Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 35 (1944)

Heft: 20

Artikel: Die Berechnung der beim Abschalten leerlaufender Transformatoren,

insbesondere mit Schnellschaltern, entstehenden Ueberspannungen

Autor: Berger, K. / Pichard, R.

DOI: https://doi.org/10.5169/seals-1061603

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Berechnung der beim Abschalten leerlaufender Transformatoren, insbesondere mit Schnellschaltern, entstehenden Ueberspannungen

Bericht an die Forschungskommission des SEV und VSE für Hochspannungsfragen (FKH) von K. Berger und R. Pichard, Zürich

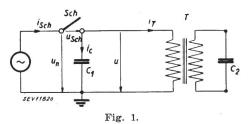
621.3,015.3:621.316.5.064.2

Versuche in einer 16-kV-Anlage bei Frequenzen von 50 und 16% Hz haben ergeben, dass beim Abschalten von Transformatoren aus dem Leerlauf unter Umständen beträchtliche Ueberspannungen entstehen i). Die Regelmässigkeit des im Oszillogramm ersichtlichen Vorgangs beim Schalten mit Schnellschaltern (bei den erwähnten Versuchen waren es Druckluftschalter) legte nahe, die Ueberspannungen zu berechnen. Im folgenden wird gezeigt, wie aus der in einem Oszillogramm ersichtlichen Zunahme der elektrischen Festigkeit zwischen den sich öffnenden Kontakten des Schalters die grösstmögliche Schaltüberspannung, welche dieser Schalter beim Abschalten eines leerlaufenden Transformators bei irgendeiner Netzfrequenz und bei der Kontakttrennung im ungünstigsten Phasenmoment der Wechselspannung ergeben kann, sich berechnen lässt. Sofern die Unterbrechung des Leerlaufstromes in ein und derselben Halbperiode des Wechselstromes erfolgt, lässt sich eine geschlossene Formel für die grösste Ueberspannung angeben. Verteilt sich die Lichtbogendauer auf 2 Halbperioden des Leerlaufstromes, so führt eine einfache graphische Methode rascher zum Ziel. Diese beiden Fälle treffen in der Regel zu für Schnellschalter, dagegen nicht für Oelschalter 2). Soweit sich für Oelschalter überhaupt ein regelmässiger Verlauf der Zunahme der Schalterfestigkeit bei der Abschaltung angeben lässt, kann mit dem gleichen Verfahren die Ueberspannung graphisch schrittweise bestimmt

Des essais entrepris à des fréquences de 50 et 16\% Hz dans une installation à 16 kV ont montré que des surtensions considérables peuvent parfois se produire lors du déclenche-ment de transformateurs à vide 1). En raison de la régularité que présentent les oscillogrammes de déclenchement des disjoncteurs à action rapide (pour les essais en question, il s'agissait de disjoncteurs à air comprimé), les auteurs ont été amenés à calculer ces surtensions. Connaissant, d'après l'oscillogramme, la rigidité diélectrique entre les contacts de l'interrupteur, on peut en effet calculer la surtension de couplage maximum que peut produire cet interrupteur lors du déclenchement d'un transformateur à vide à une fréquence quelconque de réseau, quand les contacts se séparent au moment le plus défavorable de la phase de la tension alternative. A condition que l'interruption du courant à vide se produise dans la même demi-période du courant alternatif, on peut indiquer une formule simple pour la surtension maximum. Si la durée de l'arc s'étend sur deux demi-amplitudes du courant à vide, le résultat peut être rapidement obtenu par une simple méthode graphique. Ces deux cas se présentent dans la règle pour les disjoncteurs à action rapide, mais non pour les dis-joncteurs à bain d'huile ²). Pour autant que l'augmentation de la rigidité diélectrique du disjoncteur à bain d'huile ait une allure régulière, on peut toutefois déterminer graphiquement la surtension en appliquant successivement ce même procédé.

1. Der physikalische Vorgang beim Abschalten kleiner induktiver Ströme

Die grundsätzliche Betrachtung erfolge an Hand des Schemas des Einphasen-Netzes mit einpoligem Schalter nach Fig. 1. Der andere Pol sei der Einfachheit halber geerdet. Zwischen dem abzuschaltenden Transformator T und dem Schalter Sch befinde sich eine Kapazität C_1 , welche in der Re-



Einpoliges Prinzipschema der Abschaltung des leerlaufenden Transformators T mit dem Schalter Sch aus dem Betrieb an der Netzspannung u_n

gel durch die Transformator-Eigenkapazität gegeben ist. Die offene Oberspannungswicklung habe eine Eigenkapazität C_2 . Der Index n bezeichne das speisende Netz.

Die Oszillogramme zeigen zunächst, dass der Strom im Schalter i_{Sch} wesentlich schneller der Nullinie zustrebt, als nach der stationären Sinus-Linie. Ausserdem ist er stark zerhackt oder aussetzend; er intermittiert. Dieselbe Erscheinung zeigt sich im Verlauf der Spannung u am Transformator (Fig. 2). Die Spannung am Schalter wächst während einer Betriebs-Halbperiode plötzlich rasch an auf Werte, die viel grösser sind als eine Lichtbogenspannung. Dieser rasche Anstieg entspricht der Aufladung der Kapazität C_1 durch den im Transformator immer noch bestehenden Strom i_T bei unterbrochenem Schalter $i_{Sch}=0$. Denn bekanntlich entspricht der Strom i_T in der Transformator-Induktivität L einer magnetischen Energie $U_m=\frac{1}{2}i_T^2L$, die sich im Kondensator C_1 in elektrische Ladungsenergie U_e umsetzt.

Käme nichts anderes dazwischen, so entstünde schliesslich eine Aufladung von C_1 gemäss der Energiegleichung $U_m = U_e = \frac{1}{2} \, u^2 \, C_1$. In Wirklichkeit kommt diese grösste Spannung u in der Regel nicht zustande, weil vorher irgendwo ein Ausgleich oder Ueberschlag erfolgt, vor allem zwischen den sich öffnenden Schalterkontakten. Ueber den dann entstehenden Rückzündungsfunken fliesst die Kondensatorenenergie aus C_1 in das Netz zurück wie aus einem kleinen ungedämpften Stossgenerator. Der Entladefunke ist sehr stromstark, dauert aber nur sehr kurze Zeit. Was bleiben würde, ist wieder der kleine induktive Strom i_T , der eben am Schalter abgerissen wurde. Er kann ebenso wenig wie vorher stabil weiterfliessen, sondern wird we-

¹⁾ Siehe S. 551 dieser Nummer.

²⁾ Unter Schnellschalter wird im folgenden ein Schalter mit sehr kurzer Lichtbogendauer (in der Regel ca. 1 Halbperiode der Betriebsfrequenz) verstanden. Darunter fallen Druckluftschalter, ölarme Schalter, insbesondere mit Löschung durch Fremdenergie (Drucköl) usw. Unter Oelschalter wird der klassische Oelschalter mit grosser Lichtbogendauer von mehreren Halbperioden der Betriebsfrequenz verstanden (Oelschalter mit offener Unterbrechung, ohne Blasung durch Fremdenergie).

gen der Eigenschaft des Schalterlichtbogens wieder abgerissen. Der Strom i_T ist damit erneut gezwungen, C_1 aufzuladen, und das Spiel wiederholt sich. Man erkennt sofort, dass ein Haupteinfluss des

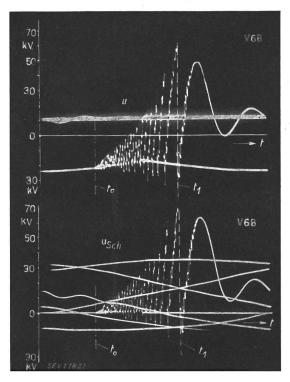


Fig. 2. Oszillogrammbeispiel der Abschaltung eines 2500-kVA-Transformators aus dem Einphasenbetrieb bei 16 kV, 16% Hz, nach dem Schema Fig. 1

- u Spannung am Transformator
 usch Spannung am Schalter
- Moment der Kontaktöffnung. Ende der Abschaltung.

nun im einzelnen betrachtet werden.

(Druckluftschalter ohne Schutzfunkenstrecke und ohne Widerstand).

Schalters in der Art und Weise besteht, wie er seine Durchschlagspannung (die elektrische Festigkeit) zwischen den öffnenden Kontakten erhöht. Das wiederholte Zünd- und Löschspiel am Schalter soll

2. Der Vorgang beim Rückzünden im Schalter, Stabilität des Schalter-Lichtbogens

Da sich der Transformatorstrom i_T nur langsam ändern kann, betrachten wir vor allem die beiden rasch veränderlichen Ströme i_c und i_{Sch} unter

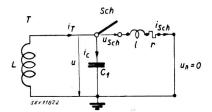


Fig. 3. Prinzipschema zur Betrachtung der Sta-bilität des Schalterstromes isch beim Abschalten der Induktivität L des Transformators T vom Netz $u_0 = 0$

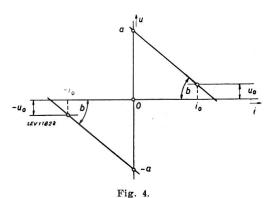
der Annahme, dass i_T kurze Zeit konstant bleibt. Weiter wollen wir das Schema Fig. 1 noch dadurch vereinfachen, dass wir die Netzspannung während der Rückzündung zuerst gleich Null annehmen (Fig. 3). Dann kann gesetzt werden:

$$i_T = i_c + i_{Sch} = i_{T_0} = \text{konst.}$$
 (1)

$$i_c = C_1 \cdot \mathrm{d}u/\mathrm{d}t = C_1 u' \tag{2}$$

$$u = u_{Sch}(i_{Sch}) + r i_{Sch} + l \cdot \frac{\mathrm{d}i_{Sch}}{\mathrm{d}t}$$
 (3)

Aus diesen 3 Gleichungen lassen sich die Unbekannten u, i_{Sch} und i_c berechnen, sobald der Zusammenhang der Lichtbogenspannung mit dem Schalterstrom u_{Sch} (i_{Sch}) bekannt ist. Um das Wesentliche des Lichtbogens zu erfassen, stellen wir die-



Grundsätzlicher Verlauf der Lichtbogen-Charakteristik des Schalters Sch

- ± a Zünd- und Löschspannung des Lichtbogens.
- Brennspannung bei sehr grossem Strom. Negativer Lichtbogenwiderstand.

sen Zusammenhang nicht hyperbolisch dar, wie dies oft geschieht, sondern aus 2 geraden Linien zusammengesetzt, wie Fig. 4 zeigt. Es gelte:

Dabei bedeuten a und b positive Konstanten. Durch Einsetzen in (1) erhält man als Gleichung für i_{Sch}

$$i_{T_0} = C_1 u' + i_{Sch} = i_{Sch} + C_1 (r - b) i_{Sch} + + l C_1 i_{Sch}' \text{ für } / i_{Sch} / < / i_0 /$$

$$i_{T_0} = i_{Sch} + C_1 r i_{Sch}' + l C_1 i_{Sch}' \text{ für } / i_{Sch} / > / i_0 /$$
(5)

Sofern r > b ist, entsteht die Gleichung der gedämpften Schwingung. Dagegen ist ein stabiler Strom im Bereich r < b überhaupt nicht möglich, wie sofort gezeigt werden soll. Nehmen wir zu diesem Zweck l=0 an, was offenbar vor allem das Tempo der Stromänderungen ändert, aber nicht die Stabilität. Dann ist

$$i_{T0} = i_{Sch} + C_1 (r - b) i'_{Sch}$$
 (6)

Ein Gleichgewichtszustand ist denkbar, wobei i_c und $i'_{Sch} = 0$ und

$$i_{T0} = i_{Sch} \tag{7}$$

Dieser Zustand ist jedoch nicht stabil, wie eine Stabilitätsbetrachtung lehrt.

Nehmen wir nämlich eine kleine virtuelle Aenderung des Stromes i_{T_0} an, gemäss

$$i_{T1} = i_{T0} + \Delta i_T \tag{8}$$

dann gilt nach Gl (6)

$$\frac{i_{T_1} = i_{Sch} + C_1 \ (r - b) \ i'_{Sch} = i_{To} + \Delta i_T}{\text{und mit Gl. (7)} \ \Delta i_T = C_1 \ (r - b) \ i'_{Sch}}$$
(9)

Ist $\Delta i_T > 0$, so muss auch die rechte Seite positiv werden. Das bedingt ein positives Produkt (r-b) i_{Sch} . Ist nun r > b, so wird $i_{Sch} > 0$, d. h. der Strom nimmt zu und strebt somit dem neuen Gleichgewichtszustand nach Gl. (7) zu. Ist dagegen r < b, so wird $i'_{Sch} < 0$. Das heisst, der Strom sinkt. Er kann niemals den neuen, grössern Gleichgewichtswert erreichen: Der Strom entfernt sich vom labilen gesamten Gleichgewichtszustand. ImGebiet (b>r) sind keine stabilen Zustände möglich. Der Strom fällt nach unten oder nach oben aus dem Bereich heraus. Die Auswertung der Gl. (6) ergibt z. B. für konstantes i_{T0} einen Strom i_{Sch} , der im Fall (r-b) > 0 als Exponential function mit negativen Exponenten dem neuen Gleichgewichtswert zustrebt, während mit (r-b) < 0 eine Exponentialfunktion mit positivem Exponent herauskommt, nach welcher der Strom vom labilen Gleichgewichtswert wegstrebt. Stabilitätsbedingung ist stets (r > b). Für den Schalterlichtbogen ist daraus ersichtlich, dass der Strom abreissen muss, sobald er in das Gebiet fallender Charakteristik (b > r)fällt. Nun ist bekannt, dass Lichtbogen mit mehr als 10...100 A Strom wenig veränderliche Lichtbogenspannung aufweisen. Dagegen ist die Lichtbogenspannung bei Strömen der Grössenordnung 1 A stark fallend, d. h. b gross.

Bei der Transformatorabschaltung passiert somit folgendes: Mit der Zündung im Schalter setzt ein Ausgleichstrom zwischen C_1 und Netz ein, der wegen der kleinen Werte l und C_1 im allgemeinen sehr kräftig, z. T. schwingend, z. T. aperiodisch ist. Nach Abklingen dieses sehr rasch veränderlichen und grossen Ausgleichstromes müsste im Schalter ein Strom der Grösse i_T bestehen bleiben, das sind wenige Ampere. Damit befinden wir uns aber im Gebiet grosser b-Werte. Der Lichtbogen kann nicht bestehen bleiben, sondern muss löschen. Dass der vorher schwingende Ausgleichstrom nicht schon beim Durchfahren der Nullwerte des Stromes löschte, hängt mit der dynamischen Lichtbogencharakteristik bzw. mit der Lichtbogenhysterese zusammen. Beim raschen Rückgang des Stromes ist nämlich die Neigung |b| viel kleiner als die, welche in der statischen Charakteristik der Fig. 4 erscheint, weil der Lichtbogen eine thermische Trägheit besitzt. Insbesondere ist beim Nullwert des Stromes die Lösch- und Zündspannung $u_Z = a$ aus diesem Grunde viel kleiner, als etwa der statischen

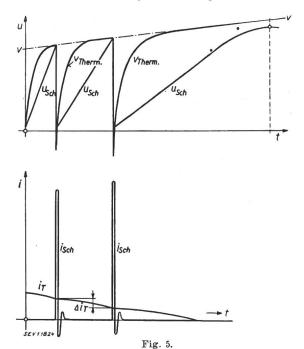
Durchschlagspannung zwischen den kalten Elektroden entspricht.

Es ist damit gezeigt, dass bei den kleinen Leerlaufströmen im Transformator der Lichtbogen im Schalter nach einer Rückzündung und Entladung der Kapazität C_1 sofort wieder abreissen muss, so dass der Vorgang in der Tat demjenigen der Entladung eines kleinen ungedämpften Stossgenerators gleicht 3). Jede Kondensatoraufladung u_{ν} enthält die Energie $U_{ev} = \frac{1}{2} C_1 u_v^2$. Die Summe dieser Energien entspricht, wenn keine Verluste vorkommen, der Energie des magnetischen Speichers, nach der Gleichung

$$\frac{1}{2}L i_{T_0^2} = \sum_{\nu=1}^n \frac{1}{2} C_1 u_{\nu}^2$$
 (10)

3. Verlauf der Durchschlagsfestigkeit im Schalter und wiederkehrende Spannung am Schalter

Sobald der Schalterlichtbogen gelöscht hat, steigt die Durchschlagsfestigkeit im Schalter im Tempo einiger 100 V/µs an. Dieser rasche, durch die Abkühlung des Lichtbogens bedingte «thermische»



Verlauf der elektrischen Festigkeit v des Schalters und der wiederkehrenden Spannung u_{Sch}

utherm Thermisch bedingte Verfestigung.

v-v Mechanisch durch Kontaktöffnung bedingte Verfesti-

Wiederkehrende Spannung am Schalter.

Strom im Schalter. Strom im Transformator.

Anstieg ist massgebend für die Fähigkeit des Schalters, einen Kurzschlußstrom abzuschalten. Der Anstieg erreicht jedoch eine Grenze, die im wesentlichen gegeben ist durch die Durchschlagspannung

³⁾ Die Strömung des Löschmittels spielt dabei u.E. im Gegensatz zu gewissen Aeusserungen in der Literatur nur eine unbedeutende Rolle.

zwischen den kalten, sich öffnenden Kontakten des Schalters, unter dem vorhandenen Gasdruck. In dem Mass, wie die Kontakte sich entfernen, wächst diese «mechanische» Durchschlagsfestigkeit v nach einer bestimmten, in Fig. 5 gezeichneten

Gleichzeitig mit der Kontaktöffnung wächst aber auch die am Schalter vorhandene wiederkehrende Spannung u, und zwar mit dem Tempo

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{i_T}{C_1} \tag{11}$$

Erreicht diese wiederkehrende Spannung u den Momentanwert der Schalterfestigkeit v, so entsteht eine Rückzündung mit Entladung von C_1 gemäss dem vorherigen Abschnitt. Nach der letzten Zündung im Schalter bilden Kapazität C_1 und Transformator T einen Schwingungskreis, der in den Oszillogrammen deutlich ersichtlich ausschwingt



Fig. 6. Oszillogrammbelspiel mit deutlichem Ausschwingen des Transformators T mit seiner Zuleitungskapazität C_1 , nach dem Abschalten des Transformators aus dem Einphasenbetrieb 16 kV, 16% Hz nach Fig. 1

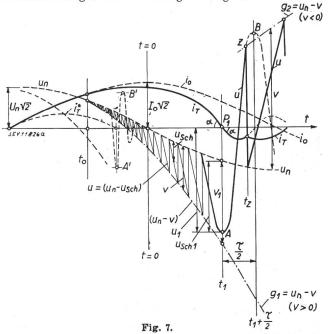
- u Spannung am Transformator usch Spannung am Schalter
- (Druckluftschalter mit Schutzfunkenstrecke und Widerstand).
- Moment der Kontaktöffnung. Ende der Abschaltung.

(Fig. 6). Die geschilderte Lichtbogenintermittenz ist nur möglich, wenn der Strom i_T nicht zu gross und die Kapazität C_1 nicht allzu klein ist. Denn solange das Tempo des Spannungsanstieges nach Gl. (11) rascher wird als ca. 1000 $V_{l}/\mu s$, kann der Lichtbogen gar nicht aussetzen. Daher kommt die Lichtbogenintermittenz in der Regel bei Kurzschlussabschaltungen nicht vor 4).

Infolge der rasch ansteigenden Spannung an C_1 wird nun anderseits der Transformatorstrom i_T wieder zu einem rascheren Rückgang gezwungen, als es bei geschlossenem Schalter der Fall wäre. Die Stromabnahme pro Zündintervall ist gegeben durch

 $\varDelta i_{Tv} = \frac{1}{L} \int_{t_v}^{t_{v+1}} u \, \mathrm{d}t$ (12)

Infolge des fast gradlinigen Anstieges du:dt weist die Fläche $\int u dt$ sehr angenähert die Form eines kleinen Dreiecks auf mit der Zeit zwischen 2 Zündungen als Basis und der Durchschlagspannung v als Höhe. Diese lässt sich nun aus Abschaltoszillogrammen leicht annehmen. Damit erhalten wir aber eine Grundlage für die Bestimmung von ∫udt aus dem Verlauf der Schalterfestigkeit v. Die Annahme dreieckiger Spannungsimpulse am Schalter zwischen zwei Zündspitzen gibt nur vor dem Nullwerden des Stromes i_T ein ungenaues Bild, indem dort die Fläche fudt wegen der Krümmung der u-Kurve kleiner wird als das entsprechende Dreieck mit gleichem Anfangsanstieg der u-Kurve.



Stilisiertes Oszillogramm der Abschaltung, mit Bezeichnungen u_{n_i} u_{Sch} , u Spannung am Netz, am Schalter, am Transformator. i_{7} , i_{6} Wirklicher Strom und Leerlaufstrom. Elektrische Festigkeit des öffnenden Schalters. Stromverlauf und Spannungsextreme im Fall der Löschung vor $i_{0\text{max}}$ bzw. $u_{n}=0$ (strichliert).

Wir werden darauf zurückkommen (Fig. 7). D. h. auch, dass der Strom i_T in Wirklichkeit etwas langsamer den Nullwert erreicht als unter der Voraussetzung dreieckförmiger Spannung am Kondensator C₁ bis zum Schluss der Abschaltung.

Es soll nun der Stromverlauf i_T auf Grund der besprochenen Voraussetzungen berechnet werden, nämlich:

1. Anstieg der Schalterfestigkeit nach einer beliebigen Kurve v («mechanische Oeffnungs-Charakteristik» des Schalters),

⁴⁾ Eine Ausnahme bilden wellenartige Kurzschlußströme auf Höchstspannungsleitungen, siehe K. Berger und H. Habich, Bull. SEV 1929, Nr. 20, S. 681...702.

2. Geradliniger Spannungsanstieg an der Kapazität C_1 bzw. konstanter Transformatorstrom zwischen je 2 Zündungen,

3. Verschwindend kurze Dauer des Stromes i_{Sch} während einer Rückzündung im Schalter.

4. Stromverlauf im Transformator infolge der Intermittenz des Schalterlichtbogens

A. Bis zum 1. Nullwert des Transformatorstromes Mit den Bezeichnungen nach Fig. 1 ergeben sich folgende Zusammenhänge:

$$u_n = -U_n \sqrt{2} \sin \omega t = u_{Sch} + u \qquad (13)$$

Bei geschlossenem Schalter war

$$u_{Sch}=0,\; u_n=u=L\;rac{\mathrm{d}i_0}{\mathrm{d}t}=\;-U_n\;\sqrt{2}\sin\,\omega t$$

daraus

$$i_0 = I_0 \sqrt{2} \cos \omega t$$
, $I_0 = \frac{U_n}{\omega L}$ (14)

Der Zeitnullpunkt wurde dabei so angesetzt, dass der Leerlaufstrom als cos-Funktion erscheint. Durch Einsetzen von $u = L \frac{\mathrm{d}i_T}{\mathrm{d}t}$ erhält man aus (13) für den öffnenden Schalter:

$$i_T = -\frac{U_n\sqrt{2}}{L}\int \sin \omega t \, dt - \frac{1}{L}\int u_{Sch} \, dt + k \quad (15)$$

Der Ausdruck $\int u_{Sch} \mathrm{d}t$ stellt den Spannungsim-

puls dar, den wir gemäss der Voraussetzung des letzten Abschnittes in Fig. 5 und 7 als Summe kleiner Dreiecke darstellen können, deren Höhe der jeweiligen Durchschlagspannung v zwischen den Kontakten entspricht.

Bezeichnen wir diese Durchschlagspannung vom Oeffnungsmoment t_0 der Kontakte an mit

$$v = \text{Funktion von } (t - t_0)$$
 (16)

so wird damit

$$\int u_{Sch} \, \mathrm{d}t \simeq \frac{1}{2} \int v \, \, \mathrm{d}t \tag{17}$$

Die Genauigkeit dieser Gleichung ist um so grösser, je grösser die Zahl der Dreiecke ist. Für einen Bruchteil eines Dreiecks darf sie nicht angewendet werden.

Somit lässt sich die Gleichung (15) weiter schreiben als

$$i_T = \frac{U_n \sqrt{2}}{\omega L} \cos \omega t - \frac{1}{2L} \int v \, dt + k \quad (15')$$

Die Konstante k ergibt sich aus der Anfangsbedingung bei t_0 nach Gleichungen (14) und (15'): für $t=t_0$:

$$\mathbf{i}_{T} = \mathbf{i}_{0} = \frac{U_{n}\sqrt{2}}{\omega L}\cos \omega t_{0} = \frac{U_{n}\sqrt{2}}{\omega L}\cos \omega t_{0} - 0 + k,$$

$$k = 0$$

somit ist

$$i_{T} = \frac{U_{n} \sqrt{2}}{\omega L} \cos \omega t - \frac{1}{2L} \int_{t_{0}}^{t} v \, dt \qquad (15")$$

Solange der Strom im Transformator i_T seine Richtung nicht ändert, wird C_1 immer in derselben Richtung aufgeladen. Daher behalten u_{Sch} und vauch ihr Vorzeichen. Die Fläche \ vdt wächst dem-

nach stetig und der Transformatorstrom i_T sinkt somit nach Gleichung (15") rascher als nach der cos-Kurve. Sofern v dauernd wächst oder jedenfalls nicht abnimmt, wird die grösste Spannung v_{max} somit erreicht, wenn $i_T = 0$ wird, d. h. in einem Zeitpunkt t_1 , der sich aus Gleichung (15") ergibt zu

$$\cos \omega t_1 = \frac{\omega}{2 U_n \sqrt{2}} \cdot \int_{t_2}^{t_1} v \, dt \qquad (18)$$

Diese transzendente Gleichung für den Löschmoment t_1 lässt sich graphisch sehr einfach lösen, wie in Fig. 8 gezeigt ist. t_1 ergibt sich als Abszisse des Schnittpunktes P_1 der beiden Kurven $\cos \omega t$ und

$$\gamma_1 = \frac{\omega}{2 \, U_n \sqrt{2}} \cdot \int_{1}^{t} v \, \mathrm{d}t$$
, deren Anfangspunkt A im Öff-

nungsmoment t_0 der Schalterkontakte liegt. Der bei gleicher Abszisse wie P_1 liegende Wert $v_{max} = v_1$ ist die grösste erreichte Schalterspannung (Punkt

Aus Fig. 8 ist nun auch sofort ersichtlich, in welcher Weise die grösste Schalterspannung v_{max} vom Oeffnungsmoment t_0 der Kontakte bezüglich der Wechselspannungskurve abhängt. Um den ungünstigsten Schaltmoment zu finden, d.h. jenen, der zur grössten Schalterüberspannung führt, braucht man nur die v- und γ_1 -Kurven mit ihrem Anfangspunkt A (t_0) parallel zur Zeitaxe zu verschieben, bis das Zeitintervall $(t_1 - t_0)$ und γ_1 maximal werden. Es ist leicht einzusehen, dass diese Bedingung dann erfüllt ist, wenn der Schnittpunkt P₁ in den Scheitel der cos-Linie fällt, d.h. wenn

$$\left(\frac{\omega}{2 U_n \sqrt{2}} \int_{t_0}^{t_1} v \, \mathrm{d}t\right)_{max} = (\cos \omega t_1)_{max} = 1 \qquad (19)$$

oder

$$\left(\int_{t_0}^{t_1} v \, \mathrm{d}t\right)_{max} = \frac{2 \ U_n / 2}{\omega} \tag{19'}$$

Dieser Ausdruck ist nach den gemachten Voraussetzungen nur gültig, solange v sein Vorzeichen nicht ändert, d. h. solange der Strom i_T die Richtung nicht wechselt. Der Oeffnungsmoment to darf

demnach höchstens um $\omega t = \frac{\pi}{4}$ vor den Zeitnull-

punkt gelegt werden. Die grösste Spannung entsteht dann für eine Lichtbogendauer von 1/4 Periode. Die Betriebsspannung geht in diesem Löschmoment durch Null, der stationäre Leerlaufstrom wäre auf seinem Maximalwert. Wir können somit zusammenfassen wie folgt:

Bei einer Schnellschaltung mit maximal 1/4 Periode Dauer der letzten Stromhalbwelle gibt jener Schaltmoment die grösste Ueberspannung über den Schal-

rens im Schalter seine Richtung nicht umkehrt, also in Fig. 8 zwischen — $\frac{\pi}{2} < \omega t < + \frac{\pi}{2}$. Es folgt, dass

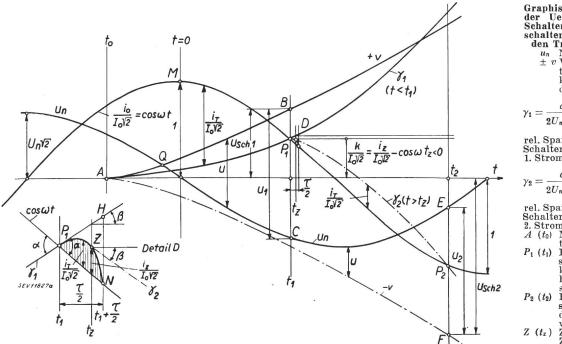


Fig. 8. Graphische Berechnung der Ueberspannung am Schalter Sch beim Ab-schalten des leerlaufen-

chalten des leerlaufenden Transformators T

un Netzspannung.

± v Verlauf der eiektrischen Festigkeit des öffuenden Schalters.

$$\gamma_1 = \frac{\omega}{2U_n \sqrt{2}} \int_{t_0}^{t_0} v \, \mathrm{d}t$$

 t_0 rel. Spannungsimpuls der Schalterfestigkeit in der 1. Stromhalbwelle $(t \le t_1)$

$$\gamma_2 = \frac{\omega}{2U_n \sqrt{2}} \int_{t_0}^{t_2} v \, \mathrm{d}t$$

rel. Spannungsimpuls der Schalterfestigkeit in der 2. Stromhalbwelle (t>tz.) Moment der Kon-taktöffnung.

P₁ (t₁) Ende der Abschaltung, sofern keine 2. Stromhalbwelle ent-

stein.

P₂ (t₂) Ende der Ab
schaltung nach
der 2. Stromhalbwelle.

Z (t_z) Zeitpunkt der
Zündung der 2
Stromhalbwelle.

ter, der den Transformatorenstrom gerade in dem Moment auf Null herunterzwingt, in welchem die Netzspannung durch Null geht. Die Grösse dieser Schaltüberspannung lässt sich für diese maximale Lichtbogendauer $(t_1 - t_0)$ nach Gleichung (19') sehr einfach berechnen.

Die zugehörige maximale Ueberspannung am Transformator bestimmt sich nach Gleichung (13) $u = u_n - u_{Sch}$

bzw. im Moment vor der Rückzündung

$$u = u_n - v \tag{20}$$

In Fig. 8 erscheint die Spannung am Transformator als Ordinatendifferenz der beiden Kurven u_n und v entsprechend der Strecke BC. Sie ist im Punkt Q = 0. Der grösstmögliche Ueberspannungswert am Transformator tritt nicht mit jenem Oeffnungsmoment t_0 auf, der zur grössten Ueberspannung über den Schalter v_{max} führt, sondern bei einem Schnittpunkt P_1 etwas rechts des Scheitelwertes M der cos-Kurve.

Der Strom i_T im Transformator lässt sich aus Fig. 8 ebenfalls ablesen. Nach Gleichung (15") ist der relative Strom $i_T: I_0 \sqrt{2}$ gleich der Ordinatendifferenz der beiden Kurven cos ωt und γ_1 . Er wird im Punkt P_1 zu Null. Gleichung (15") kann auch so gedeutet werden, dass der relative Strom im Transformator die Ueberlagerung zweier Ströme ist, nämlich des relativen stationären Leerlaufstromes $i_0:I_0$ $\sqrt{2}$ und eines «Extrastromes», der von der «Extraspannung» an C_1 infolge der Aufladung durch den Transformatorstrom erzeugt wird.

Die bisherige Betrachtung gilt, wie schon gesagt, solange der Strom i_T während des Intermittie-

die Höhe der Ueberspannung nur vom Kurvenverlauf der wiederkehrenden Festigkeit v des Schalters abhängt, dagegen nicht vom Netz (L und C₁). Das Netz bestimmt lediglich das Tempo des Spannungsanstieges an C1 und damit die Anzahl Zündungen (Schnittpunkte mit v-Kurve) bis zur definitiven Unterbrechung des Leerlaufstromes. Dies gilt um so genauer, je grösser die Anzahl Intermittenzen ist.

B) Bedingung für Wiedereinsetzen des Transformatorstroms nach seinem Nulldurchgang

Nach der letzten Zündung des Schalterlichtbogens vor dem Nullwert des Transformatorstromes i_T schwingt dieser mit der Kapazität C_1 aus um die Null-Linie als Axe. Die erste Amplitude dieser Schwingung ist in Fig. 7 als Punkt A bezeichnet. Die Spannung am Schalter u_{Sch} ist nach Gleichung (13):

$$u_{Sch} = u_n - u$$

So wie Fig. 7 gezeichnet ist, wächst diese Spannung u_{Sch} beim Umschwingen der Transformatorspannung u ganz beträchtlich: Eine Rückzündung ist daher möglich, z. B. im Moment t_z vor dem Scheitelwert B. Läge der Moment t_0 der Kontaktöffnung früher, nämlich derart, dass im Löschmoment die Netzspannung u_n noch positiv ist (z. B. gemäss dem strichlierten Stromverlauf i_T^* in Fig. 7), so entstände durch das Umschwingen der Transformatorspannung keine grössere Spannung mehr am Schalter, als sie schon in A' vorhanden war (Punkt B' statt B).

Zusammenfassend kann somit gesagt werden: Gefahr einer Wiederzündung des Transformatorstromes nach seinem Nulldurchgang besteht nur dann, wenn die Netzspannung u_n umgekehrte Polarität hat als der unterbrochene Transformatorstrom, d. h. in jenen Viertelperioden, wo der stationäre Strom i_0 abnimmt. Liegt umgekehrt der Löschpunkt i_1 in einer Viertelperiode ansteigenden Stromes i_0 , bzw. in einer Viertelperiode fallender Netzspannung u_n , so kann eine weitere Rückzündung nicht entstehen; die Unterbrechung ist dann definitiv.

C) Stromverlauf im Transformator nach dem Nulldurchgang

Falls die Bedingung nach B) das Wiedereinsetzen des Stromes im Transformator gestattet, lässt sich der Strom mit den gleichen Grundlagen wie unter A) wieder berechnen. Ein Unterschied liegt darin, dass die Konstante k nicht mehr verschwindet und dass mit dem Transformatorstrom auch die Aufladespannung u an C_1 und damit der Schalterstrom und die Festigkeit v ihr Vorzeichen wechseln. Der Stromverlauf beim Wiederzünden soll wieder an Hand der Fig. 7 und 8 diskutiert werden.

Im Punkt P_1 von Fig. 8 wird der Transformatorstrom zu Null, ebenfalls in Fig. 7. In Fig. 7 ist zu sehen, dass der nun schwingende Strom nach einer

Halbperiode $\frac{ au}{2}$ der Eigenfrequenz aus C_1 und L

wieder zu Null wird. Der Stromanstieg $\frac{\mathrm{d}i_T}{\mathrm{d}t}$ ist nach dem Nulldurchgang genau gleich wie vor dem Erreichen des Nullwertes. Denn die Transformatorspannung ist auf einem Maximalwert, bleibt also kurze Zeit konstant und anderseits ist u=L $\frac{\mathrm{d}i_T}{\mathrm{d}t}$

Wird somit in Fig. 8 der relative Strom $i_T/I_0\sqrt{2}$ weiter als Differenz zur cos ωt -Kurve gezeichnet, so weist der Zwickel rechts von P_1 den gleichen Winkel α auf wie links von P_1 (Detail D bei Punkt P_1 ist vergrössert herausgezeichnet). Die $i_T:I_0\sqrt{2}$ -Kurve tangiert also auch rechts von P_1 die γ_1 -Kurve. Vom weitern Stromverlauf sind daher die Punkte P_1 und N und die Tangente in P_1 bekannt. Unter Vernachlässigung der Dämpfung des Schwingungskreises wäre auch der Winkel bei N gegen die cos ωt -Kurve gleich α . Somit kann der Stromverlauf in der Fig. 8 zwischen t_1 und $(t_1 + \frac{\tau}{2})$ mit guter Näherung gezeichnet werden. Eine allfällige Wiederzün-

dung wird später als bei i_{max} und früher als $\frac{\iota}{2}$ vorkommen. Verpasst sie dieses Intervall, bzw. den Punkt B in Fig. 7, so ist die Abschaltung endgültig erledigt.

Findet die Rückzündung statt (Moment t_z), so entsteht wieder eine Reihe von Zündungen, d.h. eine Intermittenz, bis die $\cos \omega t$ -Kurve und die vom Zündpunkt Z ausgehende neue γ_2 -Kurve ($t>t_z$) der Fig. 8 sich wieder schneiden, z. B. im Punkt P_2 zur Zeit t_2 . Der Zündpunkt Z liegt innerhalb des Dreiecks P_1NH ; als Annäherung kann dessen Schwerpunkt angenommen werden. Die von ihm

ausgehende γ_2 -Kurve ist also gleich definiert wie γ_1 ,

$$\gamma_2 = \frac{\omega}{2 U_n \sqrt{2}} \int\limits_{t_0}^{t} v \mathrm{d}t$$
, mit dem Unterschied, dass sie

bei t_z beginnt $(t > t_z)$.

Die Lage des Schnittpunktes P_2 hängt vor allem von der Steilheit der γ_2 -Kurve ab. Liegt P_2 vor dem negativen Maximum der cos wt-Kurve, so ist nach B) keine weitere Zündung möglich, weil stationärer Strom i₀ und Netzspannung dort noch gleiche Polarität haben. Ist der Anstieg der γ_2 -Kurve zu flach, so dass der Schnittpunkt P_2 erst nach dem Extremwert (-1) der cos ωt -Kurve liegt, so sind weitere Halbperioden des Stromes im Transformator möglich. Solange die Schalterfestigkeit v wächst, wird die Integralkurve y immer rascher steigen, so dass einmal der Moment kommt, wo die cos ωt-Kurve vor dem Scheitelwert geschnitten wird. Das bedeutet das Ende der Abschaltung. Das gegebene Löschkriterium lässt sich mathematisch ausdrücken, sobald der Verlauf der v-Kurve bekannt ist. Wir werden bei den Beispielen darauf zurückkommen.

Beim Schnellschalter ist die Steilheit der γ-Kurve so gross, dass höchstens eine Zündung des Transformatorstromes nach dem Nulldurchgang vorkommt. Beim Oelschalter dagegen bildet der Vorgang mit häufigen Wiederzündungen des Transformatorstromes infolge kleiner Steilheit der γ-Kurve die normale Erscheinung.

D) Die grösste Ueberspannung am Schalter lässt sich nach dem vorstehenden auch für den wiedereinsetzenden Transformatorstrom graphisch bestimmen, sobald der Verlauf von v bekannt ist. Die γ -Kurve wird dazu so lange längs der Abszissenaxe verschoben, bis die grösste Zeitdauer (t_2-t_0) herauskommt. Weil das Dreieck PNH häufig sehr klein ist, fallen Löschpunkt P_1 und Zündpunkt Z nahe zusammen und man kann daher die γ_2 -Kurve im Schnittpunkt P_1 der γ_1 -Kurve mit der cos-Linie beginnen lassen, indem dort einfach die γ_1 -Kurve

umgeklappt wird.

Mathematisch lässt sich zeigen, dass für den Fall des verschwindend kleinen Dreiecks P_1NH die Formel der Gleichung (19) ihre Gültigkeit behält. Es ist nämlich nach Gleichung (15') allgemein

$$i_T = \frac{U_n \sqrt{2}}{\omega L} \cos \omega t - \frac{1}{2L} \int_{t_z}^{t} v \, dt + k, \text{ für } t > t_z$$
 (15''')

Für $t = t_z$ wird $i_T = i_z = \frac{U_n \sqrt{2}}{\omega L} \cos \omega t_z - 0 + k$ somit

$$k = i_z - \frac{U_n \sqrt{2}}{\omega L} \cos \omega t_z \tag{21}$$

Ferner

$$i_T = \frac{U_n \sqrt{2}}{\omega L} (\cos \omega t - \cos \omega t_z) + i_z - \frac{1}{2L} \int_{t_z}^{t} v \, dt \quad (22)$$

Dabei gilt
$$k < 0, i < 0, v < 0.$$
 (22')

Aus Gleichung (22) kann der weitere Stromverlauf für Zeiten $t > t_z$ gerechnet werden.

Der weitere Löschmoment t2 bestimmt sich wieder aus der Bedingung $(i_T = 0)$. Unter Voraussetzung stets wachsender Werte (v) gehört zu diesem Moment die grösste Ueberspannung am Schalter v_{max} . Die Auswertung der Gleichung zur Bestimmung der grösstmöglichen Ueberspannung oder des ungünstigsten Oeffnungsmomentes to der Kontakte ist aber nach Gleichung (22) deshalb nicht mehr übersichtlich, weil mit der Verschiebung des Zeitpunktes t_0 auch die Konstante k und damit die Werte i_z und $\cos \omega t_z$ ändern. Durch die genannte Annahme eines verschwindend kleinen Dreiecks P₁NH gelingt es jedoch, diesen Zwischenpunkt zu eliminieren. Unter Berücksichtigung der Gleichungen (21) und (18) folgt nämlich dann mit $t_z \equiv t_1$

$$k = i_z - \frac{U_n \sqrt{2}}{\omega L} \cos \omega t_z \simeq 0 - \frac{1}{2L} \int_{0}^{t_1} v \, dt$$
 (21')

und somit aus (15'")

$$i_{T} (t > t_{z}) = \frac{U_{n} \sqrt{2}}{\omega L} \cos \omega t - \frac{1}{2 L} \int_{t_{0}}^{t_{1}} v \, dt - \frac{1}{2 L} \int_{t_{1}}^{t} v \, dt$$

$$= \frac{U_{n} \sqrt{2}}{\omega L} \cos \omega t - \frac{1}{2 L} \int_{t_{0}}^{t} v \, dt, \ t > t_{z}$$

Für $(i_T = 0)$ ergibt sich wieder für den Löschmoment t_2

$$\frac{\omega}{2 U_n \sqrt{2}} \int_{t_2}^{t_2} v \, dt \simeq \cos \omega t_2 \tag{24}$$

Das Integral wird bei ständig wachsenden negativen Werten von v minimal bei

$$\left(\frac{\omega}{2U_n\sqrt{2}}\int_{t_0}^{t_2}v\,\mathrm{d}t\right)_{min}=(\cos\omega t_2)_{min}=-1\quad(25)$$

Ob bei dieser auf mehr als eine Halbwelle verteilten Abschaltung grössere Ueberspannungen v_{max} entstehen, kann nicht allgemein beurteilt werden, sondern erst bei Annahme bestimmter v-Kurven. Denn es wird wohl die Zeitdauer $(t_2 - t_0)$ grösser als vorher $(t_1 - t_0)$; dafür muss aber der Mittelwert von v kleiner sein, sonst würde eben der Punkt P zu früh erreicht. Sobald die v-Kurve bekannt ist und mit ihr die Integralkurve γ , ist es ein leichtes, den ungünstigsten Schaltmoment to durch Verschieben der Kurve zu finden. Wir werden bei den Beispielen darauf zurückkommen.

5. Beispiele
$$v = a(t-t_0) \tag{26}$$

der lineare Festigkeitsanstieg im Schalter; dann ist

$$\int v dt = \frac{a}{2} (t - t_0)^2, \quad \gamma_1 = \frac{\omega}{2 U_n \sqrt{2}} \cdot \frac{a}{2} (t - t_0)^2$$

Für die Unterbrechung des Transformatorstromes innert einer Halbwelle liefert Gleichung (19)

$$\frac{\omega}{2U_{n}\sqrt{2}} \cdot \frac{a}{2}(t_{1}-t_{0})^{2} = 1; (t_{1}-t_{0})^{2} = \frac{4U_{n}\sqrt{2}}{a\omega}; (t_{1}-t_{0}) = 2\sqrt{\frac{U_{n}\sqrt{2}}{a\omega}}$$
(27)

ferner

$$v_{max} = a \ (t_1 - t_0) = 2 \sqrt{\frac{a}{\omega} U_n \sqrt{2}} \text{ oder}$$

$$\frac{v_{max}}{U_n \sqrt{2}} = 2 \sqrt{\frac{a}{\omega U_n \sqrt{2}}} = 2 \sqrt{\frac{a}{s}}$$
 (28)

Dabei bedeutet s die grösste Steilheit der sinusförmigen Betriebsspannung u_n :

$$s = \left(\frac{\mathrm{d}u_n}{\mathrm{d}t}\right)_{max} = \omega \ U_n \ \sqrt{2}$$

Die grösste Ueberspannung bei rascher Abschaltung ist durch den einfachen Ausdruck (28) gegeben: Die relative Ueberspannung ergibt sich als doppelte Wurzel aus dem Verhältnis des Festigkeitsanstieges zur Steilheit der Betriebsspannung.

Für 2 seriegeschaltete Schalterpole mit Spannungssteuerung zur gleichmässigen Spannungsverteilung auf beide Pole gilt

$$v=2a (t-t_0)$$

Dabei wächst die totale Ueberspannung über beide Schalterpole zusammen auf das $\sqrt{2}$ fache; die Zeitdauer der Abschaltung sinkt auf das $(1:\sqrt{2})$ fache.

Um die auf 2 Halbperioden des Stromes verteilte Abschaltung zu untersuchen, wird die parabelförmige γ_1 -Kurve z. B. gerade so gelegt, dass sie in

Fig. 8 bei
$$\omega t_0 = -\frac{\pi}{2}$$
 beginnt und bei $t=0$ den

Wert 1 erreicht und dort somit v_{max} liefert. Verschieben wir die Parabel nun wenig nach links, so dass zuerst ein Schnitt mit negativem cos ωt₁-Wert entsteht und von dort die positive Parabel als Fortsetzung, so sieht man leicht, dass Abschaltdauer (t_2-t_0) und damit grösste Ueberspannung zunächst wenig ändern, aber doch allmählich kleiner

Wählt man ferner, um den Einfluss auch der Steilheit a zu erkennen, die Parabel γ flacher als oben, indem man z. B. $\frac{a}{2}$ oder $\frac{a}{4}$ einführt, und wieder den Anfangspunkt t_0 verschiebt, so erkennt man weiter, dass keine grösseren Ueberspannungen entstehen, sondern dass die Werte nach der Gleichung (28) ein flaches Maximum auch bezüglich der Steilheit a darstellen.

b) Im Beispiel a) betrage:

$$U_n = 16$$
 kV, $a = 15$ kV/ms,
 $\omega = 2 \pi f = 2 \pi \cdot 16^2/3$ Hz

dann wird

$$rac{v_{max}}{U_n \sqrt{2}} \simeq 2 \sqrt{rac{15 \cdot 10^6}{2\pi \cdot 16^2/_3 \cdot 16\,000\sqrt{2}}} \simeq 5.0 (4.3)$$
(29)

$$(t_1-t_0)\simeq 2\sqrt{rac{16\ 000\ \sqrt{2}}{15\ \cdot 10^6\ \cdot 2\pi \cdot 16^2/_3}}\simeq 7,6\ \mathrm{ms} < 33\ \mathrm{ms}$$

 $U_n=16~\mathrm{kV},~a=15~\mathrm{kV/ms},~\omega=2\,\pi f=2\,\pi\cdot 50~\mathrm{Hz}$

dann entsteht

$$rac{v_{max}}{U_n\sqrt{2}} \simeq 2\sqrt{rac{15\cdot 10^6}{2\pi\cdot 50\cdot 16\,000\,\sqrt{2}}} \simeq 2,9 \ \ (2,6) \ \ (t_1-t_0) \simeq 2\sqrt{rac{16\,000\,\sqrt{2}}{15\cdot 10^6\cdot 2\,\pi\cdot 50}} \simeq 4,4\ \mathrm{ms} < 10\ \mathrm{ms}$$

Damit sollen die Messwerte von Spiez⁵) verglichen werden, denen wir obige Werte U_n , α und ω entnommen haben. Die Messwerte sind neben die gerechneten Werte in Klammer gesetzt worden. Im Hinblick auf die kleine Anzahl Versuchsschaltungen, auf die Vernachlässigung aller Verluste in der Rechnung und auf die Streuung auch der α -Werte darf die Uebereinstimmung als recht gut bezeichnet werden.

$$v = \text{konstant} = v_0$$

(ideale Schutzfunkenstrecke parallel zum Schalter). In diesem Fall ist die Spannung über dem Schalter auf den Wert v_0 begrenzt. v_0 muss ein gewisses Minimum betragen, damit der Schalter überhaupt abschalten kann. Es ergibt sich daraus, dass, wie unter 5 C) beschrieben wurde, die γ -Kurve eine gewisse Steilheit aufweisen muss, damit sie die cos ωt -Kurve in Fig. 8 vor dem oder spätestens im

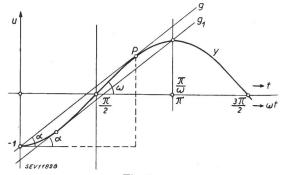


Fig. 9. Graphische Bestimmung der minimal erforderlichen Schalterfestigkeit v_{\min} als Tangente g mit der Neigung $\alpha:\omega\simeq 0,725$

Scheitelwert schneidet. Für $v=v_0$ ist die γ -Kurve eine gerade Linie. Die geringste Neigung ergibt sich nach Fig. 9 als Gerade g_1 , welche z. B. die $\cos \omega t$ -Kurve bei ansteigenden negativen Werten berührt und durch +1 geht, oder die zu ihr parallele Linie g, welche durch den negativen Scheitelwert -1 der $\cos \omega t$ -Kurve geht und sie nachher bei positiven Werten tangiert. Die Neigung α dieser Geraden ergibt sich aus den Gleichungen:

$$\begin{aligned} y &= -\cos \omega t \\ g &= -1 + \alpha t \end{aligned} y = g; \cos \omega t_1 = 1 - \alpha t_1 \end{aligned} \begin{cases} \omega t_1 \sin \omega t_1 = \\ = 1 - \cos \omega t_1 \\ \omega t_2 = 2,33 \\ \omega t_3 = 2,33 \\ \omega t_4 = 2,33 \\ \omega t_4 = 2,33 \\ \omega t_2 = 2,33 \\ \omega t_3 = 2,33 \\ \omega t_4 = 2,33 \\ \omega t_3 = 2,33 \\ \omega t_4 = 2,33 \\ \omega t_4 = 2,33 \\ \omega t_5 = 2,33 \\ \omega t_7 = 2,3$$

Aus der Definition für γ ergibt sich anderseits diese Neigung zu

$$\frac{\mathrm{d}\gamma}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\omega}{2 U_n \sqrt{2}} \int v \, \mathrm{d}t \right) = \frac{\omega}{2 U_n \sqrt{2}} \cdot v$$

somit ist nach Abschnitt 5 c:

$$\left(rac{\omega}{2\,U_n\,\sqrt{2}}\cdot\,v
ight)_{min} \simeq~0.725~\omega$$

oder

$$\frac{v_{min}}{U_n\sqrt{2}} \simeq 1.45 \tag{32}$$

Damit der Leerlaufstrom überhaupt unterbrochen wird, muss somit die Durchschlagsfestigkeit im Schalter grösser sein als 1,45 $U_n\sqrt{2}$. Dieses Resultat ist wichtig für die Beurteilung des sich langsam verfestigenden Oelschalters. Bei einer konstant gedachten Schalterfestigkeit dauert die Abschaltung noch mindestens 1,5 Halbperioden. Grössere Schalterfestigkeit reduziert die Abschaltdauer. Zum Beispiel gibt $v_o = 2 U_n \sqrt{2}$ nach Gleichung (19') bereits eine grössere Abschaltdauer von

$$egin{align} v_0 & (t_1-t_0) = rac{2 \, U_n \, \sqrt{2}}{\omega} = 2 \, U_n \, \sqrt{2} \, (t_1-t_0), \ & t_1-t_0 = rac{1}{\omega} = rac{1}{2 \, \pi \, f} = rac{1}{2 \, \pi} \, ext{(Fig. 10)} \ \end{split}$$

Die Ueberspannung am Transformator wird bei konstanter Schalterfestigkeit $v = v_0$ gegeben durch den Höchstwert nach Gleichung (13)

$$u_{max} = u_n - u_{Sch\,max} = v_0 + U_n \sqrt{2}$$
 (33)

Dieser Grenzwert tritt auf, wenn der Schalter knapp vor dem Scheitelwert $U_n \sqrt{2}$ der Netzspannung löscht.

Die minimal mögliche Schaltüberspannung am Transformator ergibt sich somit nach Gleichungen (32) und (33) zu

$$\left(\frac{u}{U_n\sqrt{2}}\right)_{min} = 1,45 + 1 = 2,45$$
 (34)

für
$$v_0 = 2 U_n \sqrt{2}$$
 würde sie $\frac{u}{U_n \sqrt{2}} = 3.0$.

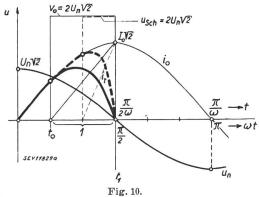
d) Es sei an Stelle der Schutzfunkenstrecke v_0 ein ideal ventilartiger Widerstand parallel zum Schalter geschaltet; dessen konstante, stromunabhängige Restspannung betrage u_p . Dieser Fall kann annähernd verwirklicht werden durch einen Ableiter, dessen Ansprech- und Restspannung gleich sind (u_n) , sofern die Restspannung nur genügend stromunabhängig ist (reines Ventil). Der Fall ist bisher nicht betrachtet worden; doch lässt er sich leicht mit der Betrachtung in Zusammenhang bringen. Ein Unterschied besteht jetzt darin, dass die Spannung am Schalter u_{Sch} nicht mehr wie nach Gleichung (17) in Abschnitt 4A im Mittel gleich der halben Durchschlagspannung im Schalter gesetzt werden kann, sondern genau mit u_n übereinstimmt.

⁵) Praktisch gemessene a-Werte sind enthalten im Bericht auf S. 551 dieser Nummer.

An Stelle der Gleichung (17) tritt jetzt die neue Gleichung $u_s=u_p$, bzw.

$$\int u_{Sch} dt = \int u_p dt = u_p \cdot (t - t_0)$$
 (17')

Dabei hat u_p genau wie v die Polarität des Stromes. Die ganze Ableitung bleibt bis auf den Faktor $^{1/2}$ die gleiche. Somit entspricht ein Ableiter der Restspannung u_p einer idealen Schutzfunkenstrecke mit der Ansprechspannung $2 u_p$.



Verlauf des Stromes i_T im Transformator bei dessen Abschaltung aus dem Leerlauf (Strom i_0), unter Voraussetzung der Löschung im Moment $u_n = \emptyset$, und unter Annahme:

- a) einer Schutzfunkenstrecke mit der Ansprechspannung $v_0 = 2U_0 \sqrt[3]{2}$ (voller Strich);
- b) eines Ableiters mit der stromunabhängigen Restspannung $u_{\rm p}=2\,U_{\rm n}\,\sqrt{2}$ parallel zum Schalter (strichliert).

Die Resultate unter c) gelten somit wieder in dem Sinn, dass eine minimale Restspannung $u_{p \ min}$ = 0,725 $U_n \sqrt{2}$ erforderlich ist.

Ferner wird die Abschaltdauer mit $u_p=2~U_n\sqrt{2}$ nicht das $\frac{1}{\pi}$ fache einer Halbperiode, sondern das $\frac{1}{\pi}$ fache einer Viertelperiode $\omega(t_1-t_0)=1/2$, wie

man sich leicht überzeugt (in Fig. 10 gestrichelt gezeichnet).

6. Massnahmen gegen Leerschalt-Ueberspannungen

Grundsätzlich bestehen nach den vorstehenden Ausführungen 3 Möglichkeiten des Schutzes:

- a) Herabsetzung des Tempos a der Schalterverfestigung beim Leerschalten. Leider widerspricht diese Forderung der anderen, möglichst rascher Verfestigung beim Abschalten von Kurzschlüssen mittels Schnellschaltern. Auf diese Möglichkeit soll hier nicht eingegangen werden.
- b) Schutzfunkenstrecken mit ohmschem Seriewiderstand parallel zum Schnellschalter.
- c) Ueberspannungsableiter als Spannungsbegrenzer am Transformator oder über den Schalterpol.
- Zu b): Die grosse Frage ist die Wahl und genaue Einhaltung der Ansprechspannung v_0 im Verhältnis zur Betriebsspannung. Im Einphasen-Bahnnetz bedeutet U_n die Betriebsspannung. Im Dreh-

stromnetz ist U_n die zu unterbrechende Spannung pro Schalterpol. Sie kann beim Abschalten von Kurzschlüssen ändern zwischen der Sternspannung U_p , 1,5 U_p und $\sqrt{3}\,U_p$. Zwischen asynchronen Betrieben kann im Grenzfall das Doppelte dieser Werte auftreten. Ausser diesen betriebsfrequenten Spannungen muss unter Umständen Rücksicht genommen werden auf vorausgehende hochfrequente Ausgleichsspannungen. So besteht beim Abschalten eines stark induktiven Kreises bekanntlich eine hochfrequente wiederkehrende Spannung, die das Doppelte der betriebsfrequenten wiederkehrenden Spannung betragen kann. Es müsste somit

$$v_{\scriptscriptstyle 0}: U_{\scriptscriptstyle n}\,\sqrt{2}>2$$
 und weiter nach Gl. (33) $u_{\scriptscriptstyle max}: U_{\scriptscriptstyle n}\,\sqrt{2}>3$

werden. Nun gilt diese Bedingung allerdings nur für den Schalter ohne Ohmschen Widerstand. Durch diesen wird bekanntlich der Kurzschlusskreis überwiegend ohmisch gemacht. Damit verschwindet die hochfrequente Ausgleichsspannung praktisch. Eine widerstandsgeschützten Ansprechspannung der Schutzfunkenstrecken von (1,5...2) $U_{\pi}\sqrt{2}$ scheint in dieser Beziehung zulässig, sofern der Widerstand den Kurzschlusskreis wirklich überwiegend ohmisch macht. Da ein solcher Ohmscher Widerstand auch die Kurzschlussabschaltung ganz wesentlich erleichtert, scheint er tatsächlich eine sehr wertvolle Ergänzung des Schnellschalters zu sein. Das Problem der Streuung und die Gefahr asynchroner Betriebe bleibt bestehen, insbesondere bei knapper Wahl der Ansprechspannung v_0 . Gelingt es, $v_0:U_n\sqrt{2}<2$ einzuhalten, wobei U_n als verkettete Betriebsspannung angenommen werden muss, so lassen sich die grösstmöglichen Schaltüberspannungen am Transformator auf $\sim 3 U_n$ begrenzen. Das ist eine Spannung, die jede vernünftig isolierte Anlage kurzzeitig gegen Erde aushält.

Beim Druckluftschalter ist die Ansprechspannung der Schutzfunkenstrecke vom Blasdruck in ihrer Umgebung abhängig. Grundsätzlich ist es daher denkbar, im Schaltmoment den Druck bei der Schutzfunkenstrecke vorübergehend zu senken, damit sie gerade dann eher anspricht. Wenn schon im normalen Betrieb vielleicht ein Trenner die Gefahr von Ueberschlägen zwischen asynchronen Betrieben verhindert, so bleibt doch diese Gefahr bestehen, wenn momentan asynchrone Betriebe mit einem Schalter getrennt werden, dessen Schutzfunkenstrecke zu knapp ist. Denn in diesem Zeitpunkt sind alle Trenner noch geschlossen. Die Gefahr des Versagens solcher Schalter besteht um so eher, je grösser die Betriebsspannung ist, weil die Isolation der Anlagen mit steigender Betriebsspannung trotz der höheren Betriebssicherheit, die man im allgemeinen von solchen Anlagen verlangt, immer knapper wird. Wenn diese Praxis im Hinblick auf atmosphärische Beanspruchung auch durchaus gerechtfertigt erscheint, so ist Vorsicht bezüglich der betriebsmässigen Schaltüberspannungen um so mehr am Platz.

Zu c): Der beschränkte magnetische Energieinhalt in Transformatoren macht es theoretisch
möglich, Ableiter für atmosphärische Ueberspannungen als Schutz gegen solche Leerschaltüberspannungen zu verwenden. Die Beanspruchung der
Ableiter ist eine andere in der Beziehung, dass der
abzuleitende Strom wohl viel kleiner, dessen Dauer
aber viel grösser ist als bei atmosphärischen Stössen.
Erfahrungsgemäss bedeutet dies für den Ableiter
bei gleicher Ws-Zahl oft die schwierigere Aufgabe,
so dass das Verhalten üblicher Ableiter immerhin
daraufhin geklärt werden müsste.

Praktisch kommt bei der Verwendung von Ableitern als Schutz gegen zu hohe Schaltüberspannungen wohl nur der Einbau zwischen Transformatorklemmen und Erde in Frage, nicht parallel zum Schalterpol. Einmal sind dabei die betriebsfrequenten Spannungen auf Stern- oder verkettete

Spannung eines Betriebes begrenzt, während sie über den Schalterpol bei asynchronen Betrieben als Summe von Anteilen der beiderseitigen Betriebsspannungen erscheinen können. Die Frage, ob sich spannungsabhängige Widerstände, genauer ventilartige Widerstände, als Ersatz der heutigen Ohmschen Schalterwiderstände bauen lassen, wobei sie für etwa eine Halbperiode einen grösseren betriebsfrequenten Strom aufzunehmen hätten, dürfte noch nicht geklärt sein. Schliesslich ist es vor allem die Isolation des Transformators gegen Erde, an der die Spannung begrenzt werden muss, und in dieser Beziehung wird ein Ableiter den Zweck am besten erreichen lassen, trotzdem es fast ironisch anmutet, wenn heute infolge der Entwicklung auf der Schalterseite wieder vom Ueberspannungsschutz gegen Schaltüberspannungen gesprochen werden muss.

Diskussion des Themas Ueberspannungen beim Abschalten leerlaufender Transformatoren

Aus der Mitgliederversammlung der FKH vom 24. Juni 1944 in Lugano

Die beiden vorliegenden Berichte (S. 551...570) wurden der Mitgliederversammlung der FKH vom 24. Juni 1944 in Lugano in einem Referat des Versuchsleiters dargelegt. Daran schloss sich auch eine kurze Diskussion, deren Voten wir, um einem Wunsch aus Mitgliederkreisen zu entsprechen, hier im Anschluss an die beiden Berichte ebenfalls veröffentlichen.

Dr. W. Wanger, Oberingenieur der A.-G. Brown, Boveri & Cie., Baden: Gestatten Sie mir ein paar kurze Bemerkungen zur Frage der Ueberspannungen beim Abschalten leerlaufender Transformatoren. Ich habe die beiden Berichte von Dr. Berger mit ausserordentlichem Interesse gelesen, da ich mich selber auch schon intensiv mit diesen Fragen beschäftigt hatte. Wir haben bereits vor etwa 7 Jahren die ersten ausgedehnten und systematischen Versuche durchgeführt, und seither musste ich mich von Zeit zu Zeit immer wieder mit diesen Fragen befassen, zum letztenmal bei der neuesten Entwicklung der Druckluftschalter mit Dämpfungswiderständen.

Bei den ersten Untersuchungen im Jahre 1937 sind wir freilich noch nicht so tief in die Berechnung eingedrungen wie heute Dr. Berger in seinem Bericht; ich kann ihm zu diesem Erfolg nur gratulieren. Dafür gingen unsere Versuche in einer Richtung wesentlich weiter, da wir Gelegenheit hatten, den Einfluss der Grösse des Leerlaufstromes auf die Höhe der Abschaltüberspannungen eingehend zu untersuchen. Es standen verschiedene Transformatoren zur Verfügung, und im weitern konnten wir insbesondere mit Drosselspulen einen grossen Bereich verschiedener Ströme untersuchen. Jene Versuche zeigten, dass die grössten Ueberspannungen etwa bei 20 A auftreten. Dadurch werden die theoretischen Ableitungen von Dr. Berger vollständig bestätigt, dass in einem gewissen Strombereich die Ueberspannungen mit zunehmendem Strom grösser werden, dass sie aber bei weiterer Steigerung des Stromes schliesslich wieder abnehmen, weil dann der Strom nicht mehr abgerissen wird wie bei den kleineren Stromwerten, Man darf aus diesen Versuchen natürlich nicht schliessen, dass nun immer gerade 20 A die gefährlichste Stromstärke sei; die Höhe der Ueberspannungen hängt ja noch von sehr vielen Umständen ab. Aber der genannte Zahlenwert gibt wenigstens einen Begriff von der Grösse der kritischen Stromstärke.

Es ist interessant, dass die kleinen Ströme ganz unabhängig vom Typ des verwendeten Schalters abgerissen werden. Nur die Höhe der erreichten Ueberspannungen ist je nach dem Schaltertyp verschieden. Der Schalter begrenzt sich ja seine Ueberspannungen selber, indem er die Spannung nur so hoch ansteigen lässt, bis sie die Festigkeit zwischen den geöffneten Schalterkontakten überschreitet und dort zu einer Rückzündung führt. Es ist verständlich, dass ein Druckluftschalter mit seiner ausgezeichneten Löschfähigkeit die Spannungen höher ansteigen lässt als ein alter Oelschalter mit schlechter Löschfähigkeit.

Dr. Berger hat erwähnt, dass man rein theoretisch die Ueberspannungen des Druckluftschalters begrenzen könnte, indem man seine Löschfähigkeit vermindert. Er hat aber wohl mit vollem Recht diese Möglichkeit für die praktische Verwirklichung nicht in Betracht gezogen. Glücklicherweise gibt es ja ein Mittel, um die Abschaltüberspannungen von leerlaufenden Transformatoren auf ungefährliche Werte zu reduzieren, ohne deswegen die Löschfähigkeit des Schalters zu beeinträchtigen. Dr. Berger hat dieses Mittel auch schon genannt: Die Verwendung von Dämpfungswiderständen. Bei den Versuchen in Spiez hat sich gezeigt, dass ein Druckluft-schalter mit Widerständen die Schaltüberspannungen sehr wirksam reduzierte, während ein anderer Druckluftschalter mit Widerständen in dieser Beziehung so gut wie unwirksam war. Daraus kann man schliessen, dass es eben nicht genügt, irgendwelche Widerstände irgendwie an Schaltern anzubringen, sondern dass der Dämpfungswiderstand und die Funkenstrecke, die den Widerstand einschaltet, sehr sorgfältig abgestimmt werden müssen. Wenn aber das gemacht wird, hat man ein ausserordentlich wirksames Mittel in der Hand, um die Ueberspannungen in engen Grenzen zu halten.

Man kann sich fragen, ob es besser sei, die Dämpfungswiderstände von vornherein an allen Mittelspannungsschaltern anzubringen oder nur in den Fällen, wo wirklich zu hohe Schaltüberspannungen entstehen. Tatsache ist, dass von den sehr vielen Druckluftschaltern im Betrieb nur ein ganz kleiner Prozentsatz zu unzulässigen Ueberspannungen Anlass gegeben hat. Ich möchte die gestellte Frage am liebsten auf Grund einer wirtschaftlichen Ueberlegung beantworten. Würde ein Schalter durch einen Dämpfungswiderstand stark verteuert, so wäre es wohl nicht zu verantworten, alle Schalter mit Widerständen zu versehen, wenn man weiss, dass die Widerstände nur in relativ seltenen Fällen tatsächlich nötig sind. Seitdem man jedoch gelernt hat, die Schalter mit Dämpfungswiderständen nicht nur nicht teurer, sondern so-