Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 35 (1944)

Heft: 8

Rubrik: Mitteilungen SEV

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

eine tiefgreifende Periode der Arbeitslosigkeit im ganzen Lande sich eines Tages zu einem in diesem Sinne zwingenden Grunde für unsere Behörden auswachsen?

*

Damit hätten wir in grossen Zügen die hauptsächlichsten Gesichtspunkte vor uns Revue passieren lassen, die es zu berücksichtigen und so weit als möglich unter einen Hut zu bringen gilt, wenn man das Problem der Erstellung neuer Kraftwerke in der Schweiz in seiner Gesamtheit betrachten will. Einleitend hatte ich mir als Richtlinie gesetzt, mich striktester Objektivität zu befleissigen. Ich habe mich daher bemüht, alle mir bekannten Meinungen und Wünsche ohne Unterschied gebührend zu Worte kommen zu lassen, dagegen es bewusst vermieden, selbst einseitig dazu Stellung zu nehmen. Dass die in Betracht zu ziehenden Aspekte kompliziert, ja sogar sehr kompliziert sind und vielfach ineinandergreifen und sich überschneiden, dürfte aus dem Gesagten genugsam hervorgegangen sein; ebenso dürfte sich jeder davon Rechenschaft gegeben haben, dass eine optimale Lösung, die doch ein jeder zum besten unseres Landes wünschen möchte, nicht aus einem Kampf aller Interessen gegeneinander, sondern nur

aus einem klugen Abwägen und aus einer verständnisvollen Ausbalancierung und Koordinierung der verschiedenen treibenden Kräfte und wirtschaftlichen Bedürfnisse resultieren kann. Diesen Schluss darf ich wohl ziehen, ohne mich dem Vorwurf der Voreingenommenheit auszusetzen. Im übrigen haben sich meine Ausführungen darauf beschränkt, Tatsachen aufzuzählen und Fragen vor Ihnen aufzuwerfen. Die Stellungnahme zu diesen Tatsachen und Fragen will ich aber, um im Rahmen meiner heutigen Aufgabe zu bleiben, nunmehr jedem von Ihnen je nach seiner persönlichen wirtschaftlichen oder politischen Einstellung und entsprechend seinem eigenen Temperament selbst überlassen. Trotz dem zutage getretenen Widerstreit der Meinungen ist mir dabei um die Zukunft unserer schweizerischen Elektrizitätswirtschaft keineswegs bange, denn es ist bisher unter der ausgleichenden Wirkung unserer einheimischen Institutionen noch stets gelungen, die verschiedenartigsten Interessen und Tendenzen zum Wohle des Ganzen auf einen einheitlichen Nenner zu bringen. Man ist in der Schweiz über manch andere Streitfragen schliesslich immer wieder einig geworden. Warum sollte die Bewältigung der mit dem Ausbau unserer Wasserkräfte verbundenen Aufgaben eine Ausnahme von der erfreulichen Regel bilden?

Technische Mitteilungen — Communications de nature technique

Die Wärmepumpenanlagen in Zürich

(Nach Elektr.-Verwert. 1943, Nr. 7...9)

1. Die bestehenden Anlagen

621.577

Seit der Inbetriebsetzung der ersten Wärmepumpenanlage im Zürcher Rathaus 1) sind in Zürich vier weitere Wärmepumpenanlagen erstellt worden. Die Leistungsziffer und die

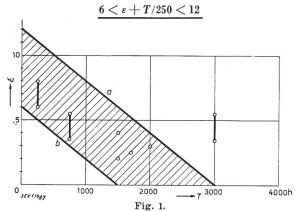

Leistungsziffer und Benützungsdauer der Wärmepumpen in Zürich

Tabelle I

Nr.	Wärme- pumpe	Leistungs- ziffer &	Benützungs- dauer Tin h	Literatur		
1 -	Rathaus Kongresshaus	2 2,5	000000 10 200	Bull. SEV 1938, Nr.11, S.261 Bull. SEV 1939, Nr. 2, S. 46		
3	Hall'schwimmbad			-		
a	Badewasser	6 8	250)			
b	Duschen	3,5 5,5	750	Bull. SEV 1941, Nr. 15, S. 345		
c	Raumheizung	3,5 5,5	3000			
4	Fernheizkraftw.	3	2000	Bull. SEV 1943, Nr. 7, S.174		
5	Amtshäuser	4	1500	Bull. SEV 1943, Nr.17, S.511		

Benützungsdauer dieser Anlagen sind in Tabelle I zusammengestellt. In Fig. 1 ist die Leistungsziffer ε über der Benützungsdauer T aufgetragen. Sieht man von der Wärmepumpe, die im Hallenschwimmbad zur Raumheizung dient, mit verhältnismässig grosser Benützungsdauer (3000 h) ab, so lässt sich der Bereich dieser Wärmepumpenanlagen in Fig. 1 durch die Geraden a und b abgrenzen. Durch diese Geraden werden folgende Funktionen dargestellt:

Gerade $a: \quad \varepsilon = 12 - T/250$ Gerade $b: \quad \varepsilon = 6 - T/250$ Das Gemeinsame der betrachteten Wärmepumpenanlagen kommt daher in folgender Beziehung zwischen der Leistungsziffer ε und der Benützungsdauer T zum Ausdruck.

Leistungsziffer ε und Benützungsdauer T der Wärmepumpen in Zürich

2. Das Projekt der Wärmepumpenanlage des neuen Kantonsspitals Zürich

Mit der Wärmepumpe im Zürcher Rathaus und der Strahlungsheizung im Elektrobau des Technikums Winterthur²) konnte der Kanton Zürich in den letzten 6 Jahren Erfahrungen sammeln, die für die Beurteilung der Heizungsfragen im Zusammenhang mit dem Neubau des Kantonsspitals wertvolle Grundlagen gaben. Die Häufigkeitskurve der Aussentemperatur hat in unserer klimatischen Zone einen ausgesprochenen Spitzencharakter. Die Leistungsspitze ist derart ausgeprägt, dass mit Ausnahme der 50 kältesten Tage des Jahres die Wärmebedürfnisse sämtlicher übrigen Tage mit der Hälfte der durch den kältesten Tag bestimmten Leistung gedeckt werden könnten. Die hohen Anlagekosten einer Wärmepumpe,

¹) Bull. SEV 1938, Nr. 11, S. 261...273.

²⁾ Bull. SEV 1941, Nr. 10, S. 217...226.

die bedeutend über der einer Feuerungsanlage liegen, einerseits, und die Sicherstellung der Wärmeversorgung anderseits, lassen es als lohnend erscheinen, die Spitzenlast durch einen Feuerungsbetrieb zu decken. Die Feuerungsanlage hat auch noch eine bestimmte Ueberlastbarkeit.

Bei der Heizung des neuen Kantonsspitals in Zürich ist ein Verbundbetrieb zwischen einer Wärmepumpenanlage an der Limmat und verschiedenen Feuerungsstellen vorgesehen. Die Wärmepumpe übernimmt dabei die Aufgabe eines Grundlastwerkes 3). Die Feuerungsanlagen werden als Zusatzwerk (mit geringer Ueberlastbarkeit) und als Spitzenwerk (mit grosser Ueberlastbarkeit) ausgebildet. Die Heizleistungen der 4 Anlagen, die für die Deckung des Wärmebedarfes des

Die Heizwerke des neuen Kantonsspitals Zürich

Werk	Art des Werkes	Normal- leistung 106 kcal/h	Ueberlast- barkeit
A B C D E F	Verdampfer Kompressoren Wärme-Hauptverteilstation Fernheizkraftwerk der ETH Spitzenwerk Zusatzwerk	5,5 ¹) 8,0 ²) 6,0 4,0	+ 50 % +100 %
	Total	23,5	

1) Bei 1,5° C Flusswassertemperatur und 60° C Vorlauftemperatur.

2) Anteil für das Kantonsspital.

neuen Kantonsspitals in Betracht fallen, sind in Tabelle II zusammengestellt. Neben der Wärmepumpenanlage A an der Limmat und dem bestehenden Fernheizkraftwerk der ETH ist das Spitzenwerk E im früheren Kesselhaus der Frauenklinik geplant. Das Werk F ist im bestehenden Kesselhaus eines Universitätsgebäudes vorgesehen. Bei der günstigen Lage dieses Werkes könnte später die Brennstoffzufuhr aus dem nahen Bahntunnel in ähnlicher Weise vorgenommen werden wie beim Fernheizkraftwerk der ETH 4).

Während die Kompressoranlage der Wärmepumpe mit total 2450 kW Antriebsleistung im Küchengebäude des Spitals aufgestellt wird, das bezüglich Geräuschlosigkeit und Erschütterungsfreiheit die geringsten Ansprüche stellt, soll die Wärme-Hauptverteilstation möglichst zentral angeordnet werden. Die Wärme-Hauptverteilstation C steht durch Rohrleitungen mit allen bisher genannten Wärmewerken in Verbindung. Zwischen der Verdampferanlage A der Wärmepumpe an der Limmat und der Kompressoranlage B im Küchengebäude des Spitals ist eine 750 m lange Leitung für die Ammoniakdämpfe und eine ebensolange Rückleitung nötig. Die grösste benötigte Wärmeleistung beträgt 19,5·10⁶ kcal/h und die jährlich abzugebende Wärmemenge 31,5·109 kcal/Jahr. Werden davon 22,5 · 109 kcal/Jahr, d. h. rund 70 %, durch die Wärmepumpe geliefert; so können jährlich 4450 t Brennstoff eingespart werden, während die Feuerungsbetriebe für den restlichen Wärmebedarf 1850 t benötigen.

*) Bull. SEV 1944, Nr. 1, S. 27.

*) Vgl. Beschreibung der Kohlentransport- und Kesselbeschickungsanlage im FHK. Daverio-Nachr. 1934, Nr. 4, sowie Schweiz. Techn. Z. 1934, Nr. 26, S. 3.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Strahlungsenergie und Erdabsorption bei Dipolantennen

[Nach A. Sommerfeld und F. Renner, Annalen der Physik, 5. Folge, Bd. 41 (1942), Heft 1, S. 1] 621,396,671

In den Lehrbüchern über Hochfrequenztechnik werden Strahlungsprobleme von Antennen meist unter der Annahme behandelt, dass der Erdboden ein vollkommener Leiter sei. Unter dieser Voraussetzung sind die Rechnungen mit verhältnismässig bescheidenen mathematischen Mitteln durchführbar. Lässt man diese Annahmen fallen, so erfordern die entsprechenden Probleme recht bedeutende analytische Hilfsmittel und es ergeben sich besonders bei geringen Höhen der Antennengebilde (Dipole) nicht unbeträchtliche Abweichungen vom eingangs erwähnten Idealfall.

Wir bezeichnen das Medium Luft mit I und das Medium Erde mit II. Die entsprechenden Wellenzahlen k sind dann

$$k_1^2 = \frac{\omega^2}{c^2}$$
 $k_2^2 = \frac{\varepsilon \omega^2 + 4\pi i \sigma \omega}{c^2}$ 1) $i = \sqrt{-1}$ (1)

Der Abstand des betrachteten Dipols von der Erdoberfläche sei h. Der Kürze halber sollen hier nur die Ableitungen der Formeln für den horizontalen Dipol angedeutet werden. Die entsprechenden Endformeln für den Vertikaldipol geben wir ohne jede Ableitung wieder. Zur Berechnung des Poyntingschen Vektors der Energiestromdichte gehen wir vom Hertzschen Vektor B aus, welcher der Differentialgleichung

$$\triangle \beta + k_1^2 \beta = 0 \tag{2}$$

genügt. Die elektrischen und magnetischen Feldvektoren & und 5 erhält man daraus nach den Gleichungen

Als Koordinationssystem benutzt man vorzugsweise Zylinderkoordinaten z, r, φ , entsprechend der Fig. 1. Auf der z-Achse liegen der Dipol A und sein Spiegelbild A' mit den Entfernungen R und R' vom Aufpunkt P. Aus (2) und (2a) erhält man nach Einführung der Polarkoordinaten für die rund φ -Komponenten der Feldgrössen

$$\mathfrak{G}_{r} = \cos \varphi \frac{\partial^{2} \mathfrak{Z}_{x}}{\partial r^{2}} + \frac{\partial^{2} \mathfrak{Z}_{z}}{\partial r \partial z} + k_{1}^{2} \cos \varphi \, \mathfrak{Z}_{x}$$

$$\mathfrak{G}_{\varphi} = -k_{1}^{2} \sin \varphi \, \mathfrak{Z}_{x} - \frac{\sin \varphi}{r} \cdot \frac{\partial \mathfrak{Z}_{x}}{\partial r} + \frac{1}{r} \frac{\partial^{2} \mathfrak{Z}_{x}}{\partial \varphi \, \partial z}$$

$$\mathfrak{G}_{\varphi} = \frac{k_{1}}{i} \left[\cos \varphi \, \frac{\partial \mathfrak{Z}_{x}}{\partial z} - \frac{\partial \mathfrak{Z}_{z}}{\partial r} \right]$$

$$\mathfrak{G}_{r} = \frac{k_{1}}{i \cdot r} \left[\frac{\partial \mathfrak{Z}_{z}}{\partial \varphi} + r \sin \varphi \, \frac{\partial \mathfrak{Z}_{x}}{\partial \mathfrak{Z}} \right].$$
(3)

Die primäre Erregung kann man in der Form
$$\beta_x$$
 prim. $= B \cdot \frac{e^{ik_1R}}{R}$ (nur x-Komponente vorhanden) (4)

ansetzen. Partikularlösungen von (2) stellen die Besselfunktionen

$$\begin{array}{ll} I_0\left(\lambda\,r\right)\,e^{-\,\mu_1\,z}, & \cos\varphi\,\,I_1\left(\lambda\,r\right)\,e^{\,+\,\mu_1\,z}\,\left\{\begin{array}{ll} \mu_1 = \sqrt{\lambda^2 - k_1^2} \\ I_0\left(\lambda\,r\right)\,e^{\,+\,\mu_2\,z}, & \cos\varphi\,\,I_1\left(\lambda\,r\right)\,e^{\,+\,\mu_2\,z} \end{array}\right\}\,\,\mu_2 = \sqrt{\lambda^2 - k_2^2}$$

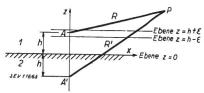


Fig. 1.

Der Ursprung O des rechtwinkligen xyz-Systems liege senk-Der Ursprung O des rechtwinkligen xyz-Systems liege senkrecht unter der Antenne A. Beim horizontalen Dipol weise x in die Achsenrichtung desselben. Daneben benutzen wir Zylinderkoordinaten r, φ z. Der Winkel φ werde von der x-Achse aus gezählt. R sei der Abstand des Aufpunktes P vom Ort der Antenne: $R = \sqrt[3]{r^2 + (z - h)^2}$. In der Abbildung ist auch das Spiegelbild A' des Antennenortes A eingezeichnet. Der Abstand des Aufpunktes von diesem ist

$$R' = \sqrt[n]{r^2 + (z+h)^2}$$

¹) Für Seewasser ist z.B. das Verhältnis $k_1/\left|k_2\right|$ bei einer Wellenlänge von 40 m etwa 100.

dar, wo I1 auch durch - I'0 ersetzt werden kann. Allgemeinere Lösungen kann man durch Multiplikation dieser Besselfunktionen mit willkürlichen Funktionen f (\lambda) und nachfolgender Integration von 0 bis on analog wie bei Fourierintegralen erhalten. Die willkürlichen Funktionen f (1) sind dann den Grenzbedingungen anzupassen. Auf diese Weise bekommt man schliesslich

$$\beta_{x} = B \left[\int_{0}^{\infty} I(\lambda r) e^{\mp \mu_{1}(z-h)} \frac{\lambda d\lambda}{\mu_{1}} + \int_{0}^{\infty} I(\lambda r) e^{-\mu_{1}(z+h)} \cdot \frac{\mu_{1} - \mu_{2}}{\mu_{1} + \mu_{2}} \cdot \frac{\lambda d\lambda}{\mu_{1}} \right]$$

und für die Feldkomponenten:

$$\mathfrak{E}_{r} = -B\cos\varphi \left[\int_{0}^{\infty} I''(\lambda r) f_{1}(\lambda) \lambda^{3} d\lambda - \int_{0}^{\infty} I(\lambda r) f_{2}(\lambda) \lambda d\lambda \right] \\
\mathfrak{E}_{\varphi} = B\sin\varphi \left[\frac{1}{r} \int_{0}^{\infty} I'(\lambda r) f_{1}(\lambda) \lambda^{2} d\lambda - \int_{0}^{\infty} I(\lambda r) f_{2}(\lambda) \lambda d\lambda \right] \\
\mathfrak{F}_{r} = i k_{1} B\sin\varphi \left[\frac{1}{r} \int_{0}^{\infty} I'(\lambda r) f_{3}(\lambda) \lambda^{2} d\lambda + \int_{0}^{\infty} I(\lambda r) f_{4}(\lambda) \lambda d\lambda \right] \\
\mathfrak{F}_{\varphi} = i k_{1} B\cos\varphi \left[\int_{0}^{\infty} I''(\lambda r) f_{3}(\lambda) \lambda^{3} d\lambda + \int_{0}^{\infty} I(\lambda r) f_{4}(\lambda) \lambda d\lambda \right]$$

wobei die Funktionen f1, f2... durch die folgenden Ausdrücke gegeben sind:

$$f_{1}(\lambda) = -\frac{e^{-\varepsilon \mu_{1}}}{\mu_{1}} + (\mu_{1} - \mu_{2}) e^{-2h \mu_{1}} \left[\frac{2\mu_{1}}{N} - \frac{1}{\mu_{1}(\mu_{1} + \mu_{2})} \right]$$

$$f_{2}(\lambda) = \frac{k_{1}^{2}}{\mu_{1}} \left(e^{-\varepsilon \mu_{1}} + \frac{\mu_{1} - \mu_{2}}{\mu_{1} + \mu_{2}} e^{-2h \mu_{1}} \right)$$

$$f_{3}(\lambda) = 2 \cdot e^{-2h \mu_{1}} \frac{\mu_{1} - \mu_{2}}{N}$$

$$f_{4}(\lambda) = \pm e^{-\varepsilon \mu_{1}} + e^{-2h \mu_{1}} \frac{\mu_{1} - \mu_{2}}{\mu_{1} + \mu_{2}}$$

$$(6)$$

Dabei wurde die Dielektrizitätskonstante ε als zahlenmässig klein gegenüber der doppelten Antennenhöhe 2h vorausgesetzt.

Die Berechnung der ausgestrahlten Energie geschieht im allgemeinen so, dass der Poyintingsche Strahlvektor über eine unendlich grosse Kugel integriert wird, die sowohl den strahlenden Dipol als auch sein Spiegelbild im Zentrum enthält. Diese Methode führt beim vorliegenden Problem aus mathematischen Gründen, die in der Originalarbeit angedeutet sind, nicht zum Ziel. Die Integration wird hier in der Weise ausgeführt, dass man den Energiefluss durch zwei horizontale Ebenen $z=h\pm \varepsilon$ betrachtet (Fig. 1). S_+ sei der gesamte Energiefluss durch die Ebene $z = h + \varepsilon$ in der positiven z-Richtung, S_ der Fluss durch die Ebene $z = h - \varepsilon$, ebenfalls in der positiven z-Richtung. Die gesamte Ausstrahlung ist dann

$$S = S_+ - S_-$$

-S_stellt dann die von der Erde absorbierte Strahlung dar, die im Grenzfall $k_2 = \infty$ verschwindet.

Da der Vektor des Energieflusses im Gaußschen Maßsystem $\operatorname{durch} rac{c}{4\pi} [\mathfrak{G}\mathfrak{H}]$ gegeben ist, wird in unserem Falle die allein benötigte z-Komponente:

$$[\mathfrak{G}\mathfrak{H}]_z = E_r H\varphi - E\varphi H_r ^{-2}$$
 (7)

wohei

$$E_{r} = \frac{1}{2} \left[\mathfrak{G}_{r} e^{-i\omega t} + \mathfrak{G}_{r}^{*} e^{+i\omega t} \right]$$

$$H\varphi = \frac{1}{2} \left[\mathfrak{F}_{\varphi} e^{-i\omega t} + \mathfrak{F}_{\varphi}^{*} e^{+i\omega t} \right]^{3}$$
(8)

der uns allein interessierende zeitliche Mittelwert des Strahlvektors beträgt:

$$\overline{E_r H_{\varphi}} = \frac{1}{4} \left(\mathfrak{G}_r^* \mathfrak{H}_{\varphi} + \mathfrak{G}_r \mathfrak{H}_{\varphi}^* \right) = \frac{1}{2} \operatorname{Re} \left\{ \mathfrak{G}_r^* \mathfrak{H}_{\varphi} \right\} \qquad (9)$$

Auf die Wiedergabe des verwickelten Integrationsverfahrens muss hier verzichtet werden. Für die gesamte Energiestrahlung S ergibt sich schliesslich im Falle des Horizontaldipols die Gleichung

$$\frac{2 S}{c k_1^4 B^2} = \frac{2}{3} - \frac{1}{\zeta^2} \left[\frac{\sin \zeta}{\zeta} (\zeta^2 - 1) + \cos \zeta \right] + Re \left\{ \frac{i}{k_1^3} L \right\}$$
(10)

$$L = -\int_{0}^{\infty} F(\lambda) e^{-2h\mu_{1}} \lambda d\lambda \text{ und } F(\lambda) = k_{1}^{2} \frac{\lambda^{2} - 2\mu_{1}\mu_{2}}{k_{1}^{2}\mu_{2} + k_{2}^{2}\mu_{1}}$$

und für den Vertikaldipol die analogen Formeln

$$rac{2\,S}{c\,k_1^4A^2} = rac{2}{3} + rac{2}{\zeta^2} iggl[rac{\sin\,\zeta}{\zeta} - \cos\,\zeta iggr] + R\,e\, iggl\{ rac{i}{k_1^3}\,K iggr\} \$$
wo $K = \int_0^\infty e^{-\,2\,h\,\mu_1} iggl(rac{M}{N} + 1 iggr) rac{\lambda^3\,\mathrm{d}\,\lambda}{\mu_1} \quad \mathrm{bedeutet} \$
mit $M = k_1^2\,\mu_2 - k_2^2\,\mu_1, \quad N = k_1^2\,\mu_2 + k_2^2\,\mu_1$

Die Formeln (10) und (10a) geben die gesamte Ausstrahlung des horizontalen und vertikalen Dipols wieder, die ersten beiden Glieder entsprechen jeweils der Strahlung des Dipols bei vollkommen leitender Erde und können auch mit elementaren analytischen Hilfsmitteln gefunden werden 4). Das dritte Glied stellt jeweils das von der Erdabsorption herrührende Korrektionsglied dar. Diese Glieder werden klein, wenn $k_1/|k_2|$ klein gegen 1 ist. Man kann diese Korrektionsglieder entwickeln und in der ersten Annäherung Terme benutzen, die mit der ersten Potenz $k_1/|k_2|$ klein werden. Man erhält schliesslich durch Umformung und Näherungsbetrachtungen für den Realteil im Falle des horizontalen Dipols

$$Re\left\{\frac{i}{k_{1}^{3}}L\right\} = -\frac{2}{\xi^{2}} \frac{k_{1}}{|k_{2}|} Rei\left\{(1-i\zeta)e^{i(\zeta-\vartheta)}\right\}$$

$$= -\frac{k_{1}}{|k_{2}|} \frac{2}{\xi^{2}} [\xi\cos(\xi-\vartheta) - \sin(\xi-\vartheta)] \qquad (11)$$

Dabei wurde gesetzt

$$\sqrt{-k_2^2}=|k_2|\,e^{\,i\,\vartheta}\qquad -rac{\pi}{2}<\vartheta<0$$

 ζ bedeutet die schon oben verwendete Abkürzung $\zeta = 2 k_1 h$. Analog erhält man für das entsprechende Korrektionsglied des

$$\begin{split} Re\left\{\frac{i}{k_{1}^{3}}\cdot K\right\} &= Re\left\{\frac{i}{k_{1}^{3}}L\right\} + 2Re\left\{\frac{i}{\sqrt{-k_{2}^{2}}}\left[\operatorname{Ci}(\zeta) + i\operatorname{Si}(\zeta) - \frac{i\pi}{2}\right]\right\} \\ &= Re\left\{\frac{i}{k_{1}^{3}}L\right\} + \frac{2k_{1}}{|k_{2}|}\left[\sin\vartheta\operatorname{Ci}(\zeta) - \cos\vartheta\left(\left(\operatorname{Si}(\zeta) - \frac{\pi}{2}\right)\right)\right] \end{split} \tag{12}$$

mit derselben Bedeutung von ζ und δ . $\operatorname{Si}(\zeta)$ und $\operatorname{Ci}(\zeta)$ bedeuten den Integralsinus und den Integralcosinus und sind durch folgende Gleichungen definiert 5).

²) E_r bedeutet z.B. hier den reellen Teil der komplexen Grösse €_r.

³) Die * bezeichnen den konjugiert komplexen Ausdruck.

⁴) Eine elementare Ableitung für den Horizontaldipol findet sich auch in der Arbeit des Referenten über die Drehfeldantenne, Bull. SEV 1941, Nr. 22, S. 584.

⁵) Eine graphische Darstellung dieser Funktionen nebst Tabellen findet man in «Jahnke-Emde, Funktionentafeln», Verlag B. G. Täubner, Berlin-Leipzig 1933, S. 78 ff.

Si
$$(\lambda) = \int_{0}^{\zeta} \sin x \, \frac{\mathrm{d}x}{x}$$
 Ci $(\zeta) = -\int_{0}^{\zeta} (1 - \cos x) \, \frac{\mathrm{d}x}{x} + C + \log \zeta$

wo C eine Zahlenkonstante vom Betrag 0,5772... bedeutet.

Um die erhaltenen Formeln zu diskutieren und graphisch darzustellen, gehen wir zuerst vom Grenzfall vollkommen leitender Erde aus. In den dimensionslosen Variabeln

$$\xi = 2 h k_1 = 4 \pi \frac{h}{\lambda}$$
 $s_v = \frac{2 S}{c k_1^4 A^2} \text{ und } s_H = \frac{2 S}{c k_1^4 B^2}$

ergibt sich nach (10) und (11)

$$s_{\nu} = \frac{2}{3} + \frac{2}{\zeta^{2}} \left(\frac{\sin \zeta}{\zeta} - \cos \zeta \right)$$

$$s_{H} = \frac{2}{3} - \frac{1}{\zeta^{2}} \left[\frac{\sin \zeta}{\zeta} (\zeta^{2} - 1) + \cos \zeta \right]$$
(13)

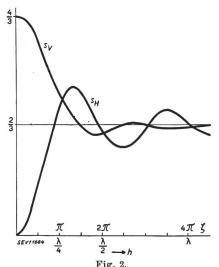
Macht man auch $\zeta = \infty$, d.h. macht man die Antennenhöhe sehr gross, so muss man in beiden Fällen die Ausstrahlung des freien Dipols erhalten. Es folgt dann in der Tat

$$s_H = s_v = \frac{2}{3}$$

Für kleine ζ erhält man für die entsprechenden Ausstrahlungen die Reihenentwicklungen

$$s_{v} = \frac{2}{3} + 2\left(\frac{2}{3!} - \frac{4}{5!} \xi^{2} + \frac{6}{7!} \xi^{4} + \ldots\right)$$

$$= \frac{4}{3}\left(1 - \frac{1}{20} \xi^{2} + \ldots\right)$$


$$s_{H} = \frac{2!}{3!} - \left(\frac{4}{3!} - \frac{16}{5!} \xi^{2} + \frac{36}{7!} \xi^{4} + \ldots\right)$$

$$= \frac{2}{15!} \overline{\xi}^{2} \left(1 - \frac{3}{56} \xi^{2} + \ldots\right)$$
(14)

Für $\zeta \rightarrow 0$ ergibt sich demnach

$$s_v = \frac{14}{3} \qquad s_H = 10$$

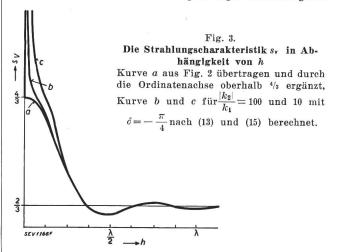
Man versteht dies ohne weiteres, wenn man das Zusammenwirken des realen Dipols mit seinem Spiegelbild betrachtet. Legt man z.B. den horizontalen Dipol auf den Boden, so

Die dimensionslosen Strahlungscharakteristiken s_v und s_H in Abhängigkeit von der Lage des Dipols h

bzw. von $\zeta = \frac{4\pi h}{\lambda}$ bei vollkommen leitender Erde, nach (13) berechnet.

fällt das gegenphasig schwingende Spiegelbild mit dem realen Dipol zusammen und die Gesamtwirkung ist bei vollkommener Bodenleitfähigkeit 0. Beim Vertikaldipol entsteht auf dieselbe Weise ein doppelt so langer Dipol mit derselben Stromamplitude und demnach eine doppelt so grosse Ausstrahlung.

In Fig. 2 ist die Ausstrahlung s_v und s_H in Abhängigkeit der Grösse ζ und damit auch von h für vollkommene Bodenleitung aufgetragen. Beide Kurven nähern sich für $\zeta \to \infty$ dem Wert $\frac{2}{3}$. Die Abstände der Maxima folgen sich ungefähr im Abstand $\frac{\lambda}{2}$ im h-Maßstab gemessen.


Für den Vertikaldipol ist das Korrektionsglied erster Ordnung

$$\Delta s_{\nu} = 2 \frac{k_{1}}{|k_{2}|} \left[\frac{1}{\xi^{2}} \left[\sin (\xi - \delta) - \xi \cos (\xi - \delta) \right] + \sin \delta \operatorname{Ci} (\xi) - \cos \delta \left(\operatorname{Si} (\xi) - \frac{\pi}{2} \right) \right]$$
(15)

für $\zeta \to \infty$ wird $\Delta s_v = 0$. Bei grosser Entfernung vom Boden macht die Leitfähigkeit des letzteren nichts aus. Für $\zeta \to 0$ wird nach $\mathrm{Si}(\zeta) = 0$ und $\mathrm{Ci}(\zeta) = C + \log \zeta$, damit

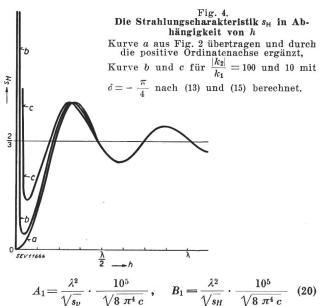
$$\Delta s_{v} = 2 \frac{k_{1}}{|k_{2}|} \left[\left(\frac{1}{\zeta^{2}} + \frac{1}{2} - C - \log \zeta \right) |\sin \delta| + \frac{\pi}{2} \cos \vartheta \right] \quad (16)$$

Für $\zeta = 0$ wird dieses Korrektionsglied sogar unendlich gross.

In Fig. 3 ist die Strahlung s_{ν} des Vertikaldipols nochmals, aber mit Berücksichtigung des Korrektionsgliedes, eingetragen, und zwar für die Werte $\delta = -\frac{\pi}{2}$; $\frac{k_1}{|k_2|} = \frac{1}{100}$ und $\delta = -\frac{\pi}{4}$ $\frac{k_1}{|k_2|} = \frac{1}{10}$. Beim horizontalen Dipol ist das Korrektionsglied

$$\Delta s_H = 2 \frac{k_1}{|k_2|} \frac{1}{\zeta^2} \left[\sin \left(\zeta - \delta \right) - \zeta \cos \left(\zeta - \delta \right) \right] \tag{17}$$

das ebenfalls für $\zeta \to \infty$ verschwindet. Für $\zeta \to 0$ nimmt es den Wert


$$\Delta s_{H} = 2 \frac{k_{1}}{|k_{2}|} \left(\frac{1}{\zeta^{2}} + \frac{1}{2} \right) |\sin \delta|$$
 (18)

an. In Fig. 4 sind die Strahlungskurven mit den entsprechenden Daten wie in Fig. 3 eingetragen. Auch hier wächst die Strahlung bei Annäherung des Dipols an den Erdboden ins Unendliche. Das Uendlichwerden der Strahlung für $\zeta=h=0$ rührt, wie man in sehr allgemeiner Weise zeigen kann, von der Erdabsorption her. Die Differenz zwischen der Gesamtstrahlung S und dem von der Erde absorbierten Anteil $S_{\rm abs}$ bleibt in allen Fällen, auch bei Berücksichtigung von Korrektionsgliedern höherer Ordnung, endlich. Beim horizontalen Dipol ist $\Delta s - s_{\rm abs} = 0$.

Man kann nun die am Dipol gewonnenen Formeln leicht auf reale Antennen übertragen. Die vom Generator aufzuwendende Leistung L entspricht dann der gesamten Strahlungsleistung S. Die Generatorleistungen sind demnach auf Grund von (10) und (10a)

$$L_v = \frac{1}{2} c k_1^4 A^2 s_v, \qquad L_H = \frac{1}{2} c k_1^4 B^2 s_H$$
 (19)

Man ersieht daraus, wie man die Dipolstärken A und B wählen muss, um sie einer Antenne von gegebener Leistung anzupassen. Sei etwa die Leistung $1\,\mathrm{kW} = 10^{10}\,\mathrm{erg/s},\ k = \frac{2\pi}{\lambda}$. wo λ in cm gemessen ist, so sind die entsprechenden Dipolstärken A_1 und B_1 gegeben durch

und bei L kW

$$A = A_1 \sqrt{L} \qquad B = B_1 \sqrt{L} \qquad (21)$$

Ist I die Effektivstromstärke der Antenne, so ist der Strahlungswiderstand durch die Gleichung gegeben

$$s = I_{\text{eff}}^2 \cdot R = \frac{1}{2} I_0^2 R = L$$
 (22)

wo I_0 die Stromamplitude bedeutet. Aus dem numerischen Wert von B erhält man z. B. für den Horizontaldipol nach der Formel (5) auch die Feldkomponenten in Gaußschen Einheiten, d. h. $\mathfrak H$ in Oersted und $\mathfrak H$ in elektrostatischen Einheiten oder nach Multiplikation mit 300 in V/cm. In den Grössen I bzw. I_0 steckt bei der realen Antenne noch die Stromverteilung auf derselben. Versieht man die Dipolarme mit genügend grossen Endkapazitäten, so ist der Strom auf der ganzen Antenne örtlich konstant. Andere Stromverteilungen können durch einen entsprechenden Formfaktor α berücksichtigt werden.

Um den Zusammenhang zwischen den Dipolstärken A und B und der Stromamplitude herzustellen, sei erwähnt, dass nach Hertz die Grössen A, B die elektrischen Momente der Dipole darstellen, d. h. die hin und her schwingende Ladung e multipliziert mit der Schwingungsamplitude a. Hier entspricht a der halben Antennenlänge $\frac{l}{2}$; e ist also diejenige Ladung, die während einer Halbperiode $\tau/2$ einen Querschnitt des Antennenleiters durchsetzt

$$e = \int_{0}^{\tau/2} I \, dt = I_0 \int_{0}^{\tau/2} \sin \frac{2 \pi t}{\tau} \, dt = I_0 \frac{\tau}{\pi}$$
 (23)

Da diese Formel für elektromagnetische Einheiten gilt, muss man die Ströme noch mit c multiplizieren, um auf elektrostatische Einheiten zu kommen. Das Hertzsche e ist also

$$e = c \cdot I_0 \frac{\tau}{\pi} = I_0 \frac{\lambda}{\pi} \tag{24}$$

und das zugehörige elektrische Moment

$$e \cdot a = I_0 \cdot \frac{\lambda l}{2 \pi} = \begin{cases} A \\ B \end{cases} \tag{25}$$

Setzt man die Ausdrücke (19) und (22) für die Strahlungsleistung einander gleich und benutzt für A und B die Ausdrücke (25), so fällt die Stromstärke heraus, und man erhält wegen $k_1 = \frac{2\pi}{\lambda}$ den Strahlungswiderstand

$$R = \frac{4 \pi^2 c l^2}{\lambda^2} \cdot \begin{cases} s_v \\ s_H \end{cases} \tag{26}$$

in elektromagnetischen CGS-Einheiten, und mit Berücksichtigung des Formfaktors α für die Stromverteilung wird nach Multiplikation mit 10^{-9}

$$R = 120 \,\pi^2 \left(\frac{\alpha \, l}{\lambda} \right)^2 \cdot \begin{cases} s_v \\ s_H \end{cases} \,\Omega \tag{27}$$

Für die freie Dipolantenne in sehr grossem Abstand von der Erdoberfläche erhält man

$$R = 80 \ \pi^2 \left(\frac{\alpha \ l}{\lambda}\right)^2 \Omega \tag{28}$$

Bei sinusförmiger Stromverteilung auf der Antenne wird der Formfaktor α angenähert $\frac{2}{\pi}$. Nimmt man noch für l eine halbe Wellenlänge an, so erhält man statt (27) und (28) die entsprechenden Formeln

$$R=120$$
 $\left\{ egin{array}{ll} s_{V} & \Omega \\ s_{H} \end{array} \right.$ $R=80$ $\left\{ egin{array}{ll} s_{V} & \Omega \\ s_{H} \end{array} \right.$ $(27a)$

Man kann die in den Fig. 4 und 5 dargestellten Funktionen s_{ν} und s_{H} auch direkt als den Strahlungswiderstand ansehen, wenn man die Ordinaten mit dem Faktor 120 $\pi^{2} \left(\frac{\alpha \ l}{\lambda}\right)^{2}$ multipliziert.

Die praktische Nutzanwendung der Theorie liegt in der Erkenntnis, dass die endliche Bodenleitfähigkeit zwar besonders bei kleinen Antennenhöhen den Strahlungswiderstand erhöht. Der Erhöhung des Strahlungswiderstandes entspricht aber keine erhöhte Nutzstrahlung der Antenne, sondern eine Verlustleistung, die durch die Erdabsorption hervorgerufen wird. Man kann diesen Verlust vermeiden, indem man zwischen Antenne und Boden ein leitendes Netz ausspannt, d. h. einen künstlichen Reflektor statt der Erde benutzt ⁶). Hdg.

Ein transatlantisches Breitbandkabel für den Telephonverkehr

621.395.73.029.5

Zu Kriegsbeginn, im Jahre 1939, zählte man auf der ganzen Erde 170 Kurzwellen-Telephonieverbindungen auf grosse Distanzen, darunter fünf zwischen den Vereinigten Staaten und Europa. Dazu kommt noch der geringe Verkehr auf Langwellen.

Die Qualität des Kurzwellengesprächs kann jene über Drahtverbindungen nur bei besonders günstigen Wetterumständen erreichen, und das bei magnetischen Gewittern eintretende totale Fading führt mitunter zum völligen Unterbruch des Kurzwellenverkehrs. Es ist daher verständlich, dass der alte Plan, zwischen den Vereinigten Staaten von Amerika und England ein Unterseekabel für Telephoniezwecke zu legen, neuerdings wieder aufgenommen wird.

Da das geplante Kabel als Breitbandkabel für Hochfrequenztelephonie ausgeführt werden soll, wird es ein Frequenzband von 48 kHz übertragen lassen. Wenn pro Sprechverbindung 4000 Hz angenommen werden, so könnte man auf dem Doppelkabel zwölf unabhängige Gegengespräche führen. Da aber auch bei 2000 Hz noch durchaus zufriedenstellende

^{°)} Die endliche Bodenleitfähigkeit lässt sich natürlich ohne weiteres auch auf die vom Referenten ausgearbeitete elementare Theorie der Drehfeldsender Loc. cit. anwenden, indem man in den Ausdrücken (38) und (39) für R_1 an Stelle der Funktion f_1 die entsprechende Funktion s_v desselben Argumentes ζ einsetzt.

Sprachqualität erreicht wird 1), wird man vielleicht aus wirtschaftlichen Gründen bis zu 24 gleichzeitige Verbindungen vorsehen. Für Rundspruchübertragungen liesse sich nach Bedarf eine Spezialverbindung mit breiterm Frequenzband herstellen, das jede wünschenswerte Qualität der Musikwiedergabe gewährleistet.

Die Herstellung und Verlegung des rund 2000 Seemeilen langen Kabels bietet keine unabsehbaren Schwierigkeiten mehr. Grundsätzlich neu ist jedoch die Unterbringung von Zwischenverstärkern im Kabel selbst, die nicht nur dem Wasserdruck standhalten, sondern auch ohne Wartung jahrzehntelang funktionieren müssen. Insgesamt sind 47 Verstärker

1) H. Keller, Ueber die Qualität der telephonischen Uebertragung. Bull. SEV 1943, Nr. 22, S. 666.

auf je 42 Meilen Abstand vorgesehen. Die Verstärker sind mit dem Kabel fest verbunden und in der Panzerung eingeschlossen. Sie werden mit auf den Meeresgrund versenkt, doch denkt man daran, das Kabel an den Verstärkerstellen in Zeitabständen von ungefähr zwanzig Jahren zu heben, um die Verstärker auszuwechseln. Diese Zeitspanne wird als tragbar angesehen, um den Betrieb wirtschaftlich zu gestalten, da die Kosten des Einholens der Kabelteile recht beträchtlich sind.

Die Breitband-Zwischenverstärker sind derart geformt und in solchen Gehäusen untergebracht, dass sie mit dem Kabel ein einziges Stück bilden. Der zylindrische Schutzmantel ist flexibel, so dass er mit dem Kabel über die Kabeltrommel und Ablaufrolle am Heck des Schiffes abgerollt werden kann. (Nach NZZ, 21.12.1943)

Wirtschaftliche Mitteilungen — Communications de nature économique

Verfügung Nr. 15 El des KIAA über die Verwendung von elektrischer Energie (Aufhebung der Einschränkungen)

(Vom 5. April 1944)

Das Kriegs-Industrie- und -Arbeits-Amt verfügt:

Art. 1. Die Verfügung Nr. 12 El des Kriegs-Industrie- und -Arbeits-Amtes vom 19. November 1943 1), abgeändert durch die Verfügungen Nr. 13 El und 14 El des Kriegs-Industrieund -Arbeits-Amtes vom 11. und 17. Februar 19442) über die Verwendung von elektrischer Energie, wird aufgehoben.

Die während der Gültigkeitsdauer der aufgehobenen Verfügung eingetretenen Tatsachen werden noch nach deren Bestimmungen beurteilt.

Art. 2. Diese Verfügung tritt am 6. April 1944 in Kraft.

Anlagekosten und Anlagewert von Wasserwerken

Bestimmung des steuerpflichtigen Anlagewertes — Abschreibung unproduktiver Mehrkosten - Anlagewert und Rentabilität

Nach aargauischem Steuerrecht gilt für den Bezug der Vermögens- und Erwerbssteuern als Steuerkapital von Gebäuden ohne Ausnahme die bei der Brandversicherung ausgemittelte Schätzung (§ 18 des Steuergesetzes). Nicht unter die Brandversicherung fallende Gebäudeteile sowie Kanäle, Stauwerke, Turbinenanlagen und andere Wasserbauten sind dagegen nach dem Anlagewert unter Berücksichtigung ange-messener Abschreibungen zu versteuern (§ 25 der Vollziehungsverordnung zu den allg. Steuergesetzen vom 13. August

Bei der Steuerveranlagung der «Aarewerke AG.» für das Jahr 1941 wurde nun in bezug auf die nicht brandversicherten Teile des Maschinenhauses dieses Elektrizitätswerkes, das in der Gemeinde Klingnau liegt, auf Vorschlag des Steueramtes ein Vergleich abgeschlossen, laut welchem der Steuerwert dieser Anlage auf Fr. 6 991 360.— festgesetzt wurde. Zu diesem Betrag war man dadurch gekommen, dass man dem Unternehmen von den gesamten Bauaufwendungen, die sich auf mehr als 9 Millionen Franken belaufen hatten, einen Abzug von Fr. 2000000.— gestattet hatte, mit der Begründung, dass es sich hiebei um Aufwendungen handle, die zufolge des während der Bauzeit notwendig gewordenen Ueberganges vom Bau in offenen Baugruben zur sog. Caissonierung und wegen eines unglücklichen Ereignisses (Stillstand der Pumpen und Ueberschwemmung der Baugruben) haben gemacht werden müssen.

Dieser Vergleich wurde aber von einem Mitglied des Gemeinderates angefochten und in der Folge vom aargauischen Obergericht auch durch Entscheid vom 19. März 1943 wieder aufgehoben, indem es den Abzug von Fr. 2 000 000.- als unzulässig erklärte. Das Obergericht führte in seiner Urteilsmoti-

vierung aus, dass der Vergleich auf der irrigen Annahme beruhe, es handle sich bei diesen unvorhergesehenen Mehraufwendungen um reine Non-valeurs, weil sie hätten vermieden werden können, wenn man die Bauschwierigkeiten von Anfang an gekannt hätte. Demgegenüber sei aber darauf hinzuweisen, dass trotz dieser Mehrkosten die Rentabilität des Werkes nicht gefährdet sei, und das sei entscheidend. Wenn das Werk in der Lage sei, über die Verzinsung der fremden Gelder und regulären Abschreibungen hinaus, Dividenden herauszuwirtschaften, so sei kein Grund vorhanden, das Kraftwerk in seinem Bilanzwert um die Kosten dieser Aufwendungen herabzusetzen.

Gegen diesen Entscheid wandte sich die «Aarewerke AG» mit einer staatsrechtlichen Beschwerde wegen Verletzung von Art. 4 der Bundesverfassung an das Bundesgericht. Dieses ging von folgenden Erwägungen aus:

Unbestritten ist, dass es sich um die Veranlagung von Werkteilen handelt, die nicht unter die Brandversicherung fallen und dass daher für ihre Steuereinschätzung massgebend ist: der Anlagewert unter Berücksichtigung angemessener Abschreibungen. Damit frägt es sich lediglich, ob das Obergericht im angefochtenen Entscheid diesen Anlagewert willkürlich ausgelegt hat, denn nur wenn diese Frage bejaht werden muss, ist der Entscheid aufzuheben. Näher auseinandergesetzt hat sich nun das Gericht mit dem Begriff des Anlagewertes nicht. Aus seiner Vernehmlassung zur Beschwerde ergibt sich aber, dass es der Auffassung ist, es sei einfach der Wert der unversicherten Gebäudeteile zu ermitteln und was unter dem «Wert der unversicherten Gebäudeteile» zu verstehen sei, habe der Richter zu bestimmen, da Verfassung und Gesetz es an Vorschriften hierüber fehlen lassen. Das ist aber nicht richtig, denn welches der Wert der unversicherten Gebäudeteile ist, der für die Steuer in Betracht fällt, sagt die Vollziehungsverordnung: es ist der Anlagewert. Damit wird aber ein ganz bestimmter Wertbegriff gekennzeichnet, von dem das Obergericht sich nicht ohne Willkür entfernen durfte.

Der Anlagewert bildet das Analogon zu dem in § 15, 3 des Brandversicherungsgesetzes genannten Bauwert. Dieser ist «derjenige Betrag, den die Errichtung eines ähnlichen Gebäudes...kosten würde, abzüglich des Minderwertes, welchen der bei der Schätzung vorhandene bauliche Zustatnd gegenüber einem Neubau darbietet». Bei einem neuen Gebäude wird man nun bei der Schätzung einfach von den effektiven Baukosten ausgehen, statt zu ermitteln, wieviel der Bau kosten würde. Ein Unterschied zwischen dem Bauwert nach § 15 des Brandversicherungsgesetzes und dem Anlagewert nach § 25, 2 der Vollziehungsverordnung zum Steuergesetz besteht dann später bei der Ermittlung: versicherte Gebäude sind, bei Feststellung des Bauwertes, nach den mutmasslichen Erstellungskosten neu zu schätzen, während unversicherte Gebäudeteile auch in späteren Jahren einfach nach den Anlagekosten unter Berücksichtigung der Abschreibungen zu bewerten sind.

Ist aber für die Bestimmung des Anlagewertes von den Anlagekosten auszugehen, so geht es nicht an, hiebei auf die Rentabilität des Betriebes abzustellen, denn damit wird die Vorschrift von § 25 der Vollziehungsverordnung völlig missachtet. So dreht sich der eigentliche Streit um die sog. Mehrkosten, welche die Rekurrentin von den Anlagekosten abziehen möchte, um den Anlagewert zu bestimmen. Als Mehr-

¹⁾ Bull. SEV 1943, Nr. 24, S. 747. 2) Bull. SEV 1944, Nr. 4, S. 102.

kosten fällt nun aber selbstredend nicht jede Mehraufwendung gegenüber dem Voranschlag in Betracht. Es frägt sich nicht, wie das Obergericht annimmt, ob das gleichwohl erstellt worden wäre, wenn man diese Mehrkosten gekannt hätte, sondern es frägt sich, ob ein gleich gutes Werk unter Vermeidung dieser Kosten hätte gebaut werden können, wenn man ihre Ursachen vorausgesehen hätte. Um solche Mehrkosten handelt es sich jedoch beim Betrag von 2 Millionen Franken, deren Abzug hier streitig ist. Diese Mehrkosten wären nicht entstanden, wenn die Rekurrentin nicht unvorhergesehen auf technische Schwierigkeiten gestossen wäre, bzw. wenn sie diese Schwierigkeiten gekannt hätte und deshalb von Anfang an mit Caissonierung gebaut hätte.

Damit stellt sich die Frage, ob auf Grund von § 25 der Vollziehungsverordnung der Abzug dieser Mehrkosten verlangt werden kann, d. h. ob sie nicht zum Anlagewert gehören. Diese Frage ist aber offensichtlich zu bejahen, denn wenn § 25 vom Anlagewert und nicht einfach von den Anlage. kosten spricht, so hat das seinen guten Grund. Kosten, die auf den Wert ohne Einfluss gewesen sind, dürfen nicht einfach zum Steuerwert geschlagen werden. Der Anlagewert besteht nur aus den wertvermehrenden Aufwendungen. Wenn auch zuzugeben ist, dass es oft schwer hält, bei jeder einzelnen Auslage zu bestimmen, ob und in welchem Masse sie Werte geschaffen hat, so ist doch klar, dass bei den Kosten des nachträglichen Ueberganges zur Caissonierung von einer Wertvermehrung nicht gesprochen werden kann.

Dadurch, dass das Obergericht den Abzug solcher Kosten von der Rentabilität eines Werkes abhängig machen will, trägt es ein fremdes Kriterium in die Gesetzesauslegung hinein, denn die Rentabilität des Kraftwerkes hat mit dem Anlagewert der nicht brandversicherten Teile des Maschinenhauses nichts zu tun. Diese ist vielmehr auf die Verträge über den Energieverkauf zurückzuführen. Das Obergericht hat somit seinem Entscheide Gedanken zugrundegelegt, die einem andern Steuersystem entstammen. Das Steuersystem zu ändern und für nicht versicherte Gebäudeteile statt des reinen Anlagewertes einen Rentabilitätswert oder Bilanzwert zum Steuerwert zu erheben, um den Gemeinden entgegenzukommen, wäre aber Sache des Gesetzgebers und nicht der Rechtsprechung

Mit seiner Auslegung hat das Obergericht den Begriff des Anlagewertes im Sinne von § 25 völlig verkannt und hat unter Missachtung der klaren Gesetzesbestimmung einen Rentabilitätswert an seine Stelle gesetzt, der nicht mehr nur das Steuerobjekt — nämlich die unversicherten Gebäudeteile sondern das Kraftwerk als solches betrifft. Darin liegt eine Willkür, so dass der angefochtene Entscheid in Gutheissung der eingelegten Beschwerde aufzuheben ist (Urteil des Bundesgerichtes vom 7. Februar 1944). Ed. Gubler.

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Telegraphen- und Telephonabteilung der PTT. Zum zweiten Sektionschef wurde gewählt E. Wehren, bisher technischer Inspektor.

Kleine Mitteilungen

Fortbildungskurs über das kaufmännische Rechnungswesen. Die seinerzeit unter reger Anteilnahme aus der Praxis vom Betriebswissenschaftlichen Institut an der ETH veranstalteten Einführungskurse ins kaufmännische Rechnungswesen werden nun durch den vorgesehenen Fortbildungskurs für Ingenieure, Techniker und Betriebskaufleute ergänzt. Herr A. Märki, dipl. Handelslehrer, der es verstanden hat, den Kontakt mit Ingenieuren und Technikern herzustellen, wird während 10 Dienstagabenden, vom 18. April bis 20. Juni 1944, jeweils von 19.15-20.55 Uhr, an der ETH über das Thema referieren. Detaillierte Kurs-Programme sind durch das Betriebswissenschaftliche Institut an der ETH zu beziehen.

Im Mittelpunk des Fortbildungskurses steht die Betriebsabrechnung mit ihrer Verbindung zu Buchhaltung, Statistik, Budget und Kalkulation. Neben den theoretischen Ausführungen wird die praktische Seite des Rechnungswesens an ausgeführten Organisationsbeispielen aus Betrieben verschiedener Industriezweige dargestellt. Uebungen nach den Vorträgen geben Gelegenheit zu aktiver Mitarbeit. Anschliessend an den Fortbildungskurs soll ein Anleitungskurs für Vertreter interessierter Firmen abgehalten werden, bei dem in kleinen Gruppen die Einrichtung und Handhabung moderner Betriebskontrollen im konkreten Fall auf Grund der praktischen Erfahrung des Instituts behandelt wird.

Prüfzeichen und Prüfberichte des SEV

I. Qualitätszeichen für Installationsmaterial

für Schalter, Steckkontakte, Schmelzsicherungen, Verbindungsdosen, Kleintransformatoren.

--- für isolierte Leiter.

Mit Ausnahme der isolierten Leiter tragen diese Objekte ausser dem Qualitätszeichen eine SEV-Kontrollmarke, die auf der Verpackung oder am Objekt selbst angebracht ist (siehe Bull. SEV 1930, Nr. 1, S. 31.

Auf Grund der bestandenen Annahmeprüfung wurde das Recht zur Führung des Qualitätszeichens des SEV erteilt für:

Verbindungsdosen

Ab 1. April 1944

Elektro-Mica A.-G., Mollis.

Fabrikmarke:

Deckenrosetten für 380 V, 1,5 mm².

Verwendung: Aufputz, in trockenen Räumen.

Ausführung: Isolierpreßstoffgehäuse mit eingebautem Klemmeneinsatz aus keramischem Material.

Nr. 1359/2: mit 2 Anschlussklemmen. Nr. 1359/3: mit 3 Anschlussklemmen.

Isolierte Leiter Ab 1. April 1944

Schweizerische Draht- & Gummiwerke, Altdorf.

Firmenkennfaden: gelb/grün/schwarz

1. Verseilte Schnur Cu-TTg und TTs,

flexible Zwei- bis Vierleiter 0,75...4 mm². Rundschnur Cu-TRg und TRs, flexible Zwei- bis Vierleiter 0,75...2,5 mm². Mit thermoplastischer Kunststoffisolation.

Verwendung: an Stelle von gummiisolierten Schnüren.

IV. Prüfberichte

(Siehe Bull. SEV 1938, Nr. 16, S. 449.)

P. Nr. 329.

Gegenstand: Apparat für Zahnbehandlung SEV-Prüfbericht: A. Nr. 18284a vom 28. Februar 1944.

Auftraggeber: Pharmachemie A.-G., Zürich.

Aufschriften:

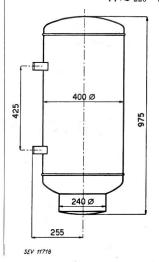
Jonphorator Pharmachemie A. G.

Zürich Frequenz 50 Hz Volt 220 Leistung 10 VA Beschreibung: Apparat gemäss Abbildung für Behandlung kranker Zähne (Jontophoresebehandlung), bei welcher wenige mA Gleichstrom benötigt werden. Der Apparat besteht in der Hauptsache aus einem Transformator, einer Gleichrichterröhre,

Glättungskondensatoren, Widerständen und einem Milliampèremeter. Steckerbüchsen für den Anschluss der Elektroden. Netzanschluss mit zweiadriger, mit Stecker versehener, verseilter Schnur.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

P. Nr. 330. Gegenstand:


Heisswasserspeicher

SEV-Prüfbericht: A. Nr. 18402a vom 6. März 1944.

Auftraggeber: A. Lenzin, Zürich.

Aufschriften:

August Lenzin, Zürich Elektr. Boiler (Eisen) No. 0109 Dat. 2. 2. 44 Lt. 30 V. ~ 220 Watt 360 At. 12

Beschreibung: Elektrischer Heisswasserspeicher für Wandmontage gemäss Skizze. Heizelement und Temperaturregler mit Sicherheitsvorrichtung eingebaut. Erdungsklemme vorhanden.

Der Heisswasserspeicher entspricht den «Anforderungen an elektrische Heisswasserspeicher» (Publ. Nr. 145).

Vereinsnachrichten

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen der Organe des SEV und VSE

Mitgliederbeiträge 1944 SEV und VSE

Einzel- und Jungmitgliederbeiträge für den SEV

Wir machen hierdurch die Mitglieder des SEV darauf aufmerksam, dass die Jahresbeiträge 1944 fällig sind. Der Beitrag für Einzelmitglieder beträgt Fr. 20.—, derjenige für Jungmitglieder Fr. 12.— (Beschluss der Generalversammlung vom 29. August 1943; siehe Bull. SEV 1943, Nr. 26, S. 818). Der Nummer 6 des Bulletin SEV war ein vorgedruckter Einzahlungsschein beigelegt, der zur spesenfreien Ueberweisung auf Postcheck-Konto VIII 6133 bis Ende April benützt werden kann. Nach diesem Termin werden nicht eingegangene Beiträge mit Spesenzuschlag per Nachnahme erhoben.

Kollektivmitgliederbeiträge für den SEV und VSE

Wie üblich werden den Kollektivmitgliedern des SEV und den Mitgliedern des VSE für die Jahresbeiträge Rechnungen zugestellt.

Aerztekommission des VSE zum Studium der Starkstromunfälle

Die Aerztekommission des VSE zum Studium der Starkstromunfälle war in den letzten Jahren zur Untätigkeit verurteilt, weil kein geeigneter Fachmann für die erforderlichen Studienarbeiten verpflichtet werden konnte. Erst gegen Ende 1943 gelang es, einen jungen Arzt, med. prakt. R. Fröhlicher, zu gewinnen. Dieser hat seine Forschungstätigkeit sofort aufgenommen und der Kommission bereits ein ausführliches Arbeitsprogramm vorgelegt. Es ist zu hoffen, dass es gelingen wird, die seinerzeit durch Dr. med. R. Sulzer gelieferten Forschungsresultate auszuweiten und das Problem der Rettung von Starkstromverunfallten einer vollkommeneren Lösung entgegenzuführen.

Am 24. März 1944 hat unter dem Vorsitz von Direktor F. Ringwald, Luzern, eine Sitzung der Aerztekommission stattgefunden, an welcher unter Verdankung der geleisteten Dienste von der altershalber erfolgten Demission der bisherigen Mitglieder Oberarzt Dr. Pometta, Oberbetriebsleiter Wettstein und Prof. Dr. Zangger Kenntnis genommen wurde. An ihre Stelle sind Prof. Dr. Zollinger, der neue Oberarzt der Schweizerischen Unfallversicherungsanstalt, Prof. Dr. med. Schwarz vom Gerichtlich-medizinischen Institut der Universität Zürich und dipl. Ing. Schweizer von den Elektrizitätswerken des Kantons Zürich getreten.

In erster Linie wurde der Bericht und das Arbeitsprogramm des Forschungsarztes behandelt. Ausserdem besichtigten die Mitglieder die neu installierten Versuchseinrichtungen. Als Hauptaufgabe stellt sich für den Forschungsarzt die nähere Abklärung des Herzkammmerflimmerns sowie das Studium von praktischen Rettungsmethoden und Rettungsmitteln. Die Verhandlungen zeigten von neuem, dass die Problemlösung mit zahlreichen Schwierigkeiten verbunden sein wird, Schwierigkeiten, die in der Natur der Sache begründet sind, ausserdem aber durch Arbeitsunterbrüche infolge Militärdienst des Forschungsarztes vermehrt werden. Zur Behandlung gelangte ferner die Frage der elektrisch geladenen Weidezäune. Hier ist vor allem die Festlegung der zulässigen Elektrisierung dringend, weil solche Apparate sich immer mehr verbreiten. Die Lade- und Entladevorgänge beim elektrischen Weidezaun werden nun vom Standpunkt der Gefahrenvermeidung aus näher geprüft, wobei sich selbstverständlich der Personenschutz gegenüber einer verstärkten Schreckwirkung auf das weidende Vieh in den Vordergrund zu stellen hat. Sb.

Die neue Statistik der Elektrizitätswerke der Schweiz

(nach dem Stande auf Ende 1942)

Der SEV hat soeben eine neue Statistik der Elektrizitätswerke herausgegeben, wie früher bearbeitet vom Starkstrominspektorat. Diese Statistik tritt an Stelle der Ausgabe vom Dezember 1937 (Stand auf Ende 1936). Wir werden in der nächsten Nummer einige Resultate daraus bekanntgeben. Die Statistik ist bei der Gemeinsamen Geschäftsstelle des SEV und VSE, Seefeldstrasse 301, Zürich 8, zu beziehen. Preis für Mitglieder Fr. 15.—, für Nichtmitglieder Fr. 20.—.