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Ausser Laufwerken braucht es Akkumulierwerke
mit grossen Winterenergieüberschüssen, wie dies
im Zehnjahreplan des SEV und VSE für den
Kraftwerkbau 15) empfohlen ist.

3. Nur die allerwirtschaftlichsten Akkumulierwerke

können vorerst in Frage kommen. Der
möglichst baldige Bau eines der günstigen
Großspeicherwerke, und zwar sollte dies Hinterrhein sein,
und später auch des andern, Urseren, sowie Rossens
und Blenio-Greina ist nötig; erst nachher können
und müssen auch die weniger günstigen Alpenwas-

Bull. SEV 1941, Nr. 22, S. 581, und Nr. 23, S. 612.

In der vorliegenden Arbeit tvird die Schutzwirkung einer
Kapazität beim Blitzeinschlag auf eine Freileitung auf Grund
quasistationärer Betrachtungen berechnet.

Die Formeln für den allgemeinen Fall und einige spezielle
Fälle werden abgeleitet und die Spannungskurvenformen
untersucht. Durch Einführung der «relativen Parameter»
gelingt es, die Zahl der unabhängigen Parameter für die
Extremwerte der Spannung auf 2 zu reduzieren. Damit lassen
sich diese Werte als ebene Kurvenscharen darstellen. Einige
Kurvennetze sind als Beispiele der Auswertung angeführt.

Die Resultate besitzen allgemeine Gültigkeit für den
Ausgleichsvorgang in einem gedämpften Schwingungskreis, der
durch eine exponentiell abfallende EMK angestossen wird.

1. Einleitung und Voraussetzungen der
Rechnungsmethode

Der Spannungsverlauf an einem Kondensator,
der am Ende einer vom Blitz getroffenen Freileitung

angeschlossen ist, hängt von vielen Faktoren
ab, z. B. Leitungseigenschaften, Erdungswiderstand,
Grösse der Kapazität selbst, Höhe und Halbwertdauer

der Blitzspannung. Es besteht eine grosse
Mannigfaltigkeit der Kurvenformen, nach denen
die Spannung am Kondensator ansteigt und
abklingt. Die Untersuchung dieser Kurven und ihrer
Abhängigkeit von den erwähnten Faktoren ist das
Ziel dieser Arbeit.

Zunächst werden die theoretischen Unterlagen
für die Kurven oder Kurvennetze geschaffen,
welche für die gegebenen Leitungs-, Kondensator-,
Blitz- und Erdungs-Eigenschaften die maximalen
Spannungen und ihre Zeitpunkte bestimmen lassen.
Dazu sind prinzipiell zwei Untersucliungsmethoden
möglich: Eine wellenmässige und eine quasistationäre

Berechnung. In der vorliegenden Arbeit wird
die zweite Methode benützt, die für nahe und sehr
nahe Blitzeinschläge genügend genau ist und einen
guten Ueberblick über dieses ziemlich verwickelte
Problem gibt1

*) Der andere Grenzfall der sehr weit entfernten Blitzeinschläge,

d. h. jener, bei denen das Spiel der Hin- und tRiick-
wellen zwischen Einschlag und Kapazität keine Rolle spielt,
weil die grösste Kondensatoraufladung bereits vor der
Ankunft der 2. Hinwelle zustande kommt, lässt sich sehr einfach
berechnen. Siehe dazu A. Métraux und Rutgers, CIGRE 1939,
Bericht 107 ; H. Meyer, Bull. SEV 1940, S. 597.

serkräfte, diese zum Teil aber unter Verzicht auf
teure Staubecken, ausgebaut werden.

4. Verzichtet man jedoch auf Großspeicherwerke
und baut die wenigen in Frage kommenden mittel-
grossen Speicherwerke so wirtschaftlich als möglich
aus, d.h. ungefähr auf Jahreskonstantenergie, so
kann damit auf die Dauer bei weitem nicht genügend

Winterenergie erschlossen werden. Es ist in
diesem Fall auch zu befürchten, dass beinahe die
Hälfte der noch verfügbaren Wasserkräfte wegen
Unwirtschaftlichkeit nicht zum Ausbau gelangen
würde und dadurch für die schweizerische
Volkswirtschaft verloren wäre.

.316.936

Calcul de Feffet protecteur d'une capacité, en cas de
coup de foudre sur une ligne aérienne, en considérant un
état quasistationnaire. Etablissement de formules valables en
général et pour quelques cas particuliers; examen des
courbes de tension. L'introduction des paramètres relatifs
permet de ramener à deux le nombre des paramètres
indépendants pour les valeurs extrêmes de la tension. Ces valeurs
peuvent ainsi être représentées par des groupes de courbes
planes. Exemples de quelques réseaux de courbes.

Les résultats sont valables d'une manière générale pour
les phénomènes transitoires engendrés par une f. é. m. d'allure
exponentielle dans un circuit amorti.

Um das Problem rechnerisch behandeln zu können,

sollen folgende Voraussetzungen über die Form
des Blitzstromes und die Leitungskonstanten

gemacht werden:
a) der Blitzstrom habe gemäss Fig. 1 einen ex-

ponentiellen Verlauf mit einer sehr steilen Stirn

Fig. 1.

Angenommener Blitzstromverlauf

(Frontdauer gleich Null oder jedenfalls < 1/ts)
und einer Halbwertdauer

Tb T In 2 0,693 T

h hb ' hb-^"T

isist der Scheitelwert, a die reziproke Rückenzeitkonstante

des Blitzstromes.
b) Die Freileitung nehmen wir als kapazitäts-

und verlustfrei an, ihre Induktivität L als räumlich
konzentriert, was bei nicht zu langen Leitungen,
d. h. bei nahen Blitzeinschlägen zulässig ist. Ferner
bezieht sich die vorliegende Arbeit auf den Fall
des einphasigen Blitzeinschlages (Fig. 2). Die

Vom Blitzeinschlag bedingter Spannungsverlauf an einer am Ende
einer Freileitung angeschlossenen Kapazität

Bericht an die Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH),
von K. Berger, Zürich, und J. Giaro, Winterthur 621



XXXV" Année BULLETIN ASSOC. SUISSE DES ELECTRICIENS 1944, No. 1 15

Uebertragung auf Mehrleitersysteme bietet keine
Schwierigkeiten.

c) Auch die Kapazität nehmen wir als punktförmig

an (Kondensator). Sie sei am Leitungsende
angeschlossen 2).

d) Der beim Blitzeinschlag wirksame
Erdungswiderstand R ist unter Vernachlässigung des
Spannlingsabfalles am Ueberschlagslichtbogen auf der
Leitung (Fig. 2) der aus Erdungswiderstand und

5ZVf1Ut6 p Rff

Fig. 2.

Prinzipschema des Blitzeinschlages

abgewendeter Leitungsimpedanz resultierende
Betrag. Er wird gegeben durch das als konstant
angenommene Verhältnis von Spannung an der Erdung
zum Strom, der aus dem Blitzkanal, nicht aber zur
Schutzkapazität fliesst. Re ist höchstens gleich dem
Wellenwiderstand der abgewendeten Leitungsseite
(500 Ü).

Nach diesen Voraussetzungen ergibt sich aus dem
Prinzipschema der Fig. 2 das Ersatz-Schaltungsschema

der Fig. 3a bzw. Fig. 3b.

2. Formelzeichen
a) Leitungsgrössen :

L punktförmige Induktivität der Lei¬

tung,
C am Ende der Leitung angeschlos¬

sene Kapazität,
R aus Erdungswiderstand Re beim

Blitzeinschlag und Wellenwiderstand

der abgewendeten
Leitungsseite resultierender
Ableitungswiderstand {R < 500 Q),

ß Dämpfungskonstante des aus Lei¬
tungsinduktivität L, Widerstand
R und Kapazität C gebildeten
elektrischen Kreises,

v0 Eigenkreisfrequenz des verlustlo¬
sen Kreises aus L und C,

v Eigenkreisfrequenz des nicht ver¬
lustlosen schwingenden Kreises
aus L, C und R.

ju Zeitfaktor des aperiodisch ge¬

dämpften Kreises,
ß0 ß/v0 relative Dämpfungskonstante oder

Dämpfungszahl,
i Momentanwert des Leitungs¬

stromes,
2) Praktisch dürfen auch kurze Kabelstücke als

punktförmige Kondensatoren betrachtet werden. Dies gilt, solang
das Kabel kürzer ist als die vorgeschaltete Freileitung und
solang die Laufzeit einer Welle über das Kabel viel kleiner
ist als die Zeit bis zum Erreichen des Spannungsmaximums.
Diese Zeit tm kann den Kurven der Fig. 7 und 8 des Berichtes

entnommen werden.

ie Momentanwert des Stromes in der
Leitungserdung,

ue Momentanwert des Spannungsab¬
falles am Erdungs-Widerstand,

u> umax Momentan- und Maximalwert der
Spannung an der Kapazität,

k, ß Rechnungsgrössen,
d0 ~'ß0 — «o Hilfsparameter;

b) Blitzstromgrössen :

T Rückenzeitkonstante des Blitz¬
stromes,

a 1/T reziproke Rückenzeitkonstante,
a0 a/v0 relative reziproke Riickenzeitkon-

stante des Blitzstromes,
ih, isb Momentan- und Scheitelwert des

Blitzstromes,
es isb'R Blitzstromspannungsabfall am Er¬

dungswiderstand R (Scheitelwert)

;

c) Zeitgrössen:
t, tm Zeit allgemein und Maximalspan-

nungszeit,
r=t/T, rm=fm/T relative Zeit allgemein und rela¬

tive Zeit des Spannungsmaximums,

ß vt, dm vtm Zeitwinkel allgemein und Zeitwin¬
kel der maximalen Spannung,

0=/ut, ©m=fxtm Zeitargument allgemein und Zeit¬
argument der maximalen Spannung.

3. Allgemeine Lösung des Problems
Nach den im vorigen Abschnitt angeführten

Voraussetzungen dürfen wir die Schaltung Fig. 3a den
weiteren Betrachtungen zugrunde legen. Diese
Schaltung kann auch durch die Schaltung 3b er-

' nmn- r-LW-^TTTN

u{ ^ (°)|eOT= ej-i u» :

b)
Fig. 3.

Quasistationäres Ersatzscliema zur Fig. 2

setzt werden, was aus der Formel (1) ersichtlich
ist*). Die Schaltung Fig. 3a gibt folgende
Beziehungen :

und
h L + i hb e

dt
- LR L-

dt
Durch Einführen von

*) Die Ersatzschaltung folgt auch direkt aus dem Helm-
holzschen Satz von der Ersatzstromspannungsquelle in Netzen,
siehe K. Küpfmüller, Einführung in die theoretische Elektrotechnik,

1939, Springer, Berlin.
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i C• — und
dt

di
£

d2u

dt _ '
dt2

bekommt man

d2u
LC ßCd-+u R.is6.£-°"

dtdt2

es £

und schliesslich

'= e(t)

d2u „ _ du -et——+2ß — 1- v20 u cs v20 £
dt2 dt

R/L 2 ß

1 /LC vi

R hb - e,

(1)

(la)

(2)

(3)

(4)

es ist der Sclieitelwert der Blitzspannung am
Erdungswiderstand, wenn der ganze Blitzstrom ihn
durchfliesst. ß ist die Dämpfungskonstante des
behandelten Kreises und v0 die Eigenfrequenz, wenn
kein Verlustwiderstand vorhanden wäre.

Die Gleichung (1), welche ohne weiteres dem
Schaltungsschema 3b entspricht, können wir
beispielsweise durch die Variation der Konstanten
lösen.

Einfacher gelangen wir zur Lösung, wenn wir die
Störungsfunktion in der Gleichung (1)

e (t) es£"°"
als Schwingung der komplexen Kreisfrequenz
f) — a + j <x> betrachten3), wobei wir im
Endresultat co <= 0 einsetzen. So erhalten wir

e (t) -- es £~ot< — Realteil von es es £*'

und können jetzt das Problem in komplexer
Schreibweise lösen.

Im allgemeinen Fall setzt sich die Spannung II an
der Kapazität C (Fig. 3b) aus einer stationären
Spannung lls< und einer Ausgleichsspannung XIa

zusammen :

U Us, + Ua (5)

Die Ausgleichsspannung Ua bzw. ihr Momentanwert
ua ist gleich dem allgemeinen Integral der homogenen

Gleichung (es 0),

d2it

dt2
2ß

du

dt
-+- vi u 0

und

c2 £e2' (6)Q\ t
l e

wo C, und C2 die Integrationskonstanten sind, und

0lj2 -ß ± -ß±jv (7)

„ j/v20-ß2 (8)

3) A. Hund, Hochfrequenzmesstechnik, 2. Aufl., Springer,
Berlin 1928, S. 344 ff.

J. Fallou, Les réseaux de transmission d'énergie, Gauthier-
Villars, Paris 1935, S. 288.

Die stationäre Spannung lts/ bekommen wir direkt
aus der Schaltung 3b.

list i\s"
i/5 c

es
R + ÇL + 1/ÇC 1+Çf?C + Ç2LC

Mit es es e^'und f) =—a sowie mit Benützung
von (2) und (3) wird der Momentanwert

i'l — 2 aß-\- a2
_ — Oitf es

•>. ,e-„
(ß—o)2+f2

(9)

Durch Einsetzen der Werte aus (6) und (9) in (5)
erhalten wir für den Momentanwert der Spannung
am Kondensator

u C1£e,,+ C2 £es' 4-

oder bei Benützung von (7)

vi
(ß—a)2-

6 a'(io)

u K £
^ ' cos (r t — k) -f- es

(ß-a)-j-v2
(10a)

wo K und x die neuen Integrationskonstanten sind.

Die Randbedingungen für t 0 heissen

du
u 0 und

dt
0

woraus sich die Integrationskonstanten als folgende
Ausdrücke berechnen lassen:

K

wobei

und

vi
cos u (ß—a)2-\-v2

- e„ a
COS K

tg K

(ß ö)2+ V2

ß— a

(H)

(lia)

Somit bekommen wir für die Spannung an der
Kapazität C

-(ß—tx)t
u — e, a £

COS K
COS (l't— x) (12)

Das ist die allgemeine Lösung der Gleichung (1)
für die erwähnten Randbedingungen.

Wenn v Vvi — ßr reell, d. h. wenn ß <ß v„ ist,
entsteht ein schwingender Spannungsverlauf mit der
Kreisfrequenz v. Ist ß > v„, so ist v nicht mehr reell,
sondern imaginär:

V~~(ß2 — vi) j\u

u ]/ß2 — t'l - reell

(13)

(13a)

Es entsteht kein schwingender Vorgang mehr,
sondern ein aperiodischer. Auch x ist nicht mehr reell,
sondern gemäss Gleichung (IIa) und (13) imaginär
oder komplex.
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Wir benützen deshalb folgende Definitionen
(14) oder (14a), je nachdem Iß—al kleiner oder
grösser als p ist:

Für • ß— a • jtg k — —j wird gesetzt
/'

jtgu tgh«'

oder

j-tgu= ctgh k' 7 -

ß — a

ß

ß — a

wenn Iß—aj < p (14)

wenn /ß—a/ > p (14a)

wo h wieder reell ist.
Durch Einsetzen von (13) und (14) oder (14a)

in die Gleichung (12) bekommen wir folgende
Ausdrücke für den aperiodischen Fall:

u esa' e x * |\ -
cosh«

— cosh (ttt-j-K')

vi

(15)

(15a)wo a' — —
G8-«)2-^2

gültig für jß - « / <p

oder

u es.a'.£-°"^l sinh u,
sinh (/<t + W)J (15b)

gültig für Iß — a/) fi
Für den aperiodischen Verlauf der Spannung

bestehen damit zwei Formeln (15) und (15b), die
eine mit cosh-, die zweite mit sinh-Funktionen. Das
bedeutet nicht, dass die Spannung an der Kapazität

zwei verschiedenen Gesetzen gehorcht, sondern
hängt damit zusammen, dass wir Exponentialfunktionen

durch hyperbolische Funktionen
ausgedrückt haben, welche, wie cosh, tgh und ctgh, in
bestimmten Bereichen im Reellen nicht existieren.
Darum ändert sich die Form des Ausdruckes für die
Spannung, wenn wir sie mit durchwegs reellenPara-
metern p und y beschreiben.

Für den Fall ß va oder v 0 lässt sich die
Gleichung (12) nicht verwenden. Dieser Fall stellt
eine singuläre Lösung der Gleichung (1) dar und
muss separat gelöst werden. Mit diesem Spezialfall
werden wir uns im Abschnitt 5 näher befassen.

4. Die Spannungsextremwerte

Aus der Bedingung — 0 erhalten wir für die
dt

Gleichung (12)

£ —ßu cos (v —k)~\- i' sin (c tm— «)] ae~xtmcos«

und durch den Ansatz

v _ VK—ß2
tg£

a

ß

— ß tm

(16)

£ <*'mCOSK=£ COS (rtm K — ß) (17)

oder

— £<3 <*)'m
cos k cos (vtm — K — ß) (17a)

Die beiden Gleichungen (17) und (17a) sind
zunächst nur für den periodischen Vorgang brauchbar.

Für den aperiodischen Vorgang setzen wir
v jp in (17) oder differenzieren die Gleichungen

(15) und (15b) und bekommen

Vn

und

cosh k' — £
3tm cosh (ptm-\- k' — ß)

für Iß — a/(p (18)

sinh u' £-^tmsinh (ptm-]rn' —ß')
für Iß—al)ju (18a)

»r-f- <i a«)

Durch Einsetzen von (16) bzw. (19) in die
Gleichungen (17) oder (17a), (18) bzw. (18a) lässt sich
leicht beweisen, dass diese Gleichungen zunächst
für t 0 erfüllt werden. Das erste Extremum (Minimum)

liegt im Nullpunkt.
Für den periodischen Vorgang bestimmen wir

weitere Maxima und Minima am besten graphisch
aus (17a) als Schnittpunkte einer Cosinuslinie
cos (vt — x — ß) mit einer Exponentialkurve

^ (ß — <x) t
£ COS K

Die graphische Konstruktion ist nach Fig. 4 ohne
besondere Erläuterungen verständlich. Aus Fig. 4
sehen wir, dass im allgemeinen Falle die Spannung
u unendlich viele Maxima und Minima hat (Expo-

Fig.
Graphische Bestimmung der Zeitpunkte der extremen

Spannungswerte
(ß — ot) t© £ X)t mit ß <«

(g r(ß-a)t
©

1; </? «)

mit ß> «

® mH ß

© OOS (vt - z — f)

nentialkurve 1), was dem periodischen Verlauf der
Gleichung (12) entspricht. Unter Umständen ist
aber auch ein einziges Maximum möglich
(Exponentialkurve 4).

Im Falle des aperiodischen Vorganges ist der
Spannungsverlauf wesentlich einfacher. Das erste
Extremum (Minimum) besteht wieder im
Nullpunkt der Zeitachse. Das zweite Minimum liegt bei
t co. Ein dritter Extrempunkt (Maximum) findet
sich im Schnittpunkte der sinh- bzw. cosh-Linie des
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Arguments (/it + x—£') mit der Exponentialkurve

g tß ot) t q (ß of) t
— cosh u' £ bzw. — sinh u' • £
vo vo

Fiir die graphische Berechnung der Zeiten des
Maximums bzw. des Minimums der Spannung ist es
zweckmässig, die beiden Seiten der Gleichungen
(17a), (18) und (18a) zu logarithmieren. Wir
bekommen dann anstatt Exponentialkurven gerade
Linien.

5. Grenz- und Sonderfälle
a) Aperiodischer Grenzfall (ß va) :

Dieser Fall liegt vor, wenn v \'v2a — ß2 oder u

\ß2~vl nach Null streben. Die Lösung der
Gleichung (1) bzw. (la) für diesen Fall bekommen
wir, indem wir in (10) ol 2 =—ß + A einsetzen,
wo

J Vß>- v\

eine kleine, nach Null strebende Grösse ist. Durch
Grenzübergang der Funktion u (A) für A 0 und
Reihenentwicklung des Ausdruckes s± entsteht
nach einer einfachen Umformung:

— ß t — ß t

Kj £ —j— Kq i £ ' (ß— «)2

— Of t
£ (20)

Dabei bedeuten, wie früher, K1 und K2 die
Integrationskonstanten. Mit den Randbedingungen:

H- o
0 und

wird
— Ott I

u—e,a£ < 1 •

\dt )t=o

(ß — Ot) t

0

WO a
(ß~a)2

[1 + (ß-a)t] (21)

(21a)

du
Für die Spannungsextrema bekommen wir aus - =-= 0

dt
die Bedingung:

[a £1' -a-ß(ß-a)tm) 0 (22)

Aus dieser Gleichung ergibt sich, dass die Spannung

u in diesem Falle 3 Extrema hat, und zwar für
tm 0 und tm — oc Minima, und ein einziges Maximum

für einen weitern Wert von tm (Fig. 5d).
Dieser letzte Wert lässt sich graphisch aus der

Gleichung

Aß-«)'-==i+A{ß_a)tm
a

(22a)

berechnen.

b) Blitzstrom sehr langer Dauer (a 0),
(Einschalten einer Gleichspannung) :

Diesem Fall entspricht der Blitzstrom von
unendlich langer Rückenzeitkonstante T, d. h.

a y 0

Durch Einsetzen von a^O in die Gleichung (12)
folgt für den periodischen Verlauf der Spannung

B-ß*
1 —

COS K
COS (vt — u)

wobei

(23)

ß 1
tau — —-

v tg<f

Als Bedingung für die Spannungsextrema entsteht

vtm - njt (24)

wo n die Werte 0, 1, 2, 3, annehmen kann.

1

Qlf
IQ

1

Jê)

jd)

d)

£M.

I
0

u
pt

ot

4
t

@
a-0 Uma* - CjfC? - 1)

l Im-»
0

Fig. 5a...5e
Zusammenstellung der Spannungskurven

©
1 * /a\ —Ottfi (t) e

a • es

ßt
cos x

obere Umhüllende der schwingenden Spannungskurve
1

<p(t) und —^— <p{t) e
**

^2) (2*)\ G ' Cl''6sw w| Mittellinie der schwingenden Spannungskurve und
l Kurvenasymptote der aperiodischen Spannungskurve

1 r.-ßl
© "!

a • e,
2

cos x

l untere Umhüllende der schwingenden Spannungskurve

@ Spannungskurve

©I
1 obere Umhüllende in dem Fall ot ß

©I UVT f!(» °
V untere Umhüllende in dem Fall ot — ß

„( 1
P(0 e-«'=1

m { a • e>
1 Kurvenasymptote der aperiodischen Spannungskurve

für den Fall ot 0
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Bei vtm 0, 2n, 4?i. usw. sind Minima, bei
vtm 7i, 3ji usw. Maxima der Kondensatorspannung

w.
Aus (23) und (24) wird:

Umax es (1 -f- £_ ,?C) es (l + £ 17(23a)
Für den aperiodischen Verlauf der Spannung an

der Kapazität wird, indem wir in (15b) a 0
einsetzen {/ß—a! ß > /t) :

—ßt
1-

sinh k

wobei nach (I4a) und (19)

ß
cotgh u' —

- sinh (/.< t -\- k') (25)

(25a)

Als Bedingung für Spannungsextrema ergibt sich
aus (18a) und (25a)

- ß rm sinh n t 0
und weiter

(26)

^min

Umin 0, HmnY — GÄ

Der Spannungsverlauf entspricht der Kurve Fig. 5e.
Wenn ß v0 und gleichzeitig a 0 ist, wird:

u es [1 —£_ 3'(l + y9t)]
und

^min 6, tmax —

(27)

0, ^mn y Go

Der Spannuiigsverlauf ist wieder durch Fig. 5e
gegeben.

c) Verlustloser Kreis ß 0) :

Wenn R 0 ist, gilt

ß =0 und damit i'0 > ß, v — i>g und
Z L

o — Oit
U G„ COS U ' £ l - COS Ii

Spannungsextreme entstehen, wenn

COS (v0t — k) (28)

(29)

weil

Es wird somit

Jt 7t
lst'

>'a -c (1 — cos V t) (30)

Für die Spannungsextrema ergibt sich

— cos (>'tm - i) cos^ (31)
''o "o

Dieser Gleichung entspricht auf der Zeichnung
Fig. 4 die durch den Punkt A parallel zur rt-Achse
laufende Gerade 2.

Die Gleichung (31) gibt weiter

Znjt+i; oder vtm 2 Ii tc+ (§+£) (31a)

wo n 0, 1, 2, 3,
Das erste Minimum trifft bei n — 0 und vtm U

zu, das erste Maximum bei n 0 und vtm 2 £.
Diese Ergebnisse lassen sich auch unmittelbar aus
der Fig. 4 ablesen. Aus (30) und (31a) sehen wir,
dass nicht nur das erste, sondern alle umin 0 sind.
Für vtm 2 | bekommen wir als erstes Maximum

um 2 es £-<*'"

Wenn die Spannung an der Kapazität aperiodisch
abklingt (stark gedämpfter elektrischer Kreis), gilt
mit

Iß - af 0 < p

ähnlich wie oben (Gleichg. 14) :

tgh k' 0 und k' 0

»'o - «
U es - • £

,"2
(cosh p t — 1) (32)

— £
m sin u — sin ()'0tm — h)

Es entstehen unendlich viele Maxima und Minima,
wobei wieder das erste Minimum bei tm 0 liegt.

Für sehr grosse atm-Werte, so dass wir e~°"'m= 0
annehmen dürfen, gilt

l'o'm ~ n 7T -\- Ii
und

Umax ~ es COS Ii

d) Dämpfungskonstante der Leitung gleich der
reziproken Rückenkonstante des Blitzstromes (a — ß):

In diesem Falle gilt für den periodischen Verlauf

der Spannung

ß — cc

tg n 0 und k 0

Spannungsminima entstehen bei tm 0 und tm oo;
dabei ist umin 0. Ein Spannungsmaximum findet
sich hei ptm 2 Es beträgt

umax=2e.e-"t°
Der Spannungsverlauf entspricht der Kurve 5d.

Wenn der aperiodische Grenzfall zutrifft und
zugleich a ß, d. h. a ß v0 ist, bekommen wir
nach der Aufhebung des unbestimmten Ausdruckes

ß2 t2 £ (33)

und für die Spannungsextrema die Bedingung

tm (2 -atm) £ — 0 (34)

Diese Gleichung gibt tml — 0 und tm2 oo für
Spannungsminima, wobei umin 0 und ferner

_
2

tmz - —
2

l'a

2

ß 'o
für das Spannungsmaximum.

Die maximale Spannung selbst ist

Umax 2 es £"" 0,27068 es

Den Spannungsverlauf gibt Kurve 5d.
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e) Sehr rasch abklingende Stromstösse (a oo) :

Dieser Fall hat weniger praktische, eher theoretische

Bedeutung, insbesondere für die numerische
Auswertung der Ergehnisse. Für solche rasch
abklingende Spannungsstösse nehmen wir im Grenzfall

a to an. Durch Grenzübergang in den
Formeln (12), (15) und (15b) für a —> to bekommen
wir sowohl für den schwingenden als auch für den
aperiodischen Vorgang

lim u 0

Ferner

lim (rtm) arcos — t (schwingender Vorgang)
OC -~>oo
und
lim (,// tm) 0
(X —> oo

(aperiodischer Vorgang)

Wenn gleichzeitig a -> to und ß 0 ist, dann ist

7t
lim(j/tm)= (schwingender Vorgang)
Oi •—> oo 2
ß-* 0

Diese Ergebnisse können wir direkt aus der Fig. 4
ablesen.

f) Sonderfall im Gebiete des aperiodischen Verlaufs
der Spannung, wenn Iß—at p '

Für diesen Fall folgt ganz allgemein nach ziemlich

langwierigen Berechnungen für die Spannung
der Ausdruck

(ß-a)t- -1(1 —£-2(/?-a)t)

(35
und für den Zeitpunkt des Maximums bzw.
Minimums der Spannung

1—e "2 {ß—OC) tm 2 (ß — «) G (36)

Wenn wir (36) in (35) einsetzen, folgt für das

Spannungs-Maximum bzw. -Minimum der
Ausdruck

p
ß-

a t. (37)

pIn der letzten Formel (37) darf der Quotient.,
ß —a

nicht gekürzt werden, da er gleich +1 oder —1
ist, je nachdem ß—a grösser oder kleiner als Null
ist.

6. Die Spannungskurven
Um ein genaues Bild über die Form des

Spannungsverlaufs als Funktion der Zeit (t) bzw. des

Zeitwinkels (vt) oder des Zeitargumentes (p.t) und
über die Art und Weise, wie diese Kurven von den
Parametern a, ß und v„ abhängen, zu bekommen,
benutzen wir noch einmal die Formel (12) und
(15) und (15b) bzw. Fig. 4.

Im Falle des periodischen Verlaufes der Spannung

gilt gemäss Gleichung (12) :

« e,o
ßt

COS K
COS (vt Ii) (38)

Aus der Form der Gleichung sehen wir sofort, dass

+ i^] ,39)

die Gleichungen der Umhüllenden der Spannungskurve

sind, und dass

cp (t) e„ a s (40)

die Gleichung der Mittellinie der gedämpften
Schwingung darstellt.

Es lässt sich leicht beweisen, dass, wenn ß < a,
die untere Umhüllende

h (0 es a
,-ßt
COS K

stets unter der Zeitachse verläuft, so dass die Span-
nungsordinaten positive und negative Werte
annehmen können (Fig. 5a).

Ist dagegen ß > a, so sind die untere Umhüllende
und mit ihr die Spannungswerte stets positiv
(Fig. 5c).

Den Spezialfall ß — a haben wir in Abschnitt 4
untersucht und gefunden, dass die Spannungskurve

tangential zur Zeitachse verläuft, d. h. die
Spannungsminima durchwegs gleich Null sind.

Das gleiche bekommen wir, wenn wir aus der
Gleichung (30) oder (39) die Gleichungen der
Umhüllenden

v2

//.\ / —06 t J_ _ - 06 tv
1,2 (0 ^2 (e ± «

und der Mittelline

cp (t)
V

aufstellen (Fig. 5b).
In der gleichen Weise können wir auch den Fall

ß 0 untersuchen. Er stellt ungedämpfte Schwingungen

dar, deren Mittellinie die Gleichung
aufweist :

1.2

/,\ 2 0 „—Ott
cp (tj es cos u £ es 2 —2 • e

V0 „—Ott
eQ —£

Die Betrachtung der Fig. 4 zeigt weiter, dass für
ß < a die Spannung unendlich viele Maxima und
Minima hat (Punkte A, B, C, D usw.), was gut mit
der Fig. 5 a übereinstimmt.

Das gleiche gilt auch im Fall a~ß (Punkte A,
E, F, G usw.

Wenn ß > a wird und (ß — a) immer grössere
Werte annimmt, verschwinden die in der Ferne
liegenden Maxima und Minima paarweise, weil die
£

(/? — «) t Kurve immer steiler wird.
Die Kurve 3 der Fig. 4 zeigt den Grenzfall, wo

das zweitletzte Maximum-Minimum-Paar
verschwindet. Für noch grössere (ß — a)-Werte
besteht nur ein Maximum und ein Minimum (Kurve 4,
Fig. 4). Für die Zeit, welche dem Berührungspunkt
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der cosinus- mit der Exponentialkurve der Fig. 4

entspricht (Punkt K), hat die Spannungskurve
demnach eine horizontale Wendetangente.

Im Bereiche des aperiodischen Gebietes sind
höchstens zwei Arten Spannungskurven vorhanden:

Die allgemeine steigt bis zu einem gewissen

Maximum und klingt nachher wieder langsam
asymptotisch bis auf Null ab (Fig. 5d). Die einzelnen

Kurven unterscheiden sich voneinander nur
durch die Höhe und den Zeitpunkt des Spannungsmaximums.

Zweitens die spezielle Art der Spannungskurve
für a 0, bei welcher tm oo und umax es ist
(Fig. 5e). Sie entspricht dem Einschalten einer
Gleichstromquelle.

Die in Fig. 5a...e beispielsweise angegebenen
typischen Spannungskurven sind von oben nach unten
nach wachsenden ß-Werten angeordnet.

Die Kurve Fig. 5a zeigt demnach am wenigsten,
die Kurven Fig. 5d und 5e am meisten gedämpfte
Schwingungen.

7. Graphische Darstellung einzelner
charakteristischer Grössen der Spannungskurven

In der vorliegenden Problemstellung interessieren

vor allem das erste Spannungsmaximum der
Kondensatorspannung und sein Zeitpunkt, die
Rücken- oder Stirn-Halbwertdauer und die maximale

Ladung der Kapazität.
Die numerische Auswertung der Resultate für

die beliebig gegebenen Blitz-Leitungs- und Schutz-
kapazitäts-Werte stösst auf Schwierigkeiten, da alle
erwähnten Grössen Funktionen mehrerer
Unabhängiger sind, nämlich ausser dem Argument Zeit
(t) folgender Parameter:

es, a, ß und c0

Das Argument (f) verschwindet im Ausdruck des
maximalen Spannungswertes, weil die Zeit hier
einen bestimmten Wert hat. Indem wir statt u den
Quotienten u/es betrachten, fällt auch es als Variable

fort, da u stets proportional es ist. Es bleiben
die drei freien Parameter a, ß und va übrig, oder
statt des letzten, der abgeleitete Parameter:

i/ J cq — ß2 bzw. u ]/ß2 - v\

Während v eine unmittelbare physikalische Grösse
ist (Kreisfrequenz) und eine graphische Darstellung

über v daher nicht ohne Interesse ist, lässt sich
v0 leichter berechnen, so dass wir doch v0 als
unabhängigen und v als abhängigen Parameter
betrachten werden. Es bleiben uns somit die drei
unabhängigen Parameter a, ß, v„ und das Argument t
bzw. für die Maximalwerte der Spannungen die
Parameter

a, ß, v„

Es ist natürlich ohne weiteres möglich, die umax/es-
Werte in einem xyz-System über zwei der drei
Parameter als Argument und dem letzten als festem
Parameter unmittelbar graphisch als räumliche
Kurven-Schar darzustellen. Nun lässt sich aber aus
der Homogenität der Gleichungen leicht nachwei¬

sen, dass die Minima und Maxima dieselben sind
für gleiche Quotienten

und oder — und —, oder — und —.ß ß a a v0 v0

Durch Einführen dieser «relativen Parameter»
erhalten wir eine allgemeinere und einfachere
Darstellung, da sich die Anzahl der unabhängigen
Parameter somit auf 2 reduziert. Wir wählen

als ersten relativen Parameter a0 — relative
V°

reziproke Zeitkonstante des Blitzstroms (41)

als zweiten relativen Parameter ß0 =— relative
vo

Dämpfungskonstante des elektrischen Kreises (42)
ferner als abhängigen Hilfsparameter:

Ô0 ßn ao — (43)
v0

Dieser Parametersatz bietet folgende Vorteile:
a) Gegenüber dem Netz mit a, ß und v0 ist das

Netz über a0 und ß„ graphisch einfacher, da es nur
2 Parameter enthält, und trotzdem allgemein, da es
für beliebige R, L und C gültig ist.

b) Die Einführung des abhängigen Parameters
do ermöglicht, ein Kurven/ietz zu konstruieren. Das
ist von Vorteil, da Netze sich genauer zeichnen lassen

und eine genauere Interpolation ermöglichen
als einfache Kurvensc/iaren.

c) Für den relativen Parameter ßn lässt sich
schreiben :

10 ~
r0 2 y L 2 Z

WO

z }/ir
der bekannte Schwingwiderstand des verlustlosen
elektrischen Kreises ist. Der so definierte relative
Parameter ß0 kommt bereits in der Fachliteratur
vor 4).

Aus praktischen Gründen führen wir noch einige
Zeitgrössen ein, und zwar:

# vt sei der «Zeitwinkel» (44)

0 fit sei das «Zeitargument» (45)
woraus sich ergibt

d 0
t — — oder t — — (46) und (47)

Ferner sei

t at— ^ (48)

Während r die relative Zeit bezogen auf die
«Eigenzeit» der Störungsfunktion I Blitzstrom-Zeit-
konstante) darstellt, geben j) und 0 relative
Zeitwerte bezogen auf die «Eigenzeit» des Stromkreises

(1 : v bzw. 1 : ja).
J) W. Jaeger, El. Messtechnik, Leipzig 1928, S. 33.
J. Wallot, Theorie der Schwachstromtechnik, Berlin 1940,

S. 99.
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Fig. 6c: Spannungswerte im Abszissenintervall + 3<co<+10

Aus (48), (46), (41) und (16) bekommen wir I oder aus (48), (47), (41) und (19)

r=a-d= a .^0 ^0* ; T ^o.0=
v v0 v sin £ I // p0 a sinn £'

Fig. 6a: Spannungswerte im Abzissenintervall — 3 < c0 < + 3

Spannungsmaximum an der Kapazität in Abhängigkeit von «o, ßo und o0.
Legende für alle 3 Bilder:

a Verlustloser Kreis (Erdungswiderstand 0) A Gebiet des schwingenden Spannungsverlaufes
b Gleichstromstoss (Blitzstromzeitkonstante—> <») B Gebiet des aperiodischen Spannungsverlaufes
c Aperiodischer Grenzfall (ß0 i)

Fig. 6b: Spannungswerte im Abszissenintervall —10 < < —3
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Zeitpunkte (les Spaniiungsuiaximuins in Abhängigkeit von <x0 ßo und â0 (relative Werte und 6m).

a Verlustloser Kreis (Erdungswiderstand 0) A Gebiet des schwingenden Spannungsverlaufes
b Gleichstromstoss (Blitzstromzeitkonstante —» ~) B Gebiet des aperiodischen Spannungsverlaufes
c Aperiodischer Grenzfall (,3(1 1)

Die Einführung der relativen Parameter a0, ß„
(und â0) ermöglicht, sämtliche charakteristischen
Grössen der Spannungskurve graphisch
darzustellen.

2

P,

Für die relative maximale Spannung umax/es
wird am besten ö,, als Abszisse und umax/es als
Ordinate angenommen mit an und ß0 als Parameter.
Man erhält damit ein Netz krummliniger Koordina¬

ten a0 und ß0 in der Ebene umax/es - Ô„. Darin kann
man zu jedem Paar a0 und ß0 den zugehörigen Wert
von umax/es ablesen, siehe Fig. 6. An den Stellen,
wo das Kurvennetz nicht genügend dicht ist, lassen

Fig. 8.

Zeitpunkte des Spannungsmaximums iu Abhängig¬

keit von «Ol ßo und rf0(relatlve Werte rm

a Verlustloser Kreis (Erdungswiderstand - 0)

b Gleichstromstoss (Blitzstromzeitkonstante —»

oto"10

— 8 c Aperiodischer Grenzfall (/?0 l)— 6

4
— 3 A Gebiet des schwingenden Spannungsverlaul'es
—i
— 0.5 B Gebiet des aperiodischen Spannungsverlaufes

0.1

Oto-0

sich Zwischen-Werte wie üblich durch Interpolation
bestimmen.

Für die Bestimmung und die graphische
Darstellung der Zeit der maximalen Spannung können



tsd

Fig. 9.

Nomogramm zur Bestimmung der Parameter v0, ß, «o und ßo

(0*0 — ßQ— <*o)

icrooom
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wir entweder $ yt bzw. © jut oder r — at
benützen, und sodann $m, ©m bzw. rm entweder über
•(50 oder ß0 bzw. a0 als Abszisse darstellen. Wir geben
beide Zeitgrössen in der Darstellung über ß0 als
Abszisse, da über d0 als Abszisse die ©„-Linien sich
teilweise schneiden :

Fig. 7 zeigt einige Kurven &m(ß0) bzw. ßm(ß0)
für konstante a0- und d0-Werte. Fig. 8 zeigt dieselbe
Art der Darstellung für tm(ß0).

Aus den Fig. 6, 7 und '8 ist der Einfluss der
Parameter a0 und ß0 auf den Spannungsverlauf
ersichtlich. Je kleiner a0 und ß0 sind, um so grösser
ist das relative Spannungsmaximum, welches
schliesslich beim Einschalten einer Gleichspannung
(«„ 0) in den verlustlosen Kreis ß0 ~ 0 den
bekannten Höchstwert 2 erreicht. Für a0 gleich
10 sind alle Spannungsmaxima bereits kleiner als
10 °/o von es.

In gleicher Weise lassen sich auch andere
Kurvennetze, beispielsweise für Stirn- und Rücken-
Halbwertdauer, konstruieren, worauf hier nicht
näher eingetreten wird.

8. Graphische Ermittlung der Parameter
und Beispiele

Fig. 9 gibt schliesslich ein Nomogramm, aus dem
für jeden praktischen Fall die mathematischen
Hilfsgrössen (Parameter) a, ß, a0 ß„ v0 für gegebene

Werte von R, C und Abstand D der Einschlagstelle

vom Kondensator direkt abgelesen werden
können. Und zwar sind die Zahlenwerte der
Leitungsinduktivität gleich angenommen wie im
frühem Bericht über die Beanspruchung von idealen
Abieitern durch nahe Blitzschläge5), nämlich L
1,667 mH/km bzw. coL 0,524 Q/km bei 50 Hz.
Das entspricht etwa der Induktivität eines Phasenleiters

mit der Erde als Rückleiter.
Mit Hilfe dieser Werte lassen sich die grössten

Spannungen umax/es an der Schutzkapazität C und
der Zeitpunkt tm ihres Auftretens aus den Fig. 6
bis 8 sofort ablesen.

Das Vorgehen soll an einem Beispiel gezeigt werden.

Es erfolge ein Blitzeinschlag mit 50 000 A
Scheitelwert und 50 ii.s Halbwertdauer Tn (72,2 ijs
Zeitkonstante T) in einen Mast mit 10 Q
Erdungswiderstand. Eine Phase erleide einen RückÜberschlag

und trage die Ueberspannung zu einem am
3 km entfernten Leitungsende angeschlossenen
Schutzkondensator von 0,2 «F. Wie gross ist die
grösste Spannung am Leitungsende, d. h. am Scliutz-
kondensator?

Zunächst ergibt sich der als EMK wirkende
Spannungsabfall des Blitzstroms in der Masterdung
zu es 50 000-10 500 kV. Ferner beträgt

1 106

T-72^1'386-104
Aus Fig. 9, linker Teil, ergibt sich im Schnittpunkt

(0) der Linien R 10 Q und 3000 m ein
Wert ß 1 • 103.

5) K. Berger, Die Beanspruchung von Ueberspannungsab-
leitern durch nahe Blitzeinschläge. Bull. SEV 1942, S. 272...284.

Aus Fig. 9, rechter Teil, folgt weiter aus
C 0,2 p,F und D 3000 m ein Wert v0 3,17 104

für die Eigenkreisfrequenz des Kreises aus
Leitungsinduktivität und Schutzkapazität.

Aus den Werten ß und v0 folgt nun der rel.
Parameter ß0 ß/vn graphisch als Schnittpunkt der
Verbindungs-Geraden /? 1-103 und v0 3,17-104
mit der mittleren Skala, ß0 0,032.

Da ß0 < 1 ist, verläuft die Spannung am
Kondensator als schwach gedämpfte Schwingung
(Fig. 5a).

Aus derselben Skala a wie für ß folgt weiter
a0 a/v0 0,44.

Zur Kontrolle ergibt sich ö0 ß0 — a0 0,032 —
— 0,440 — 0,408.

Mit a0 und ß0 ergibt sich nun aus Fig. 6a (Punkt
Pß) die relative maximale Spannung an der Kapazität

zu

1,14 oder umax 570 kV.
es

Aus Fig. 7 und 8 folgt bei Benützung der <50-

Kurven als Träger der Teilung der a0-Kurvenschar
gemäss der Gl. (43), (Punkt Pß :

Vm 2,58 vtm,
v yo

—58
• 10- 4 ~ 81,5 US

3,17
bzw.

U« I»*3 atml hn

Ohne Schutzkondensator hätte die Spannung am
Leitungsende den Wert 2es 1000 kV erreicht,
sofern von Leitungsverlusten abgesehen wird.

Hätte der Blitzstrom nur 20 us Halbwertdauer
Th bzw. 20 : 0,693 28,9 us Zeitkonstante

aufgewiesen, so wäre a=-jj= 3,46-104 und a0 1,09.

Der Wert ß0 bleibt derselbe 0,032, d0 ß0 —
wird —1,06. Somit betrüge die grösste Spannung

an der Schutzkapazität nach Fig. 6a (Punkt
Pß)

^ 0,675 oder umax 338 kV
es

Sie ist nach Fig. 7 und 8 bei $m 2,22 oder rm 2,43
vorhanden (Punkt Pß), d.h. nach

d 2 22
tm - m

s —! 10-4 s 70,2 jus
G 3,17

bzw.

tm
T'" - 'l3 io-4 - 70,4 ^s
« 3,46

Ohne Schutzkondensator hätte die Spannung
am Leitungsende den Wert 2es 1000 kV erreicht,
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sofern von den Verlusten auf der Leitung abgesehen
wird.

Es ist nicht uninteressant zu bemerken, dass die
Durchschaltung der Leitung, d. h. der Uebergang
von Kopf- zu Durchgangsstation, im ersten Beispiel
als besserer Ueberspannungsschutz wirkt als ein
Kondensator von 0,2 mF pro Phase. Denn in der
Durchgangsstation beträgt die Ueberspannung
umax es 500 kV. Die am Schutzkondensator in

einer Durchgangsstation auftretende Ueberspannung

ist im allgemeinen kleiner als in der
ungeschützten Station (500 kV) ; sie kann aus der
vorliegenden Rechnung, die für die Kopfstation gilt,
nicht entnommen werden. Sie müsste in analoger
Weise durch Auswertung der ähnlichen Gleichungen

für die Durchgangsstation berechnet werden.
Im zweiten Beispiel (kleine Blitzdauer) wirkt

dagegen der Schutzkondensator von 0,2 /uF günstiger
als die Schaltung als Durchgangsstation.

Technische Mitteilungen — Communications de nature technique

Einige Anwendungen der Wärmepumpe
als Heizmaschine

(Nach Brown Boveri Mitt. 1943, Nr. 7/8, S. 146...167)
021.577

1. Voraussetzungen für die Aufstellung einer Wärme¬
pumpe als Heizmaschine

a) Es muss Umiveltwärme oder Abivärme in ausreichender
Menge vorhanden sein.

b) Die mit den Wärmepumpen zu überwindende Tempe-
raturdijjerenz zwischen der verfügbaren Wärmequelle und der
gewünschten Nutztemperatur darf nicht zu gross sein,
möglichst nicht über 50...80° C. a) und b) sind die Voraussetzungen

für hohe Leistungsziffern,1) der Wärmepumpe, d.h. nur
dann wird die Ausnützung von Umwelt- bzw. Abwärme
lohnend.

c) Die in Frage kommenden Heizleistungen müssen hoch
genug sein, nach dem heutigen Stand der Technik möglichst
nicht unter 150 000...300 000 kcal/h, liegen. Dies gilt
insbesondere für Kaltdampf-Wärmepumpen mit Turbokompressoren

als Verdichter.
d) Die jährliche Betriebsstundenzahl und die Benützungsdauer

der Heizanlage müssen möglichst hoch sein.
e) Falls elektrischer Antrieb der Wärmepumpe in Frage

kommt — was die Regel sein wird — so muss die Elektrizität
zu einem für den Betrieb tragbaren Preis erhältlich sein.
Zu a) und b) : 1Wärmequelle und Leistungsziffer.
Soweit Umweltwasser als Wärmequelle dient, werden die

Wärmepumpenanlagen in die Nähe von Bächen, Flüssen und
Seen gelegt, um die Förderkosten klein zu halten. Als Richtwert

für die nötige Wassermenge kann angenommen werden,
dass mit einer Durchflussmenge im Verdampfer von 1 m:i/s
eine stündliche Heizleistung von ca. 4,5 Millionen kcal
abgegeben werden kann; dies gilt bei einer Temperatur der
Wärmequelle von + 2° C, welche im Winter als Minimum
angesehen werden darf und einer Vorlauftemperatur von
60...70° C.

Eine naheliegende Ueberlegung führt dazu, die überall
vorhandene Frischluft als Wärmequelle zu verwenden. Ob-
schon dies grundsätzlich ohne weiteres möglich ist, ergeben
sich mit dem reinen Frischlufthetrieb gewisse Unzulänglichkeiten.

Die Temperatur der Wärmequelle sollte nämlich eine
gewisse Konstanz aufweisen, damit nicht die Heizleistung und
die Vorlauftemperatur unzulässigen Schwankungen
unterliegen. Auch kann die Ausscheidung des in der Luft
enthaltenen Wasserdampfes, sobald die Temperatur unter Null
sinkt, durch Ansetzen von Reif oder sogar Eis an den
Verdampferrohren Unannehmlichkeiten im Betrieb herbeiführen.
Die Verwendung von Frischluft ohne entsprechende
Massnahmen ist deshalb nicht ohne weiteres zu empfehlen.

Die wirkliche Leistungsziffer £ki des Wärmeprozesses,
bezogen auf die Klemmen des Antriebsmotors, kann geschrieben
werden :

Q T, T,
Ckl _ P.,-860

~~
T, —Tk.

' '' ~ Ht H

Q Heizleistung in kcal/h
P,i aufgenommene Leistung des Elektromotors, gemessen in

kW an den Anschlussklemmen

J) A. Meldahl: «Die Wärmepumpe als Kältemaschine und
Heizmaschine», Brown Boveri Mitt. 1943, Nr. 3/6, S. 82.

T, Vorlauftemperatur des Nutz-Kreislaufes In "K
Tk, Temperatur der Wärmequelle in °K

(z. B. Flusswasser)
Jt die Differenz zwischen obigen beiden Temperaturen
)j Gesamtwirkungsgrad der Anlage, der sämtliche Verluste

der Anlage berücksichtigt.
Für Kaltdampf-Heizmaschinen mit Turbokompressor kann

hei Einheitsleistungen in der Grössenordnung von 200 000 bis
über 3 000 000 kcal/h mit einem Gesamtwirkungsgrad zwischen
0,45 und 0,65 gerechnet werden.

Aus der Formel für die Leistungsziffer ist ersichtlich, dass,
abgesehen von der absoluten Höhe der Vorlauftcmperatur,
die im allgemeinen für ein bestimmtes Verwendungsgebiet
gegeben ist, die Leistungsziffer um so grösser wird, je näher
die Vorlauftemperatur und die Temperatur der Wärmequelle
beieinander liegen.

Die Leistungsziffer, bezogen auf Motorklemmen, beträgt
für die Raumheizung mit normalen Radiatoren ca. 2,5...4, für
Schwimmbäder ca. 4...8 und für Eindampfanlagen 5...10 und
mehr. Aus Fig. 1 können die Leistungsziffern für verschiedene
Vorlauftemperaturen t„ des Heisswassers und für verschiedene
Temperaturen tk, der Wärmequelle abgelesen werden. Dabei
ist ein Gesamtwirkungsgrad — 0,6 vorausgesetzt.
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Fig. 1.

Leistungsziffern von Heizinasehinen grosser Leistung
für Heisswassererzeugung mit Umweltwasser verschiedener
Temperatur als Wärmequelle (Kaltdampf-Wärmepumpen mit

Turbokompressor als Verdichter)
U Vorlauftemperatur des Heisswassers.
jke Temperatur der Wärmequelle.
6ki Leistungsziffer der Wärmepumpe, bezogen auf die Klem-

menleistung des Antriebsmotors.
(Gesamtwirkungsgrad: V =0,6).

Zu c) : Die Grösse der Einheitsleistung von Wärmepumpen
als Heizmaschinen

Nach Bauer und Peter2) liegt die installierte Leistung für
Raumheizungen für die Klimaverhältnisse der Nord- und
Ostschweiz zwischen 17...22 kcal/h und m3 umbauten Räume«,

2) B. Bauer und W. Peter: Wasser und Energiewirtschaft
1935, Nr. 7/8, S. 109.
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