)s-r1 s2]2 +
+ [XnKo-hriKss + iK.-XnKJs2]2 (20)

Multipliziert man noch den Zähler von Gl. (16a)

mit A und ersetzt man 12, durch t/3, so ergibt der
reelle Teil des Bruches den Wert Itw. Fügt man
noch den Faktor 3U1 hinzu, so ergibt sich
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Fi 3
3 U?

Ml2
[ri(K0-K,s2y

+ (K0 - K, s2) K2 4- (r, Kz +Ki s) K8 s2} (21)

Zur Bestimmung von PV1 braucht man /f. Dieser
Wert lässt sich als «Norm» 3) der rechten Seite von
Gl. (16a) unmittelbar hinschreiben. Durch
Multiplikation mit 3r1 erhält man somit:

{^[Ko-K^+ ^KW] (22)

Indem wir Gl. (21) von (20) abziehen, erhalten
wir nach Ausrechnung die Drehfeldleistung

Pä
3 U\

[J|2
{K0K2 + (K3 K4— K, K2) s2|S WM (23)

wodurch auch das Drehmoment M, sowie die
mechanische Leistung Pm Pd (1—s) und die sekundären

Verluste Pv2— Pd-s bestimmt sind.

Von besonderem Interesse sind das Anlauf-
moment, das man erhält, wenn man in Gl. (23)
s=l einsetzt; ferner das Kippmoment, d.h. das
maximale Drehmoment in der Nähe der synchronen

Drehzahl, wo also s relativ klein gegen 1 ist.
Um den entsprechenden Schlupf (Kippschlupf) zu

dp
finden, hat man zu bilden und gleich Null zu

ds

setzen und s aus der so erhaltenen Gleichung zu
berechnen. Zu dem Zweck entwickeln wir Zähler
und Nenner von Gl. (23) nach Potenzen von s und
erhalten

Pd 3 U\
US + bs*

(24)
c-\-ds-(-es2 A-fs3-\~gsi

wobei die Konstanten a bis g folgende Werte haben :

a K0K2 ; b K3K4 — K,K2;
c (rf + ^,)Kg; d 2r1K0K2;
e — r\ (Kl —2K0 Kf) -|- 2xn KqIK^—xlt K,) -f-

+ (K2-Xuk3)2;
f=2rt (K3 K.-K, K2) ; g r* K\ + (K4 - xnK1)2

(25)

Setzt man den Zähler von -gleich Null, so erhält
ds

man zunächst die Gleichung:

ac-\-(3bc— ae) s2-\-(bd— o/)s3 —
— (be—3 a g) s4 — b g s6 0.

Nun ist aber aus (25) zu ersehen, dass bd—af 0

ist; mithin reduziert sich obige Gleichung auf
folgende :

ac — (36c — ae) s2 -f- (be — 3ag) s4 — bgss 0.

Das ist aber eine kubische Gleichung in s2. Setzen
wir s2 y und ordnen wir die Gleichung nach y3,
so erhalten wir

3) Norm Betrag des Zählers im Quadrat durch Betrag
des Nenners im Quadrat.

3 a e irg,

ae
bg

3 c

g

ac

bg
0 (26)

Den drei Wurzeln dieser Gleichung entsprechen
sechs Werte von s. Sind die drei Wurzeln reell und
positiv, so gibt es drei positive und drei negative
Werte von s, wofür die Kurve einen Extremalwert
aufweist. In diesem Fall gibt es also drei positive
und drei negative Kippmomente, die paarweise
symmetrisch zur Ordinatenachse liegen. Wie die
Erfahrung zeigt, befinden sich zwei dieser
Kippmomente in der Nähe des Leerlaufs, wo also s klein
gegen 1 ist, während das dritte Kippmoment bei
s grösser als 1 vorkommt. Nur die beiden ersten
Kippmomente haben praktische Bedeutung.

Für diese ist also auch y sehr klein gegen 1. Man
kann diese y-Werte mit praktisch genügender
Genauigkeit aus der quadratischen Gleichung berechnen

/3a
b

ae

bg
|y

g

a c

bg
0 (27)

die man aus (26) bei Vernachlässigung von y3
erhält. Die etwas zeitraubende Lösung der
kubischen Gl. (26) ist daher entbehrlich. Werden die
Wurzeln der Gl. (27) mit y1 und y2 bezeichnet,
so sind die entsprechenden Schlupfwerte für die
Kippmomente :

si dzVri' s2=diVy2-
Das im folgenden Paragraphen berechnete Zahlenbeispiel

wird die Brauchbarkeit der Gl. (27)
erweisen.

5. Sonderfall:
Beide Käfige haben dieselbe Stabzahl, jedoch
getrennte Seitenringe (Fig. 3). Zahlenbeispiel und

Vergleich mit einem Einkäfigmotor'
Bei diesem praktisch wichtigen Sonderfall haben

beide Käfige dieselbe Phasenzahl m2 m" m2.

Fig. 3.

' Doppelkäfiganker mit m\ — m'{ ms

Die sekundären Reaktanzen nach Gl. (10) und
(13) erhalten jetzt folgende Werte:

X'2h x2h — x2h MÄ m0

x2\ — x'2[ x2l cjA —- (fej IV,)
4

x22 x2h + V
*22 X2h 4- X"
Xg ~: Xg — Xg X2h 4" X

Unverändert bleiben

3 3
xJh — coA — (fcjA/j)2; x12 — coA — (fe, N.)

2 4

X\i x^h ~4~ x^s •
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Für die Konstanten K erhalten wir folgende Werte:

K0 r'
Kj X22X22—x2g — x2h(x'-\-x" — 2 x"')+x' x" — x'
K2 (r' + r") x12 x2t

K3 r' x'22 4- r"x'22 (r' + r") x2h 4- r' x" + r"x'
K. X12X21 (x'~ X" Ix'") (19a)

Um einen Einblick in das Verhalten des

Doppelkäfigankermotors in Abhängigkeit von den
Konstanten der Maschine zu gewinnen, wollen wir ein
bestimmtes Zahlenbeispiel behandeln, dessen Daten
etwas aufgerundet sind, in der Grössenordnung
aber einem praktisch ausführbaren Modell
entsprechen. Zum Vergleich wird dann ein analoges
Modell eines Einkäfigmotors mitbehandelt.

Der erste Motor sei eine zweipolige Maschine
mit einer dreiphasigen, in Dreieck geschalteten
Primärwicklung und zwei Käfigwicklungen mit je
50 Stäben und zwei getrennten Seitenringen. Die
Daten dieses Zweikäfigmotors seien folgende:

xih '

xi s '

X-i 1
:

x2h 8 • 10 3 Ohm
x' =6-10-4 »

x" 0,4 • 10-4 »

4 1 • 10-4 »

r" 3 • IQ 4 »

x12 0,12 Ohm
x,, =2 »

: 30 Ohm
: 1

31

U== 0,3
U1 200 V

(Die hier gewählten Ohmschen Widerstände wurden

relativ klein angenommen, um günstige
Verhältnisse für den Doppelkäfigmotor zu erhalten).
Mit Hilfe der Gl. (27) erhalten wir für die
Konstanten :

K0 0,3 • 10-7

K, 43,41 • 107
K2 960 • 10-7

K0 K2 288-IQ-"
K3 K, — IC, K2 2183 • 10-14

K3 33,84
Ki —1296

• 10-7

hf
Die Gl. (15A) und (16a) für den Primärstrom Si
ergeben die Gleichung

3, 200
0,3—43,41 S2+j 33,84 s

0,09 — 89,04 s—13,02 s2-\-j [9,3

— 49,71s2]
10,15s

Diese bizirkulare Quartik hat im Punkte s 0 den
Tangentialkreis [IV]

T0 200
0,3 -\-j 33,84 s

0,09 +j 9,3 +[ - 89,04 -j 10,15] s

imd im Punkte s— 00 den Tangentialkreis

j 33,84 — 43,41 s
Too 200

- 89,04 4-j 10,15 - [13,02 4-j 49,71] s

Die Quartik (Si) mit den beiden Tangentialkreisen
T0 und Too ist in Fig. 4 gezeichnet. Obwohl das

Arbeitsgebiet des Motors sich nur vom Punkte
s l (Stillstand, Anlauf) bis zum Punkte s 0
(Synchronismus, Leerlauf) erstreckt, wurde die
ganze Kurve berechnet und aufgezeichnet. Auffallend

ist die Einsenkung zwischen den Punkten 0,2

und 1 bzw. —0,2 und —1. Diese Einsenkung kann
mehr oder weniger ausgeprägt sein, je nach der
Grösse der Ohmschen Widerstände relativ zu den
Reaktanzen der Maschine.

Fig. 4.

Stromdiagramm des Doppelkätigmotors

Um die Vor- und Nachteile des Doppelkäfigmotors gegenüber

dem Einkäfigmotor deutlich erkennen zu können, ist in
Fig. 5 das Stromdiagramm eines Einkäfigmotors gezeichnet,
dessen Ständer genau gleich dem des soeben betrachteten
Motors ist und dessen Läufer nur einen äusseren Käfig trägt
von derselben Stabzahl wie der frühere. Wir wollen für diesen
Käfig dieselbe Kupfermenge verwenden, wie für die beiden
Käfige zusammen, so dass der ohmsche Widerstand r2 je Se-

Si as

\ -li \ \\o \ 0°

\\ /\\
V--''-r-'iy :,4"

C
-m -!Ö0

Fig. 5.

Stromdiagramm des Einkäfigmotors

kundärphase gleich dem Widerstand der parallelgeschalteten
Phasen der beiden Käfige im Synchronismus ist. Es ist also

r' r"
T'i —7 7 — angenommen. In der Nähe des Synchronismus,

d. h. im Dauerarbeitsgebiet, tritt der Einfluss der Streureaktanz

im Sekundärstromkreis stark zurück gegenüber
demjenigen des Ohmschen Widerstandes. Wir wählen die
Streureaktanz x-2,~ x", d. h. gleich derjenigen des äusseren Käfigs
des ersten Motors. Die beiden Motoren werden sich in ihrem
Verhalten in der Nähe des Synchronismus (Arbeitsgebiet)
nicht wesentlich voneinander unterscheiden, dagegen um so
mehr mit wachsendem Schlupf und also namentlich im Anlauf.

Für den Einkäfigmotor gelten also die Daten:

x\h 30 Ohm

Als 1

All =31 „
n 0,3 „

X2k 8 • 10"3 Ohm
Ajs 0,4 10"1 „
*22 8,04 -10-3 „
r2 0,75-ÎO"4 „

A2i 2 Ohm
*12 0,12 „
Ü! 200 V
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Zur Berechnung des Ortskreises des Primärstromes 81 (siehe
Fig. 5) benutzen wir die bekannte Gleichung [III] :

8l Ulfa +jx22 S

n n — (»11 »22 ^lh *2h) S + 7 [r2 »11 + ri »22 s]

In unserem Falle erhalten wir

cS
200

0,075 +7 8,04 s
01 0,0225-9,24 s+7 [2,325+ 2,412 s

Für die Hauptpunkte ergeben sich hieraus die Werte:

s 0; & (0,062 — j 6,46) A

s 8g (42,50 —j 162,9) A

s 1; 8k (68,80 —j 138,7) A

Zur Kontrolle wurde noch der Punkt s 0,1 berechnet :

80,1 (53,66 —7 25,07) As 0,1;

Damit kann der Kreis samt Schlupfskala in bekannter Weise
gezeichnet werden. Nach Eintragung der Pd-Linie und der
Pm-Linie können dem Kreisdiagramm sämtliche Betriebsgrös-
sen für jeden Schlupfwert ohne weitere Rechnung entnommen

werden. Mit den aus Fig. 4 graphisch ermittelten Werten
wurden die Kurven Pi, Pd und Pm in Fig, 6 konstruiert.

0
Ausserdem wurde aus Fig. 4 der Betrag des Stromes 81 ent*
nommen und im Maßstabe 1 : 2 über den jeweiligen Schlupf-

o
wert in Fig. 5 eingetragen und damit die Kurve Ii gezeichnet.

3 a
~b —= -2,2911;

g

a e 3c «0,2562 ;
bg g

ac
bg

0,00432.

Die Gl. (27) liefert dann die zwei Wurzeln:

y1 — 0,0207 und y2 0,0916,

denen die Schlupfwerte für die Scheitelwerte von
Pd bzw. M entsprechen:

Si +0,1439 und s2 ±0,3027.

Der Gl. (24) entspricht die numerische Gleichung

Pd=3-2002
288« + 2183«3

86,5+172,8 s+7096 «2+1310 «3+2641 s*

(24a)
Setzt man hierin der Reihe nach die Werte s 0;
S+ s2; 1 ein, so erhält man die folgenden Hauptpunkte

der P/Kurve:
s 0 s, «„ 1

Pd 0

M
314

0

2187

6,96

2105

6,70

2622 Watt

8,34 Joule

hL

J, \A
m \\

k \
0 //
l> /

+-
V» £L

6J

f G,2 Q 3 4 0,6 6 G 7 G8 è" 1

Pi

"i. \
V-

Pd,11 \\
N À

/v

1 r, C C

A
4 r, b 0 6 7 0 a '0

/ 0,9 0,8 0,7 0,6 0,5 OA OA 0,2 0,1

Flg. 6.

Einkäfigmotor zoo A
.JOkW

0,9 08 0,7 06 0,5 OA 0,3 0,2 0,1 0
" S

*~io Fig. 7.

Doppelkäfigmotor

In Fig. 7 sind die entsprechenden Kurven für
den Doppelkäfigmotor aufgezeichnet. Von diesen
können nur die Pj-Kurve und die /,-Kurve mit
Hilfe der Fig. 4 konstruiert werden. Die Pd-Kurve
muss mit Hilfe der Gl. (23) punktweise berechnet
werden. Diese erhält den Zahlenwert:

Prf 3 -2002 (288 -+2183- «2) s

[0,09—89,04 «—13,02 «2]2_+_ [9,3 +_
10,15 s-49,71 «2] 2

Für die Konstanten der Gl. (24) erhalten wir mit
Hilfe der Ausdrücke (25) die Zahlenwerte:

a= 288 • 10 14

b 2183 • 10 "
c 86,5 • 10 "
d =172,8 -10 "

e 7096 • 10 ";
/ 1310 -10";

g 2641-10-".

Wir berechnen damit die Konstanten der Gl.
zu:

(27)

Weitere Punkte der Pd-Kurve lassen sich
mit Hilfe der Gl. (26a) oder (27a) leicht
bestimmen; z. B. für s 0,02; 0,04...0,08;
0,1...0,9, wie dies für die Fig. 7 geschehen
ist. Doch bestimmen schon die obigen
vier Hauptpunkte im wesentlichen den
Verlauf der Pd-Kurve im Betriebsgebiet
s 0 bis s 1. Dem Schlupf Sj
entspricht das eigentliche Kippmoment,
dem Schlupf s2 entspricht ein kleineres
Kippmoment (Sattelmoment), das
theoretisch das grösste Belastungsmoment
vorschreibt, das der Motor beim Anlaufen

ohne Gefahr hängen zu bleiben, d. h.
die Betriehsdrehzahl nicht zu erreichen,
übernehmen kann.

Bevor wir zum Vergleich des
Doppelkäfigmotors mit einem Einkäfigmotor

übergehen, wollen wir noch die Brauchbarkeit der
Gl. (27) nachweisen.

Löst man die kubische Gl. (26) nach Einsetzung
der Zahlenkoeffizienten mit den bekannten
Formeln auf, so erhält man die Wurzeln bzw. die
genauen Schlupfwerte:

yf 0,020641 ; J2= 0,096292; ^=2,174143
71=± 0,14367; s~2= ± 0,31031; s7= + 1,4745.

Die Näherungswerte s1 und s2 stimmen mit den

genauen Werten s1 und s2 ausreichend überein,
umso mehr, als sich die Ordinaten von Pd in der
Umgebung der Scheitelwerte nur geringfügig mit
den Abzsissen ändern. Der dritte Scheitelwert fällt
in das übersynchrone Gebiet | s | > 1 und hat praktisch

keine Bedeutung.
Die Ordinaten der P„,-Kurve ergeben sich aus

der Beziehung
Pm — Pd Pm=Pd Pd- S
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Der elektrische Wirkungsgrad ist rj jp-. Er ist
"i

in den Diagrammen nicht dargestellt.
Der Vergleich der Fig. 4 und 5 einerseits mit

den Fig. 6 und 7 anderseits zeigt die Vor- und Nachteile

der beiden betrachteten Motoren.
Im Anlauf (s l) ist das Verhältnis der

Kurzschlußströme :

M —
Ik

102,5

154
0,666.

und das Verhältnis der Drehmomente:

Ma
0

2622

1932
1,357.

Im Anlauf ist somit der Doppelkäfigmotor im, Vorteil,

da er den kleineren Kurzschlußstrom und das
grössere Drehmoment besitzt. Darauf beruht seine.

Verwendung für Betriebe, die mit verhältnismässig
grosser Last anfahren müssen.

Gegenüber dem Einkäfigmotor besitzt dagegen
der Doppelkäfigmotor das kleinere Kippmoment.
In unserem Beispiel ist

Mk

MK

2187

3840
0,5696.

Das hat zur Folge, dass die Ueberlastbarkeit des

Doppelkäfigmotors geringer als beim Einkäfigmotor
ist; in unserem Fall beträgt sie nur ca. 57 °/o

derjenigen des Einkäfigmotors. Ein weiterer Nachteil
ist die Einsenkung der Drehmomentkurve (Sattel)

zwischen Anlauf und eigentlichem Kippmoment.
In unserem Beispiel ist diese Einsenkung wenig
ausgesprochen und daher nicht von Belang. Je
grösser jedoch die Einsenkung ist, desto kleiner
wird das zulässige Anlauf-Lastmoment.

Auch der Leistungsfaktor (cos (p) ist beim
Doppelkäfigmotor kleiner als beim Einkäfigmotor, wie
man aus Fig. 4 deutlich ersieht, in welcher das
Bogenstück 0...1 des Kreises der Fig. 5 bezeichnet
ist und die kleinsten Winkel rp, und cp1 angegeben
sind. Infolgedessen ist auch der Wirkungsgrad beim
Doppelkäfigmotor schlechter als beim Einkäfigmotor.

Damit sind die wesentlichen Vor- und Nachteile

der beiden Motorenarten klargestellt. Die Wahl
zwischen denselben hängt von den gegebenen
Betriebsbedingungen ab [V],

Literatur
[I] Punga und Raydt: Drehstrommotoren mit Doppelkäfiganker

usw. Berlin: J.Springer 1931.

[II] Richter: Elektrische Maschinen, Band IV, Die
Induktionsmaschinen. Berlin: J.Springer 1936. (Daselbst weitere

Literaturangaben.)
[III] Michael: Theorie der Wechselstrommaschinen in vek-

torieller Darstellung. Leipzig und Berlin: B. G. Teubner
1937.

[IV] Michael: Die Konstruktion des singulären Punktes der
bizirkularen Quartik und der durch ihn gehenden Tangen-
tialkreise. Arch. f. Elektrotechn., Bd. XXX (1936), S. 199.

[V] Dünner: Anlauf und Betriebsverhältnisse der
Induktionsmotoren bei Verwendung verschiedener Rotorarten.
Bull. SEV 1934, Nr. 20, S. 525.

Adresse des Autors:
Dr. W. Michael, Adjunkt des Eidg. Amtes für geistiges Eigentum,

Bern.

Die Radiostation Münchenbuchsee im Jahre 1945
Von S. C. Anselmi, Müuchenbuchsee 621.396.712(494)

Die Sendestation Münchenbuchsee, die im Jahr
1921 erbatit wurde, liegt ungefähr 10 km nordöstlich
von Bern. Sie dient ausschliesslich für den radio-
telegraphischen Verkehr mit Europa und Nordamerika.

Die Sender dieser Station, deren Zahl heute 11

beträgt (1921 war ein einziger Sender vorhanden),
werden durch das Drehstromnetz der BKW gespie-
sen. Die Netzspannung von 16 000 V wird in der
Station auf 500 V, 50 Hz transformiert. Dieser Strom
wird einer Hauptschalttafel zugeführt, von wo er
auf die Kommandopulte der einzelnen Sender übergeht.

Bei Unterbrüchen der Energielieferung wird die
ganze Station durch eine automatische
Dieselnotstromgruppe von 250 kVA gespiesen. Das Anlassen
der Dieselgruppe benötigt 15 Sekunden; die Anlassund

Abstellknöpfe befinden sich an der Hauptschalttafel.

Die gegenwärtig vorhandenen 11 Sender haben
folgende Funktionen:
2 Sender arbeiten auf Langwellen,
9 Sender arbeiten auf Kurzwellen.

Von den 2 Langwellensendern — von denen jeder
eine Anodenleistung von 18 kW aufweist — arbeitet

der eine auf der Frequenz von 95,85 kHz (3130 m)
und der andere auf 82,6 kHz (3632 m). Diese beiden
Sender besorgen den radiotelegraphischen Dienst
mit Europa (vor allem mit London und Lissahon).
Sie arbeiten auf Antennen, die von Gittertürmen von
92 m und 125 m Höhe getragen werden. Eine dieser
Antennen besteht aus 4 horizontalen Leitern und ist
L-förmig, während die andere Antenne aus 6 Leitern
besteht und T-förmig ist.

Die 9 Kurzwellensender — von denen einige,
d. h. die älteren, englisches Fabrikat, die neueren
ausschliesslich schweizerisches Fabrikat sind —
verfügen über eine Leistung, die zwischen 4 kW und
40 kW im Anodenkreis variiert. Vier dieser Sender
(die älteren Typen) arbeiten auf fixen Frequenzen;
die übrigen fünf Sender (die neueren Typen)
verfügen über ein Frequenzband von 20 000...3 750 kHz
(15...80 m).

Sämtliche Kurzwellensender in Münchenbuchsee
sind mit Steueroszillatoren, System Franklin,
versehen. Die Grundfrequenz (3 MHz), welche diese
Oszillatoren liefern, wird durch Vervielfachungs-
stufen auf die richtige Sendefrequenz gebracht und
in mehreren Stufen verstärkt.
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