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Le théorème de la conservation de la puissance réactive
Par P. Lambossy, Fribourg 621.3.016.25

La puissance réactive, définie par le produit VI sin <p

jouit dans les calculs électrotechniques de toutes les propriétés
de la puissance active Ul cos (p. De même que la

puissance active totale absorbée par un réseau, aussi compliqué
qu'on voudra, est égale à la somme des puissances actives
des différentes parties de ce réseau, de même en est-il pour
la puissance réactive. C'est le théorème de M. Boucherot. Ce
théorème est ici démontré dans toute sa généralité, et on
montre, par une interprétation géométrique, que les démonstrations

qu'on peut donner, apparemment différentes, ont un
lien entre elles. Les unes consistent essentiellement en une
rotation d'un système de vecteurs, les autres en un retournement

de ce système.

Die Blindleistung, definiert durch das Produkt VI sin (p,
erscheint in den elektrotechnischen Rechnungen mit allen
Eigenschaften der Wirkleistung UIcoscp. Das Theorem,
wonach die von einem beliebig komplizierten Netz total
aufgenommene Wirkleistung gleich ist der Summe der Wirkleistungen

der verschiedenen Teile des Netzes, gilt, nach Boucherot,
gleicherweise für die Blindleistung. Dieses Theorem wird
hier in seiner ganzen Allgemeinheit bewiesen und es wird
durch eine geometrische Interpretation gezeigt, dass scheinbar
sehr verschiedene Beweise miteinander zusammenhängen. Die
einen bestehen im wesentlichen aus der Rotation eines
Vektorsystems, die andern in der Umkehrung dieses Systems.

1° Introduction
On considère un réseau fermé dont les divers

circuits contiennent des forces électromotrices et
des appareils récepteurs quelconques. Si Un est la
tension aux extrémités d'un tronçon de ce réseau,
în le courant qui le parcourt, çpn le décalage de I„
sur Un9 on a, en régime sinusoïdal,

S Un I„ cos <pn= 0, A1 U„ I„ sill cpn 0.

La première équation exprime le théorème de
la conservation de la puissance active; comme il
offre une certaine évidence, en vertu du principe
de la conservation de l'énergie, on pose souvent
cette équation comme allant de soi, oubliant qu'elle
peut être démontrée par les seules lois du courant
électrique.

L'autre équation exprime le théorème de la
conservation de la puissance réactive; il a été indiqué
par M. Boucherot qui l'a qualifié de principe. Il
convient cependant de ne pas employer ce terme
de «principe», puisqu'il s'agit d'un théorème qui se
démontre. Malgré sa très grande analogie avec le
précédent, sa démonstration n'est toutefois pas si
immédiate.

Le théorème de la puissance réactive a fait l'objet

d'une quantité d'articles de revues; on a même
tenté de l'étendre aux courants 11011 sinusoïdaux. Les

premières démonstrations, quoique laborieuses,
manquaient de généralité1)- Lin réseau, en effet,
n'est pas toujours une association de récepteurs en
série et de récepteurs en parallèle. Qu'on pense, par
exemple, au schéma du pont de Wheatstone!

M. Langevin 2) est, je crois, le premier qui ait
établi le théorème pour un réseau quelconque. M.
Le Cocq3), après lui, a donné une variante d'une
manière aussi très succincte. J'ai pensé que cette
question méritait quelques développements; il
importait surtout de montrer le lien qui unit les diverses

démonstrations qui ont été données ou qui
peuvent aboutir. C'est le sujet de cet article.

2° Relations de réciprocité entre deux réseaux
de même configuration

Soit un réseau quelconque, non limité à des bornes,

mais complètement fermé, comprenant dans ses

1) Voir p. ex. Swyngedauw: Cours d'électrotechnique,
t. II, p. 62.

2) Revue générale de l'Electricité, 1917, 1.1, p. 1015.
3) Même revue, Le Cocq, 1921, t. II, p. 85.

circuits 4) des appareils récepteurs et des sources de
courant (fig. 1).

Appliquons aux nœuds du réseau A, B, la
première loi de Kirchboff.

2iA 0, XiB 0,... (1)

2iA 0, p. ex., signifie que la somme des courants
qui partent du point A est nulle.

Fig. 1. Fig. 2.

Réseau (I) Réseau (II)

Multiplions les équations (1) par des nombres
quelconques v'A, v'B,... et ajoutons; il vient

v'A SiA + v'B 2iB + 0 (2)

Fixons sur chaque circuit un sens positif de
courant; pour AB, p. ex., allant de A vers B (fig. 1).
Si nous désignons par irl ce courant, nous avons pour
circuit

'a — 'ß — ln

Nous trouvons dans l'équation (2) deux termes
relatifs à ce circuit, dont la somme peut être
transformée; ce sont

v'a>A + f'ßiß (v'A — v'B) Ù "Va
Nous avons donc posé v A — v'B u n. En opérant
ainsi sur chaque groupe de deux termes de l'équation

(2), celle-ci peut s'écrire

2u„in 0 (3)

Tandis que les v'A, v'B, étaient arbitraires, les

quantités un ne le sont pas complètement, car elles
sont liées par certaines relations. Si, p. ex., A, B, G

sont trois nœuds du réseau, on a

4) Circuits ouverts, c'est-à-dire terminés à deux extrémités;
quand le circuit considéré sera fermé, je dirai expressément:
circuit fermé.
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v'a—v'c (v'A — v'B) + (v'B — v'c)
ou

II u 2 ~f" u'3

Il existe d'autres relations semblables dont le nombre

dépend de la forme du réseau. Les u n ne sont
donc pas tous indépendants. Pour tenir compte
automatiquement de cette dépendance mutuelle,
imaginons un réseau II de même configuration que
le réseau I, mais dont les circuits peuvent être autrement

constitués (fig. 2). Supposons les circuits de

ce réseau parcourus par des courants, selon un
régime quelconque, et prenons pour les nombres v'A,
v'B,... les potentiels des points correspondants A',
B', Les divers u„' seront donc les différences de

potentiel aux extrémités de chaque circuit du
réseau II, et les relations dont nous avons parlé seront
certainement satisfaites.

Ces explications fixent le sens de la phrase qu'on
trouvera dans la suite, que les quantités u n «liées
entre elles par certaines relations, sont d'ailleurs
arbitraires».

Nous avons établi l'équation (3) en partant du
réseau I et en associant à ce dernier le réseau II. Si
inversement nous considérons I comme le réseau
associé de II, nous avons

2 un i„' 0 (4)

En résumé, entre deux réseaux de même configuration

existent les relations de réciprocité exprimées

par les équations

2 un' in 0, I un in' 0

3° Le théorème de la puissance active

Nous avons un cas particulier important lorsque
le réseau associé de I est le réseau I lui-même. Alors
chacune des équations (3) et (4) se réduit à

2 u„ i„ 0 (5)

Nous allons tirer parti de (5) en supposant que
les tensions et les courants du réseau sont alternatifs

sinusoïdaux. Prenons

un V_2 Un sin (cat — 6>„) \

Ù V 2 sin &n — <Pn) I

En écrivant ainsi nous avons pris comme origine
des phases la phase d'une grandeur électrique
quelconque A sin cot du réseau.

Formons le produit

Û 2 Un In sin (cot — 0n) sin (cot — 0n — cpn)

Le produit des deux sinus se laisse transformer au
moyen de la formule

sin a sin b — [cos (a — b) — cos (a + b) ]
2

Nous aurons

Unln cos cpn— UnIn cos (2cot — 2 0„—-cpn) (7)

Puisque, d'après (5), 2 unin 0, nous avons l'équation

2Vnln cos cpn—2UnIn cos (2cot — 20n — cpn) 0 (8)

On peut égaler à zéro séparément les deux sommes,
du moment que la 2e contient la variable indépendante

t
A U„/„ cos cpn 0 (9)

2UnIn cos (2cot — 2 0n — cpn) 0

L'équation (9) exprime le théorème de la
puissance active. Comme l'autre équation doit être
satisfaite quelle que soit la valeur de t, nous
l'écrirons

2 UnIn cos (2 0nA-cpn — cp) 0 (10)

en remplaçant 2cot par f. Comme cp est une quantité

arbitraire, nous pouvons faire une fois cp — 0,

et une autre fois cp — ; il vient
2

2UnIn cos (20„ + ÇPn) 0 1

2UnIn sin (2 0n -f- cpn) 0 J
>

Ces deux équations remarquables ressemblent aux
équations 2 UnIn cos cpn 0, 2 UnIn sin cpn — 0, qui
expriment les théorèmes de la puissance active et de
la puissance réactive, mais ces dernières ne peuvent
se déduire de (11) par de simples transformations
algébriques.

4° Le théorème de la puissance réactive

En second lieu nous appliquerons l'équation (3)
au cas suivant : Le réseau I est alternatif ; nous le
considérons à l'instant t où il possède une certaine
répartition de courants et de tensions. Le réseau II
n'est autre que le réseau I, mais considéré à l'époque

t + t1. Nous regarderons t comme une variable,
t, comme une constante, de sorte que les tensions
et les courants de II sont décalés du même angle cp

par rapport aux tensions et courants correspondants
de I.

Tout cela se résume en écrivant l'équation (3)
comme suit:

2 (u„) t+tl(in)t 0

Nous avons donc

un j/2 U„ sin (cot + cot1— 0„)
in ]/ 2 In sin cot Qn cpn)

Nous formons le produit unin, le transformons
comme il a été expliqué, et obtenons, après avoir
remplacé cot1 par cp

ZU„In cos (cpn-\-cp) — 2UnIn cos (2o)tA-
-)- cp — 2 0n — cpn) 0

On peut égaler à zéro séparément les deux sommes,

mais la seconde ne nous donnant aucun résultat

nouveau, nous aurons simplement

2 UnIn cos (<pn + cp) 0 (12)

cp étant arbitraire, faisons cp 0 et cp — il vient

2 UnIn cos cpn 0

sin cpn 0^ VJn (13)
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La deuxième équation (13) exprime le théorème de
la puissance réactive.

5° Interprétation géométrique
En examinant un diagramme nous pourrons en

déduire la signification géométrique de l'opération
que nous venons de faire, et nous découvrirons en
même temps l'opération qui permet de passer des

équations (11) aux équations (13).
Le diagramme du réseau I comporte un certain

nombre de vecteurs destinés à représenter des
tensions et d'autres vecteurs pour les courants. A partir
d'un point 0 nous portons autant de vecteurs que
le réseau possède de courants. Ces vecteurs ont entre
eux des relations; si, p. ex., observant les flèches
des courants autour d'un nœud, on a i, i, + i3,
cette égalité algébrique se traduit en une égalité
entre vecteurs Qq !y2 + (y3.

Du même point 0 on fait partir d'autres vecteurs
destinés à représenter les tensions, et des remarques
analogues peuvent être faites.

Fig. 3.

Rotation des

vecteurs-tensions d'un

angle <p

Pour ne pas encombrer la fig. 3 de vecteurs, on a

représenté simplement /„ et Un relatifs à un circuit
du réseau et faisant entre eux l'angle cpn; et aussi
deux autres tensions ON et MN liées à Un afin de
donner plus de clarté aux explications qui vont
suivre.

D'après les notations que nous avons adoptées,
0„ est le décalage de Vn par rapport à une grandeur

électrique OA dont nous prenons la phase
comme origine des phases. L'équation (12) dans
laquelle cp est arbitraire montre que l'équation

2 un /„ cos Cpn 0 (14)

ne cesse pas d'être satisfaite quand on augmente
tous les décalages cpn d'un même angle cp. Géométriquement

cela revient à tourner en bloc le système
des vecteurs U„ d'un angle quelconque cp.

6" Retournement des tensions

La démonstration de la formule

2 UnIn cos (cpn + cp) =0 (12)

peut être reprise sous une forme abrégée et à peine
différente en considérant le diagramme.

L'équation
2u'nin 0 (15)

est vérifiée quand on prend pour in le vecteur In et
pour un' le vecteur OM Un. Elle conduit au théorème

de la puissance active

2' UnIn cos cpn 0 (16)

Si nous n'oublions pas que les quantités it'„, liées
entre elles par certaines relations, sont d'ailleurs
arbitraires, le fait de tourner les vecteurs Un d'un
même angle cp n'altérera pas ces relations, et le
nouvau vecteur OM' Un avec l'ancien In vérifiera
encore l'équation (15) et en conséquence l'équation
116), qui s'écrira alors

2' U„/„ cos (çp„ + 99) =0
Nous sommes naturellement conduits à un autre

changement du système de vecteurs-tensions. Sans
modifier leurs relations mutuelles, ni leurs
grandeurs, ni leurs angles, nous pouvons effectuer un

Fig. 4.

Retournement des vecteurs-

tensions autour de l'Axe X'X

/
/

retournement du système autour d'un axe
quelconque X'X passant par 0. Sur la fig. 4 le triangle
OMN après un retournement autour de X'X est

figuré en OMJN1.
Pour fixer la direction de l'axe de rotation,

désignons par 0 l'angle AOX. Puisque

angle MfiX angle MOX On + 0
Le vecteur Un a tourné de l'angle 2 i @n i (-)) de

sorte que le nouveau décalage, c'est-à-dire l'angle
Mfil,, est égal à cpn + 2( 0„ + 0).

Comme nous l'avons dit, l'équation

2' UnIn cos cpn 0

ne cessant pas par cela d'être satisfaite, nous y
remplaceront cpn par 2 Sn + cpn + 2 0. II vient

2UnIn cos (2 &n -f- cpn -f- 20) 0.

Puisque l'angle 0 est tel qu'on voudra, nous pou-
71

vous prendre 20 0 et 20 —.11 vient

2UJn COS (2 0n + cpn) 0

2 Un /„ sin (2 0„ -f- cpn) 0

Nous retombons sur les équations (11) et nous
voyons aussi quel est leur lien avec les équations
(13) 5).

7° La puissance apparente est un vecteur
Un exemple numérique illustrera les explications

qui précèdent et celles qui vont suivre. La fig. 5 re-

5) La démonstration de M. Langevin consiste essentiellement

en un retournement des tensions autour de l'axe OA.
Celle de M. Le Cocq consiste en un retournement des
courants autour de l'axe OA.
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Vi 520 V
433,2

Us - 191

Ui 271,7

U' 309

u 629,6

u - 28 A
I2 20

h - 17,85

Ii 25,26

/' 14,5
43

Fig. 6.

Diagramme correspondant au réseau de la fig. 5

présente un réseau ouvert dont le diagramme est
donné par la fig. 6. Il n'est pas nécessaire de
reproduire ici des calculs. Le lecteur contrôlera sur

le diagramme, à l'aide des lignes pointillées, que la
première loi de Kirchhoff est bien vérifiée en
chaque nœud du réseau, et que la tension entre
deux nœuds M et N est la somme géométrique des

Fig. 5.

•" Réseau dont il est question

dans l'exemple numérique

tensions sur les divers circuits qui composent un
chemin allant de M à N. Ainsi

IL II, + IL; U Uj + U3

Comme il s'agit d'un réseau ouvert, les équations
113) doivent s'écrire, dans cet exemple

(17)
UI cos cp — 2 U„In cos cpn

UI sin cp S UnI„ sin cpn

U est la tension entre les bornes A et B du réseau,
I le courant qui entre dans le réseau, et <p le décalage

de I sur U.
Semblablement nous devons écrire les équations

(11) comme suit:

UI cos (2 0 + cp) IUnln cos (2 0n + cpn)

UI sin (2 0 + cp) ZUnln sin (20n + cpn)

Remarquons cependant que 0„ est le décalage de
Un par rapport à une grandeur électrique quelconque

du réseau. Si pour cette grandeur en question
on choisit la tension U, alors 0 0, et nous
pouvons écrire

UI cos cp I UnIn cos (2 0„ + cpn) n j..UI sin cp — S UnIn sin (2 0„ + pn) V

Les équations (17) et (18) montrent que la
puissance apparente est un vecteur. Mais l'angle que fait
le vecteur UnIn avec une direction fixe est cpn dans
le premier système et 2 0„ 'Pn dans le second.

Fig. 7.

Diagramme des puissances

apparentes

Nous avons représenté sur la fig. 7 ces deux systèmes
de vecteurs qui ont chacun pour somme le même
vecteur UI.

Panzerholz im Dienst der Elektrotechnik
Von A. Stager, Baden

Gegenüber vollen Holzbrettern weist Sperrholz erheblich
verbesserte Biegefestigkeit auf und es erweist sich innerhalb
gewisser Grenzen als praktisch unabhängig von wechselnder
Temperatur und Feuchtigkeit; es dehnt sich nicht, schwindet
nicht und bleibt frei von Rissen und Ungeziefer.

Aus der Technologie der Sperrholzerzeugung sei hier nur
das grundsätzlich Wichtige gestreift. Geeignet «abgelängte»
Baumstämme werden nach erfolgtem Dämpfen oder Kochen
auf Schälmaschinen in Furniere geschnitten. Diese Maschinen
sind grossen massiven Drehbänken vergleichbar; während
der Stamm um seine Achse rotiert, löst eine langsam gegen
die Baumachse vorrückende Messerschneide von der Länge
des Stammstückes ein «endloses» Furnierband ab, dessen
Dicke durch Einstellen des Messervorschubes (bei konstanter
Drehzahl des Stammes) nach Wunsch gewählt wird.

Das Furnierband wird nachher auf Scheren in Stücke
zweckmässiger Länge geschnitten. In besondern Trockenanlagen

wird den Furnieren die überflüssige Feuchtigkeit
entzogen ; hernach werden sie mit Leim bestrichen, mit gekreuz-

621.315.614.4

ten Fasern aufeinandergelegt und in besondern Pressen unter
Anwendung von Druck und Wärme während einer bestimmten

Zeitdauer zu Sperrholzplatten verleimt.
Die erwähnten günstigen technologischen Eigenschaften

des Sperrholzes beruhen auf dem Prinzip der gekreuzten
Fasern, wodurch sich innere Spannungen der einzelnen
Furniere gegenseitig blockieren. Bei Verwendung wasserfester
Leime, z. B. der heute vielfach gebräuchlichen Spezialleime
auf Kunstharzbasis, wird auch die ganze Sperrholztafel gegen
Feuchtigkeit weitgehend unabhängig.

Die Industrie erzeugt Sperrholz mit einer ungeraden
Anzahl Furniere (auch «Lagen» genannt). Bei einer Sperrholzplatte

mit insgesamt 3 Lagen verlaufen die Fasern der beiden
Aussenfurniere zu einander parallel, die der Mittellage senkrecht

dazu.
Während die europäische Sperrholzindustrie vor dem

Krieg viel exotische Hölzer verarbeitete, erkannte man in
jüngerer Zeit, dass auch der Forst dieses Kontinentes für
technische Zwecke willkommenes Rohmaterial liefert; ge-
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