Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 31 (1940)

Heft: 24

Artikel: Ueber Glimm-Lampen

Autor: Jaeger, Walter C.

DOI: https://doi.org/10.5169/seals-1061394

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHER ELEKTROTECHNISCHER VEREIN

BULLETIN

REDAKTION:

Generalsekretariat des Schweiz. Elektrotechn. Vereins und des Verbandes Schweiz. Elektrizitätswerke, Zürich 8, Seefeldstr. 301

ADMINISTRATION:

Zürich, Stauffacherquai 36 💠 Telephon 51742 Postcheck-Konto VIII 8481

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet

XXXI. Jahrgang

 N° 24

Mittwoch, 27. November 1940

Betriebserfahrungen mit Dörranlagen.

(Mitteilung der Schweiz. Elektrowärmekommission.)

621.364.2:664.8.047

Im Bulletin des SEV 1940, Nr. 14, hat die Schweizerische Elektrowärmekommission eine Mitteilung zwecks Förderung des Dörrens von Gemüse und Obst veröffentlicht. Im vergangenen Herbst waren nun an vielen Orten elektrische Dörranlagen im Betriebe und die Schweiz. Elektrowärmekommission möchte die mit diesen Anlagen gemachten Erfahrungen sammeln und nach entsprechender Auswertung den Interessenten für die nächste Dörrsaison zur Verfügung stellen. Sie ersucht daher alle diejenigen Stellen, welche über Erfahrungen mit Dörranlagen verfügen, hierüber bis Ende Januar 1941 an das Generalsekretariat des SEV und VSE in Zürich zuhanden der Schweiz. Elektrowärmekommission zu berichten.

Von Interesse sind alle nähern Angaben über die Dörreinrichtungen selbst (Fabrikat, Bauart, Anschlusswert, Regulierbarkeit der Heizung und der Lüftung) und über die Betriebserfahrungen (Bewährung, Energieaufwand für verschiedenes Dörrgut, zweckmässige Temperatur und Dörrdauer, Eignung der verschiedenen Arten und Sorten Obst und Gemüse zum Dörren, Bewährung der Bedienungsvorschriften des Lieferanten). Für Anregungen zur Verbesserung des Dörrens und Trocknens, sowie der Apparate hiezu, ist die Kommission besonders dankbar. Sehr wertvoll sind auch die Erfahrungen mit dem Dörren im Backofen der Haushaltherde und in Haushalt-Dörrapparaten.

Ueber Glimm-Lampen.

Von Walter C. Jaeger, Maienfeld.

621:327.42

Die statische Stromspannungscharakteristik einer Glimmlampe wird näher behandelt. Im Anschluss daran werden Bemerkungen für die Praxis zusammengestellt, die wesentlich und zum Teil nicht allgemein bekannt sind. Sie wurden durch längere Beschäftigung mit den verschiedensten Formen und bei der Herstellung und Entwicklung spezieller Glimmlampen und Glimmrelais erhalten. La caractéristique statique courant-tension d'un tube à luminescence est spécialement traitée. Viennent ensuite des remarques importantes mais pas généralement connues, groupées en vue de leur application pratique. Elles résultent de l'étude prolongée de formes les plus diverses ainsi que de la fabrication et du perfectionnement de lampes et de relais luminescents.

A. Die statische Strom-Spannungs-Charakteristik.

Wird die Spannung *u* einer Gasentladungsstrecke *langsam* vergrössert, so erhält man eine Strom-Spannungs-Charakteristik, die in Fig. 1 gezeichnet ist. Man muss dabei die fallenden Teile der Kurve stabilisieren, indem man den Strom *i*

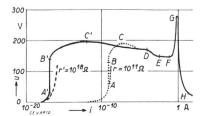


Fig. 1.
Strom-SpannungsCharakteristik einer
Glimmlampe.
— im Dunkeln.
..... im Glühlampenlicht.

beschränkt, z. B. durch eine Glühkathode oder eine Ionisationskammer, die mit Stromsättigung arbeitet. Die Kurve stellt die statische Strom-SpannungsCharakteristik einer Gasentladung in Neon-Helium mit ca. 20 Tor und Nickelelektroden mit ca. 0,5 cm

Fig. 1 besitzt.

Der grosse Elektrodenzylinder dient als Kathode, der kleine Zylinder als Anode und der darin befindliche Stift als Hilfselektrode für spezielle Zwecke, worüber nächstens berichtet wird.

Fig. 2.
Signal-Glimm-Relais
und StabilisatorLampe.

SEV8909

Man kann folgende Teile der Charakteristik unterscheiden:

- 0—A: Die durch äussere Ionisatoren (Höhenstrahlen, Radioaktivität, Photoeffekt) entstehenden Ionen, die die Vorionisation bilden, werden an die Elektroden geführt.
- A—B: Es herrscht beinahe Stromsättigung, d. h. beinahe alle durch äussere Ionisatoren gebildeten Ionen werden an die Elektroden geführt.
- B—C: Eine unselbständige, häufig stossweise, kaum oder nicht leuchtende Entladung wird durch Verstärkung des Vorionisationsstromes i_B durch Stossionisation gebildet.
- C—D: Eine Townsendentladung, d.h. eine selbständige Entladung geringer Stromdichte mit steigender oder fallender Charakteristik, je nach der Gasentladungsstrecke, hat sich ausgebildet.
- D-E: Hier brennt eine «unternormale» Glimmentladung mit verschwindendem Kathodenleuchten.
- E-F: Dies ist das Gebiet der «normalen» Glimmentladung mit konstanter Stromdichte, wobei das Kathodenleuchten nicht die ganze Kathodenfläche mit einer Lichthaut bedeckt.
- F—G: Eine «über» oder «anormale» Glimmentladung mit stärkerem Spannungsanstieg, wobei die ganze Kathodenfläche mit einer Lichthaut bedeckt ist, leuchtet intensiv.
- G-H: Die Kathode erhitzt sich und beginnt thermisch Elektronen zu emittieren, d. h. es entsteht ein Lichtbogen.

Im folgenden werden die einzelnen Abschnitte, soweit sie für die praktische Verwendung von Glimmlampen von Bedeutung sind, behandelt.

0-A: Anlaufen der Vorionisation.

Die angenäherte Berechnung der Charakteristik 0—A gelingt leicht durch die Formel:

$$i = i_m \left(1 - e^{\frac{u}{r i_m}} \right) \tag{1}$$

Dabei ist $i_m \approx i_B$ der Sättigungsstrom für unendlich hohe Spannung u. r ist der Widerstand der Anfangscharakteristik, d. h.

$$r = \left(\frac{\mathrm{d}u}{\mathrm{d}i}\right)_{\substack{u \to 0 \\ i \to 0}} \tag{2}$$

 i_m und r können bei bekannter Ionisation leicht berechnet werden. Beispielsweise Werte sind in Fig. 1 eingezeichnet.

A-B: Sättigung der Vorionisation.

Zwischen A und B herrscht beinahe vollständige Stromsättigung, da infolge der kleinen Anzahl Ionen pro ${\rm cm}^3$ schon kleine Spannungen u zur Erzielung der Sättigung genügen.

B-C: Verstärkung der Vorionisation.

Bei B beginnt Stossionisation, d. h. die Ionen erzeugen durch ihre kinetische Energie (die sie durch die Beschleunigung im elektrischen Felde E erhalten) neue Ionen, so dass der Strom i_B verstärkt wird. Ueber diesen Effekt (der bei gasgefüllten Photozellen und Zählrohren sehr wesentlich ist) vergleiche man vor allem die ausgezeichnete Darstellung von A. von Engel und M. Steen-

beck ¹). Darnach ist die maximale Stromdichte s_c durch folgende Formel gegeben:

$$\left(s_c = \text{konst. } \frac{B}{2} - \frac{\mathfrak{E}}{p} \cdot s_B^{-1/3}\right) \tag{3}$$

Darin bedeutet & die Feldstärke, d. h. für den ebenen Plattenkondensator mit dem Plattenstand d ist $/ \mathbb{G} / = \frac{u}{d}$. Es ist ferner $/ \mathbb{G}_0 /$ die Feldstärke für die Zündung bei verschwindender Vorionisation (d. h. $/ \mathbb{G} / = \frac{u_c'}{d}$), p der Gasdruck, und B ein Exponent aus der Gleichung (4) für die Zahl n der durch ein Elektron pro cm Weglänge (in Feldrichtung gemessen) gebildeten Ionenpaare:

$$n = p A e^{-\frac{B}{\mathfrak{E} d}} \tag{4}$$

J. S. Townsend gab in Marx, Handbuch der Radiologie, Bd. 1, für A und B folgende Tabelle an:

Konstanten zu Gleichung (4).

Tabelle I

Gas	A	В	Gültigkeitsbereich • V p cm · mm Hg
Luft	14,6	365	150 600
N ₂	12,4	342	150 600
\mathbf{H}_2	5,0	130	150 400
CO_2	20,0	466	5001000
$\mathbf{H}_2\mathbf{O}$	12.9	289	150 1000
Ar	13,6	235	100 600
He	2,8	34	20 150

Die Verstärkung s_c/s_B ist bei gasgefüllten *Photozellen* ca. 10, kann aber bei kleinem s_B bis 1000 gemacht werden. Bei Zählrohren ist s_B beinahe 0 und damit kann die Verstärkung sehr gross werden, wie dies auch beobachtet wird.

Der Zündstrom einer selbständigen Gasentladung kann durch (3) berechnet werden. Die Gleichung ist deshalb für Glimmrelais von fundamentaler Bedeutung.

Die Zündspannung u_{C} , bei der die Entladung selbständig wird, d. h. ohne Vorionisation i_{B} aufrecht erhalten bleibt, kann durch folgende Formel berechnet werden:

$$u_{c'} = \frac{B \cdot p \cdot d}{\ln\left(\frac{A \cdot p \cdot d}{\ln\left(1 + \frac{1}{\gamma}\right)}\right)}$$
 (5)

 γ ist von der Energie $\frac{m \cdot v^2}{2}$ der auftreffenden Ionen, von der Oberfläche des Elektrodenmaterials und vom Gas abhängig (Fig. 3).

In Funktion von (Gasdruck mal Elektrodenabstand) erhält man die bekannten Paschenschen Kurven für die Zündspannungen, nach Fig. 4²).

^{1) «}Elektr. Gasentladungen», Bd. 2 (1934), S. 53.

²⁾ G. Mierdel: Townsendentladung in Wien — Hanns Hdb. der Experimentalphysik Bd. 13 (1929), Nr. 3, S. 130.

Die minimale Spannung $(u_C)_{min}$ der Zündung für verschiedene $p \cdot d$ erhält man durch Differentiation von (5) zu

$$(u_{c'})_{min} = e \frac{B}{A} \ln \left(1 + \frac{1}{\gamma} \right) \tag{6}$$

Das Minimum (Gasdruck mal Elektrodenabstand) zu

$$(p \cdot d)_{min} = e \frac{1}{A} \ln \left(1 + \frac{1}{\gamma} \right) \tag{7}$$

Da vor allem B durch äusserst geringe Verunreinigungen des Gases stark geändert wird, ist es verständlich, dass z. B. schon eine Verunreinigung, die nur den 10^6 ten Teil des Füllgases ausmacht,

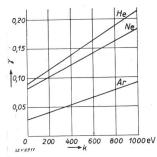
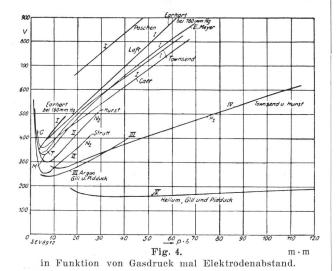



Fig. 3

Anzahl Elektronen y, ausgelöst an Ni durch Auftreffen eines positiven Edelgasions der Energie k.

(Nach Penning, Proc. Acad. Amsterd. Bd. 33(1930),
S. 841.)

die Zündspannung um 50 Volt ändern kann und dass z. B. die Werte der Fig. 4 derart stark schwanken. Da unedle Gase durch die Entladung zum Teil absorbiert und zum Teil befreit werden, sind nicht äusserst vorsichtig und speziell im Hinblick auf eine konstante Zündspannung hergestellte Glimmlampen, zu deren Bau erhebliche wissenschaftlich verarbeitete, praktische Erfahrungen

nötig sind, in ihren Zündspannungen nicht konstant. Es gelingt aber heute, Glimmlampen zu bauen, deren Zündspannung auf 1 bis 3 % genau definiert ist. Auf diese Schwankungen ist bei der praktischen Anwendung immer zu achten.

Sehr wichtig für die Anwendung von Glimmlampen ist es, dass A, B und γ in (5) praktisch unabhängig von der Temperatur sind. Die Zündspannung von Glimmlampen, die mit Edelgasen

aber nicht mit Dampf, der im Gleichgewicht mit seinem Kondensat steht (Hg-Tropfen, Na usw.), gefüllt sind, ist deshalb temperaturunabhängig.

C—D: Townsend-Entladung.

Nach der Zündung einer selbständigen Gasentladung (d. h. einer Entladung, die auch ohne äussere Ionisatoren bestehen bleibt) bei C kann die Charakteristik für kleine Stromdichten (bis etwa $10^{-5}\,\mathrm{A\cdot cm^{-2}}$) nach Engel und Steenbeck 3) durch folgende Formel dargestellt werden:

$$u = u_c - k s^2 \tag{8}$$

$$k = \text{konst.}\left(\frac{B}{2} - \frac{\mathfrak{E}_0}{p}\right)$$
 (9)

Die Charakteristik von C nach D ist darnach und in Uebereinstimmung mit der Erfahrung steigend oder fallend je nach dem

$$\frac{B}{2} > \frac{\mathfrak{G}_0}{p} \text{ fallende Charakteristik } C - D \qquad (10)$$

$$\frac{B}{2} < \frac{\mathfrak{G}_0}{p}$$
 steigende Charakteristik C-D (11)

Im ersten Falle entsteht eine Glimmentladung oder ein Funke (je nach dem äussern Stromkreis), im zweiten Falle eine Coronaentladung.

Dadurch, dass die Charakteristik auch nach der Zündung einer selbständigen Gasentladung weiter steigen kann, entstehen leicht Fehler. Als Zündmoment wird dann nicht das Entstehen einer selbständigen Gasentladung bei C bestimmt (die Glimm-Zündspannung), sondern der Beginn eines

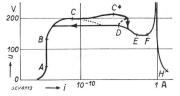


Fig. 5. Strom-Spannungs-Charakteristik.

später fallenden Teils der Charakteristik bei C* (die Funkenzündspannung) wie dies in Fig. 5 eingetragen ist. Da i_C^* erheblich grösser als i_C ist, muss für Glimmlampen, die bei kleinem Strom i zünden sollen, eine fallende Charakteristik zwischen C und D gewählt werden.

D—E: Unternormale Glimmentladung.

Zwischen D und E brennt eine unternormale Glimmentladung, die sich von der normalen Glimmentladung dadurch unterscheidet, dass der Kathodenbrennfleck so klein ist, dass die Entladung nicht mehr als ein lineares Problem angesehen werden kann (da Ionen seitlich aus der Entladung herausdifundieren). Wird die Stromstärke in einer unternormalen Entladung allmählich verkleinert, so erlöscht die Entladung ungefähr beim Punkte D plötzlich und geht in eine unselbständige Entladung über. i_D ist deshalb ungefähr der Löschstrom der Glimmentladung.

³⁾ Elektr. Gasentladungen, Bd. 2, S. 53.

Wenn der Strom i so klein ist, dass der Durchmesser des Brennflecks der Kathode, in dem die normale Stromdichte herrscht, kleiner wird als die normale Kathodenfallraumdicke (Grössenmässig 0,1 mm), so ist die Spannung u an der Entladungsstrecke grösser als im Punkte E. u_E ist die kleinste Spannung der Glimmentladung, d. h. die sogenannte Löschspannung.

E—F: Normale Glimmentladung.

Im Gebiet der normalen Glimmentladung ist nicht die ganze Kathodenfläche mit einer Lichthaut bedeckt, da die Stromdichte in diesem Gebiet nach Tabelle II konstant ist.

Tabelle II gibt die normale Stromdichte, für Kathoden, deren Temperatur etwa der Zimmertemperatur entspricht 4).

Normale Stromdichte s_n/p^2 in 10^{-6} A/cm² mm² Hg auf Zimmertemperatur befindlicher Kathoden für verschiedene Kathodenmaterialien und Gase.

T	ah	111	T	Т

Material	Luft	Sauer- stoff	Stick- stoff	Wasser- stoff	He- lium	Neon	Ar- gon	Queck- silber
Kupfer	. 240	-		64	_	_	_	≈ 15
Gold	. 570	_		110	_			_
Magnesium				_	3	5	20	
Zink		_		80	_	_		_
Aluminium	. 330			90		_		4
Eisen	. —		400	72	2,2	6	160	8
Nickel		←	etwa	wie :	Eisen	\rightarrow		_
Platin		550	380	90	≈ 5	18	150	_

Wird der Strom i gesteigert, so vergrössert sich die von der Lichterscheinung bedeckte Fläche der Kathode und die Brennspannung steigt nur sehr wenig an. Dieser Bereich ist in Fig. 6 dargestellt.

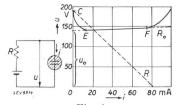


Fig. 6. Strom-Spannungs-Charakteristik ür die «normale Glimmentladung» und Schaltschema.

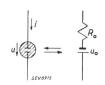


Fig. 7. Ersatzschaltung einer Glimmentladung.

In guter Annäherung kann der Zusammenhang zwischen dem Strom i, der durch die Glimmlampe fliesst, und der daran liegenden Spannung u dargestellt werden durch:

$$u = u_0 + R_0 i \tag{12}$$

Dies bedeutet, dass man als Ersatzschaltung für die Glimmentladung (nicht die Glimm-Lampe) eine Gleichspannungsquelle mit der Spannung u_0 und einem innern Widerstande R_0 nach Fig. 7 wählt. Beim Brennen einer Entladung ist nach Fig. 6

$$R_0 = \frac{\mathrm{d}u}{\mathrm{d}i} \tag{13}$$

Der sogenannte «Wechselstromwiderstand» R_0 beträgt je nach den Glimmlampen nach Angabe von Philips 5) 80 ... 300 Ohm. Nach den Angaben über die Stabilovoltröhren 6) beträgt R_0 für Stabilisatorlampen 20 ... 60 Ohm und soll für gewöhnliche Lampen ungefähr 1000 Ohm betragen. Auf diesem relativ kleinen «Wechselstromwiderstand», der bei Stabilovoltröhren bei 10 000 Hz noch nicht 10mal grösser ist, beruhen die Anwendungen der Glimmlampe zur Spannungsstabilisierung.

Die Spannung u_0 ist im wesentlichen durch den Kathodenfall nach folgender Tabelle gegeben 7):

Normaler Kathodenfall in Volt verschiedener Kathodenmaterialien in verschiedenen Gasen und Dämpfen.

Tabelle III.

Natrium 200 178 185 80 75 — — Kalium 180 170 94 59 68 64 — Kupfer 370 208 214 177 220 130 447 Silber 280 233 216 162 150 130 318 Gold 285 233 247 165 158 130 — Magnesium 224 188 153 125 94 119 — Quecksilber — 226 337 143 — — 340 Aluminium 229 180 170 140 120 100 245 Kohlenstoff — — 280 — — — 475 Eisen 226 197 211 158 140 131 275								
Kalium 180 170 94 59 68 64 — Kupfer 370 208 214 177 220 130 447 Silber 280 233 216 162 150 130 318 Gold 285 233 247 165 158 130 — Magnesium 224 188 153 125 94 119 — Quecksilber — — 226 337 143 — — 340 Aluminium 229 180 170 140 120 100 245 Kohlenstoff — — 280 — — — 475 Eisen 269 215 250 150 150 165 298 Nickel 226 197 211 158 140 131 275	Kathodenmaterial	Luft		ser-		Neon	Argon	Queck- silber
114111	Kalium Kupfer Silber Gold Magnesium Quecksilber Aluminium Kohlenstoff	180 370 280 285 224 - 229 - 269	170 208 233 233 188 226 180	94 214 216 247 153 337 170 280 250	59 177 162 165 125 143 140 —	68 220 150 158 94 - 120 - 150	64 130 130 130 119 - 100	318 - 340 245 475 298

Zu diesem Kathodenfall ist noch der Spannungsabfall in der anodischen Säule zuzurechnen, um die «Ersatzbatteriespannung» u₀ zu erhalten. Dieser Anodenfall ist bei normalen Glimmlampen beinahe null oder hat nur die Grösse der Ionisierungsspannung des Füllgases und beträgt daher für Edelgase höchstens 15 ... 20 V.

Erhöht man die Batteriespannung u_B in Fig. 6, so zündet plötzlich eine selbständige Entladung mit fallender Charakteristik, wenn die Glimm-Zündspannung u_C (oder die evtl. davon verschiedene Funken-Zünd-Spannung u_C^*) erreicht wird. Die Brennspannung u ergibt sich dann aus dem Schnittpunkt der Glimmlampencharakteristik mit der ebenfalls in Fig. 6 eingetragenen Charakteristik des Widerstandes R.

Auf dieser Differenz zwischen Zünd- und Arbeits-, bzw. Löschspannung beruhen alle Anwendungen der Glimmlampe als Relais und Kippschwingungserzeuger.

F-G: Uebernormale Glimmentladung.

Zwischen F und G steigt die Spannung u mit steigendem Strom i stärker an, da hier die ganze Kathodenfläche mit einer Glimmhaut überzogen ist, d. h. es brennt eine über- oder anormale Glimmentladung, bei der Kathodenfall und kathodische Stromdichte höher sind als bei der normalen

⁴⁾ M. Steenbeck, Müller-Pouillet: Lehrbuch der Physik, Bd. 4, III (1933), und G. Schultze und K. Keller in Z. f. Physik, Bd. 77 (1932), S. 703.

Spezialröhrenkatalog 1938, GL 1-2.

⁶⁾ Spannungskonstanthaltung durch Glimm-Stabilisatoren

im Bull. SEV, Bd. 31 (1940), H. 18, S. 399.

7) R. Seeliger, in «Physik der Gasentladungen», 2. Auflage 1934, und M. Steenbeck in Müller-Pouillet, Lehrbuch der Physik, Bd. 4, III, 1933.

Glimmentladung. Fig. 8 nach G. Schultze zeigt die Abhängigkeit des Kathodenfalles von der relativen Stromdichte an Eisenkathoden⁸).

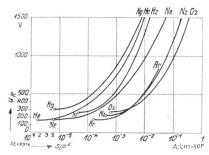


Fig. 8.

Abhängigkeit des

Kathodenfalls uk
von der relativen

Stromdichte s/p² an
Eisenkathoden.
(Nach G. Schultze.)

Nur wenn u_F grösser als u_C und als u_O in Fig. 6 ist, und wenn die Kathode die grosse Stromdichte nach Fig. 8 aushält, ohne zu schnell zu zerstäuben (Spezialmateriale, Hohlkathoden) kann die Glimmlampe ohne Vorschaltwiderstand an die Stromquelle u_O gelegt werden.

G—H: Bogenentladung.

Bei G wird die Kathode durch die auftreffenden Ionen so stark erhitzt, dass sie thermisch Elektronen zu emittieren beginnt; hier beginnt eine Bogenentladung, die bei H ausgebildet ist und die Bogenspannung erreicht, wie aus Fig. 9 hervorgeht.

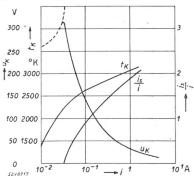


Fig. 9.
Kathodenfall uκ,
Kathodentemperatur
tκ. Glühelektrischer
Strom is zu gesamtem Strom i an Wo-Kathode.
(Nach M. Wehrli in Helv. Phys. Acta
Bd. I (1928), S. 323.)

B. Bemerkungen für die Praxis.

Die folgenden Angaben geben Anhaltspunkte für die Grössenordnung der heute üblichen Glimmlampen, die ohne weiteres gebaut werden können.

- 1. Zündspannung. Die Zündspannung u_C einer selbständigen Glimmentladung kann durch Elektrodenabstand, Gasart und Gasdruck nach (5) weitgehend verändert werden. Bei Glimmlampen wählt man sie meist zwischen 100 und 300 V. Sie ist bei speziell dazu hergestellten Glimmlampen auf ca. $2^{0/0}$ genau definiert und praktisch unabhängig von der Temperatur.
- 2. Zündstrom. Zur Zündung einer selbständigen Gasentladung ist, auch wenn eine Kapazität als Energiespeicher für die dynamischen Vorgänge vorgesehen ist, ein Zündstrom i_C nach (3) erforderlich, der von der Vorionisation i_B abhängt. Er liegt, wenn die Zündspannung der selbständigen Gasentladung gleichzeitig Funken-Zündspannung ist, d. h. wenn (10) gilt, zwischen 10^{-11} und 10^{-7} A. Bei Lampen, bei denen die Funken-Zündspannung höher

- liegt als die Zündspannung einer selbständigen Gasentladung [d. h. wenn (11) gilt] beträgt der Zündstrom bis 10^{-4} A und mehr.
- 3. Löschspannung. Die Löschspannung, d. h. die niedrigste Spannung, bei der noch eine selbständige Gasentladung brennt, ist im wesentlichen durch den Kathodenfall (Tabelle II) bedingt. Sie liegt zwischen 65 und 150 V.
- 4. Löschstrom. Der Löschstrom, d. h. derjenige Strom, bei dessen Unterschreiten die selbständige Entladung erlöscht, ist durch die unternormale Glimmentladung (Tabelle III) bedingt. Infolge der immer vorhandenen Kapazitäten parallel zur Glimmstrecke löscht eine Entladung (da sich Kippschwingungen ausbilden) meist schon zwischen 0,1 und 1 mA.
- 5. Brennspannung. Sie ist durch den Schnittpunkt der Lampencharakteristik mit dem äussern Widerstand des Stromkreises, in dem die Glimmlampe liegt, und durch die Spannung des äussern Stromkreises bestimmt (Fig. 5).
- 6. Maximaler Brennstrom. Er ist durch das Eintreten des übernormalen Kathodenfalles (Fig. 8) mit erhöhter Kathodenzerstäubung und Erwärmung der Kathode (Fig. 9) begrenzt und kann deshalb um so grösser sein, je grösser die Kathodenfläche und je kürzere Zeit die Entladung dauert. Normale Glimmlampen können dauernd mit 10 ... 50 mA, Spezialglimmlampen mit bis 200 mA belastet werden. Kurzzeitige Entladungen dürfen das mehrfache dieser Werte erreichen.
- 7. Innerer Widerstand. Der innere Widerstand $R_0 = \frac{\mathrm{d}u}{\mathrm{d}i}$ der für Stabilisatorzwecke wichtig ist, ist nur für den Bereich der normalen Glimmentladung angenähert konstant und ist auch hier von der Frequenz abhängig. Er beträgt bei Gleichstrom und bei Wechselstrom bis zu einigen 100 Hz, je nach der Elektrodenanordnung und der Gasfüllung, 20 ... 1000 Ohm.
- 8. Zeitabhängigkeit der Entladung. Sie folgt natürlich nicht aus dem statischen Stromspannungsdiagramm Fig. 1 und ist ziemlich verwickelt ⁹). Normale Glimmlampen zünden und löschen in ca. 10⁻⁵ ... 10⁻⁴ s und können z. B. Kippschwingungen bis einige 1000 Hz ausführen. Die Zündung von Funkentladungen erfolgt in ca. 10⁻⁷ s, so dass derartige Lampen [bei denen also (10) erfüllt ist] geeignet sind zur Scheitelspannungsanzeigung kurzzeitiger Spannungsstösse.
- 9. Zündverzug. Der Zündverzug, d. h. die Zeit, die verstreicht zwischen dem Anlegen einer Spannung, die höher als die Zündspannung ist, und der Zündung der Glimmlampe kann bei abgeschirmten Lampen bis einige Stunden betragen und liegt sogar praktisch hin und wieder in der Grössenordnung einiger Minuten. Durch Vorionisation (Bestrahlung mit sichtbarem Licht, ultravioletten Strahlen oder Radiumpräparaten oder durch die Ionen einer vorangegangenen oder einer Hilfsentladung) verschwindet er praktisch vollständig.

 $^{^8)\,}$ A. Günther-Schultze, Z. f. Phys. Bd. 59 (1930), S. 433.

⁹⁾ W. Druey: Beitrag zur Dynamik der Glimmentladungen, Diss. ETH 1936.

10. Lebensdauer. Die Lebensdauer ist durch die Kathodenzerstäubung bedingt, die um so grösser wird, je grösser die Kathodenstromdichte und der Kathodenfall sind. Sie beträgt bei normalen Glimmlampen allermindestens einige 1000 Stunden Brenndauer. Für Relaiszwecke ist es sehr wesentlich, dass nur die Brenndauer, nicht aber wie bei einer Glühkathodenröhre, schon die Bereitschaft an der Lebensdauer zehrt.

11. Zündleistung. Die zur Zündung erforderliche Leistung liegt nach 1. und 2. zwischen 10^{-9} und 10^{-5} Watt (= 10^{-2} bis 10^2 erg/s $\approx 10^{-5}$ bis 10^{-1} cm·g/s), wenn (10) gilt und kann bis 10^{-2} Watt (= 10^5 erg/s ≈ 100 cm·g/s) und mehr betragen, wenn (11) gilt. Sie ist also immer vergleichbar mit den empfindlichsten mechanischen Relais (Galvanometerrelais) und eine praktisch leistungslose Steuerung wie bei elektrostatischen Relais 10) ist nicht möglich.

12. Zündenergie. Infolge der raschen Aufbauzeit einer Glimmentladung nach 8. ist die nötige Ener
10) Vgl. Bulletin SEV, Bd. 31 (1940), Nr. 9, S. 199.

giezufuhr, damit eine Glimmlampe mit geeigneter Kapazität parallel zu den Elektroden (wegen den dynamischen Vorgängen) zündet, trotz der nicht unerheblichen Zündleistung äusserst klein; sie liegt zwischen 10^{-14} und 10^{-10} Ws (= 10^{-7} bis 10^{-3} erg z $10^{\text{-10}}$ bis $10^{\text{-6}}$ cm·g), wenn (10) gilt. Damit stimmt überein, dass eine geeignete Entladung zum Beispiel mit einer Kapazität von 10 pF (=10-11 F), die auf eine Spannung aufgeladen ist, die weniger als 1 Volt über der Zündspannung liegt, gezündet werden kann. Dem entspricht ohne Berücksichtigung der Kapazität parallel zu den Elektroden eine Zündenergie von weniger als 10-11 Clb (= 10-4 erg z·10-7 cm·g). Die Zündenergie ist also sehr viel kleiner als die der mechanischen Relais und auch mit empfindlichsten Galvanometer- oder elektrostatischen Relais nicht vergleichbar.

Es soll später berichtet werden, wie es gelingt, diese ausserordentlich kleine Zündenergie trotz der erheblichen Zündleistung praktisch auszunutzen.

Versuche über die elektrolytische Korrosion von in Erde verlegten metallenen Objekten unter konstanter Gleichspannung.

Mitteilung der Aluminium-Industrie A.-G. und der Korrosionskommission.

621.3.014.6

Im Bulletin SEV 1939, Nr. 25, veröffentlichte die Kontrollstelle der Korrosionskommission (H. Bourquin) einen Bericht über zwei Versuchsserien, die in Zürich und in Neuhausen über die Korrosion von Leichtmetall im Vergleich zu Schwermetall in feuchter Erde bei konstanter Gleichspannung durchgeführt worden waren. Dieser Bericht gab Anlass zu verschiedenen Besprechungen zwischen der Aluminium-Industrie A.-G. und der Korrosionskommission, da sich jene mit der Auslegung der Versuche und den Schlussfolgerungen nicht einverstanden erklären konnte. Das Resultat dieser Besprechungen, bei dem eine vollständige Uebereinstimmung in der Auffassung und Weiterverfolgung der Versuche erzielt wurde, soll nun hier veröffentlicht werden.

Es ist verfrüht, aus den bisherigen Auslegungen der Versuche den Schluss zu ziehen, dass Aluminium oder dessen Legierungen sich im Erdboden unter Einfluss von Streuströmen ungünstiger verhalten als Schwermetalle wie Blei, Eisen oder Kupfer. Diese Auffassung wurde abgeleitet aus dem Vergleich der spezifischen Gewichtsverluste der Versuchsobjekte mit den nach Faraday errechneten. Den Praktiker interessiert aber nicht der Vergleich mit dem Faradayschen Gesetz, sondern nur die Frage, welches Metall sich unter gleichen Einflüssen am günstigsten verhält. Dieses Verhalten kommt aber zahlenmässig eher besser durch die bei den verschiedenen Metallen aufgetretene relative Volumeneinbusse zum Ausdruck. Allerdings wäre selbst die relative Volumeneinbusse erst dann für das Verhalten der Metalle stichhaltig, wenn der Korrosionsangriff auf der Gesamtoberfläche regelmässig stattfinden würde. Da aber in Wirklichkeit die elektrolytische Korrosion bei allen technisch gebräuchlichen Metallen unregelmässig erfolgt, nämlich meistens in Form lokalisierter, punktförmiger, kraterähnlicher Anfressungen, die einen relativ sehr kleinen Teil der Rohr- bzw. Kabelmanteloberfläche berühren, kann natürlich, streng genommen, weder der Gewichtsverlust noch die Volumeneinbusse als Kriterium für das Verhalten der Metalle gegen Elektrolyse gelten.

Tabelle I im ersten Bericht gibt die Gewichtsverluste an von Platten gleicher Dimensionen $(200 \times 50 \times 2 \text{ mm})$ aus verschiedenen Metallen, die in feuchtem Erdboden als Anode und Kathode hintereinander geschaltet einer Spannungsdifferenz von $20~Volt~v\ddot{a}hrend~1~Jahr$ ausgesetzt waren. Auf Volumeneinbusse berechnet, kann die Tabelle auch folgendermassen geschrieben werden:

Tabelle I.

Nr. Material	Gewichtsverluste in g		Volumenverlust in cm ³			Prozentuale Vo- lumenabnahme			
	Material	Anode	Kath.	Anode	Kath.	Total	An.	Kth.	Tot.
1 4 5 6 7 11		5,58 9,60		9,4 13,7 2,05	$0,5 \\ 0,2$		70,5 47 68,5 10,3 17,7 22	2,5 1,0 18	
¹) umgerechnet auf 365 Tage, Versuche nach 205 Tagen unterbrochen, weil Anschluss abkorrodiert.									

Aus dieser Tabelle ist ersichtlich, dass die totale Volumenabnahme bei Al 99,99 % am niedrigsten ist. Sogar die Legierung Anticorodal