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Fassungshülse der mit einem Isolationsdefekt
behafteten Nachttischlampe und den ungeschützten
Lampensockel berührte. Die Nachttischlampe wies
entgegen den Vorschriften nur einen niederen
Fassungsring auf.

An sonstigen Beleuchtungsinstallationen
wurde ein Unfall gemeldet, der durch den schlechten

Zustand der Bleikabelinstallation in einem
Schweinestall verursacht wurde. Der Bleimantel des
Kabels stand unter 220 V Spannung ge^en Erde,
und ein Landwirt, der trotz vorhergegangener
Warnung das lose herabhängende Bleikabel verschieben
wollte, wurde beim. Erfassen des blanken
Kabelmantels getötet.

Ein leichterer Unfall entstand dadurch, dass ein
Mädchen in einer Küche eine defekte Glühlampe
auswechseln wollte, jedoch den Fassungsring, der
sich beim Herausschrauben der alten Lampe
gelöst hatte, nicht mehr anbringen konnte. Als dieses

Mädchen dann die neue Lampe ohne den
Fassungsring einschraubte, kam es mit dem ungeschützten

Fassungsgewinde und gleichzeitig mit einer in
der Nähe vorbeiführenden Gasleitung in Berührung.

Im weitern sei auf den Abschnitt «Provisorische
Anlagen» verwiesen, wo bereits einige Unfälle an
mangelhaften Beleuchtungsinstallationen näher
erwähnt wurden.

Die letzte Kolonne von Tabelle V zählt einen
tödlichen und 17 weniger schwere Unfälle auf, die
sich

in den übrigen Hausinstallationen
ereignet haben. Der tödliche Unfall betrifft ein
Schulkind, das in der Badewanne durch einen
unglücklichen Zufall ums Leben kam. Von einem über
der Badwanne befindlichen Tischchen rutschte
unbeachtet die von der Mutter benützte und an die
dort installierte Wandsteckdose angeschlossene
Warmluftdusche in die Badwanne hinunter, direkt
hinter den Rücken des Mädchens. Dieses lag noch
im Badwasser und hielt sich wahrscheinlich mit
der linken Hand an einem Wasserhahn; der
Stromdurchgang erfolgte mit 220 V Spannung zwischen
dem Rücken und der linken Hand. Es handelte sich
um einen früheren Küchenraum, der erst kurz vorher

in ein Badzimmer umgewandelt worden war,
ohne dass man daran gedacht hatte, gleichzeitig
die vom früheren Gebrauch her vorhandene zwei¬

polige Wandsteckdose entsprechend den
Bestimmungen von § 200 der Hausinstallationsvorschriften
durch eine Steckdose mit Erdkontakt zu ersetzen.

Von den weitern Unfällen in Hausinstallationen
sollen lediglich noch jene erwähnt werden, die darauf

zurückzuführen sind, dass nicht fachkundige
Drittpersonen sich an elektrischen Anlagen zu schaffen

machten und glaubten, eingetretene Defekte
selbst beheben zu können. So wurde eine
Hausangestellte an einem elektrischen Bügeleisen
elektrisiert, weil sie im Stecker die Leiteranschlüsse
selbst instandgestellt, dabei aber den Erdleiterdraht

und den Polleiterdraht miteinander verwechselt

hatte.
In einem andern Fall wollte ein Mechaniker in

der Apparatesteckdose eines Bügeleisens die
Leitungsadern frisch anschliessen, ohne den Stecker der
Zuleitung aus der Wandsteckdose zu entfernen.
Durch den Stromdurchgang zwischen beiden Händen

bei 280 V Spannung erlitt er erhebliche
Brandwunden, die eine Heildauer von fast fünf Monaten
erforderten.

Ein Fabrikarbeiter beabsichtigte, sich für
Bastelarbeiten eine Löteinrichtung herzustellen und
benützte hierzu einen Radiotransformator. Versehentlich

schloss er aber die Lötelektroden an die 600-
V-Klemmen des Transformators an, anstatt an die
4-V-Klemmen und zog sich Brandwunden an beiden

Händen zu, als er diese Elektroden berührte.
Eine leichtsinnige Gefährdung seiner Mitmenschen

bewirkte ein Schreiner, der seine
Johannisbeersträucher vor Beraubung schützen wollte und
hiefür einen Eisendraht, den er unter Zwischenschaltung

eines Wasserwiderstandes mit einem
Polleiter des 125/220-V-Lichtnetzes verbunden hatte,
über die Sträucher legte. Ein Knabe, der den
geladenen Eisendraht berührte, wurde elektrisiert und
zu Boden geworfen; dabei zog er sich eine
Sturzverletzung zu.

Diese Schilderungen dürften gezeigt haben, dass

zahlreiche Starkstromunfälle sich wiederum hätten
vermeiden lassen, wenn die Betroffenen die nötige
Vorsicht angewandt oder sich davor gehütet hätten,
an elektrischen Anlagen zu arbeiten, ohne über die
einschlägigen Kenntnisse zu verfügen. Gerade die
Unfälle an mangelhaften Schnurlampen zeigen, dass

hier die Belehrung des Publikums noch ungenügend

ist.

Die Induktivität
Von Karl E. H

Da in den üblichen Handbüchern nur unzulängliche Aus*
kunft über die Induktivität eisenloser Spulen zu finden ist,
wird eine neue, für alle Dimensionen auf 1 % genaue
Näherungsformel (18) mitgeteilt. Ferner werden für die Spezialfälle

der dünnen (einlagigen), sowie der unendlichlangen,
mehrlagigen Spule neue Ausdrücke abgeleitet.

(Eingang des Manuskriptes: 28.9.1942.)

runder Spulen
iller, Zürich 621.318.4.011.3

Les manuels ne donnant que des renseignements incomplets

au sujet du coefficent de self-induction des bobines sans
fer, l'auteur présente une nouvelle formule approchée, qui
permet d'obtenir toutes les dimensions à 1 % près. Il a
également établi de nouvelles expressions pour les cas
spéciaux d'une bobine mince à une seule couche et d'une
bobine infiniment longue, à plusieurs couches.

1. Einleitung
Unter den eisenlosen Spulen haben infolge der

üblichen Herstellungsmethoden die runden oder

zylindrischen Spulen mit rechteckigem
Wicklungsquerschnitt die grösste praktische Bedeutung. Eine
einfache und zuverlässige Methode zur Berechnung
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ihrer Induktivität ist deshalb ein Bedürfnis. Wohl
wurden in zahlreichen Arbeiten verschiedene
Berechnungsmethoden entwickelt. Im Buche von
J. Hak 1 wird kurz und übersichtlich darüber
referiert; dort finden sich auch Kurventafeln zur
Berechnung der Induktivität. Eine Zusammenstellung

der genauesten Formeln, in Form längerer
Reihenentwicklungen sowie mehrseitige Tabellen,
welche damit berechnet wurden, gab Grover2). In
den Handbüchern findet man meist für Spezialfälle

einfachere Formeln aufgeführt, jedoch fast
durchwegs ohne Angabe des Gültigkeitsbereiches
oder der Genauigkeit. Dies gilt auch für die als
allgemein gültig betrachtete Näherungsformel von
Brooks und Turner3), von der hier gezeigt wird,
dass sie für lange Spulen unrichtig ist. Durch
Vergleich mit den erwähnten Tabellen hat K. Foelsch 4)

Näherungsformeln abgeleitet, welche auch für dicke
Spulen verwendbar sind; es sind im ganzen 8
Formeln, jede in einem gewissen Dimensionsbereich
gültig und auf ca. 0,3 °/o genau.

Im folgenden wird nun eine neue Näherungsformel

abgeleitet, welche ohne Einschränkung für
beliebige Massverhältnisse nach Fig. 1 gültig ist;

Fig. 1.

Querschnitt durch die Spulenachse

D mittlerer Durchmesser. I Spulenlänge.

c Spulendicke.

trotzdem erreicht sie die überraschend grosse Ge-
nauigkeit von 1 % im ganzen Bereich. Um dieses
Resultat zu erreichen, musste für die Induktivität
der unendlichlangen Spule ein neuer und einfacher
Ausdruck abgeleitet werden. Einen weiteren Schritt
gestattete eine neue Näherungsformel für den
Spezialfall der dünnen Spule beliebiger Länge. Die
Bedeutung der neuen Näherungsformel liegt
einmal darin, dass sie einfacher ist als die genauen
Reihenentwicklungen von beschränktem
Gültigkeitsbereich, ferner dass sie einfacher und genauer
ist als viele «genaue» Formeln, die zudem oft Hilfs-
tabellen erfordern. Neben der vollständigen Befriedigung

des praktischen Bedürfnisses kann die Formel

wegen ihrer Genauigkeit auch zur Kontrolle
der Resultate anderer Formeln dienen.

2. Die Grundformel
Um für eine allgemein gültige Näherungsformel

einen physikalisch sinnvollen Ausgangspunkt
zu erhalten, ist in Fig. 2 eine schematische mittlere
Kraftlinie eingezeichnet; ihre Länge ergibt sich
aus Figur, wenn man x auf D/6 schätzt zu 2 (Z +
7ix -f- c) ca. 2 (Z + 0,5 D + c) oder allgemeiner

*) J.Hak, Eisenlose Drosselspulen, 1938, Koehler, Leipzig.
2) Fred. W. Grover, Tables for the calculation of the

inductance of circular coils of rectangular cross section, Scientific

Papers, Bureau of Standards, 18, 1922, S. 469.
3) Morgan Brooks and H. M.Turner, Inductance of coils,

University of Illinois Bull., Vol. IX, No. 10.
4) K. Foelsch, Magnetfeld und Induktivität einer zylindrischen

Spule, Arch. f. El., 1936, S. 156.

— 2 (Z + a1 D + a2c). Bezeichnet H die mittlere
Feldstärke im Innern der Spule, so wird die Induktivität

L als Flussverkettung aufgefasst

Fig. 2.

Scheinatische Kraftlinie
x — ca. D/6.

L H N D2 n/4. Für H berechnen wir aus der
Länge d£r mittleren Kraftlinie den Betrag:

H (4 n m i N) / 2 (Z + a1D + a2 c),

wo m ein Koeffizient ist, der alle Einflüsse der
unhomogenen Feldverteilung einschliessen soll. Nun
wird der Selbstinduktionskoeffizient (Strom i 1) :

L 0,5 m (ti~ D2 ZV2) / (Z + al D -j- a2 c).

Für das dünne (c 0) und lange Solenoid (a1 D
klein gegen Z) ist die Induktivität bekanntlich:
L ji2 D2 N2/l. Demnach können wir für diesen
Fall 0,5 m 1 setzen und erhalten so die Grundformel

(alles in cm):

L
7t2 D2 N2

(' + ®1 + tt2 C)
(1)

Aus der gegebenen Ableitung ist es naturgemäss
noch vollständig ungewiss, ob diese Formel praktisch

brauchbar ist. In einer früheren Arbeit5)
hat der Verfasser festgestellt, dass für c 0 und
a1 0,45 die Induktivität einer enggewickelten,
einlagigen Spule (hier die dünne Spule genannt)
für Werte von D/l 0...3,0 auf 1 % genau gegeben

wird. Obgleich demnach die Formel (1) für
längere Spulen stimmt, wird sich zeigen, dass
gerade für diese der Einfluss von c in anderer Weise
zu berücksichtigen ist, weil in der Ableitung die
unvollständige Verkettung bei mehrlagigen Spulen
nicht in Betracht gezogen wurde. Die von Perry
1890 für «hohe» Spulen veröffentlichte Näherungsformel,

wohl die erste überhaupt, hat den Aufbau
nach (1) ; er gelangte allerdings auf anderem Wege
dazu und bestimmte die Koeffizienten aus Messungen«).

3. Die dünne Spule
Für den Spezialfall der dünnen Spule liegen zur

Berechnung der Induktivität Tabellen vor, welche
zuerst Nagaoka7) veröffentlichte. Für ganz kurze
Spulen gilt die Formel von Rayleigh 8) :

L 4tt R TS2 1 +
l2

32 R2
\ 8 R
)ln r -

— 0,5
1 (-Y

128 \R) (2)

wo R der Radius der Spule ist. Unter Anwendung

5) K. E. Müller, Einige Näherungsformeln zur Berechnung
von Hochfrequenzkreisen, Bull. SEV 1935, Nr. 15, S. 418.

«) J. Ferry, Phil. Mag. 30, 1890, S. 223.
7) Die Tabellenwerte von Nagaoka finden sich z.B. hei

Flak, I.e., ferner hei Grover, I.e., und anderen.
8) L. Rayleigh, Proc. Boyal Soc. 32, 118, 1881.
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unserer Bezeichnungen und durch eine Umformung
erhält man daraus:

L — 2 jt D N2 2,303 log

i)'
10

/ 2,426 D\
V l /im (3)

Wird die Spule sehr kurz, also D/l gross, so ist
nur das erste Glied der Klammer massgebend. Wenn
wir nun eine Näherungsformel für die dünne Spule
beliebiger Länge suchen, so müssen wir die
Formeln (1) und (3) kombinieren; dies kann in
ähnlicher Weise wie bei Brooks und Turner (siehe
Formel 22) so geschehen:

r a,D2N2L i, n lo8 a4l -h al D io V
(4)

Für die noch unbekannten Koeffizienten a4, a3, ai
sind Bestimmungsgleichungen zu suchen. Zunächst
ist für die kurze Spule aja1 14,47 dem
Zahlenkoeffizienten in Gleichung (3). Dann ist für
die lange Spule a3-loga4 ji2 dem Zahlenkoeffizienten

in Formel (1). Erfüllt man diese beiden
Beziehungen, so wird die Formel (4) sowohl für
sehr kurze als auch für sehr lange Spulen stimmen.

Damit sie aber für eine mittlere Länge 2 l D
richtig sei, muss noch sein:

£ (r^) "*(»'+418 T)
weil 1,0510 der aus den Tabellen von Nagaoka
abgeleitete Zahlenwert für D/l 2 ist. Unter
Berücksichtigung der zweiten, bereits genannten
Bestimmungsgleichung wird daraus:

Î3 1,0510 jt2

°i log («4 + 4'8) lo8 K)
(4a)

Da nun aber das Verhältnis a.Jal schon zu 14,47
festgelegt ist, muss a4 durch Probieren so gefunden
werden, dass die Bedingung (4a) erfüllt wird. Die
Durchführung der Rechnung ergibt:

a4 21; a3 7,46; «4 0,515.

Um einfache Koeffizienten zu erhalten, wurden
diese Werte auf 20, bzw. 7,6, bzw. 0,52 abgerundet
und man erhält so als Näherungsformel für die
dünne Spule (e 0) :

L
7,6 D2 N2
1 + 0,52 D (20 + ~r^) <5)

Von dieser Formel wissen wir allerdings erst, dass
sie an den Grenzen und an einem Punkt in der
Mitte stimmt; der tatsächliche Fehler über den
ganzen Längenbereich ist für c 0 aus Tabelle 1

zu entnehmen. Es zeigt sich, dass die Fehler über
den ganzen Bereich 0 < D/l < co innerhalb 1,0 °/o
bleiben. — In der erwähnten früheren Arbeit des

Verfassers5) wurde ein anderer Näherungsausdruck

abgeleitet, ebenfalls auf 1 % genau, der aber rein
empirisch und etwas komplizierter ist. Mit Formel
(5) ist ein Ausdruck gewonnen, der nicht nur
genauer, sondern auch einfacher ist als die durch
Einsetzen von c 0 spezialisierte Formel 22 von
Brooks und Turner.

4. Die lange, mehrlagige Spule
Nachdem in Formel (5) in einfacher Weise die

dünne Spule beliebiger Länge auf 1 °/o genau
dargestellt werden konnte, war es verlockend, die
Erweiterung auf die dicke, d. h. mehrlagige Spule
zu versuchen. Es gibt eine Formel von Rosa9),
welche speziell für längere Spulen gilt und den
Einfluss mehrerer Wicklungslagen durch eine
Korrektur an der dünnen Spule berücksichtigt. Sie
lautet, wenn U die Induktivität der dünnen Spule
ist:

L V — 2nDN2 (A — B) c/l, (6)

wo A und B aus Tabellen zu entnehmen sind. A
bewegt sich für c/D 0...1/s von A 0,6949...0,6909,
also eigentlich nur wenig; B wächst für l/c 1...30
von B 0,00...0,3218, wobei für grössere Werte von
I/o die Zunahme von B immer kleiner wird. Es
wäre daher naheliegend, für eine Näherungsformel

von der Aenderung von A und B abzusehen
und so wenigstens für die lange Spule den
Einfluss der Dicke c darzustellen. Durch Kombination
der Formeln (5) und (6) kann man leicht den
Korrektionsfaktor K ableiten, mit dem Formel (5)
zu multiplizieren ist. Man findet dafür den
Ausdruck K (1—0,66 c/D). Da der Gültigkeitsbereich

der Formel (6) nur klein ist, weiss man über
die Genauigkeit dieses Korrekturgliedes für grössere

c zunächst nichts. Glücklicherweise kann man
aber für die unendlichlange Spule den Einfluss der
Dicke genau berechnen und einfach darstellen, wie
nun gezeigt wird.

5. Die unendlichlange Spule
Das magnetische Feld einer dünnen, unendlichlangen

Spule ist im Innern homogen und im Aus-
senraume null. Man kann sich dies verdeutlichen,
wenn man die Enden der Spule im Unendlichen
zusammengebogen denkt, so dass ein Toroid
entsteht. Auch in einem kleinen Toroid verlaufen die
Kraftlinien nur innerhalb der Spule, im Aussen-
raum ist das Feld null, wenn die Amperewindungen
gleichmässig verteilt sind. Die am Innenrande
verlaufenden Kraftlinien sind um n D kürzer,
diejenigen am Aussenraume ebensoviel länger als die
mittlere Kraftlinie, wenn D wiederum den Durchmesser

der Einzelwindung bedeutet. Das Feld weicht
darum überall um weniger als 1 °/o vom Mittelwert

ab, sobald D/l < 0,003 ist; überdies heben
sich die Abweichungen gegenseitig auf. Ist die
Spule gerade, so tritt an den Enden eine
unvollständige Kraftlinienverkettung auf, aber auch hier
werden wir für D/l 0,01 annehmen können, dass

die Verhältnisse der unendlichlangen Spule praktisch

erreicht sind.

V E.B.Rosa, Sei. Papers, B. S., No. 169, 1912, S. 200.
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Mit dieser Vorstellung des Kraftlinienbildes kann
man sich die mehrlagige Spule aus mehreren inein-
andergesteckten einlagigen Spulen entstanden denken.

Bei gleichmässig verteilten Amperewindungen
steigt das Feld, wie in Fig. 3 dargestellt, von 0

am äusseren Radius R.> linear an bis zum inneren
t—H

Fig. 3.

Feld der unendlichlangen Spule

Radius R1 und bleibt im Hohlraum der Spule
konstant. Der Fluss <P innerhalb des Radius R
beträgt somit:

R

<PR — n R\ Hm \Hk • 2 jtR dR

Ri

wo IIR Hm — Hm (R —R,)/c

(7)

Da auf dR eine Windungszahl diV (N/c) dR
liegt, so beträgt die Flussverkettung:

#2 ^2

^ &R dN &R dR

Ri Ri

(8)

Wären sämtliche N Windungen auf dem mittleren
Durchmesser D konzentriert, so wäre die Flussver-
kettung: Hm N D- n/4. Das Verhältnis dieser beiden
Flussverkettungen gibt den Korrektionsfaktor K,
mit dem die Induktivität V der dünnen Spule
gleichen mittleren Durchmessers und gleicher
Windungszahl zu multiplizieren ist:

K Li L'
4 N —

c
TT2 D2 Hm N

Ä2

rS®'
Ri

dR (9)

Führt man die Integration durch, so erhält man
als Resultat:

K (2cR* — 4cR? + 2R,R| — R^ — R|)
3 cD2

(10)

Durch rein algebraische Umformung kann man dieses

Resultat schliesslich auf folgende einfache Form
bringen :

K= 1 ai)

Demnach erhält man die Induktivität der unendlichlangen

Spule zufolge der Verteilung der Windungen

auf mehrere Lagen, indem man die Induktivität

der dünnen Spule gleichen mittleren
Durchmessers und gleicher Windungszahl mit diesem
Faktor K multipliziert. Die Abnahme erfolgt nach
einem einfachen Parabelbogen, wie in Fig. 4
gezeigt. An der Grenze c/D 1 erreicht die Parabel

ihren Scheitelpunkt; der Minimalwert von K
beträgt dort 2/3. Würde man die mehrlagige Spule,
statt mit der dünnen Spule vom mittleren Durchmesser

D, mit einer solchen vom äusseren Durchmesser

Da 2 R2 vergleichen, so hätte man in
ähnlicher Weise einen andern Korrektionsfaktor
K* erhalten, vom Betrage:

K*= 1 -+- 2 |-J^—I'
(12)

In diesem Fall steigt c/Da von 0 bis zum Grenzwert

0,5 und gleichzeitig sinkt K* von 1,0 bis auf
V# (vgl. Fig. 4).

5c"

\\ N.

V V V\\\\\\\ >
\>Nr \s.\\\\\

N

- \\\\\
0
SCVttOi9

Fig. 4.

Abnahme der Induktivität

der unendlich¬
langen Spule,

wenn die Windungen
auf mehrere Lagen
verteilt werden, statt
auf dem mittleren
Durchmesse D einlagig

konzentriert zu
liegen.

0,5

Wenn wir das Resultat mit der Formel von Rosa
vergleichen, also mit dem oben erwähnten
Näherungswert für kleines c:
K =(1 — 0,66 c/D), so sehen wir, dass dieser Wert
die Tangente an die Kurve von K für c 0
darstellt. Ferner muss man aus dem Resultat schliessen,
dass die Grundformel (1) zwar wohl die
langedünne, aber nicht die lange-dicke Spule darstellt.
Schon Maxwell hat auf anderem Wege 10 einen
Ausdruck für die Induktivität der unendlichlangen
Spule abgeleitet; die durch Formel (11) gegebene
einfache Beziehung scheint bisher unbekannt gewesen

zu sein. Sie ist theoretisch genau und nicht
etwa ein Näherungsausdruck.

6. Die kurze, mehrlagige Spule
Das für den Spezialfall der kurzen Spule von

geringer Dicke c zu erarbeitende Teilresultat wurde
zuerst mühselig aus der bekannten Formel von
Stefan gewonnen 11). Es ist aber einfacher aus einer
älteren Näherungsformel abzuleiten, welche lautet

12 :

L 2 jzDN2 In
4 D

i-f c

L 14,47 DIV2 log
10

0,501

2,424 D
l -f- c

woraus (13)

(14)

Vergleichen wir diesen Ausdruck mit (3), so ergibt
sich, dass man für kleine Werte von l und c Formel

(5) verwenden darf, falls statt log (20 + 2,4 D/l)
10) Vergl. Hak, 1. c., S. 14.
11) Vergl. Hak, I.e., S. 19, und H.Hemmeter, Die

Berechnung von eisenlosen Drosselspulen, Arch. f. El., 1922,
S. 155, und id. 1924, S. 460.

12) Vergl. Hak, 1. c., S. 13.
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nun log (20 + 2,4 D/[l + c]) geschrieben wird,
und zwar mit einem Felller entsprechend der
Vernachlässigung von Gliedern höherer Ordnung.
Die Formel von Stefan kann ebenfalls so geschrieben

werden, dass neben dem Ausdruck (14) nur
noch Glieder höherer Ordnung auftreten.

7. Die allgemeine Spulenformel
Nach diesen Vorarbeiten kann nun eine für alle

Dimensionsverhältnisse von D, l, c nach Fig. 1

gültige Näherungsformel aufgestellt werden. Sie
hat zunächst folgenden Aufbau:

L -
7,6 D2 m k

l +- 0,52 D -\- a2c
log (15)

Die Formel erfüllt die bereits behandelten drei
Spezialfälle. Für c 0 geht sie über in die Formel
(5), gültig für alle dünnen Spulen. Ferner stimmt
sie mit der gleichen Genauigkeit für die sehr lange
Spule, wo die Abhängigkeit von c durch den Faktor

k K nach Formel (11) richtig erfasst wird,
weil c in den anderen Gliedern, welche c enthalten,
neben l vernachlässigbar ist. Schliesslich stimmt sie
auch für ganz kleine Werte von l und c wie im
vorigen Abschnitt gezeigt, weil dort der log den
Ausschlag gibt.

Zunächst muss nun a2 so bestimmt werden, dass
die kurze Spule beliebiger Dicke möglichst genau
dargestellt wird. Obgleich der Faktor K nach (11)
für die lange Spule stimmt und es darum ungewiss
ist, was er für einen Einfluss bei der kurzen Spule
hat, zeigt sich durch direktes Probieren, dass man
mit k K und a2 0,5 eine befriedigende Ueber-
einstimmung mit den Vergleichswerten erhält, die
aus den eingangs erwähnten Tabellen von Grover
abgeleitet wurden. Vergleicht man aber Spulen von
mittleren Längen mit den genauen Werten, so
ergeben sich Fehler, die mit wachsender Dicke bis
7 % erreichen. Diesem Uebelstande kann mit einer
Aenderung des Ausdrucks für k abgeholfen werden.

Allerdings muss man dann an den Grenzen
der kurzen und der langen Spule grössere Fehler,
nämlich 3 °/o bzw. 4 °/o in Kauf nehmen, falls man
im praktisch besonders wichtigen, mittleren Teil
des Längenbereiches kleine Fehler anstrebt. Wenn
also in Formel (15) a2 0,5 und für k der
Ausdruck

k 1 - 0,61 Q+) + 0,31 (16)

verwendet wird, so erhält man bereits eine brauchbare

Näherungsformel mit Fehlern innerhalb 3%,
ausgenommen für sehr lange und sehr dicke Spulen,

für welche aber der Fehler wenigstens innerhalb

5 % liegt. Damit wäre diese Formel bereits
besser als diejenige von Brooks und Turner.

Es gibt aber noch eine bessere Lösung. Angesichts

der sehr verschiedenen Kraftlinienbilder der
langen und der kurzen Spule kann man vermuten,
dass der Faktor K nach Formel (11) wohl für die
lange, aber nicht für die kurze Spule richtig sein

wird. Setzt man aus dieser Ueberlegung heraus
versuchsweise für die kurze Spule k 1 und
bestimmt a2, so findet man für a, =1,0 eine gute
Uebereinstimmung. Der Einfluss von k muss also
von Ausdruck (11) an «gleitend» auf 1 abnehmen,
was beispielsweise durch folgenden Ansatz zu
verwirklichen ist:

fe 1
1 L(j. V

l + a6D [3 \ D/ 3 \ Ü
_

(17)

Durch den Faktor Z/(Z + a6D) wird der Einfluss
von k mit abnehmender Spulenlänge kleiner
gemacht; für die lange Spule, l gross, geht Ausdruck
(17) in (11) über, während er für kleines l
unabhängig von c zu 1,0 wird. Ausserdem kann nun
durch geeignete Wahl von a6 für eine mittlere
Länge der Einfluss von k auf den passenden Wert
gebracht werden. Es zeigt sich, dass ae 1,5 ein
gutes Resultat ergibt, wenigstens bis zu Dicken
entsprechend c/D £+ 0,85. Leider steigt der Fehler
dann bei den dickeren Spulen, wenn sie gleichzeitig

kurz sind, auf über 3 °/o an. Man könnte sich
damit beruhigen, falls es nicht zu ändern wäre, mit
dem Hinweis darauf, dass Spulen mit den
entsprechenden Dimensionen praktisch keine Bedeutung
besitzen. Um aber die Behauptung wahr zu machen,
dass die neue Näherungsformel im ganzen Bereiche
auf 1 % genau ist, schien es richtiger, durch ein
zusätzliches Korrektionsglied diesem Uebelstande
abzuhelfen. Dies gelingt, wenn statt a2 c nun :

c— 0,05 c (c/D)6 geschrieben wird. Somit erhalten
wir nun die endgültige Näherungsformel für die
Induktivität der runden Spule mit rechteckigem
Wicklungsquerschnitt, aber beliebigen Abmessungen

nach Fig. 1 (alles in cm):

7,6 D2 ]V2

Lcm -
klog(20

10 \
2,4 D
TTc

mit /c 1 —

l -f- 0,52 D -\-c — 0,05 c (c/D)6

l

1+1,5D (£)-r(i
(18)

In Tabelle I sind nun die Fehler dieser Formel im
Vergleich zu den Tabellen von Grover zusammengestellt.

Von links nach rechts wird der ganze
Bereich von der dünnen Spule bis zur dicksten
(ohne inneren Hohlraum), bestrichen; von oben
nach unten steigt die Spulenlänge von der
unendlichdünnen Scheibe bis zur unendlichlangen Spule.
Die eingeklammerten Fehler zeigen die Fehler der
Formel, wenn das Korrekturglied 0,05 c (c/D)6
weggelassen würde. Der Verlauf der Fehler ist
überall sehr gleichartig und man erkennt, dass es

gelang, die 1 °/o-Grenze einzuhalten. Man könnte
übrigens die Fehler für c/D 0,2...0,6 bei kurzen
Spulen noch um einige °/oo drücken, wenn man im
Nenner von (18) statt: c — 0,05 c (c/D)6 nun 1,01c
—+,06 c (c/D)6 schriebe.
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%-Fehler der neuen Näherungsformel (18)
Die eingeklammerten Fehler beziehen sich auf den Fall, dass das Korrekturglied 0,05 c (c/D)6 weggelassen würde.

Tabelle 1.

D/1
c/D

0,0 0,05 0,1 0,1 0,4 0,6 0,8 0,9 1,0

1000

100

20

10

5

2

1

0,5

0,2

0,1

0,01

0

+ i,o

+ 0,8

+ 0,3

+ 0,2

+ 0,4

+ 0,7

+ 0,1

- 0,6

- 0,9

- 0,5

- 0,3

- 0,1

+ 0,2

+ 0,2

+ 0,2

+ 0,3

+ 0,4

+ 0,6

+ 0,7

- 0,0

- 0,6

- 0,8

- 0,5

- 0,3

+ 0,2

+ 0,2

+ 0,5

+ 0,5

+ 0,5

+ 0,6

+ 0,6

+ 0,5

- 0,1

- 0,7

- 0,7

- 0,3

- 0,1

+ 0,1

+ 0,2

vyy.NAAfl

>i*n*»75XXVw

+ 0,9

+ 0,8

+ 0,9

+ 0,8

+ 0,7

+ 0,3

- 0,3

- 0,6

- 0,5

+ 0,0

+ 0,1

+ 0,2

+ 0,2

+ 0.9

+ 1.0

+ 1,0

+ 0,9

+ 0,7

+ 0,3

- 0,2

- 0,1

+ 0,2

+ 0,6

+ 0,5

+ 0,3

+ 0,2

0,7
0,6)
0,7
0.6)
0.8
0,7
0,6
0,5)
0,5
0,5)
0,3
0,2)
0,1
0,0)
0,2
0,1)
0,6
0,6)
0,9
0,9)
0,7
0,7)
0,3
0,3)
0,2

+ 0,3
0,5)

+ 0,3

- 0,5)

+ 0,3

- 0,5)

+ 0,3

- 0,5)

+ 0,1
0,6)

+ 0,1

- 0,5)

- 0,1

- 0,7)

+ 0,1
0,4)

+ 0,5

+ 0,2)
0,7

+ 0,6)

0,7

+ 0,6)
0,2
0,2)

+ 0,2

+ 0,1

- 1,6)

+ 0,1

- 1,6)

+ 0,2

- 1,6)

+ 0,2

- 1,5)

+ 0,0
- 1,7,

- 0,1

- 1,6)

- 0,1

- 1,4)

- 0,2

- M)
+ 0,3

0.6)

+ 0,7

+ 0,3)

+ 0,5

- 0,4)
0,2
0,2
0,2

+ 0,1

(- 3,3)

+ 0,1

(- 3,3)

+ 0,2

(- 3,2)

+ 0,2

(- 3,1)

+ 0,2

(- 3.1)

+ 0,0
(- 3,0)

- 0,4

(- 3,0)

- 0,5

(- 2,5)

- 0,2
(- 1,6)

+ 0,3
(- 0,5)

+ 0,4
(- 0,0)

0,2
0,2)

0,2

m
8. Ein einfacher Näherungsausdruck

Die Formel (18) wird überall anwendbar sein,
wo man gelegentlich eine Induktivität zu berechnen
hat; die sichere Genauigkeitsgrenze von 1 % ohne
Einschränkung des Gültigkeitsbereiches, verbunden
mit relativer Einfachheit der Formel, sind dafür
wertvoll. Wer häufig Drosselspulen auslegen muss,
wird für den Entwurf vielleicht am raschesten mit
Kurventafeln zum Ziel kommen. Da aber als
Nebenprodukt vorliegender Arbeit auch ein für Entwurfsarbeiten

tauglicher, einfacher Näherungsausdruck
gefunden wurde, sei er hier mitgeteilt. Er benutzt
neben der Grundformel (1) einen Näherungswert
des Faktors k nach (16), nämlich k — 1 : (1 + 0,6
c/D). So erhalten wir den Näherungsausdruck:

n2 D2 N2
L m Cm

(l -+ 0,45 D +- 0,5 c) (1 +- 0,6 c / D)
(19)

Wenn wir durch die Bedingung: 10 (l + c) > D
eine kleine Ecke aus dem Anwendungsfeld aus-

schliessen, nämlich die kurzen und gleichzeitig
dünnen Spulen, so sind bei Formel (19) an den
Grenzen bis zu 11 °/o Fehler möglich. Im praktisch
wichtigen Gebiete, für das c/D 0,6 und D/l^ 3

gelten wird, stimmt die Formel auf 2 °/o und im
wichtigsten Teil sogar innerhalb 1 %•

9. Praktische Anwendung der Formel
Die neue Näherungsformel (18) bezieht sich

auf die «ideale» Spule, bei welcher vorausgesetzt
wird, dass der ganze Wicklungsquerschnitt gleich-
mässig mit Strom belegt sei. Dies ist praktisch
nicht der Fall und bedingt eine Korrektur, die
besonders bei wenigen Windungen merklichen Ein-
fluss hat. Diese Korrektur, welche zu addieren ist,
beträgt:

+ AL 14,47 DJV log (20)
10 V «n /

wo d der äussere Durchmesser des isolierten Drahtes,

d0 Durchmesser des nackten Drahtes. Die
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Windungszahl N steht in der ersten Potenz. Dabei
ist vorausgesetzt, dass die Drahtmitten benachbarter

Windungen in den Ecken eines Quadrates
stehen. Man kann aber die Formel (20) auch anwenden,

wenn die Drähte eine andere Anordnung
aufweisen. Dann ist an Stelle des Aussendurchmessers d

d («j + a2) /2 (21)

zu setzen, wo a± der Abstand der Drahtmitten einer
Wicklungslage, a2 der Abstand zweier Wicklungslagen

ist. Diese Regel gewinnen wir daraus, dass
der mittlere geometrische Ahstand eines Rechtecks
von sich selbst nach Sumec 13 mit grosser
Annäherung 0,2235 {a1 + a2) gesetzt werden kann,
während d in Formel (20) eigentlich die Seitenlänge

des erwähnten Quadrates darstellt14).
Formel (20) gilt nur näherungsweise, weil bei

verschiedener Anzahl und Anordnung der Windungen

ihre gegenseitige Induktion verschieden
ausfällt und im Koeffizienten 1,16 nur ein mittlerer
Wert dafür enthalten ist. Immerhin ist die ganze
Korrektur gewöhnlich sehr klein. Formel (19) gilt
auch, wenn die einzelnen Windungen, ob isoliert
oder nicht, mit Abstand gewickelt sind; aa und a2
behalten ihre oben gegebene Bedeutung. Wird von
dieser Korrekturformel Gebrauch gemacht, dann
ist zu beachten, dass in jeder Formel zur Berechnung

der Induktivität, also auch in (18) die Aus-
senmasse zu korrigieren sind. Es ist dann : l n1-a1,
wo n1 Drähte pro Lage, a1 Drahtabstand;
c n2-a2, wo n2 Lagen mit a2 Lagenabstand;
der mittlere Durchmesser D bleibt unverändert.

Es ist vorgekommen, dass der einfache Kreisring
aus rundem Draht vom Durchmesser d0 fälschlicherweise

als Grenzfall der dünnen, d. h. einlagigen
Spule betrachtet wurde. Wohl erhält man aus (18)
einen Näherungswert für die Induktivität, wenn
sinngemäss l c d0 gesetzt wird. Um 1 %
Genauigkeit zu erreichen, ist aber dann die Korrektur
(20) unerlässlich, wobei d d0 zu setzen ist. —
Weil in der Formel (20) die Windungszahl N in
der ersten Potenz steht, erkennt man, dass die
Frequenzabhängigkeit der Induktivität beim einfachen
Kreisleiter infolge Stromverdrängung weitaus grösser

sein muss, als bei einer Spule aus mehreren
Windungen.

10. Die allgemeine Spulenformel
von Brooks und Turner

Schon vor ca. 30 Jahren haben Morgan Brooks
und H.M.Turner3) eine allgemeine Spulenformel
veröffentlicht. Sie lautet mit Bezeichnungen nach
Fig. 1:

n2 D2 N2 K 7 D -f- 7 cL
D + 21 +

wo K —

log 100
3 c 10 V10

10/
21

(22)

13 c D
10 l 10,7 c 4- 0,7 D

13) Sumec, ETZ, 1906, S. 1175.
14) Für die Ableitung der Formel vergl. z. B. Hemmeter

1. c. ; für die hier gegebene Erweiterung ist mir keine
Literaturstelle bekannt.

Auf den ersten Blick ist diese Formel sehr ähnlich
der neuen, hier abgeleiteten, und ihr Vorhandensein
gab auch die Anregung zu der vorliegenden Arbeit.
Die Ableitung des Verfassers ist jedoch durchaus
selbständig, um so mehr als die Originalarbeit von
Brooks und Turner nicht eingesehen werden konnte.
Bei näherem Zusehen erkennt man aber in Formel
(18) nicht nur andere Zahlenkoeffizienten und
einen anderen Ausdruck für K, sondern auch einen
prinzipiellen Unterschied: Der Einfluss von c
verschwindet in der Brookschen Formel fast ganz bei
langen Spulen, was durchaus falsch ist. Es schien
nun lehrreich, eine gleiche Fehlertabelle aufzustellen,

unter Verwendung derselben genauen
Vergleichswerte nach Grover. Tabelle II gibt das Resultat

dieser Berechnung und man ersieht daraus, dass
das Feh-lerniveau zwar allgemein höher liegt als
bei der neuen Formel, dass aber im grössten Teil
des praktisch wichtigen Anwendungsgebietes brauchbare

Resultate damit erhalten wurden; nur bei
dicken Spulen, besonders wenn sie lang sind, wird
die Formel unbrauchbar. Die für diese Formel
beanspruchte Genauigkeit von 3 % kann aber, wie man
sieht, nur auf einen beschränkten Bereich zutreffen.

%-Fehler der Formel von Brooks und Turner
Tabelle II.

DU

1000
100
20
10

5
2
1

0,5
0,2
0,1
0,01

cID

0,0 0,05 0,1 0,2 0,4 0,6 0,8 1,0

"2,1
-2,3
-2,5
-2,8
-2,6
-1,6
-0,5
0,4

-0,6
0,3
0,1

+2,3
+2,4

3.1
+3,2
-2,7
+ 1,6
—1.0

1.2
2,2
2,7
3,2

--3,3
—3,4

3,2
2,8

—2,2
-1,5
--1,6
+2,7
+3,8
+5,5
+6,6

+ 1,9

+ 2,0
+ 1,9
+1,6
+ 1,3

+ 1,4
+3,0
+5,8
+9,4

+11,3
+13,5

-1,9
—1,9
-1,6
-1,4
-0,8
+1,6
+5,6

+ 11,3
—18,4

22,3
26,5

-5,2
—5,0
-4,4
-3,7
-2,3
+0,9
+7,3

+15,3
—25,7

31,5
38,0

—8,3
—8,0
-7,2
-6,2
-4,5
+0,4
+7,3

+16,8
—29,6

37,0
46,0

—12,2
-11,9
—11,0
-9,9
—8,0
-2,8
+4,4

+ 14,7
—29,1

38,0
48,6

11. Schlussbemerkungen
Auf die Berechnung der Induktivität runder

Spulen ist im Laufe von Jahrzehnten unsagbar viel
Mühe und Arbeit verwendet worden, hauptsächlich
des theoretischen Interesses wegen. Wenn es hier
gelang, eine relativ einfache Formel zu finden, die
das ganze Feld möglicher Dimensionsverhältnisse
auf 1 % genau darstellt, so nur dank dem Umstände,
dass die Formel (18) in enger Anlehnung an
mathematisch richtige Teillösungen aufgebaut werden

konnte; das in Formel (11) gegebene Teilergebnis

ist dafür besonders wichtig. Aus diesem
Grunde kann man vermuten, dass es vielleicht möglich

wäre, durch kleine Aenderungen der Formel
die Fehlergrenze noch um eine Grössenordnung zu
verengern. Eine solche Verbesserung müsste schon
an Formel (5) ansetzen. Mit der jetzt erreichten
Genauigkeit von 1 % im ganzen Bereich ist allerdings

den Bedürfnissen der Praxis bereits Genüge
geleistet. Es schien angezeigt, den Weg anzugeben,,
auf dem die neue Formel gefunden wurde, weil
auf anderen Gebieten in ähnlicher Weise
Fortschritte erzielt werden können.
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