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Le théoréme de la conservation de la puissance réactive

Par P.Lambossy, Fribourg

La puissance réactive, définie par le produit Ul sin ¢
jouit dans les caleuls électrotechniques de toutes les proprié-
tés de la puissance active Ul cos ¢. De méme que la puis-
sance active totale absorbée par un réseau, aussi compliqué
qu'on voudra, est égale a la somme des puissances actives
des différentes parties de ce réseau, de méme en est-il pour
la puissance réactive, C’est le theoréme de M. Boucherot. Ce
théoréme est ici démontré dans toute sa généralité, et on
montre, par une interprétation géométrique, que les démons-
trations qu’on peut donner, apparemment différentes, ont un
lien entre elles. Les unes consistent essentiellement en une
rotation d’un systeme de vecteurs, les autres en un retourne-
ment de ce systéme.

1° Imtroduction
On considére un réseau fermé dont les divers
circuits contiennent des forces électromotrices et
des appareils récepteurs quelconques. Si U, est la
tension aux extrémités d’un troncon de ce réseau,
I, le courant qui le parcourt, ¢, le décalage de I,
sur U, on a, en régime sinusoidal,

U I, cosgp, =0, YU,I, sin ¢, = 0.

La premiére équation exprime le théoréme de
la conservation de la puissance active; comme il
offre une certaine évidence, en vertu du principe
de la conservation de I'énergie, on pose souvent
cette équation comme allant de soi, oubliant qu’elle
peut étre démontrée par les seules lois du courant
électrique.

I’autre équation exprime le théoréme de la con-
servation de la puissance réactive; il a été indiqué
par M. Boucherot qui I'a qualifié de principe. 11
convient cependant de ne pas employer ce terme
de «principe», puisqu’il s’agit d’'un théoréme qui se
démontre. Malgré sa trés grande analogie avec le
précédent, sa démonstration n’est toutefois pas si
immédiate.

Le théoréme de la puissance réactive a fait 1’ob-
jet d'une quantité d’articles de revues: on a méme
tenté de Iétendre aux courants non sinusoidaux. Les
premiéres démonstrations, quoique laborieuses,
manquaient de généralité '). Un réseau, en effet,
n’est pas toujours une association de récepteurs en
série et de récepteurs en paralléle. Qu’on pense, par
exemple, au schéma du pont de Wheatstone!

M. Langevin ?) est, je crois, le premier qui ait
établi le théoréme pour un réseau quelconque. M.
Le Cocq?), aprés lui, a donné une variante d’une
maniére aussi trés succincte. J’al pensé que cette
question méritait quelques développements; il im-
portait surtout de montrer le lien qui unit les diver-
ses démonstrations qui ont été données ou qui peu-
vent aboutir. C’est le sujet de cet article.

2° Relations de réciprocité entre deux réseaux
de méme configuration

Soit un réseau quelconque, non limité a des bor-
nes, mais complétement fermé, comprenant dans ses

1) Voir p. ex.
t. IL, p. 62.

2) Revue générale de I'Electricité, 1917, t. I, p. 1015.
3) Méme revue, Le Cocq, 1921, t. II, p. 85.

Swyngedauw: Cours d’électrotechnique,

621.3.016.25

Die Blindleistung, definiert durch das Produkt Ul sin ¢,
erscheint in den elektrotechnischen Rechnungen mit allen
Eigenschaften der Wirkleistung Ul cos ¢. Das Theorem, wo-
nach die von einem beliebig komplizierten Netz total aufge-
nommene Wirkleistung gleich ist der Summe der Wirkleistun-
gen der verschiedenen Teile des Netzes, gilt, nuch Boucherot,
gleicherweise fiir die Blindleistung. Dieses Theorem wird
hier in seiner ganzen Allgemeinheit bewiesen und es wird
durch eine geometrische Interpretation gezeigt, dass scheinbar
| sehr verschiedene Beweise miteinander zusammenhiingen. Die
‘ einen bestehen im wesentlichen aus der Rotation eines Vek-
torsystems, die andern in der Umkehrung dieses Systems.

circuits *) des appareils récepteurs et des sources de
courant (fig. 1).

Appliquons aux noeuds du réseau A, B,... la
premiére loi de Kirchhoff.

2i, =0,

(1)

2iy = 0, p. ex., signifie que la somme des courants
qui partent du point A est nulle.

s =000

o €’
A 8 A 8
in
Ao—8 o8
— i
Yt r0sn ]
Fig. 1. Fig. 2.

Réseau (I) Réseau (II)
Multiplions les équations (1) par des nombres
quelcongues v’ ,, v'p, ... et ajoutons; il vient

’ i o X =
V3 Tvglipgt+...=0

(2)

Fixons sur chaque circuit un sens positif de cou-
rant; pour AB, p. ex., allant de A vers B (fig. 1).
Si nous désignons par i, ce courant, nous avons pour
circuit
W = —lp = Iy

Nous trouvons dans Péquation (2) deux termes re-
latifs a ce circuit, dont la somme peut étre trans-
formée; ce sont

u i

.. is oy , .,
vyl + Vglg = (UA_‘vB) Iy = Unply

Nous avons done posé v’y — v’y = u',. En opérant
ainsi sur chaque groupe de deux termes de I'équa-
tion (2), celle-ci peut s’écrire

(3)

<., s
= Uy z,,—O

Tandis que les v'y, v'p, . .. étaient arbitraires, les
quantités ', ne le sont pas complétement, car elles
sont liées par certaines relations. Si, p. ex., A, B, C
sont trois nocuds du réseau, on a

4) Circuits ouverts, c’est-a-dire terminés a deux extrémités;

i quand le circuit considéré sera fermé, je dirai expressément:
circuit fermé,
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Vyi— V= (v —0vp) T (vVg—0'¢)
ou :
u, = u, + u

Il existe d’autres relations semblables dont le nom-
bre dépend de la forme du réseau. Les u’, ne sont
donc pas tous indépendants. Pour tenir compte
automatiquement de cette dépendance mutuelle,
imaginons un réseau II de méme configuration que
le réseau I, mais dont les circuits peuvent étre autre-
ment constitués (fig. 2). Supposons les circuits de
ce réseau parcourus par des courants, selon un ré-
gime quelconque, et prenons pour les nombres v,
v'g, . .. les potentiels des points correspondants A,
B',... Les divers u,’ seront donc les différences de
potentiel aux extrémités de chaque circuit du ré-
seau II, et les relations dont nous avons parlé seront
certainement satisfaites.

Ces explications fixent le sens de la phrase qu’on
trouvera dans la suite, que les quantités u’, «liées
entre elles par certaines relations, sont d’ailleurs ar-
bitraires».

Nous avons établi I’équation (3) en partant du
réseau I et en associant a ce dernier le réseau II. Si
inversement nous considérons I comme le réseau
associé de II, nous avons

Su,i,, =0 (4)

En résumé, entre deux réseaux de méme configu-
ration existent les relations de réciprocité expri-
mées par les équations

iy T
2ui, =0, 2u,i, = 0.

3° Le théoréme de la puissance active

Nous avens un cas particulier important lorsque
le réseau associé de I est le réseau I lui-méme. Alors
chacune des équations (3) et (4) se réduit a

S u, i, =0 (5)

Nous allons tirer parti de (5) en supposant que
les tensions et les courants du réseau sont alterna-
tifs sinusoidaux., Prenons

u, = Y2 U, sin (vt — O,) } (6)
i, = ]/E I, sin (wt— 0, — ¢,)

En écrivant ainsi nous avons pris comme origine
des phases la phase d’une grandeur électrique quel-
conque A sin wt du réseau.

Formons le produit

u,i,=2U,I, sin (wt— 0,) sin (wt— 6,— p,)

Le produit des deux sinus se laisse transformer au
moyen de la formule

sina sinb = % [cos (& — b) — cos (a + b)]
Nous aurons
u,i, = U,IL, cos p,—U,I, cos 2wt—20,—p,) (7)

Puisque, d’aprés (5), 3 u,i, = 0, nous avons I’équa-
tion

2U,1,cos p,— 22U, I, cos Qwt—260,—¢p,)=0 (8)

On peut égaler a zéro séparément les deux sommes,
du moment que la 2¢ contient la variable indépen-
dante 1

2U,I, cosp, =0 9)
2 U, cos Qwt—20,—¢p,) =0

L’équation (9) exprime le théoréme de la puis-
sance active. Comme I'autre équation doit étre
satisfaite quelle que soit la valeur de 7, nous
P’écrirons

2 UnIn cos (2 @n 1 an—g’) =0 (10)

en remplacant 2wt par ¢. Comme ¢ est une quan-
tité arbitraire, nous pouvons faire une fois ¢ = 0,

s T .

et une autre fois ¢ 2727; il vient
2U,I,co8(20,4+¢,) =0 11
UL sin (26, 4+ g,) — 0 | (L)
Ces deux équations remarquables ressemblent aux
équations X U,I, cos ¢, = 0, X U,I, sin ¢, = 0, qui
expriment les théorémes de la puissance active et de
la puissance réactive, mais ces derniéres ne peuvent
se déduire de (11) par de simples transformations
algébriques.

4° Le théoréme de la puissance réactive

En second lieu nous appliquerons I’équation (3)
au cas suivant: Le réseau I est alternatif; nous le con-
sidérons a l'instant ¢ ou il posséde une certaine ré-
partition de courants et de tensions. Le réseau 1I
n’est autre que le réseau I, mais considéré a I’épo-
que t + t,. Nous regarderons ¢ comme une variable,
f, comme une constante, de sorte que les tensions
et les courants de II sont décalés du méme angle ¢
par rapport aux tensions et courants correspondants
de I.

Tout cela se résume en écrivant I’équation (3)
comme suit:

2 (uy) t—i—t‘(in)t =0
Nous avons donce
u, = V@U,, sin (wt + wt, — 6,)
i, = )21I,sin (wt— O, — q@,)
Nous formons le produit u,i, le transformons

comme il a été expliqué, et obtenons, aprés avoir
remplacé wt, par ¢

2U,I,cos (p,+¢)—2U,I cos (Lt +
+90_2@n—(pn) =0

On peut égaler a zéro séparément les deux som-
mes, mais la seconde ne nous donnant aucun résul-
tat nouveau, nous aurons simplement

S U, cos (g, + ) =0

» s y . T, v
@ étant arbitraire, faisons p = 0 et p = E; il vient

(12)

22U, cosgp,= 0 } (13)

U, sing, =0
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La deuxiéme équation (13) exprime le théoréme de
la puissance réactive,

5" Interprétation géométrique

En examinant un diagramme nous pourrons en
déduire la signification géométrique de 'opération
que nous venons de faire, et nous découvrirons en
méme temps l'opération qui permet de passer des
équations (11) aux équations (13).

Le diagramme du réseau I comporte un certain
nombre de vecteurs destinés a représenter des ten-
sions et d’autres vecteurs pour les courants. A partir
d’un point 0 nous portons autant de vecteurs que
le réseau posséde de courants. Ces vecteurs ont entre
eux des relations; si, p. ex., observant les fléches
des courants autour d'un neceud, on a i, =i, + i,
cette égalité algébrique se traduit en une égalité
entre vecteurs J, = J, T J..

Du méme point 0 on fait partir d’autres vecteurs
destinés a représenter les tensions, et des remarques
analogues peuvent étre faites.

NS

D

Fig. 3.
lotation des
vecteurs-tensions d’un
\ angle ¢

o]

SEV10372

Pour ne pas encombrer la fig. 3 de vecteurs, on a
représenté simplement I, et U, relatifs a un circuit
du réseau et faisant entre eux l'angle ¢,: et aussi
deux autres tensions ON et MN liées a U, afin de
donner plus de clarté aux explications qui vont
suivre.

D’apres les notations que nous avons adoptées,
(), est le décalage de U, par rapport a une gran-
deur électrique OA dont nous prenons la phase
comme origine des phases. L’équation (12) dans la-
quelle ¢ est arbitraire montre que ’équation

22U, 1,cos¢, =0 (14)

ne cesse pas d’étre satisfaite quand on augmente
tous les décalages ¢, d'un méme angle . Géométri-
quement cela revient a tourner en bloc le systéeme
des vecteurs U, d'un angle quelconque .

6° Retournement des tensions

La démonstration de la formule

22U, cos (g, T ¢) =0 (12)

peut étre reprise sous une forme abrégée et a peine
différente en considérant le diagramme.
L’équation

Sug, =0

est vérifiée quand on prend pour i, le vecteur I, et
pour u,;’ le vecteur OM = U,. Elle conduit au théo-
réme de la puissance active

22U, cosg, =0

(15)

(16)

Si nous n’oublions pas que les quantités u’,, liées
entre elles par certaines relations, sont d’ailleurs
arbitraires, le fait de tourner les vecteurs U, d’un
méme angle ¢ n’altérera pas ces relations, et le
nouvau vecteur OM’ = U, avec I'ancien I, vérifiera
encore I’équation (15) et en conséquence I'équation
(16), qui s’écrira alors

2 UnIn cos ((fn + QD) =0

Nous sommes naturellement conduits a un autre
changement du systéme de vecteurs-tensions. Sans
modifier leurs relations mutuelles, ni leurs gran-
deurs, ni leurs angles, nous pouvons effectuer un

£

Fig. 4.
Retournement des vecteurs-

tensions autour de I’Axe X'X

/Xl

/
/ SEV 10373

retournement du systéme autour d’'un axe quel-
conque X'X passant par 0. Sur la fig. 4 le triangle
OMN aprés un retournement autour de X'X est
figuré en OM N,.

Pour fixer la direction de ’axe de rotation, dé-
signons par @ I'angle AOX. Puisque

angle M,0X = angle MOX = 0, + 6

Le vecteur U, a tourné de I'angle 2(0,+6) de
sorte que le nouveau décalage, c’est-a-dire I'angle

M.OI, est égal a @, +2(6, + O).
Comme nous 'avons dit, I'équation
22U, cosgp, =0

ne cessant pas par cela d’étre satisfaite, nous y rem-
placeront ¢, par 2 0, + ¢, + 2 6. 1l vient

22U, cos (20,4 ¢, + 20) = 0.
Puisque 'angle @ est tel qu’on voudra, nous pou-

vons prendre 260 = 0 et 2 O = g 1l vient

2U,1, cos (20,+ ¢,) =0
2U,I sin (26,+¢,) =0

Nous retombons sur les équations (11) et nous
voyons aussi quel est leur lien avec les équations

(13) %).

7° La puissance apparente est un vecteur

Un exemple numérique illustrera les explications
qui précédent et celles qui vont suivre. La fig. 5 re-

5) La démonstration de M. Langevin consiste essentielle-
ment en un retournement des tensions autour de 'axe OA.
Celle de M. Le Cocq consiste en un retournement des cou-
rants autour de ’'axe OA.
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présente un réseau ouvert dont le diagramme est
donné par la fig. 6. Il n’est pas nécessaire de re-
produire ici des calculs. Le lecteur contrélera sur

Fig. 5.

/4 . i
— Réseau dont il est question

dans D’'exemple numérique

SEV1037y

le diagramme, a ’aide des lignes pointillées, que la
premiére loi de Kirchhoff est bien vérifiée en
chaque neeud du réseau, et que la tension entre
deux neeuds M et N est la somme géométrique des

Uy =520V

Us = 4332

Us = 101

Uy = 21,7

U’ = 309 »

U = 6296 4

Iy =28 A

Is =20 \ | [ NoA AT I —= e _
I3 = 17,85 {
Iy = 2526

I' =145

1 =43

Vev 10575

Fig. 6.
Diagramme correspondant au réseau de la fig. 5

tensions sur les divers circuits qui composent un
chemin allant de M a N. Ainsi

W,=1,+u;u=1u-+1,

Comme il s’agit d’un réseau ouvert, les équations
(13) doivent s’écrire, dans cet exemple

Ul cos ¢ = %’ UL €os gy \ 17)
Ul singp = Y U,I, sin g,
U est la tension entre les bornes 4 et B du réseau,
I le courant qui entre dans le réseau, et ¢ le déca-
lage de I sur U.

Semblablement nous devons écrire les équations
(11) comme suit:

Ulcos (20— ¢)
Ul sin (2 O + ¢)

SU,I,cos (20,4 @,)
2'U,IL, sin (20, + o,)

Remarquons cependant que @, est le décalage de
U, par rapport a une grandeur électrique quelcon-
que du réseau. Si pour cette grandeur en question
on choisit la tension U, alors @ = 0, et nous pou-
vons écrire

Ulcosp = 2U,I, cos (20,4 ¢,)
Ulsingp = 3 U,I, sin (26, + ¢,)

I

(18)

Les équations (17) et (18) montrent que la puis-
sance apparente est un vecteur. Mais I'angle que fait
le vecteur U,I, avec une direction fixe est ¢, dans
le premier systeme et 2 @, + ¢, dans le second.

1h >
2525
~
o
33
. h /,
p
U1, L3037
o ‘"(1 Fig. 1.
7
A fiaies i Ay
Diagramme des puissances
A
/ "’é\ apparentes
- ~/
< \\)k/ <
> /N
/
7/
/
/
I\ ¥ =52°18"
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Nous avons représenté sur la fig. 7 ces deux systémes
de vecteurs qui ont chacun pour somme le méme
vecteur Ul

Panzerholz im Dienst der Elektrotechnik

Von A. Stiger, Baden

Gegeniiber vollen Holzbrettern weist Sperrholz erheblich
verbesserte Biegefestigkeit auf und es erweist sich innerhalb
gewisser Grenzen als praktisch unabhiingig von wechselnder
Temperatur und Feuchtigkeit; es dehnt sich nicht, schwindet
nicht und bleibt frei von Rissen und Ungeziefer.

Aus der Technologie der Sperrholzerzeugung sei hier nur
das grundsitzlich Wichtige gestreift. Geeignet «abgelingte»
Baumstimme werden nach erfolgtem Dimpfen oder Kochen
auf Schidlmaschinen in Furniere geschnitten. Diese Maschinen
sind grossen massiven Drehbinken vergleichbar; wihrend
der Stamm um seine Achse rotiert, 16st eine langsam gegen
die Baumachse vorriickende Messerschneide von der Liange
des Stammstiickes ein «endlosesy Furnierband ab, dessen
Dicke durch Einstellen des Messervorschubes (bei konstanter
Drehzahl des Stammes) nach Wunsch gewiéhlt wird.

Das Furnierband wird nachher auf Scheren in Stiicke
zweckmissiger Linge geschnitten. In besondern Trockenan-
lagen wird den Furnieren die iiberfliissige Feuchtigkeit ent-
zogen ; hernach werden sie mit Leim bestrichen, mit gekreuz-

621.315.614.4

ten Fasern aufeinandergelegt und in besondern Pressen unter
Anwendung von Druck und Wirme wihrend einer bestimm-
ten Zeitdauer zu Sperrholzplatten verleimt.

Die erwihnten giinstigen technologischen Eigenschaften
des Sperrholzes beruhen auf dem Prinzip der gekreuzten
Fasern, wodurch sich innere Spannungen der einzelnen Fur-
niere gegenseitig blockieren. Bei Verwendung wasserfester
Leime, z. B. der heute vielfach gebriuchlichen Spezialleime
auf Kunstharzbasis, wird auch die ganze Sperrholztafel gegen
Feuchtigkeit weitgehend unabhiingig.

Die Industrie erzeugt Sperrholz mit einer ungeraden An-
zahl Furniere (auch «Lagen» genannt). Bei einer Sperrholz-
platte mit insgesamt 3 Lagen verlaufen die Fasern der beiden
Aussenfurniere zu einander parallel, die der Mittellage senk-
recht dazu.

Wihrend die europiische Sperrholzindustrie vor dem
Krieg viel exotische Holzer verarbeitete, erkannte man in
jiingerer Zeit, dass auch der Forst dieses Kontinentes fiir
technische Zwecke willkommenes Rohmaterial liefert; ge-
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