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Spannungsstoss und Fourierspektrum in der Hochspannungstechnik
Von Heinz Samulon, Ziirich *) 621.3.015.33

Einleitend wird eine Begriindung fiir die Verwendung des
Fourierintegrals gegeben, anschliessend werden einige Funk-
tionen, die fiir die spitere Behandlung von Problemen der
Hochspannungsmesstechnik (Stossuntersuchungen) von Inter-
esse sind, durch Fourierintegrale dargestellt und der Einfluss
der verschiedenen Frequenzgebiete auf die Kurvenform unter-
sucht. Weiter werden Verzerrungen von StoBspannungen usw.
behandelt, die durch sogenannte «V erzégerungskabely bewirkt
werden. Nachdem dann mit den gleichen Methoden noch
einige andere Fragen kurz behundelt werden, wird im An-
hang hauptsichlich iiber die Messungen von Konstanten eines
«Verzogerungskabels> berichtet.

A. Einleitung
1. Begriindung der Verwendung

des Fourierintegrals

Ein beliebiger zeitlicher Ablauf F(z) lisst sich,
von sehr speziellen Fillen abgesehen, stets darstel-
len als eine — im allgemeinen unendliche —
Summe von stationiren, rein sinusformigen zeit-
lichen Abléufen. Ist F(z) eine periodische Funktion
von t, so wird das zugehorige Frequenzspektrum dis-
kreten Charakter haben und die Amplituden werden
endlich sein, im nichtperiodischen Fall — der in
folgendem ausschliesslich interessieren soll — wird
das Spektrum kontinuierlich und die Amplituden
werden unendlich klein sein; wihrend also der
periodische Vorgang durch die bekannte Fourier-
sche Reihe seine Zerlegung erfahren kann, ist dies
fir den nichtperiodischen durch das «Fourier-
integral> moglich. Dass die Verwendung des Fou-
rierintegrals (oder der Laplacetransformation) fiir
die Losung verschiedener physikalischer Aufgaben
ausserordentliche Vorteile bietet, ist schon einige
Zeit bekannt (vgl. [1], [2], [3]). Es sollen jedoch
hier noch kurz an einem spiter ausfiihrlicher zu
behandelnden Problem einige Vorteile seiner An-
wendung aufgezeigt werden:

Am Eingang eines unendlich langen (oder mit
seinem Wellenwiderstand abgeschlossenen) Kabels
sei eine EMK F(z), angelegt; gefragt wird nach
dem zeitlichen Ablauf der Spannung an der Stelle
x = 1 des Kabels, also nach F(z),_;. Es werde wei-
ter angenommen, dass die Konstanten des Kabels
von Messungen her bekannt seien. Ausgehend von
den Maxwellschen Gleichungen [4] wiirde man zu
der bekannten partiellen Differentialgleichung ge-
langen, der sogenannten Telegraphengleichung:

2
% = R-G-FO+ (R-C+ L.6) 220
r2F
+ L. s M

wo R, G, L und C den Widerstand, die Ableitung,
die Induktivitit und die Kapazitit — alle pro Lin-
geneinheit genommen — bedeuten. Die Anfangs-
bedingung wiirde zur Zeit ¢t = 0 Strom- und Span-
nungslosigkeit fordern, die Randbedingung wire:

F(t).—o = F(t)o 2)

*) Eingang des Manuskriptes: 25. September 1942.

Aprés avoir exposé les raisons qui motivent lapplication
de Pintégrale de Fourier, Pauteur représente sous cette forme
quelques fonctions utiles a la solution de problémes de me-
sures en haute tension (essais de chocs) et examine Uinfluence
de différents domaines de fréquences sur la forme des cour-
bes. Il s’occupe ensuite des déformations de tensions de choc,
etc,, provoquées par des cibles a retardement. Enfin, ayant
abordé succinctement quelques autres problémes, Uauteur ter-
mine par un rapport sur les mesures des constantes d’un
cdble a retardement.

In Gl. (1) diirfen R und G (und in geringem Masse
auch L und C) jedoch nicht als konstant angesehen
werden (wie dies bekanntlich fiir eine stationire,
rein sinusformige Funktion F(z) meist geschieht),
vielmehr sind R und G von der Form von F(t) ab-
hingig 1). Es ist offenbar, dass schon die approxima-
tive Losung dieser, nun nicht mehr linearen, par-
tiellen Differentialgleichung: auf grosste Schwie-
rigkeiten stossen wird (vgl. auch [5]). Eine weitere
Komplikation liegt darin, dass uns die Messtechnik
die Koeffizienten R und G nicht in ihrer Abhin-
gigkeit von verschiedenen «Formen» der Funktion
F(t) liefert, sondern in Abhingigkeit von der Fre-
quenz stationdrer, rein sinusformiger Wechsel-
strome bzw. Spannungen. — Mit Hilfe des Fourier-
integrals gestaltet sich die Lésung erheblich ein-
facher: Man zerlegt F(t), in eine unendliche
Summe sinusférmiger Schwingungen und kann dann
fiir jede Teilschwingung auf die lingst bekannten
Losungen fiir stationire Sinusschwingungen zuriick-
greifen. Gleichzeitig treten dann die Koeffizienten
R und G (respektive die Fortpflanzungskonstante
y) als Funktionen der Frequenz  auf, so dass sich
die Resultate der Messungen direkt verwerten las-
sen. Durch Summation (Integration) aller Teil-
l6sungen erhillt man sodann die gesuchte Losung.

2. Die mathematische Form des Fourierintegrals

Das Fourierintegral, welches sich durch einen
Grenziibergang aus der Fourierreihe ableiten lisst
(vgl. [6] oder [7]), lautet:

oo 4o
F(t) = 1 S I:SF(t)-(cos wt) dt] - (cos wt) dw +
T
0 —oo
1 61C
4+ - S [SF(t)-(sin i) dt] Ginwhde ()
i1 J1L)
oder
o | o (3a)
F@) = L Sfc(w) -(cos wt) dw + lst(m) - (sin wt) dw
" 0 " 0
wo

1) Es sei daran erinnert, dass z. B. der Skineffekt von der
Schnelligkeit der Flussinderung (also dem Differentialquo-
tienten nach der Zeit) abhingt.



280

BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1943, No. 10

XXXIV. Jahrgang

+ o0 +o0 (3b)
f(w) = S F(t) - (cos wt) dt; f(w) = SF (t)- (sin wt)de

Die Funktion F(t) ist damit dargestellt durch die
unendliche Summe von Cosinusfunktionen, deren
Amplitude gleich f,(w)dw und Sinusfunktionen,
deren Amplitude gleich f;(w)dw ist; im allgemei-
nen treten alle Frequenzen von Null bis Unendlich
auf 2), Fasst man in bekannter Weise entsprechende
Sinus- und Cosinusglieder zusammen, so erhilt man:

oo

F(t) = 4 S -I/fﬁ(w) + f2(w)- sin{aﬁ—l— arctg %] do 4)
w

S

0

worin der Ausdruck J/f2 4 f2 als das «Spektrum»
der Funktion F(t) bezeichnet werden kann. Ele-
ganter lidsst sich das Fourierintegral in komplexer
Form darstellen 3) :

F() = Re [1 S f(w) - ejwtdw] (5a)
" 0
wo
+ oo
- S F(t) - e 7' de (5b)

B. Die Anwendung des Fourierintegrals
1. Darstellung einiger Funktionen durch das
Fourierintegral

Es soll zunichst die Zerlegung einiger, fiir die
Losung der spiiter behandelten Probleme benétig-
ter Funktionen erfolgen.

a) Die Darstellung einer Funktion, die fiir
—oo < t < 0 identisch Null ist und fiir 0 < ¢ <+oo
der Gleichung:

t

F(f)so=2-¢ ' ©)

gehorcht (vgl. Fig. 1a), durch das Fourierintegral.
Es ist
=+ o0
f(w) = S F(t) e 7" dt

— oo

0 + oo
— S F(t); <o e Jot de S F(t)t>0 e—iotdt (7a)
0

— o0

Unter Beriicksichtigung der Annahmen folgt daraus

(7b)
+°°—z 1 . —t(%+jw) -
f(w) = 2 S e (+ )dt=2[_Te—‘]
0 ?‘f—]w 0

2) Es sei noch bemerkt, dass F(z) und seine Ableitungen
keineswegs iiberall stetig sein miissen, um durch ein Fourier-
integral dargestellt werden zu konnen.

3) Re bedeutet hierin: Realteil von...

Daraus ergibt sich

2

fw) = ——— (1¢)
— .w
T —+17
und somit wird:
2 - ej(a)t
F(t) = Re [— S i ¥-dw]
n .
o S [
. 1 8a
g T wsin (wt) —{—Tcos (wt) (8a)
=— cdw
T 1\2 5
0 T) te
2 =
Fig. 1a.
Darstellung der exponentiell abklingen-
' den Stossfunktion
L? (Vel. B, 1, 2)
1
054
05 i 15 5t 25 3
SEV70832 —7r
50
P
45
&
40 t
35
T= Sps —_—

0 01 0.2 03 04 0.5 1
SEV 708330

MHz

Fig. 1b.
Amplitudenspekiren exponentiell abklingender Stossfunktionen

Es sei hier noch kurz auf das Amplitudenspektrum
dieser Funktion eingegangen. Nach Gl. (4) war

das Spektrum:
S=)i+12

Setzen wir hierin die aus Gl. (8a) folgenden
Werte ein, so erhalten wir:
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, 1
“* = 7 1

(A} Y rd
(“’+ﬁ RN

Berechnen wir fiir verschiedene Werte von T die
Grosse S als Funktion von o, so erhalten wir die in
Fig. 1b gezeigten Kurvenziige. Man erkennt daraus,
dass der Verlauf von S bei hohen Frequenzen fiir
die verschiedenen Werte von T der gleiche ist; dies
ist vor allem jener Teil des Spektrums, der den
allen Kurven mit verschiedenem T gemeinsamen
«Sprung» an der Stelle ¢ = 0 verursacht, wihrend
das raschere oder langsamere exponentielle Abklin-
gen (kleines oder grosses T') vor allem durch die
niederen Frequenzen bedingt ist.

(8b)

Hiufig wird man bei der Wahl einer den zeit-
lichen Ablauf charakterisierenden Funktion eine
gewisse Freiheit haben (sei es, dass nur ein Teil
der Kurve fiir das zu behandelnde Problem von
Belang ist, sei es, dass vom zu betrachtenden zeit-
lichen Ablauf nur eine geringe Zahl von Punkten
bekannt ist); dann kann es vorteilhaft sein, ihn
stiickweise durch eine Anzahl mathematisch ein-
fach darstellbarer Funktionen zu ersetzen, die der-
art zu wihlen sind, dass die Losung der zugehd-
rigen Aufgabe moglichst einfach wird oder doch
wenigstens auf tabellierte Funktionen fiihrt, so dass
umstdndliche graphische Integrationen usw. ver-
mieden werden kénnen. Fiir verschiedene Unter-
suchungen erwies sich als giinstig:

Fig. 2.
sl Darstellung der «idealen Stossfunktion»
z-' (Vgl. B, 1,b)
‘f (r = Halbwertzeit)
1
0,51

05 1 15 _2. t 25 3
b) eine Kurve (zur Abkiirzung im folgenden als

«idealer Stoss» bezeichnet), die fiir — o <t < 0

identisch Null ist, fiir 0 < ¢ < ¢ der Gleichung:

t
Foeicr = (2-1) (%)
und fiir 1 < ¢t < 3 7 der Gleichung:
1 /¢ 2
Frcicar=, (7 —3) (9)
4\t

gehorcht und fiir 37 <t < o wiederum identisch
Null wird (vgl. Fig. 2). 7 ist also hierin die Zeit,
nach welcher der Funktionswert auf die Hilfte des

Maximalwertes gesunken ist («Halbwertszeit»). Man
erkennt, dass diese Kurve der unter a) behandelten,
besonders in der Umgebung der Front recht ihn-
lich ist. Die Zerlegung ergibt hier:

+ oo 0
f(w) = \F(z) e_J"”dt—S F(e),_qe 15 1
+\(2——> e A4 - S e’ dt 4
0 T
—+—SF(t)t>3‘ it gy (10a)
37— —
0
9 1 —3jwt . e—jw-r
Heoy=-2/"7 Tw? 2w3'r2+12w3‘r2 (10b)
damit wird:
= jwt < jwt
F(t)—Re{ 2 \de—%l—gedw—
T ) w at ) w?
: (11a)
. pos jw (t—37) T = jo (t—7)
g D € dow + J ¢ dw
2772 w? 27 72 w?
0
F() = Egsm(wt) dow 4+ L 1 gcos(wt).dw_*_
4 w :zrr_ w?
0
+ 1 ﬁl[w(t—3r)].dw Rsm[w(t ‘L’)]d
27 r2 w? 27 72)
0 0
(11b)

Das Amplitudenspektrum, das hier fiir diesen
Fall nicht berechnet wird, ist dem unter a) berech-
neten dhnlich, die dortigen Feststellungen gelten
entsprechend auch hier.

c¢) Durch Kombination zweier Kurven vom obi-
gen Typus mit verschiedenen Halbwertszeiten <
ldsst sich leicht eine weitere Kurve gewinnen, die
filr — o0 <t <0 und 37, < t <+ oo identisch Null
ist und fiir welche weiter gilt:

Tl Ty
T, T
(12b)
ey 1 2
1y <1< 37, F(t)ryo i o3r,= 2——)—<i_3)
T, 4\ 7,
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Ty <t< 371: F(t)‘r,<t<3‘r1= &

4 \7

Fig. 3 zeigt derartige Kurven (im folgenden kurz
«Stossfunktionen» genannt) fiir verschiedene Werte

Fig. 3.
Darstellung verschiedener Stossfunktionen
(durch Ueberlagerung zweier idealer
Stossfunktionen)

(Vgl. B, 1,¢)

05 1 15 ; 2 2,5 3

SEV 0835

des Verhiltnisses i:, ihre Darstellung durch das
Ty
Fourierintegral lautet:

oo

1 1\ 1 ( cos(wt)
F)=[—— )=\ """
(7] (1’1 72) - S o dow +
1/1
ol

ol
(13)

Die Spektren dieser Stésse wiirden sich als Dif-
ferenzen der Spektren zweier «idealer Stossfunktio-
nen» mit verschiedenen Halbwertszeiten 7, und v,
ergeben.

0
sin [ (¢—37,)]—sin[w(t—7,)] dw}_

3

8

e

w

sin[w (t—3 7,)]—sin[w (t—17,)] ) dw}
3

w

ot

2. Einfluss der Beschneidung des Frequenz-
spektrums auf die Kurvenform von Stossfunktionen

a) Héufig wird sich die Frage stellen, welches
der ‘Anteil einer Funktion F(¢) ist, der von einem
bestimmten Frequenzband herrithrt; das heisst mit
anderen Worten, dass nach dem Wert des Fourier-
integrals gefragt wird fiir den Fall, dass die Gren-
zen desselben bestimmte, endliche Werte haben.
Physikalisch konnte man diese Frage etwa folgen-
dermassen deuten: Am Eingang eines Tiefpass-
filters (dessen Phasenmass im Durchlassbereich der
Frequenz proportional sei und das mit seinem Wel-
lenwiderstand abgeschlossen sei) liege eine EMK
der Form F(t). Das Filter habe fiir Wechselspan-
nungen einer Frequenz w > Q eine praktisch un-
endlich grosse, fiir w < Q2 keine Didmpfung. Wel-
ches ist die Form der Spannung an den Endklem-
men? (Dass ein derartiges Filter nicht realisierbar
ist, ist hier belanglos.)

2 e :
1 ( t 3) (12d) | Ist F(z) gegeben durch das Fourierintegral:

oo oo

T

F(t) = Re [l S {ef"" deo - S F(t) 7" dt}] (5)

— o0

so wird sich die Ausgangsspannung durch das fol-
gende Integral darstellen¢):

e fome
B(t) o = Re E S {ef“' dis S F(§). 7" dt” (14)
: -

b) Wendet man das eben Gesagte auf die in 1b
besprochene ideale Stossfunktion an, so stellt sich
die Aufgabe, das Integral

e 1 Q
D(0), = 2 S sin (wt) do 1 L S cos (wt) dow -+
©

2
(4 & T g w (15)

Q2 Q
1 ‘S sin[w (t—37)] dstiu [w(t—r)]dw=

2 t? w?

w3
0 0

auszuwerten. Gl (15) ldsst sich durch partielle
Integration der drei letzten Glieder auf die fol-
gende Form bringen:

P()g = (2—%) lisin(wt) dw + (E_—T)Zl 5

4 w 2t ) &
Q 0 L2
sin[w(tgr)]dw_ t—37)2lgsin[w(t—3r)] dow +
S w ( 2t ) & w
0 0
1[t—7 cos[w(t—7)] 1 cos (wt) t—37
n[472 w T w 472

) cos[w(t—37)] | sin(w7) 2

(16)

T
w 2722

- cO8 [co (t—2 1:)]]

0

Das Einsetzen der Grenzen fiir die letzten vier
Terme fiihrt, da ihre Summe fiir w = 0 zu Null
wird (vgl. Anhang, 2a) zu:

2

B(t), = (2 i) iSSin (@) 300 + (H)zl .
T)® w 2t /) =w
¢ ] 0 37\’1 c [o(t—37)
‘ sinfw (t—7) doo— t— r)_gsin w(t— Ny
S w © ( 2t /& w a
0 0
+i]t;_‘r.cos[9(t—r)]_i.cos(!)t)_t—?)r.
7 472 2 T Q2 412
cos [2(t—37)] , sin(L27)
: R’ 202 08 cos[.Q(t—2'r)]] 17)

Setzt man im ersten Integral wt = z, im zweiten
w(t—1) = 3z, im dritten w(t— 37) = z, so wird:

4) Der Index Q in ®(t)g bedeutet, bis zu welcher Fre-
quenz das Integral erstreckt werden soll.
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2 Q¢ 7
A2 :
’P(t)‘g:(z—i)i Eﬂl_zd +(t T)l sinz .
T] z 2t /) & z
0 0
L (t—-371)

(i o

ot),.1

zeigt sich fiir grossere Werte von Q praktisch nur
in der Gegend der Front (d.h. der Sprungstelle der
Funktion F(z).) Man erkennt aus diesen Kurven,
dass sie um die Kurve F(t) <herumpendeln», und
zwar derart, dass die Amplituden der Abweichun-
gen von der F(z)-Kurve um so rascher mit der Zeit
abnehmen, je grisser Q gewihlt wurde. Fiir Q =

600 g zum Beispiel, liegt bereits zur Zeit t > %

die Abweichung von der F(tz)-Kurve innerhalb der
Rechenschiebergenauigkeit. — Die in Fig. 5 ge-
zeichneten Teile der @-Kurven II, III, IV lassen
sich sehr genau folgendermassen darstellen:

FalIsQ>¥sogiltfiirt<%r

Fig. 4.

F(t) «Ideale Stoss-
funktion»

&(t) Entartung der
«idealen Stossfunk-
tion» infolge Fehlens

0,5 1

Sevr0836a

Man erkennt nun, dass es sich bei den Integralen
um sogenannte Integralsinusfunktionen (Si) han-
delt, die sich in verschiedenen Tabellenwerken aus-
fithrlich berechnet finden (vgl. [8], [9], [10]).
Man kann also schreiben:

1 —7\21
D), = ;(2—%)&(90 + (;—:) —Si[Q(t—1)]

_(t 31')21
27 J =

SI[Q(—30)] +— {t—r cos[2(t—7)]

472 2
_l.cos(!)t)_t—ilr‘cos[.Q(t—3r)]+
T 2 472 2
sm(Qr)
s[2(t—2
T Rl 1)

(18a)

Fiir verschiedene Werte von Q2 wurde die Funktion
& (t)o numerisch berechnet. Die entsprechenden
Ergebnisse sind in Form von Kurvenziigen in Fig. 4
und 5 niedergelegt. Fig. 4 zeigt die «ideale Stoss-
kurve» F(t) und die aus ihr durch Abschneiden

= entstandene ent-

T

artete Stosskurve @(t)g (bzw. Kurve I). (Dabei
bedeutet 7, wie friiher, die Zeit innerhalb welcher
F(t) vom Maximalwert auf dessen Hilfte gesunken
ist.) Fig. 5 in der der Zeitmalstab sehr stark ge-

dehnt ist, zeigt, neben den bereits in Fig. 4 enthal-

aller Frequenzen oberhalb Q =

tenen Kurven, die Verhiltnisse fiir Q = 1007{_

(Kurve IT), Q = 300 g (Kurve IIT) und fiir Q =

600 z_—t (Kurve IV). Ein Unterschied gegen F(t)

hiherer Frequenzen
im Frequenz-
spektrum (1)

2 2,5

)= (2_ _> (51 (26) + ) (19a)

T

wie aus Gl. (18a) im Anhang, 2b, abgeleitet wird;
fiir die Berechnung jener Kurventeile wird man da-
her Gl. (19) statt (18a) verwenden. Es sei noch
bemerkt, dass aus Gl. (19) folgt, dass zur Zeit t = 0
die Steilheit

['I)(t)_'q] — 2o 2i
t=0

1 T

(19b)

betrigt, falls Q > STR

¢) Wir wollen uns jetzt dhnlichen Betrachtun-
gen fiir die in B, lc, behandelte Stossfunktion zu-
wenden. Hierbei wollen wir jedoch fiir die Halb-
wertszeiten einige numerische Annahmen treffen.

Es sei 7, = 50 us und 7, = 0,5 us, also ? = 100.

2
Damit erhalten wir eine Kurve, die bereits in Fig. 3
dargestellt wurde. In Fig. 6 ist die Front dieser
Kurve in stark vergrossertem Maflstab nochmals
gezeichnet (stark ausgezogene Kurve). Ein Ab-
schneiden des oberen Frequenzbandes wird — wie
leicht einzusehen — in erster Linie die Form der
steilen Front verindern. Aus Fig. 6 erkennt man,
dass die Frequenzen oberhalb 3/; Megahertz (d. h.

oberhalb Q =2 - % MHz)

auf die Form der

Kurve von sehr geringem Einfluss sind, nur an der
Stelle ¢ = 0 bewirken sie den scharfen Knick (die
Unstetigkeit des Differentialquotienten der Funk-
tion F(t) an der Stelle ¢ = 0). Betrachtet man die
Kurve mit dem Wert Q = 2 7 MHz genau, so er-
| kennt man, dass sich diese weitgehend mit der Form
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der sog. «<Normalen StoBspannung» deckt, die in
den von der Forschungskommission fiir Hochspan-
nungsfragen des SEV und VSE aufgestellten «Leit-
sitzen fiir den Schutz elektrischer Anlagen gegen
atmosphirische Ueberspannungen» (vgl. [11]) de-
finiert wurde; die «Frontdauer» (vgl. die dortigen
Definitionen) betrigt auch hier ca. 1 us, die «Riik-
kenhalbwertzeit» ebenfalls ca. 50 us3). Wir werden

+ oo
[(p(w)]\zo = l eivtdew - S e—jot. F(t)o dt (20)
a

— oo

an der Stelle x = [ aber:
=+ oo

[p())e=1 = Lejor. e Y dw S e—iot F(¢), de (21)
JT

— 00

AL

Fig. 5.

—-F(t),$t)

-
Fa Entartungen der «idealen

Stossfunktion» F(f) infolge
Fehlens hoherer Frequenzen
im Frequenzspektrum
Die Fronten der
9 (t) p-Kurven:

I:-Q=§
[

1105

II: 2 = 100- =
=

II: 2= 300§
IV: 2 = 60 %
=

: 2 = o0

0,01
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also im folgenden, wenn wir kurz vom Normal-
stoss sprechen, stets die eben erwihnte Kurve mit
Q = 2aMHz (resp. f,, = 106 Hz) meinen.

3. Verzerrungen in einem Kabel

Es soll hier das bereits in der Einleitung er-
withnte Problem behandelt werden: Es sei nach der
Verzerrung gefragt, die eine Spannungswelle er-
fahrt, nachdem sie I Meter eines Kabels durchlau-
fen hat, welches mit seinem Wellenwiderstand ab-
geschlossen ist. (Diese Voraussetzung wird sich
nicht immer mit einfachen Mitteln realisieren las-
sen, da im allgemeinen Grosse und Phase des Wel-
lenwiderstandes mit der Frequenz dndern und da-
her auch der Abschlusswiderstand die gleiche Fre-
quenzabhiingigkeit aufweisen muss.) Legt man eine
stationire, sinusférmige EMK e/¥* bzw. sin wt an
den Eingang eines solchen Kabels, so ist an der
Stelle x = I die Spannung bekanntermassen:

ejvt.e=yl = eiwi-al) =01 hzw. e—Alsin(wt — al)

wo y = (f+ja) die Fortpflanzungskonstante, a das
Phasenmass und § das Dimpfungsmass — alle Gris-
sen pro Lingeneinheit — bedeutet; im allgemeinen
ist y eine Funktion von w. Ist die Eingangs-EMK
F(z), durch ein Fourierintegral [Gl. (5)] darge-
stellt, so wird fiir eine Teilschwingung ¢ (w) an der
Stelle x = 0 gelten:

). Genau betriigt die Frontdauer der von uns betrachteten
Kurve 1,2 us, die Riickenhalbwertzeit 50,5 us, doch liesse sich
hier eine vollstindige Uebereinstimmung durch geringfiigige
Aenderung der Werte von 7; und 7. leicht erreichen. Da-

durch,. dass dann%nicht mehr genau gleich 100 wire, wiirde

2
jedoch die Rechenarbeit erheblich anwachsen; da anderseits
die Abweichung vom Normalstoss gering ist, hiitte sich eine

Verbesserung der Uebereinstimmung kaum gelohnt.

0,02 F(t)

—_—

0,03

A

Die Gesamtspannung an der Stelle x = [ muss
dann sein:

S 4+ oo

1( . .
F(t),-, = - ei@t-a D.e 8 l.dwl\F(t), ejorde
0 — o
(22)
2
e
K
5
&
s
T ] 2= 0,87TMHz
4
/I
/
0,51 4
#-0= 1,607 MHz
Jif-0=2TTMHz
’:«"/ =00 ) i
SEV 10838 05 ot 1 v5ps
Fig. 6.

Front einer Stossfunktion mit 71 = 100 72 = 50 us (vgl._B, 1c und
B, 2¢) sowie die Fronten der aus ihr durch Abschneiden aller
Frequenzen oberhalb () abgeleiteten Kurven

Im allgemeinen werden e 5! und a(! als Funk-
tionen von o aus Kabelmessungen vorliegen. Zu
relativ einfachen Resultaten kommt man meist,
wenn man die Funktionen e 8! und a(! stiick-
weise durch Geraden ersetzt; es sei also im Inter-
vall 0 < w < w,

e-’8(4.))1 =P 4w (23a,1)
und

awl =&+ o (23b, 1)
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Im Intervall 0, < w < w, gelte:
(23a,2)

BN

(23b, 2)

e'ﬂ(w)l=P2_‘Iz'w
und
a(w)l =&+ o

usw. Damit kann Gl. (22) geschrieben werden:

y
F(t)x=l = %Sei(w‘—ﬁ—ﬁ“") .f(w) P (Pl_ql i w) dw +

0

@
+— %S ej(“"—f:-gl'w) . f(w) a (pZ_qZ % w) dw _|_
@y
“+ . . L
@n
+, S e @& =6 0) £(0).- (P, —gp-w) doo +
@n -1
+ - (24)
Pb
Fig. 7.
Kabelquerschnitt

$
S

)

N

Pb Bleimantel. Cu Kupferseele.

G Gummiisolation.

M
SN
N

SEV 10840 1 é 3 4‘ MHz 5
Fig. 8.

Dimpfungsmass (3) und Phasenmass (x) eines Gummikabels
Frequenz

—f

Als praktisches Beispiel soll ein sogenanntes
«Verziégerungskabel» behandelt werden, wie es bei
Hochspannungsuntersuchungen hiufig zwischen
StoBspannungsgenerator und Kathodenstrahloszillo-
graph geschaltet wird, vgl. z. B. [12]. Die Linge
des Kabels, das mit seinem Wellenwiderstand (Z, -=
50 Ohm) abgeschlossen sei, betrage I = 200 m; die

%) Herrn P-D. Dr. K. Berger, Versuchsleiter der For-
schungskommission fiir Hochspannungsfragen des SEV und
VSE, danke ich auch an dieser Stelle dafiir, dass er mir dieses
Verzogerungskabel sowie den spiiter erwihnten Shunt zur
Verfiigung stellte, ferner auch fiir die grosse Bereitwilligkeit,
mit der er mir verschiedentlich iiber Hochspannungsfragen
Auskunft gab.

MaBe des Querschnittes sind in Fig. 7 eingetragen.
Die Konstanten eines derartigen Kabels wurden
durch Messungen (vgl. Anhang, 1) ermittelt ¢);
die Resultate sind in Fig. 8 dargestellt. Wie man
sieht, ist a(y)! eine durch den Nullpunkt gehende
Gerade, so dass eine «Phasenverzerrung» (Verzer-
rung infolge Dispersion) im Kabel nicht auftreten
wird. Wir kdnnen somit bei der Berechnung der
Verzerrung auf die Beriicksichtigung des Phasen-
mafles verzichten. Der Ersatz der e-f(,!-Kurve
durch gerade Linien (gestrichelt in Fig. 9 einge-

Fig. 9.
Die Funktion e—B(w)! tiir 1= 200 m

zeichnet) ergab fiir die Gleichungen (23a), (23b)
usw. die folgenden Koeffizienten:

p. =1, p, = 0,962, p, = 0,88, p, = 0,76

q, = 0,636 us, q, = 0,03 us, q, = 0,017 pus,
q, = 0,0106 us,

wobei
2r
w1=ﬁMHz, wy, =2 7 MHz, w; = 6 » MHz,

w, =12 7 MHz ist.

Wir konnen nun, da wir, ohne an der Form der
Kurven etwas zu idndern, das lineare Phasenmass
fortlassen diirfen, die Gl. (24) fiir die Rechnung

etwas umformen:

F(t),—; = [—pi S el f(w) dw |+ L { S ei® f(w) dw —
T F4
o 0 0
_Sej")t f(w) dw} 4 e
0 @, @,
+&{Sei”‘f(w)dw—gef”‘f(w)dw}—|— .. ]
g 0 0
q, l jawt : 9 ’ jat
+[__Sem f(w).w.dw——-{s el f(w) cw dw
7
0 0
@y @n
_Sejm f(w).w.dw} em w10 _ﬂ{geﬂ”‘f(wyw-dw —
0 0
—Sef“"f(w)-w-dw}+--------] (25)

0
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Wn
Fiir den Ausdruck —};Seiw‘ f(w) dw hatten wir in B,
0
2 a, die Bezeichnung & (t),, eingefiihrt und wollen
10
nun neu fiir den Ausdruck - S e/ f(w) - w - dw den
0

Buchstaben ¥(t),, verwenden; dann kénnen wir
schreiben:

F(t)y =1 =P, P(8) g+ P | P& oy — Bt ) + Py [}
—q, ()0, — g { P(t)y— P() )} — o { -~

\/ —t
Skvrose: 0! 0’5

Fig. 10.
Die Verzerrung am Ende eines 200 m langen Kabels

a Spannung am Anfang des Kabels. b Spannung am Ende
des Kabels.

1ps

a) Am Eingang des Kabels liege eine EMK von
der Form der in 2, b mit «IV» bezeichneten Kurve
(vgl. Fig. 5 und 10), also dargestellt durch das be-

stimmte Integral:

127
2 (sin wt 1 cos wt (27)
D(t) 127 mB. = — pe —n
0 0
1 127 . .
| smw(t—3r):§1nw(t-—r)
T 2nr2] i deo

Es wird sich dann die Spannung an der Stelle
x = I nach Gl. (26) ergeben zu:

(28)
P o pu— ) |
Ly { no,_ I(”u—]-i-

[(p(t)IZTrMHz]x=1 = & 'I)(t)ZTF +
T o 100

100

p3 P J— & o) — —
+ _JI—{I(t)ﬁrr p(t)Zﬂ'} + J': {I(t)IZTr I(t)éﬂ'}

q q —
Ty — 20, — 0|

100
q q
- 73 { l‘p(t)ﬁn_ lp(t)zh-} o ?4 { l‘U(t)lzr.— 'P(t)ﬁrr}

Da die Grossen D(t);, fIJ(t)

, O(t)
100 o

und 'I'(t)m’_
bereits in 2,b ermittelt wurden und auch p,, p,,
Pss po und  q,, q,, g, q,, bekannt sind, sind nur
noch die in Gl. (28) vorkommenden Ausdriicke

Y (t) zu berechnen. Nach Gl. (25) und (15) ist:

2 2
Y’(t)gzégsinwtdw—l—%gcosw—td o+
0 0
1o (t.—37) (t—7)
sinw(t—37)—sinw (t—7
27 72 {S w? dw} 29)

0

Durch Integration und partielle Integration er-
hilt man:

2
t—3rScosw (t—37) do

'P(t)g - 2t w
0
.Q Q2
cosw (t—7 cos wt
- ( ) dw + dw+
27m'2 T w
0 0
2 coswt  sin T

+ [l : — (30)

2
cos (t—2r)]
T t :

.7'[1720) 0

Durch einige Umformungen und das Einsetzen der
Grenzen lisst sich dies folgendermassen darstellen
(Ableitungen, vgl. Anhang 2, c):

3.9(:—31') 1 L2 (t—1)
t—37( cosz— t—7 (cosz—1
(), = dz — —dz
©e 21’2758 z 27t2x S z =t
0 0
1 2t
+4SC°”_d +—( —cos Q1)
T z
0
o0 27 0 Q(—27) — 1 1)

T2 Q T

Die hier enthaltenen Integrale sind (vgl. [13]) dar-
stellbar als die Summe eines Logarithmus und einer
sogenannten Integralcosinusfunktion (Ci) (die
gleichfalls ausfiihrlich tabelliert ist, vgl. [8], [9],
[10]), und zwar ist:

§ cos y—1
y

dy = Ci(a)— lna —k
0

Setzt man diesen Ausdruck in Gl. (3) ein, so fillt
k fort, und man erhalt:
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(3¢ Fig. 11 und 12 zeigen den verzerrten Normalstoss
P(t)y = ‘Ci[!)(t—-3r)]—ln[.Q(t—3r)]}— an der Stelle x =200 m. Wie man sieht, ist die
72| durch ein derartiges Verzogerungskabel von 200 m
_t—T J Gi[2(t - )] —In[Q(t—D)] l n Linge bewirkte Verzerrung nicht betriichtlich.
21”'7“ 5 4. Normalstoss und Schwingkreis
+ ¥{Ci [2¢]—In [.Qt]} —+ —(1—cos Q¢t) + Es sei nach dem Strom in einem Serieresonanz-
e wt kreis (Fig. 13) gefragt, an dessen Klemmen eine
sin Q7 1 EMK liege von der Form des «Normalen Spannungs-
+n—@ weon @ (¢—27) e stosses». Fiir die Losung ist es sehr bequem, den
Normalstoss darzustellen als Kombination zweier
(32) | Kurven von dem in B, 1,a behandelten Typus
2
1,51 Fig. 11.
é‘ Verzerrung der Front des
3 T «Normalen Spannungs-

05

g

stosses am Ende eines 200 m

langen Verzigerungskabels

a unverzerrte Spannung.

b verzerrte Spannung.

SEV 70843

0 01 020304050607 0809 1ps

Hiermit sind also auch die Ausdriicke ¥ (t)g zu
berechnen, so dass sich die Form der Spannungs-
welle an der Stelle x = I nun ohne mathematische
Schwierigkeiten (allerdings mit ziemlich grossem
Aufwand an Rechenarbeit!) aus Gl. (28) finden
ldsst, vgl. Fig. 10.

b) Besonders interessieren wird die Verzerrung,
die der «Normale Spannungsstoss» lings eines der-
artigen Kabels erfihrt. Da sich dieser zusammen-
setzen ldsst aus zwei Kurven von der Art der so-

(also nicht wie bisher durch Kombination zweier
«idealer Stossfunktionen» unter Weglassung aller
Frequenzen grosser als 1 MHz) 8). Es wiirde also
gelten:
0 fiir —co<t<0
A

/
\ i (34)
(e g Tz)fiir0< t<+oo

Die Losung soll zunichst fiir die EMK €, erfolgen

@=@1_@2=

Fig. 12.

Verzerrung eines «<Normalen
Spannungsstosses am Ende
eines 200 m langen Verzo-

gerungskabels

a unverzerrte Spannung.

b verzerrte Spannung.

3

SEV 10844

0 10

20 30 40 sops

eben betrachteten, so bereitet die Berechnung sei-
ner Verzerrung keine neuen Schwierigkeiten 7).

7) Da das Frequenzband des Normalstosses, wie wir
frither gesehen haben, nur bis zu einer Frequenz f,.,—1MHz
reicht, verringert sich die Zahl der Glieder gegeniiber der
in B 2,a behandelten Funktion, deren Frequenzband sich bis
6 MHz erstreckt, ganz erheblich.

|

8) Trotzdem der Normalstoss genauer durch die in B 2,¢
besprochene Kurve dargestellt werden kann, wurde diese
Darstellung gewiihlt, da sie fiir die folgenden Ableitungen
grosse Vorteile bietet. Dazu sei weiter bemerkt, dass ander-
seits die Darstellung durch Gleichung (34) fiir die in B2 und
3 angestellten Untersuchungen eine sehr starke Komplizie-
rung gebracht hitte.
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(fiir den Spezialfall T, =  ist die Lésung z. B. bei
[2] zu finden). Es lautet die Darstellung von G,
durch das Fourierintegral [vgl. Gl. (8)]:

oo

e

oT

Die Impedanz des Kreises ist fiir die Kreisfre-
quenz o:

s

c

SEV10845 P4
3

-

Fig. 13.
Serieresonanzkreis
(Vgl. B, 4)

1
=R+ joL 4+ ——
joC

Dieser Ausdruck lidsst sich umformen in:

(39)

8 =— (Jw—el) (Jo—0,) (36)

tV

Der Quotlentﬁ stellt die Dimpfung u des Krei-

1 R\2 ;
———(—] seine Eigen-
LC (2 L)

frequenz w, Somit kénnen wir schreiben:

(37)

ses dar, der Ausdruck

=—u+jo, (37a)

Aus Gl. (8) und (36) folgt der Strom zu:

ei® jo . dw

2 oo
o Jw—g;) (o—gp) (Jw + T_l)
oder, indem wir substituieren jo = z:
zt ,z.
est.z.dz (39)

e ”L’S( )e—e) =+ -
0 91 92 Tl

Nimmt man eine Partialbruchzerlegung vor, so er-
hilt man:

3 ez . ez o5t
N=t .S{A o ol £ el}dz (40)
wLj)|z—0, z—0, =
0 z+T
1

WwWo:

(41a)

B= O

1
(02—01) (92 + f)

C= —1 (41c)

1 1
T, (T == 91) (T + 92)
1 1

Die Losungen dieser Integrale sind bekannt, vgl.
z.B. [16], und zwar erhilt man (fiir ¢ > 0)

(41b)

wL
Mit Gl (37a), (42) und (41) ergibt dies nach eini-

gen Umformungen:

t
S = i{A-ee‘t—{—B-ee’t—}— C-e_EH (42)

R et Lsin ,t 1+
1 J l 2 ) 1 o 0
1 .
+—cosw0t]——e T'}
1 1

(43)

Fir t <0 ist 3, = 0. Die nidhere Betrachtung
der Gl. (43) zeigt, dass der durch die Spannung €,
bewirkte Strom J, sich — wie zu erwarten war —
zusammensetzt aus einem Strom von der Form der
gediampften Eigenschwingung des Kreises (die bei-
den ersten Glieder in der geschweiften Klammer)
und einem Strom von der Form der angelegten
EMK (dritter Term in der geschweiften Klammer).
Die Amplituden dieser Teilstrome hingen von den
Konstanten des Kreises einerseits, von der Form der
EMK (resp. der sie charakterisierenden Grosse T',)
anderseits ab. Ob ein sogenanntes «Ueberschwin-
gen» (Vorzeichenwechsel des Stromes) eintritt,
hingt somit von den Konstanten u, w, und T, ab.
Der Gesamtstrom J, der durch die Spannung
G =6,—@C, [vgl. Gl. (34)] hervorgerufen wird,
stellt sich als Differenz der Stréme J, und §, dar:
=33 (44)
(J, erhilt man, indem man in Gl. (43) die Kon-
stante T, durch T, ersetzt.)

5. Einige Probleme bei der Messung des
«Normalen Spannungsstosses»

Mit Hilfe der in B, 2, ¢ gemachten Feststellungen
iiber die frequenzmissige Zusammensetzung des
Normalstosses lassen sich jetzt einige Fragen beant-
worten, die bei Hochspannungsmessungen auftreten
konnen:

a) Hiufig werden in der Hochspannungsmess-
technik sogenannte gemischte, kapazitiv-ohmsche
Spannungsteiler — vgl. [14] und [15] — verwen-
det, wie in Fig. 14 dargestellt; hierin bedeutet C,
die — eigentlich verteilte — Erdkapazitiit. Bei be-
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kanntem R und C, lisst sich die Frage beantwor-
ten, wie die Parallelkapazitiiten zu bemessen seien,
damit ein «Normaler Spannungsstosss praktisch
verzerrungsfrei geteilt wird. Es ist nach Zinke [14]
das Verhiltnis der totalen Spannung zur Teilspan-
nung:

1
2 R
uy _sinh (gN) 1+ ¢ @N*+

= h N. 1 1 , WO
ul sin g 1 il N2'~ ..
+ 4 (eNP o+
. jwN2RC,
gV ===
l1+jwRC

N ist hierin die Zahl der Stufen des Teilers, g die
Fortpflanzungskonstante einer einzelnen Stufe. Da-
mit nun der Stoss unverzerrt geteilt werde, muss fiir

Fig. 14.

Kapazitiv-ohmsecher
Spannungsteiler

el
1

SEV 10846

alle in ihm enthaltenen Frequenzen der Spannungs-
teiler sich angenihert frequenzunabhingig verhal-
ten. Lassen wir zu, dass der Absolutwert von il
maximal um 1 % édndert, so gelten die beiden Be-
dingungen:

w?N2R2C,. C 1

@) =
1 4+ w2R2C? 15
@) wNRC,
1+ w2R2C?

Die Bedingung (1) muss fiir die hochste auf-
tretende Frequenz (hier also: w,,, = 27 MHz) er-

1
fiillt sein, wihrend Bedingung (2) fiir o* = F Tt
fiir welches der Ausdruck ( LNRCL) maximal

14+ w?R2C*

wird, erfiillt sein muss (falls w* nicht grosser als
die maximal auftretende Frequenz w,,,, ist).

b) Auch die Frage der Brauchbarkeit eines
Shunts fiir Messungen des Normalstosses (parallel
zum Kathodenstrahloszillographen), lasst sich leicht
entscheiden: es muss von einem derartigen Shunt
gefordert werden, dass er bis ca. 1 MHz praktisch
frequenzunabhingig ist, d.h. dass sowohl sein
Blindwiderstand wie sein Wechselstromwirkwider-
stand (durch Induktivitit und Skineffekt bewirkte
Widerstinde) bei 1 MHz noch erheblich unter dem

| Gleichstromwiderstand bleiben. Diese Forderung

ist — wie Messungen ?) ergaben — fiir bestimmte
MefBshunts der Bauart FKH dank einer sinnreichen
Konstruktion erfiillt.

c) Parallel zu dem das Verzogerungskabel ab-
schliessenden Wellenwiderstand liegen die Ab-
lenkplatten des  Kathodenstrahloszillographen
(C = 50 pF) ; die Zuleitungen stellen eine mit dieser
Kapazitit in Serie liegende Induktivitit von ca.
L =2-107 H dar. Wird die Messung des Normal-
stosses durch das Vorhandensein dieses Seriereso-
nanzkreises verfilscht? Selbst fiir die hochste auf-
tretende Frequenz von 1 MHz ist die Impedanz

—— —+ jwL stets noch kapazitiv, und zwar ca.
Jow
60mal grosser als der Wellenwiderstand. Daher ist,
wie leicht einzusehen, der Einfluss des Kathoden-
strahloszillographen auf die Messung unbedeutend.
d) Ausdriicklich sei darauf hingewiesen, dass
dann, wenn die StoBlspannung zu einem plétzlichen
Durchschlag und damit zu einem &Husserst raschen
Absinken derselben (in weniger als 1/10 us) fiihrt,
das Frequenzspektrum durchaus von dem des nor-
malen Spannungsstosses abweicht 19). In diesem
Falle sind auch Frequenzen von mehr als 1 MHz
noch von grosser Bedeutung. Die Fragen von B, 5 a,
b, ¢ miissten also fiir diesen Fall noch gesondert
untersucht werden, bieten jedoch keine neuen prin-
zipiellen Schwierigkeiten.

34 3
Modulierter
Oszillator
Allwellen-]
np/inger
SEVIO8+7 Kabel
Fig. 15.
Schaltschema der Kabelmessung mit Hochfrequenz-Messbriicke
(Vgl. G, 1)
C. Anhang

1. Messungen am Verzogerungskabel
Nach dem bekannten Zusammenhang

tgh(yl) = l/éf_if

wo 3x die Kurzschlussimpedanz und 3; die
Leerlaufimpedanz ist, kann yl bestimmt werden.

9) Die Messungen am Shunt FKH 14 wurden in der glei-
chen Schaltung ausgefithrt wie die Messungen der Kurz-
schluss- und Leerlaufimpedanzen des Verzogerungskabels,
vgl. Fig. 15. Die Messungen, die sich bis ca. 4 MHz recht
genau ausfiithren liessen, ergaben eine (frequenzunabhiingige)
Induktivitit L = 0,010 xH, bei einem Gleichstromwiderstand
von 0,225 Ohm.

10) Eine StoBspannung, die, kurz bevor sie ihren maxima-
len Wert erreichen wiirde, infolge Durchschlags zusammen-
bricht, liesse sich z.B. durch das Spiegelbild der in B, 1b,
behandelten «idealen Stossfunktion» in erster Niherung dar-
stellen.
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Zu diesem Zwecke wurden 3¢ und 3; des zu mes-
senden Gummikabels — vgl. Fig. 7 — in einer
Briickenschaltung, gemiss Prinzipschema Fig. 15,
gemessen. Verwendet wurden eine Hochfrequenz-
messbriicke, ein modulierter Hochfrequenzgenera-
tor und als «Nullinstrument» ein Allwellenempfin-
ger. Die Messungen liessen sich zwischen 100 kHz
und 4 MHz mit guter Genauigkeit ausfiihren. Die
Resultate sind aus Fig. 8 und 9 ersichtlich. — Zur
Kontrolle, ob auch unterhalb 100 kHz das Phasen-
mass linear von o abhinge, wurde fiir zwei wei-
tere Werte von ¢ eine andere Art der Messung ge-
wiihlt. Indem nédmlich fiir Leerlauf cosh yl = —=*
ist, kann durch Messung des Verhiltnisses der Span-
nungen am Anfang und am Ende des Kabels und
ihrer Phasendifferenz auf yl und also auch auf «
geschlossen werden. 11, und 11, wurden mittels R6h-
renvoltmeter gemessen, die Phasendifferenz erhielt
man aus Form und Lage der Ellipse, die der Ka-
thodenstrahl auf dem Schirm des Oszillographen
zeichnete, wenn U, und U, auf die zueinander
senkrechten Ablenkplattenpaare gegeben wurden.
Die beiden Messungen lieferten eine Bestitigung fiir

den geradlinigen Verlauf der Funktion auch unter-
halb der Frequenz 100 kHz.

2, Einige mathematische Ableitungen und Beweise
zu Ziff. 2 und 3 des Abschnittes B

a) Zum Beweis der Behauptung (von B, 2, b),

dass
t—7v cosfw(t—7)] 1 cos(wt) _t—37

4 72

4 2 w T w

Joofole—3q] | dnlon o2

w=0

w 2 72 ?

sei, nehmen wir an, w sei so klein, dass:

2t2
coswt=1_w :
2 (g )2
cosw(t—r)=1_u;
2
2(t—27)2
cosw(t—2r)=1_ﬂ 27) :
2
2 (¢—37)2
cosw (t—37) = 1_#2;

sinwt = Wt

sei. Dies eingesetzt, erhalten wir nach Zusammen-
fassen und Ordnen der Glieder:

t—7 w(t—72 1 wt? —37 w(t—37)2
{"Tﬂ'T v 2 42 2
B ) Gt 2|
27 2 |

Fiir w = 0 wird dieser Ausdruck — wie zu be-
weisen war — zu Null.

b) Zur numerischen Berechnung von Kurven,
die Gl. (18a) gehorchen, ist es von Vorteil, einiges
iiber das Verhalten der Funktion Si(x) zu wiscen.
So ist Si(x) = « falls |x| ((1. Ferner gilt fiir ein

|2|»1:8i(+x) = j:izt— _cosx (wobei der Fehler

fiir |x| > 32 nur noch < 1% ist); mit dieser Be-

ziehung konnen wir, wenn Q(t— 1) [und damit

selbstverstindlich auch Q(t—37)] kleiner als —3x
ist, schreiben:

1 t\ .. t—7)2[ m cosf(t—7)

D(t), = ;(24;) Si (.Qt)-lf—%n% [_E;—Q_(t(——r)):l—
B Ui}ﬁ’[f_cosﬂ(t—3r)] 1 cos !2t+

dxt? | 2 237 T Q

t-7 cos2(t-7) t-3r cos Q(t—37)

4 n 72 Q2 4772 Q

Sind cos 2(t—27)

w272 Q2

Nach Zusammenfassung und Ordnung der Glieder
erhilt man:

¢(c)g=(2_ri) [M—FLJ—M.;_

T 2 Tl
sin 27 - cos 2 (t—27)
27 v 22

Fiir Q > 5—” muss die Summe der beiden letzten
T
Glieder kleiner als -5:_[6 sein und kann daher ver-

nachldssigt werden; man erhilt somit:

g = (2 —~ i) [—Si(g LN ﬂ (19a)

T /4

Fiir sehr kleines ¢ wird Si (2¢) = Qt und

D(t), = _Jlt_ (2—%) (Qt +§)

demnach

2 1
(P Ockymr= "~ 2

19b
. (19b)

¢) Die in Gl. (30) enthaltenen Integrale werden
nach Einsetzen der Grenzen unendlich; wir formen
sie daher etwas um:

2 L2
t—3t(cosw(t—3 t—7 (cosw(t—
037, oty
27 72 w 27 1? w
0 0
2
1 .
+l coswtdw}z_ - lim)(¢—37) .
T w 2.1t 630
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[cosw(t—37)—1]dw + dw

w

—(t—=7)-

[cosw (t—7)— l]dw+dw+2 S[coswt—l]dw—[—dw}

w w

mmb mt/\b

d

Nach Ordnung der Glieder erhalten wir:

Q2
t—37 t——r S _
2 v? C2xe
0 0
2
_t—3r cosw(t—37)—1 do_ 77 .
27 72 w 27 72
2 0 1 1 Qo
i Scosw(t T)— g e Scoswt—l do
w T w
0 0

Die Integrale der rechten Seite geben auch fiir die
untere Grenze (w = 0) endliche Werte. Substituie-
ren wir weiter im ersten Integral w(t— 37) = z,
im zweiten @w(t—1t) = z, im dritten ot = z, so
erhalten wir Gl. (31).

Hrn. Prof. Dr. F. Tank moéchte ich hier noch fiir
die Anregung zu dieser Arbeit, fiir seine Ratschlige
und sein freundliches Interesse herzlich danken.

D. Literatur

Schwachstromtechnik (Springer

[1 Theorie der

Wallot,
1932).
[2] Wagner, Operatorenrechnung (J. A. Barth 1940).

[3] Droste, Die Losung angewandter Differentialgleichungen
mittels Laplacescher Transformation (Mittler & Sohn
1939).

[4] Frank-v. Mises, Differentialgleichunzen der Physik (Vie-
weg & Sohn 1930).

[51 Enzyklopiddie der mathematischen Wissenschaften II,
3,1, Nr. 20 (Teubner).

[6] Joos-Kaluza, Hohere Mathematik fiir den Praktiker (J.
A. Barth).

[7] Doetsch, Theorie und Anwendung der Laplace-Transfor-
mation (Springer 1937).

[8] Jahnke und Emde, Funktionentafeln (Teubner 1938).

[9] Brit. Ass. Ad. Sc., Mathematical tables, Vol. I (London
1931).

[10] Tani, Tables of si,, and ci,, (Meguro, Tokyo 1931).

[11] Leitsiitze fiir den Schutz *elektrischer Anlagen gegen
atmosphirische Ueberspannungen, Bull. SEV, Bd. 33
(1942), S. 291.

[12] D. Gabor, Kathodenoszillograph, Forschungshefte der
Studiengesellschaft fiir Hochstspannungsanlagen, 1. Heft
(Verlag der Vereinigung der Elektrizititswerke, Berlin
1927).

[13] N. Nielsen, Theorie des Integrallogarithmus (Teubner
1906).

[14] Zinke, Frequenzunabhiingige kapazitiv-ohmsche Span-
nungsteiler fiir Messzwecke, ETZ, Bd. 60 (1939), S. 927.

[15] R. Elsner, a) Die Messung steiler Hochspannungsstésse
mittels Spannungsteilers, Arch. Elektrotechn., Bd. 33
(1939), S. 23. b) Die Berechnung der Spannungsvertei-

lung an einem Mehrfachkettenleiter, Wissenschaftliche
Veroff. aus dem Siemens Konzern, Bd. 20 (1942), S.83.

[16] Laska, Sammlung von Formeln der Mathematik (Vie-
weg & Sohn, 1888/94).

Ein neuer QOelstrahlschalter fiir Mittelspannung
Von A. Roth, Aarau

Aufbau und Wirkungsweise eines élarmen Schalters fiir
Nennspannungen unter 45 kV werden unter Hinweis auf die
Vorteile gegeniiber anderen Schaltertypen beschrieben. Das
zu losende Problem lag in der Reduktion der seitlichen Ab-
messungen ; der Erfolg ergab sich durch ein neues Prinzip in
der Ausbildung von Oelgefiss und Léschkammer.

Die Zeit, wo die Schalter in Hochspannungsan-
lagen einen Punkt der Beunruhigung fiir die Leiter
von Betrieben mit grosserer Kurzschlussleistung
bildeten, liegt kaum 15 Jahre zuriick. Seither hat
die Einfithrung der 6larmen und Druckluft-Schalter,
aber auch die Vervollkommnung der Kessel6lschal-
ter auf Grund der Forschung Abhilfe geschaffen.
Merkwiirdigerweise hat bis heute in unserem Lande
fiir Betriebsspannungen bis 30 kV in Anlagen mit
kleiner Schalterzahl der ehrwiirdige Oelschalter
seinen Platz zdhe behauptet. Der Grund liegt wohl
darin, dass fiir solche Anlagen die Verwendung
der Druckluftschalter mit ihrer kostspieligen, und
als automatische Einrichtung immerhin empfind-
lichen Drucklufterzeugungsanlage nicht in Frage
kommt, Schalter mit durch den Abschaltmechanis-
mus erzeugter Druckluft 1) zu kostspielig sind, oder
dann ihr Abschaltvermégen unterhalb des durch
unsere Verhiltnisse erforderlichen Wertes von 200
MVA (bei 8 kV) liegt. Eine Ausnahme bilden die

1) Roth, Bull. SEV 1939, S. 658.

621.316.57.064.25

Construction et fonctionnement d’un interrupteur @ rem-

plissage d’huile restreint, pour tensions nominales inférieures

a 45 kV. Avantages par rapport aux autres types d’interrup-

teurs. Le probléme consistait @ réduire les dimensions laté-

rales. Il a été résolu par un nouveau systéme de cuve a huile
et de chambre d’extinction.

fiir Unterbrechung des Betriebsstromes gebauten
Lastschalter 2), welche aber Kurzschluflstrome nur
in Verbindung mit Sicherungen beherrschen kon-
nen.

Es lag darum nahe, den Oelstrahlschalter, wel-
cher urspriinglich nur fiir Freiluftanlagen gedacht
war, sich dann aber dank seiner Einfachheit und
Robustheit auch fiir Innen-Anlagen von 45 kV und
dariiber immer mehr durchsetzte, auch fiir nie-
drigere Spannungen zu entwickeln. Die ersten Stu-
dien zeigten bald, dass dieses Prinzip gerade fiir
diesen Verwendungszweck verschiedene zusitzliche
Vorteile aufweist. Der hauptsidchlichste besteht in
der Moglichkeit, damit Schaltanlagen in einer
Ebene auszulegen 3), mit dem grossen Vorteil der
einfachen Leitungsfithrung und der damit verbun-
denen Klarheit und Uebersichtlichkeit der ganzen
Anlage, der Einsparung an umbautem Raum und
der Verhiitung von Bedienungsfehlern und Un-

2) Ebenda, S. 655.
3) Scherb, Bull. SEV 1939, S. 659ff.
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