Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 30 (1939)

Heft: 6

Rubrik: Mitteilungen SEV

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

vants:

Technische Mitteilungen. — Communications de nature technique.

Normalisation de la tension dans le réseau de l'entreprise électrique communale de Bellinzone.

621.316.1.627.2

Dans le courant du mois d'octobre dernier, les travaux de normalisation de la tension ont été achevés dans tout le réseau desservi par le service électrique de la Ville de Bellinzone, qui embrasse 22 localités, avec environ 21 000 habitants et 4690 abonnés, et nous croyons intéresser les lecteurs du Bulletin en donnant quelques renseignements au sujet de ces travaux.

Les autorités administratives de la Ville de Bellinzone s'étant toujours opposées à l'introduction du gaz, il a fallu qu'elles se soucient de mettre à la disposition des ménages un moyen de cuisson et de chauffage au moins équivalent, ce qui a été obtenu en favorisant, par l'application de tarifs convenables, la diffusion de la cuisine électrique.

De ce fait, la puissance installée en appareils de cuisine et de chauffage, qui était en 1918 d'environ 900 kW, a marqué un accroissement considérable atteignant 2700 kW en 1924, 4300 kW en 1930 et 8000 kW en 1936. Naturellement, le réseau, qui était exploité à la tension de 125/220 V, n'était pas dimensionné pour distribuer des puissances aussi considérables, de sorte que, déjà en 1918, le problème de son renforcement se posa, en commençant par les transformateurs.

En ce temps-là, les études sur la normalisation de la tension en Suisse étaient déjà bien avancées et tout laissait prévoir que la tension de 220/380 V allait être adoptée comme tension normale, de sorte que tous les nouveaux transformateurs furent exécutés de façon à pouvoir être utilisés, par simple changement des connexions, pour les deux tensions de 125/220 et 220/380 V. En même temps, toutes les mesures furent prises pour l'introduction de cette dernière tension dans les installations nouvelles.

Au commencement de l'année 1920 une étude sommaire entreprise en vue de doubler la puissance du réseau en maintenant la tension de 125/220 V prévoyait une dépense d'environ 350 000 fr.; en présence du fait que la normali-sation de la tension à 220/380 V allait être bientôt décidée, on se borna à exécuter des travaux de renforcement seulement là où ils auraient été nécessaires indépendamment de l'augmentation de tension. En application de ce principe, dans les années de 1921 à 1930 on put faire face à l'augmentation de puissance installée en intercalant de nouvelles cabines de transformateurs dans les zones où les cabines existantes ne suffisaient plus et où les distances entre celles-ci étaient trop grandes, même pour la tension de 220 V

En 1931 on décida enfin de commencer la normalisation. en répartissant les travaux sur une période de 5 années, de façon à pouvoir exécuter les travaux avec le personnel normal de l'entreprise, sur le compte du budget ordinaire.

Conformément à ce programme, les travaux furent poursuivis de telle sorte qu'en 1935 tout le réseau de la Ville et des localités les plus importantes était exploité à la nouvelle tension. Dans le reste du réseau, où la normalisation n'était pas imposée par des raisons d'ordre technique, mais plutôt par mesure d'uniformité, les travaux furent repris et achevés en 1938, en profitant du fait que l'introduction, au commencement de l'année, du nouveau tarif à tranches dégressives et à compteur unique, nous a permis de disposer d'un nombre suffisant de compteurs à 220 V, sans qu'il fût nécessaire de modifier les compteurs à 125 V encore en service à ce moment-là,

La normalisation de la tension a nécessité la substitution ou la modification des appareils suivants:

48 228 lampes à incandescence 3 700 compteurs monophasés 300 » triphasés

3 064 fers à repasser

536 transformateurs de sonnerie

540 coussins chauffants 932 appareils discrete

932 appareils divers, tels que: ventilateurs, petits moteurs, fæhn, tondeuses, aspirateurs, circuses, etc.

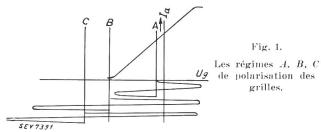
Le coût global a été de fr. 172 415.55, ce qui donne une dépense de fr. 18.- par kW installé et fr. 37.- par abonné. Cette dépense, qui peut être considérée comme très réduite, a pu être réalisée grâce aux facteurs favorables sui-

- Aucun transformateur n'a dû être modifié, par le fait, déjà mentionné, qu'ils étaient prévus pour les deux ten-
- 2° La presque totalité des moteurs était aussi commutable pour 220/380 V par suite d'une disposition réglementaire introduite déjà en 1911.
- 3º Tous les appareils de cuisine et de chauffage ont pu être adaptés à la nouvelle tension, en modifiant simplement les installations et les connexions, ceci en vue aussi de l'introduction du système de mise à la terre par le

Il est à noter que toutes les dépenses pour la substitution ou la modification de lampes ou d'appareils ont été supportées entièrement par l'entreprise et que par conséquent, aucune somme n'a été mise à la charge des abonnés. Cette circonstance a certainement contribué au déroulement régulier de tous les travaux, sans donner lieu, sauf quelques très rares exceptions, à des oppositions ou réclamations quelconques de la part du public. Celui-ci, au contraire, faisant preuve d'esprit de compréhension, a cherché à faciliter la tâche du personnel chargé de cette délicate besogne.

Azienda Elettrica Comunale, Bellinzona.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

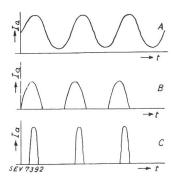

Le rendement des divers systèmes de modulation dans les émetteurs de radiodiffusion.

La puissance croissante des postes d'émission qui atteint fréquemment 100 kW et plus, conduit à donner de plus en plus d'importance à la question du rendement, pour obtenir une utilisation rationnelle des lampes de puissance. examiner cette question, il convient de distinguer tout d'abord selon la méthode américaine qui s'est imposée depuis quelques années en Europe 1) — trois régimes différents de polarisation des grilles des lampes amplificatrices:

Le régime A où le point de fonctionnement de l'amplificatrice ne sort pas de la région linéaire des caractéristiques.

Le régime B où la polarisation de grille est telle que le point moyen de fonctionnement est situé au coude inférieur de la caractéristique statique.

Le régime C où la polarisation est telle que le point moyen de fonctionnement est à gauche du coude inférieur de la caractéristique.



La figure 1 illustre ces trois régimes et la figure 2 donne l'allure des courants anodiques correspondants.

Le montage classique du dernier étage d'amplification couplé à l'antenne d'émission est donné par la figure 3.

¹⁾ Chaffee (E.-L.), Theory of thermionic vacuum tubes (New York and London).

D'autres montages, à lampes en parallèle notamment, conduisent à des calculs analogues. Le couplage de l'antenne équivaut à introduire une résistance $\frac{M^2 \omega^2}{}$ en série avec la self L du circuit oscillant accordé sur la pulsation ω ; r est

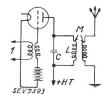
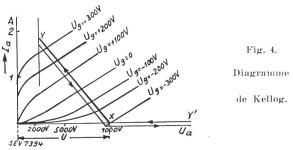


Fig. 3 (en haut). Dernier étage d'ampli-fication.

Fig. 2 (à gauche). Allure du courant anodique dans les trois régimes A, B, C de polarisation.

la résistance du circuit d'antenne. Le circuit antirésonnant L, C se comporte alors sensiblement dans le circuit plaque, comme une résistance pure de valeur $R_{\rm a}=rac{r\ L^2}{M^2}.$


Rendement en haute fréquence non modulée.

Quel que soit le régime de polarisation, le courant plaque peut être considéré comme un courant continu Io auquel se superpose un courant alternatif dont l'amplitude de l'onde fondamentale est I1. Les harmoniques supérieurs peuvent être négligés dans l'étude du rendement, car ils ne fournissent guère au circuit oscillant qu'une puissance réactive.

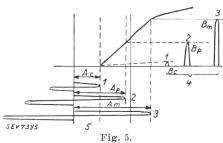
Si U est la tension continue d'anode, la puissance fournie par la source continue est U·I₀. La puissance utile absorbée par le circuit oscillant (et par conséquent par l'antenne) est $\frac{R_a I_1^2}{2}$. L'expression du rendement est alors:

$$\eta = \frac{R_a I_1}{U} \cdot \frac{I_1}{2 I_0}.$$

Le facteur $\frac{I_1}{2\;I_0}$ dit «facteur de forme», dépend essentiellement de la forme du courant anodique. Sa valeur est constante, égale à $\frac{\pi}{4}$ et indépendante de l'attaque de grille pour une amplification en régime B. En régime C, elle croit avec l'attaque de grille et s'élève pratiquement jusqu'à 0,8 à 0,9. Le facteur $\frac{R_a}{U}$ dit «facteur d'amplitude» est d'autant plus élevé que I1 est plus grand. D'autre part, le potentiel instantané minimum d'anode $U-R_{a}I_{1}$ ne doit pas descendre au-dessous de zéro — pratiquement au-dessous de 0,2 U pour éviter des émissions secondaires de grille -; le facteur d'amplitude ne peut donc être supérieur à un.

Le diagramme de Kellog (fig. 4) où l'on porte en ordonnée le courant (Ia) et en abscisse la tension plaque (Ua) pour différentes tensions de grille $(U_{\mathfrak{g}})$, permet de trouver les valeurs instantanées du courant et de la tension plaques. On montre que le lieu de ces valeurs coïncide avec les seg-ments rectilignes YXY'. La pente de XY est égale à l'inverse de la résistance Ra du circuit antirésonnant. Y est déterminé par le potentiel minimum d'anode et par le courant maximum de plaque.

Rendement en haute fréquence modulée.

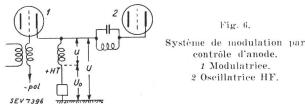

a) Modulation par la grille.

U et R restant constants, on module le courant porteur de haute fréquence d'amplitude I1 p par la variation périodique de l'amplitude de l'attaque de grille. Pour le taux de modulation K le plus élevé, l'amplitude maxima I_{1 max} du courant modulé doit encore correspondre à un fonctionnement normal de la lampe. On a

$$I_{1p} = \frac{I_{1max}}{1 + K}$$

 $I_{1\,\mathrm{p}} = \frac{I_{1\,\mathrm{max}}}{1+K}.$ Pour une amplification *en régime B*, où le facteur de forme reste constamment égal à $\frac{\pi}{4}$, et pour une tension de déchet égale à 0,2 U en maximum d'amplitude, le rendement maximum, calculé par la formule ci-dessus, est égal à 62,8 % . Ce rendement descendrait à 31,4 % pendant le fonctionnement sur la porteuse si la modulation était de 100 %. Le facteur d'amplitude a en effet seul varié dans le rapport $\frac{1+K}{2}$ lorsqu'on passe de l'intensité de crête à l'intensité en porteuse.

Comme on peut montrer 3) que K doit être voisin de 100 % pour obtenir une puissance modulée maximum, on ne peut améliorer ce rendement qu'en agissant sur le «fac-


Amplification en régime C. Modulation de 100 % du courant anodique par une modulation de 50 % de la tension de grille. I Creux de modulation. 2 Intensités en porteuse. 3 Intensités en crète. I Courant anodique modulé à 100 %. 5 Excitation de grille, modulée à 50 %.

teur de forme» par une amplification de haute fréquence en régime C où ce facteur s'approche de 1. Un autre avantage essentiel d'une amplification en régime C est de permettre une forte modulation du courant plaque avec un faible taux de modulation de l'attaque de grille (fig. 5). Mais comme le facteur de forme n'est pas constant au cours de la modulation, ce système présente l'inconvénient d'une distorsion non linéaire. On peut éviter cet inconvénient par un montage de compensation, ou mieux, adopter le procédé de modulation multiple où plusieurs étages successifs sont modulés à un faible taux.

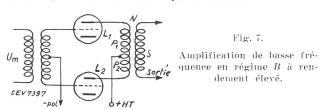
Ce système d'amplification permet d'obtenir des rendements du circuit anodique qui atteignent 40 . . . 45 %.

b) Systèmes de modulation par contrôle d'anode.

On obtient la variation d'amplitude du courant anodique en maintenant constantes l'attaque de grille et la résistance

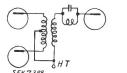
d'utilisation $R_{\rm a}$, et en faisant varier la tension anodique $U_{\rm a}$ autour d'une valeur moyenne U_0 (fig. 6). Dans l'expression

⁸⁾ On verra avec intérêt sur ce sujet le chapitre que R. Mesny lui consacre dans son récent ouvrage Radio-élec-tricité générale, T. II, p. 175. L'expression de la puissance modulée en fonction du taux de modulation donnée par Loeb (p. 88) ne nous paraît pas justifiée, alors qu'elle est exacte ches Mesny.


du rendement $\frac{R_1 I_1}{U} \cdot \frac{I_1}{2 I_0}$, I_1 est proportionnel à la valeur instantanée de U; le facteur d'amplitude est donc constant et peut être choisi voisin de 1. Quant au facteur de forme, on le rendra également voisin de 1 par une amplification en régime C. Il en résulte que le rendement d'un étage modulé par contrôle d'anode est à peu près le double d'un étage modulé par attaque de grille. Ce système a cependant l'inconvénient de nécessiter une grande puissance en basse fréquence. En effet, si P_p et η sont respectivement la puissance et le rendement en porteuse, la puissance continue fournie en porteuse est $P_{\rm ap}=\frac{P_{\rm p}}{\eta}$; quant à la puissance en cours de modulation on montre qu'elle est égale à

$$P_{\scriptscriptstyle\mathsf{m}} = P_{\scriptscriptstyle\mathsf{p}} \left(1 + rac{K^2}{2}
ight)$$

et le rendement η restant le même en modulation, la puissance à fournir au cours de la modulation sera


$$P_{\mathsf{am}} = rac{P_{\mathsf{p}}}{\eta} \left(1 + rac{K^2}{2}
ight) = rac{P_{\mathsf{p}}}{\eta} + rac{K^2}{2} rac{P_{\mathsf{p}}}{\eta}$$

La composante continue du courant anodique n'ayant pas varié, la puissance $P_{\rm ap}=\frac{P_{\rm p}}{\eta}$ est toujours fournie par la source de tension anodique. Quant à la puissance supplémentaire $rac{K^2}{2} \cdot rac{P_{
m p}}{\eta}$ qui est égale à la puissance $P_{
m ap}$ pour une modulation de 100 %, elle doit être fournie par la modulatrice.

La puissance de la modulatrice doit donc être au moins égale à celle de l'oscillatrice. Comme cette modulatrice doit amplifier en régime A, son rendement est mauvais. On perd ainsi par elle le gain de rendement obtenu sur l'oscillatrice.

Pour éviter ce dernier défaut, on a été conduit à utiliser des montages qui permettent une amplification de basse fréquence en régime B où le rendement est plus élevé. Tel est le montage de la figure 7. La figure 8 montre le couplage du dernier étage de l'émetteur. Ce procédé n'exclut pas une

Couplage du dernier étage de l'émetteur.

certaine distorsion, particulièrement intense pour un faible taux de modulation. Il exige de plus, pour le dernier étage, un transformateur dont la puissance est égale à celle de la porteuse, 100 kW par exemple, capable de transmettre toutes les fréquences de 50 à 10 000 Hz, et dont le secondaire est parcouru par un courant continu.

c) Modulation par déphasage.

Dans ce système, deux chaînes d'amplification distinctes de haute fréquence produisent deux tensions U1 et U2 égales en grandeur, mais de phases différentes. Ces deux tensions

sont appliquées au circuit oscillant d'émission où elles s'additionnent géométriquement. La modulation de la tension U résultante est obtenue par la variation périodique de la phase des tensions U_1 et U_2 (fig. 9). Tout se passe comme si la résistance R_a variait en sens inverse de I₁. On peut obtenir à la fois un facteur d'amplitude et un facteur de forme élevés, et par suite un rendement très favorable dans tout le cycle de modulation.

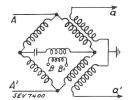
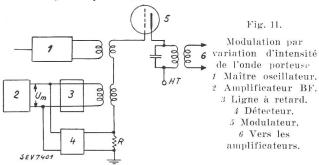



Fig. 10. Pont équilibré pour la modulation

par déphasage.

La variation de phase des vecteurs U_1 et U_2 en fonction de la modulation est obtenue en ajoutant normalement à deux vecteurs fixes u_1 et u_2 , deux vecteurs m_1 et m_2 qui représentent des tensions modulées. L'organe qui permet de composer ces tensions est le pont équilibré (fig. 10). On applique en AA' une tension de haute fréquence et en BB' une tension modulée après suppression de la porteuse. Les deux tensions de haute fréquence à phase variable issues de a et a' sont appliquées au circuit oscillant terminal après avoir passé séparément par les deux chaînes d'amplificateurs et les étages de puissance.

L'auteur examine ensuite un quatrième système de modulation où l'amélioration du rendement est obtenue par la variation lente de l'amplitude de l'onde porteuse, variation qui s'effectue en concommittance avec la modulation. Une onde porteuse est ainsi toujours profondément modulée quel que soit le taux de modulation. Un tel système peut être réalisé par le montage de la figure 11. Une partie du courant de modulation est détectée et conduite sur une résistance R dont la chute de tension sert à polariser dans un sens convenable la grille du modulateur. Ainsi, l'amplitude de l'onde porteuse est grande si la tension de modulation $U_{\rm m}$ est grande et petite si cette tension est petite. — (J. Loeb, L'Onde Electrique, Vol. XV (1936), Nos. 170 et 171, p. 81 et 142.) G. J.

Kleine Mitteilungen.

Europäische Radiokonferenz. Am 1. März eröffnete Herr Bundesrat Pilet, Vorsteher des Eidg. Post- und Eisenbahndepartementes, die Europäische Radiokonferenz 1939 in Montreux, in der etwa 40 europäische und 3 aussereuropäische Staaten sowie verschiedene internationale Organisationen des Rundfunkwesens vertreten sind. Die Konferenz bezweckt die Weiterführung der Arbeiten der Radiokonferenz von Luzern (1933), welche die erste europäische Rundfunkkonvention und den Wellenverteilungsplan ausgearbeitet hatte. Die ausserordentliche Entwicklung des Rundfunks in den letzten sechs Jahren, die Erhöhung der Zahl der Sendestationen, die von 257 im Jahre 1933 mit einer Gesamtleistung von 3260 kW heute auf 310 Stationen mit einer Gesamtleistung von 8230 kW angewachsen ist, machte die Revision der Konvention und des Wellenverteilungsplanes nötig.

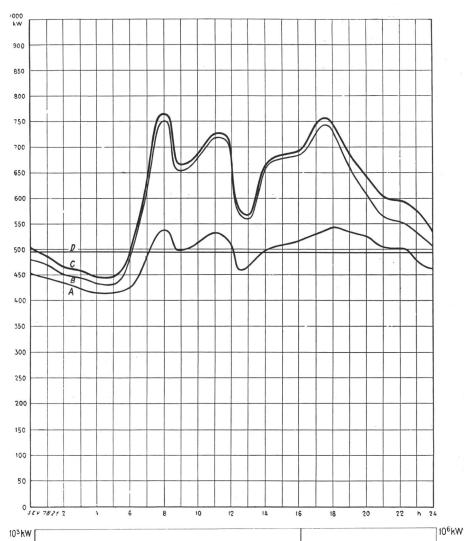
Als Präsident der Konferenz wurde Herr Dr. h. c. A. Muri, Chef der Telegraphen- und Telephonabteilung der PTT, gewählt, zum Vizepräsidenten die Herren Oberst G. Keller und Ingenieur Metzler von der Sektion Telegraph und Radio der PTT und zum Generalsekretär der Vizedirektor des Bureau der Union Internationale des Télécommunications, Herr

Franz Schwill.

Wirtschaftliche Mitteilungen. — Communications de nature économique. Energiestatistik

der Elektrizitätswerke der allgemeinen Elektrizitätsversorgung.

Bearbeitet vom Eidg. Amt für Elektrizitätswirtschaft und vom Verband Schweizerischer Elektrizitätswerke.


Die Statistik umfasst die Energieerzeugung aller Elektrizitätswerke für Stromabgabe an Dritte, die über Erzeugungsanlagen von mehr als 300 kW verfügen. Sie kann praktisch genommen als Statistik aller Elektrizitätswerke für Stromabgabe an Dritte gelten, denn die Erzeugung der nicht berücksichtigten Werke beträgt nur ca. 0,5 % der Gesamterzeugung. Nicht inbegriffen ist die Erzeugung der Schweizerischen Bundesbahnen für Bahnbetrieb und der Industriekraftwerke für den eigenen Bedarf. Die Energiestatistik dieser Unternehmungen wird jährlich einmal in dieser Zeitschrift erscheinen.

				Energ	gleerze	ugung		Speicherung										
Monat	Hydraulische Erzeugung		Thermische Erzeugung		Bezug aus Bahn- und Industrie- Kraftwerken		Energie- Einfuhr		Total Erzeugung und Bezug		Ver- ände- rung gegen Vor-	Energieinhalt der Speicher am Monatsende		Aenderung im Berichts- monat — Entnahme + Auffüllung		Energie- ausfuhr		
	1937/38	1938/39	1937/38	1938/39	1937/38	1938/39	1937/38	1938/39	1937/38	1938/39	jahr	1937/38	1938/39	1937/38	1938/39	1937/38	1938/39	
	in Millionen kWh											in Millionen kWh						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Oktober	474,1	471,1	0,3	0,3	4,3	5,4	1,0	0,8	479,7	477,6	-0,4	716	653	- 46	- 35	129,9	136,3	
November .	461,6	421,0	1,3	1,6	2,4	2,5	2,1	4,8	467,4	429,9	-8,0	626	541	- 90	-112	114,9	109,6	
Dezember .	474,2	419,5	1,7	5,4	2,7	2,5	0,8	9,9	479,4	437,3	-8,8	484	411	-142	-130	116,2	101,3	
Januar	436,8	406,4	2,0	4,7	2,6	2,4	1,6	11,2	443,0	424,7	-4,1	370	317	-114	- 94	109,6	96,9	
Februar	407,3		1,2		2,4		1,6		412,5			263	208	-107	- 109	109,8		
März	441,9		0,4		3,0		4,2		449,5			208		- 55		121,0		
April	449,9		0,4		1,0		0,1		451,4			142		- 66		124,7		
Mai	443,2		0,2		5,9		0,1		449,4			205		+ 63		130,2		
Juni	425,8		0,3		7,1		_		433,2			403		+198		137,7		
Juli	445,3		0,3		7,5		_		453,1			559		+156		148,9		
August	463,2		0,3		7,3		_		470,8			669		+110		154,8		
September .	462,2		0,3		7,2		_		469,7			688		+ 19		150,5		
Jahr Oktober Jan.	5385,5 1846,7	1718,0	8,7 5,3	12,0	53,4 12,0	12,8	11,5 5,5	26,7	5459,1 1869,5	1769,5	- 5,4	775 ⁴)	775 ⁴)	_		1548,2 470,6	444,1	

		Verwendung der Energie im Inland															
Monat	Haushalt und Gewerbe		Industrie		Chemische, metallurg. u. thermische Anwen- dungen		Elektro- kessel 1)		Bahnen		Verluste und Verbrauch der Speicher- pumpen²)		Inlandverbrauch inkl. Verlus				ste
															Elektrokessel und Speicherpump. 1937/38 1938/39		Ver- ände- rung gegen Vor- jahr ⁸)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Oktober	113,4	114,8	56,2	57,3	60,1	39,5	39,6	43,6	23,5	25,6	57,0	60,5	307,7	290,5	349,8	341,3	-2,4
November .	119,5	123,6	58,1	60,1	61,1	42,4	28,6	16,3	27,2	24,6	58,0	53,3	321,4	301,0	352,5	320,3	-9,1
Dezember .	132,0	137,6	58,4	62,2	54,6	40,8	25,0	10,7	33,9	29,0	59,3	55,7	336,5	323,7	363,2	336,0	-7,5
Januar	127,7	130,8	55,9	59,4	48,7	45,7	13,0	11,2	32,1	27,8	56,0 (1,9)	52,9 (2,7)	318,5	313,9	333,4	327,8	-1,7
Februar	110,2		50,1		46,8		20,0		28,7		46,9	(2,1)	281,5		302,7		
März	111,2		52,3		52,0		35,8		27,5		49,7		290,3		328,5		
April	102,0		52,2		54,9		40,9		27,1		49,6		283,8		326,7		
Mai	103,4		52,8		53,8		33,2		23,9		52,1		281,1		319,2		
Juni	95,2		49,5		37,5		42,3		25,4		45,6		252,6		295,5		
Juli	96,9		50,1		36,2		40,8		26,4		53,8		255,0		304,2		
August	101,4		51,4	- 1	35,2		42,0		23,6		62,4		260,6		316,0		
September .	105,8		52,1		34,7		42,8		22,1		61,7		264,6		319,2		
Jahr	1318,7		639,1		575,6		404,0		321,4		652,1 (53,3)		3453,6		3910,9		
Oktober-Jan.	492,6	506,8	228,6	239,0	224,5	168,4	106,2	81,8	116,7	107,0		222,4 (14,5)	1284,1	1229,1	1398,9	1325,4	- 5,

d. h. Kessel mit Elektrodenheizung.
 Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an
 Kolonne 17 gegenüber Kolonne 16.
 Energieinhalt bei vollen Speicherbecken.
 NB. Im Jahre 1938/39 sind die gleichen Werke im Betrieb wie im Vorjahr.

SEV 7822

Tagesdiagramme der beanspruchten Leistungen, Mittwoch, den 18. Januar 1939.

Legende:
1. Mögliche Leistungen: 10 ³ kW
Laufwerke auf Grund natürlicher Zuflüsse (O—D) 495 Saisonspeicherwerke bei voller Lei-
stungsabgabe (bei max. Seehöhe) 647 Thermische Anlagen bei voller Lei-
stungsabgabe $\frac{100}{1242}$
2. Wirklich aufgetretene Leistungen:
 O—A Laufwerke (inkl. Werk? mit Tages- und Wochenspeicher). A—B Saisonspeicherwerke. B—C Thermische Werke, Bezug aus Bahn- und Industrie-Kraftwerken u. Einfuhr.
3. Energieerzeugung: 106 kWh
Laufwerke 11,5 Saisonspeicherwerke 2,4 Thermische Werke 0,1 Bezug aus Bahn- u. Industrie-Kraftwerken und Einfuhr 0,5
Total, Mittwoch, den 18. Januar 1939 14,5
Total, Samstag, 21. Januar 1939 13,4

21,6 900 19,2 800 700 16,8 14,4 600 500 12,0 9,6 400 300 200 4,8 100 0 VI VII VIII IX

Mittwoch- und Monatserzeugung.

Total, Sonntag, 22. Januar 1939 . . . 11,1

Legende:

1. Höchstleistungen.

(je am mittleren Mittwoch jedes Monates)

P des Gesamtbetriebes;

Pe der Energieausfuhr.

2. Mittwocherzeugung:

(Durchschnittl. Leistung bzw. Energiemenge)

- insgesamt;
- in Laufwerken wirklich;
- in Laufwerken aus natürlichen Zuflüssen möglich gewesen.

3. Monatserzeugung:

(Durchschnittl. Monatsleistung bzw. durchschnittliche tägliche Energiemenge)

- insgesamt;
- in Laufwerken aus natürl. Zuflüssen;
- in Laufwerken aus Speicherwasser;
- in Speicherwerken aus Zuflüssen;
- in Speicherwerken aus Speicherwasser;
- in thermischen Kraftwerken und Bezug aus Bahn- und Industriewerken und Einfuhr;
- Energieausfuhr;
- g—a Inlandverbrauch.

Miscellanea.

Persönliches und Firmen.

(Mitteilungen aus dem Leserkreis sind stets erwünscht.)

Nordostschweizerische Kraftwerke A.-G., Baden. Wie unsere Leser wissen, trat mit dem 31. Januar 1939 der Delegierte des Verwaltungsrates, Herr E. Erny, Kilchberg, von seinem Amte zurück. Herr Erny bleibt als Mitglied des Verwaltungsrates mit der Unternehmung verbunden. Das Amt des Verwaltungsratsdelegierten wurde aufgehoben. Zur Leitung der Geschäfte wurde eine Direktion von drei Mitgliedern gewählt mit folgenden Abteilungen:

Administrative Abteilung: Direktion Herr Dr. E. Fehr. Betriebsabteilung: Direktion Herr Ing. A. Engler, Bau- und Studienabteilung: Direktion Herr Ing. Dr. h. c.

Den Titel eines Vizedirektors führen der Chef des Buchhaltungs- und Kassadienstes, Herr A. Meyer, und der Chef des Betriebsbureaus, Herr A. Hauser. Prokuristen sind die Herren R. Bindschedler, R. Haubensack, F. Hug und E. Oertli, Handlungsbevollmächtigte die Herren E. Schwank, A. Welti und W. Zobrist.

Eidg. Amt für Verkehr. Für die Durchführung des Bundesbeschlusses vom 30. September 1938 über den Transport von Personen und Sachen mit Motorfahrzeugen auf öffentlichen Strassen wurde dem Eidg. Amt für Verkehr ein Dienstzweig für Automobiltransportwesen angegliedert, dessen Leitung Herrn Ing. Hohl, bisher Direktor der SESA, anvertraut

Es wurde ferner ein eigener Rechtsdienst eingerichtet, welcher vom bisherigen Leiter der Sektion III, Herrn Kunz, geführt wird. Der Geschäftsbereich der Abteilung Rechtswesen und Sekretariat des Post- und Eisenbahndepartementes wird dadurch nicht berührt.

Das Amt ist nun folgendermassen organisiert:

Direktion

(Direktor Hr. Kradolfer, Vizedirektor Hr. Altwegg). Rechtsdienst (Hr. Kunz). Sekretariat und Kanzlei.

Dienstzweige:

- I. (Leiter Hr. Stalder) Aufsicht über Bau und Betrieb der konzessionierten Eisenbahn-, Schiffahrts-, Luftseilbahnund Trolleybus-Unternehmungen.
- (Leiter Hr. Altwegg) Transport- und Tarifwesen, Rechnungswesen, Versicherungsaufsicht, Eisenbahnstatistik, Touristik
- III. (Leiter Hr. Hohl) Automobiltransportwesen.

Inspektorate:

- Ia. (Hr. Arbenz): Bau, Unterhalt und Bewachung.
- Ib. (Hr. Brunnschweiler) Mechanik.
- Ic. (Hr. Moser) Betrieb.
- IIa. (Hr. Arzethauser) Transport- und Tarifwesen.
- IIb. (Hr. Rüfenacht) 1) Rechnungswesen, Versicherungsaufsicht, Eisenbahnstatistik.
- IIc. (Hr. Dr. Buchli) Touristik. IIIa. (Hr. Dr. Maurer) Konzessionsbehandlung.

Kleine Mitteilungen.

Vom Technikum Winterthur. Die Ausstellung der Schülerarbeiten (Semester- und Diplomarbeiten, Zeichnungen und Modelle) der Schulen für Hochbau, Tiefbau, Maschinenbau und Elektrotechnik ist Samstag, den 25. März, von 14 bis 17 Uhr, und Sonntag, den 26. März, von 10 bis 12 Uhr und von 14 bis 17 Uhr im Ostbau des Technikums zur freien Besichtigung geöffnet. Die Direktion des Technikums.

Kurs für gewerblichen Atemschutz und Rettungsgasschutz. In Fortentwicklung der bisherigen schweizerischen Gasschutzkurse für Industrie, Feuerwehr, Polizei und Sanität wird im Verlaufe dieses Frühjahres an der Eidgenössischen Technischen Hochschule wieder ein Kurs für gewerblichen Atemschutz und Rettungsgasschutz durchgeführt, veranstaltet vom Hygiene-Institut und vom Betriebswissenschaftlichen Institut an der ETH. Dieser Kurs findet vom 14. bis 15. April 1939 statt. Genauere Programme können von den genannten Stellen verlangt werden.

Die britische Industrie-Messe.

Die diesjährige britische Industrie-Messe (British Industries Fair), die vom 20. Februar bis zum 3. März in London und Birmingham stattfand, stand unter dem Zeichen eines verstärkten Exportwillens der englischen Fabrikanten.

In der von 250 Firmen beschickten elektrotechnischen Abteilung widmete man dem Licht- und Beleuchtungswesen und den Anwendungen der Elektrizität in Haushalt und Kleinbetrieb besondere Aufmerksamkeit. Die Lampenfabrikanten zeigten neu entwickelte Gasentladungslampen zur Arbeitsplatz- und Aussenbeleuchtung, wobei besonders die einzigen von einem englischen Fabrikanten hergestellten Natriumdampflampen auffielen. Auch eine luftgekühlte Quecksilberdampf-Höchstdrucklampe zur Projektion von Lichtbildern und Filmen fand Beachtung.

Einem der Aussteller ist es gelungen, bei Verwendung einer besonderen Leuchte ein praktisch weisses Mischlicht von Quecksilberdampf- und Glühlampen zu erhalten, dessen erstaunlich gute Wirkung für die Schaufensterbeleuchtung eingehend dargestellt wurde. Auf einem andern Stand wurden verbesserte Leuchten für die Strassenbeleuchtung gezeigt, deren Wirkungsgrad den der bisher allgemein verwendeten Leuchten bei günstigerer Lichtverteilung übertreffen soll.

Elektroöfen zur Metallbearbeitung erweckten viel Interesse. Bei einem der vorgeführten Härtungsöfen von 35 kW für Temperaturen bis zu 1000°C, der sich besonders für kleine Metallteile eignet, war es möglich, mittels einer Drehplatte im Inneren des Ofens und eines unmittelbar an den Ofen angebauten Löschtroges den Härtungsprozess fortlaufend durchzuführen. Aehnliche, automatisch gesteuerte Oefen erlaubten das Glühen und Löten von Drähten, Blechen und Einzelheiten am laufenden Band. Derartige Oefen haben auch in der Schweiz Verwendung gefunden.

Erwähnenswert sind auch die kippsicheren Quecksilberschalter, die Stromstärken bis zu 250 Å bei 500 V bewältigen, und die elektrischen Luftschutz-Sirenen von 3 kW Leistung, die in England als örtliche Warnungssignale aufgestellt werden sollen.

Elektrische Maschinen und Apparate wurden nur von wenigen Ausstellern vorgeführt, die sich, dem Rahmen der Messe gemäss, auf die kleineren Modelle beschränkten. Ein Oelschalter von 150 MVA Abschaltleistung für Innenaufstellung fand manches Interesse. Der gleiche Fabrikant stellt ähnliche Schalter bis zu einer Abschaltleistung von 1000 MVA her. In der Entwicklung von Druckluftschaltern besteht aber noch ein wesentlicher Vorsprung der schweizerischen und deutschen Industrie.

Haushaltgeräte nahmen einen weiten Raum ein, und es zeigte sich besonders die Tendenz, durch automatische Steuerung die Bedienung der Geräte zu vereinfachen. Einer der vorgeführten Kochherde war mit einer Zeitsteuerung versehen, die sogar das Einschalten automatisch vornahm, um den gewünschten Kochvorgang ohne jede Ueberwachung auszuführen.

Obwohl die Messe bei Abwesenheit einer Anzahl der grössten Firmen keinen geschlossenen Ueberblick über den Stand der Elektrotechnik in England gab, kann doch auf Grund des Gebotenen gesagt werden, dass die englische Industrie wohl in der Lage ist, mit erstklassigem Material auf dem Weltmarkt zu konkurrieren.

^{&#}x27;) Zur Entlastung des Leiters des Dienstzweiges II (gleich-zeitig Vizedirektor) ist Hr. Rüfenacht mit weitgehenden Befug-nissen zur selbständigen Erledigung der laufenden Geschäfte betraut und zu diesem Zwecke zum II. Sektionschef ernannt

Briefe an die Redaktion — Communications à l'adresse de la rédaction.

Die elektrischen und magnetischen Feldvektoren im Lichte der Elektronentheorie.

> Von W. Amrein, Zürich. Bull. SEV 1937, Nr. 20, S. 486.

Zuschrift von Herrn Alexander Lénárd, Budapest:

Peu nous importe que l'éther existe réellement, c'est l'affaire des métaphysiciens; l'essentiel pour nous c'est que tout se passe comme s'il existait et que cette hypothèse est commode pour l'explication des phénomènes. Après tout, avons-nous d'autre raison de croire à l'existence des objets matériels?

H. Poincaré: La Science et l'Hypothèse.

Zu den sehr klaren Ausführungen des Verfassers sei kurz folgendes bemerkt:

- 1. Es ist unbedingt richtig, dass der Ingenieur nur mit den Vektorenpaaren & D und & B rechnet (insbesondere mit den Mittelwerten dieser Feldgrössen), während er die beiden Polarisationsvektoren B und M den Physikern überlässt. Ebenso ist es nach der heutigen Auffassung richtig, dass infolge der Lorentzschen Elektronentheorie alle elektromagnetischen Wirkungen auf das System von Elementarladungen und deren Bewegung zurückzuführen sind.
- 2. Der Aufsatz behandelt die Frage, welche Feldvektoren als physikalisch gegeben und welche bloss als reine Rechengrössen zu betrachten sind. Das Resultat der Untersuchung ist: die physikalisch gegebenen Feldvektoren sind & und \mathfrakB. Dies entspricht dem Induktionsgesetz, laut welchem in ruhenden Medien an einer bestimmten Stelle der Wirbel des elektrischen Feldes eine zeitliche Abnahme der Induktion bewirkt. In letzter Konsequenz könnte die logische Reihe der Erörterungen des Aufsatzes auf dieses Maxwellsche Grundgesetz zurückgeführt werden.
- 3. Die Elektronenbewegung wird bekanntlich durch die Raum-Zeit-Funktion des Stromdichtevektors dargestellt. Hierüber, d. h. über die Rangordnung der Stromdichte wird zwar im Aufsatz nichts erwähnt, doch reiht vermutlich der Verfasser diesen Vektor in die Kategorie «Rechengrösse».
- 4. Es liesse sich auf Grund der Maxwellschen Differential-Gleichung über den magnetischen Kreis laut welcher der Wirbel der magnetischen Feldstärke (im Raumzeitpunkt) immer gleich der Summe der Leitungsstromdichte und der Verschiebungsstromdichte (d. h. zeitliche Zunahme der elektrischen Verschiebung) ist auch eine Bevorzugung des Vektorenpaares $\mathfrak S$ und $\mathfrak D$ begründen. Ausserdem ist die Ladung im Volumpunkt, oder die Ladungsdichte (also eine physikalische «Realität») der Divergenz des Verschiebungsvektors zahlenmässig gleichgesetzt.
- 5. Wie in der Mechanik die Frage der «Rechengrösse» oder «physikalischen Realität» der dort gebrauchten Vektoren, wie Beschleunigung, Drallvektor usw. gar nicht aufgeworfen wird, ebensogut könnte in der Theorie des elektromagnetischen Feldes dieselbe Frage ganz fallen gelassen werden. In der Tat besteht kein zwingender Grund, das eine Maxwellsche Grundgesetz dem andern vorzuziehen. Wie gesagt: ein vorhandenes Elektronensystem verursacht in verschiedenen Medien ein elektromagnetisches Feld und folgt auch in seiner Bewegung und Wirkung den Gesetzen dieses elektromagnetischen Feldes, welches durch gewisse Feldvektoren beschrieben wird. Man will lediglich mit messbaren, möglichst einfachen und wenigen gerichteten Raum-Zeit-Funktionen dieser Art rechnen, welche Funktionen hinreichende und notwendige Grundlage aller Erscheinungen bilden. Von diesem Gesichtspunkte erscheint keines oder erscheinen alle vier Feldvektoren «physikalisch real».
- 6. Schliesslich besteht noch ein Grund, warum der Ingenieur bestrebt ist, das eine Vektorenpaar nicht dem andern physikalisch vorzuziehen, und zwar die Definition der Energie. In einem Raumpunkt ist bekanntlich die magnetische bzw. die elektrische Energie das halbe skalare Produkt der beiden magnetischen, bzw. elektrischen Feldvektoren. Nun lässt man sich aber diese physikalisch einwandfreie Definition nicht gern durch Einführen von Materialkonstanten (oder Funktionen) «verunreinigen», welche Einführung im Falle jener Auffassung, die einem Vektorenpaar den Vorzug gibt, nötig wäre.

Antwort des Herrn W. Amrein, Zürich:

Der Aufsatz wurde von einem Ingenieur für Ingenieure geschrieben. Die physikalische Vorstellung spielt für den Ingenieur eine ganz entscheidende Rolle. Mit konkreten Vorstellungen baut er seine Maschinen, entwirft er die Pläne zu seinen Bauten. Je einfacher diese Vorstellungen sind, desto weniger Mühe bereitet es ihm, sie untereinander zu kombinieren. Es ist Tatsache, dass die grössten Entdeckungen und Erfindungen auf Grund von ganz einfachen Vorstellungen gemacht worden sind.

Die Elektronentheorie nimmt an, dass die elektrische Ladung nur in punktförmiger Verteilung vorkomme. Jede bewegte Punktladung erzeugt ein elektrisches und ein magnetisches Feld. Sind viele solcher Punktladungen vorhanden, so superponieren sich alle diese Felder zu einem resultierenden elektrischen und magnetischen Feld. Alle elektromagnetischen Vorgänge können somit mit Hilfe von nur zwei Feldvektoren beschrieben werden, dem elektrischen Feldvektore und dem magnetischen Feldvektor b. Die elektrische und magnetische Energie des Raumes ist, unabhängig von der Natur der Materie, proportional zum skalaren Quadrat dieser Vektoren.

Diese Vorstellung ist wunderbar einfach, und es besteht kein Grund, dass sie sich der Ingenieur nicht aneigne. Wenn aber zwei Feldvektoren genügen, um sich alle Vorgänge vorstellen zu können, so erhalten alle übrigen Feldvektoren für den Ingenieur tatsächlich eine untergeordnete Bedeutung. Es ist selbstverständlich ein reiner Nützlichkeitsstandpunkt, diese für die Vorstellung nicht notwendigen Vektoren in die Phalanx der «Rechengrössen» einzureihen. Denn der Streit, ob etwas wirklich existiert oder nicht, ist bis heute auch mit den tiefsten Philosophien nicht entschieden worden. Entscheidend für den Ingenieur ist das Gewicht, das jeder einzelnen Grösse zukommt. Dieses Gewicht ist selbstverständlich nicht konstant, sondern kann sich durch neue Erkenntnisse plötzlich ändern.

Die Elektronentheorie besitzt nur zwei Feldvektoren von erheblichem Gewichte, nämlich die Vektoren e und h. Im erwähnten Aufsatz wurde nun die Frage gestellt und beantwortet, welche der vier Maxwellschen Feldvektoren E, D 5 und B am besten diesen elektronentheoretischen Feldvektoren entsprechen. Das Resultat lautet: & entspricht am besten dem e und B am besten dem h. Damit sind D und H zu «Rechengrössen» degradiert. Vom Standpunkt der Maxwellschen Theorie allein wäre es nie möglich, eine solche Unterscheidung vorzunehmen. Die Maxwellsche Theorie macht solche Annahmen über die Ladungsverteilung und die Natur der Materie, dass man tatsächlich auch die Vektoren ${\mathfrak D}$ und ${\mathfrak H}$ bevorzugen könnte. Es wäre aber heute kaum zu verantworten, die Erkenntnisse der Elektronentheorie zu ignorieren und auf die Maxwellsche Theorie allein zu bauen. Insbesondere der Elektroingenieur würde dadurch in Schwierigkeit geraten. Es sei dies an einem Beispiel illustriert: In einer Hochvakuumröhre fliesst von der glühenden Kathode zur Anode ein Elektronenstrom. Die Elektronen besitzen vor dem Aufprallen auf die Anode eine grosse Geschwindigkeit und dank ihrer Masse eine erhebliche kinetische Energie, die sie beim Aufprallen an die Anode abgeben. Es kann nun der Fall eintreten, dass jedes aufprallende Elektron noch ein Sekundärelektron von der Anode ablöst, das die Anode mit geringer Geschwindigkeit verlässt und von einer Fangelektrode abgefangen werden kann. In diesem Fall ist der totale zur Anode fliessende elektrische Strom gleich Null. Trotzdem kann es vorkommen, dass die Anode zu glühen anfängt. Die Anode gibt Wärme ab, ohne dass ein Strom auf sie oder in ihr fliesst. Nach der Maxwellschen Theorie lässt sich eine solche Erscheinung nicht erklären. kein Strom fliesst, so wird nach ihr auch keine Leistung umgesetzt. Der elektrische Strom durch einen Querschnitt ist als sekundlich durch diesen Querschnitt fliessende resultierende Ladung definiert, und er besass für den Ingenieur bis heute eine einfache und leicht vorstellbare Bedeutung. Der elektrische Strom nach Maxwellscher Definition war für ihn sicher mehr als nur eine «Rechengrösse».

Dadurch, dass die Elektronentheorie der Ladung eine bestimmte träge Masse zuschreibt, erhält der elektrische Strom

plötzlich eine neue Bedeutung. Der Transport massebehafteter punktförmiger Ladungen ist nun in physikalischer Vorstellung der Strom. Diese Ladungen können wild durcheinanderwirbeln und es kann, wie oben dargestellt, der Fall eintreten, dass nach Maxwellscher Auffassung kein Strom fliesst und trotzdem interessante Stromphänomene sich abspielen. Damit ist aber der Ingenieur gezwungen, dem Maxwellschen Strom den Stempel der «Rechengrösse» aufzudrücken.

Zusammenfassend kann gesagt werden, dass die Einteilung von physikalischen Begriffen nach ihrem Gewichte in «reale» Grössen und «Rechengrössen» stets nur eine dem Bedürfnis des Ingenieurs entsprungene Nützlichkeitsmassnahme darstellen kann. Weil aber die physikalische Vorstellung für den Ingenieur eine so wichtige Rolle spielt, so ist sie gerechtfertigt.

Replik des Herrn A. Lénárd:

Die These Amreins ist kurz zusammengefasst die folgende:

Alle elektromagnetischen Erscheinungen beruhen auf der «Wirklichkeit» bewegter oder ruhender, punktförmig verteilter, elektrischer Ladungen, welchen auch träge Masse zugeschrieben wird. Das entstandene Feld kann am besten und restlos durch die Vektoren & und B beschrieben werden, wobei der Ingenieur alle anderen, für die Vorstellung nicht unbedingt nötigen Funktionen in die Kategorie der «Rechengrössen» einzureihen hat.

In bezug auf die physikalische Realität oder beste Er-klärung der *Ursache* des elektromagnetischen Feldes sind unsere Auffassungen übereinstimmend. Der Unterschied ist nur der, dass ich alle Feldvektoren als Rechengrössen «gleichen Ranges» betrachte, deren Anzahl aber auf das unbedingt nötige Minimum beschränke. Ob nun das eine Vektorenpaar die Erscheinungen besser beschreibt als das andere, mag bei der Forschungsarbeit, auf die allein es ja hier ankommt, nicht sehr bedeutend sein, zumal der Rechnende im Laufe der vorzunehmenden Ableitungen keineswegs mit den «Primär-Vektoren» allein auskommt. Die Entscheidung über die Richtigkeit der beiden Auffassungen scheint mir so ziemlich individuell bedingt zu sein: jeder mag seine Ideen auf Grund einer richtigen elektronentheoretischen Vorstellung in der für ihn meist ökonomischen Weise ausbauen.

Schliesslich möchte ich noch darauf hinweisen, dass die Maxwellsche Theorie, als Rechenapparat aufgefasst, nur dann mit der Elektronentheorie in Widerspruch gerät, wenn die von ihm angegebenen Durchschnittswerts-Vektoren auch auf das mikroskopische Feld angewendet werden, wie dies im Falle des vom Verfasser angeführten Beispiels geschieht.

Duplik des Herrn Amrein:

Den letzten Bemerkungen von Herrn Lénárd habe ich nichts mehr beizufügen, da nach meiner Ansicht eine prak-

tisch vollkommene Uebereinstimmung der Ansichten erzielt worden ist. Der mehr mit mathematischen Formeln denkende Ingenieur wird auf eine Einteilung der Maxwellschen Feldvektoren in «physikalische Grössen» und «Rechengrössen» keinen besonderen Wert legen, während dem mit möglichst konkreten Vorstellungen operierenden Ingenieur eine solche Einteilung willkommen sein wird. Dabei braucht die zweite Arbeitsmethode nicht minder mathematisch zu sein als die erste. Ich glaube annehmen zu können, dass in unserem Lande die Mehrzahl aller Ingenieure die zweite, mit anschaulichen Bildern arbeitende Methode bevorzugen wird und deshalb habe ich den Aufsatz geschrieben.

Der verlustbehaftete Parallel-Resonanzkreis als Wechselstromwiderstand.

Von Erwin de Gruyter, Zürich. Bull. SEV 1939, Nr. 4, S. 99.

Berichtigung.

S. 100, rechte Spalte oben: Klein z statt Z; die erste Zeile soll also heissen:

$$oldsymbol{z}_{ ext{m}}=+\sqrt{r_{ ext{m}}^2+v^2} \qquad oldsymbol{z}_{ ext{n}}=+\sqrt{r_{ ext{n}}^2+rac{1}{v^2}}$$

do., Text zu Fig. 10; die Anmerkung soll lauten:

Die Kurven beginnen auf der Ordinate mit den Parameterwerten. Sie gelten für v = 1.

S. 101, linke Spalte, Mitte: m und n vertauschen, die Definition soll heissen:

$$rac{R_{\mathsf{L}}}{R_{\mathsf{0}}} = m$$
: Spulen- $\left\{ egin{array}{ll} W_{\mathsf{I}} & W_{\mathsf{I}} & W_{\mathsf{I}} & W_{\mathsf{I}} \\ rac{R_{\mathsf{C}}}{R_{\mathsf{0}}} & = n$: Kond.- $\left\{ egin{array}{ll} W_{\mathsf{I}} & W_{\mathsf{I}} & W_{\mathsf{I}} & W_{\mathsf{I}} \\ S. & 103, & \mathsf{rechte} & \mathsf{Spalte}, & \mathsf{Mitte} : & \mathsf{Gross} & V_{\mathsf{s}} & \mathsf{statt} & v_{\mathsf{s}}; & \mathsf{die} & \mathsf{Formel} \\ \end{array}
ight.$

soll also lauten:

$$V_s = +\sqrt{1-W^2}$$

S. 105, linke Spalte, Text zu Fig. 21; in der Anmerkung fehlt das <-Zeichen:

$$P_{\rm o}$$
 < ∞

do., rechte Spalte, Mitte; statt falsch «Widerstandswerte» richtig: «Impedanzwerte».

S. 106, linke Spalte; die Ordinatenwerte der Fig. 22 heissen richtig:

$$\beta \longrightarrow$$

Mitteilungen aus den Technischen Prüfanstalten des SEV.

Reparatur von Heizkissen.

Mitteilung der Materialprüfanstalt.

Der Materialprüfanstalt des SEV wurden im Laufe der letzten Jahre wiederum mehrere Heizkissen zur Untersuchung zugestellt, die durch Ueberhitzung defekt gegangen waren. Neben der Zerstörung des Heizkissens selbst dürfte dabei immer mehr oder weniger grosser Materialschaden entstanden sein. Ueberdies wirken sich solche Fälle als Hemmnis für die Verbreitung dieses sonst sehr nützlichen Wärmeapparates aus, da aus solchen Störungen leicht auf eine allgemeine Gefährlichkeit der elektrischen Heizkissen geschlossen wird.

Im Bestreben, die Verbreitung von Heizkissen, die den Anforderungen des praktischen Gebrauches gewachsen sind, zu fördern und damit die Möglichkeit von Defekten und Brandausbrüchen einzudämmen, hat die Beratungsstelle der Materialprüfanstalt des SEV schon vor mehreren Jahren «Anforderungen an elektrische Heizkissen» aufgestellt.

Zweck der Untersuchung der eingesandten verbrannten Heizkissen war, die Ursache des Defektes festzustellen. Auf die Erfahrung zurückblickend, welche die Materialnrüfanstalt anhand derartiger Untersuchungen gesammelt hat, kann gesagt werden, dass an Heizkissen, die die erwähnten Anforderungen erfüllen, schwerwiegende Ueberhitzungen praktisch nicht vorkommen können, wenn nicht ganz widersinnige äussere Umstände mitspielen. Der allgemein gültige Grundsatz kann auch hier angewandt werden, dass durch vorschriftswidrige Verwendung und Misshandlung selbst der beste Apparat zerstört werden kann.

In fast allen Fällen von Störungen an elektrischen Heizkissen, die der Materialprüfanstalt vorgelegt wurden, waren an den betreffenden Objekten Aenderungen vorgenommen worden. Diese Aenderungen wurden, wohl meist ohne eine bestimmte Absicht, bei einer Reparatur der betreffenden Heizkissen oder beim Umbau für eine andere Gebrauchsspannung ausgeführt. Von gutgemeinter Unkenntnis bis zur strafbaren Gleichgültigkeit konnten dabei alle Stufen von mangelndem Verantwortungsgefühl beobachtet werden. Falsche Schaltungen im Regulierschalter, wodurch unter Umständen der Temperaturbegrenzer ausser Funktion gesetzt wird, können noch als leichtere Fälle taxiert werden. Wenn hingegen, wie dies bei einem verbrannten Heizkissen der

Fall war, der Temperaturregler, offenbar weil er nicht mehr richtig funktionierte, einfach überbrückt wurde, so muss eine solche «Reparatur» als grobe Fahrlässigkeit bezeichnet werden. Bei Umänderungen auf die Einheitsspannung werden oft minderwertige Heizeinsätze in die Kissen eingenäht, wobei, wie an einem Fall, der uns erst kürzlich zu Gesicht gekommen ist, durch innere Kurzschlüsse lokal begrenzte Verbrennungen eintreten können, ohne dass der Temperaturregler anspricht.

Zweck dieser Zeilen soll sein, auf die Gefährlichkeit der Reparatur und Umänderung elektrischer Heizkissen aufmerksam zu machen. Der Mangel an genauer Kenntnis der innern Schaltungen sowie das Fehlen geeigneten Ersatzmaterials sind meist die Ursache von falsch ausgeführten Reparaturen zum Schaden der Beteiligten. Es kann deshalb nicht eindringlich genug empfohlen werden, Reparaturen oder Spannungsumänderungen an Heizkissen ausschliesslich vom Fabrikanten besorgen zu lassen.

Qualitätszeichen, Prüfzeichen und Prüfberichte des SEV.

Entzug des SEV-Qualitätszeichens.

Gestützt auf Art. 14 des Vertrages wurde der Firma
Otto Asal,

Fabrik elektrischer Apparate, Riehen bei Basel,

Fabrikmarke:

das Recht zur Führung des Qualitätszeichens des SEV für

Schmelzeinsätze (D-System) für 500 V, 6 A, entzogen.

Firmenänderung.

Die Firma

Hugo Löbl Söhne, Bamberg,

ist durch die Firma

Lindner & Co., Abteilung Hulorit, Bamberg,

übernommen worden.

Der mit der früheren Fabrikationsfirma abgeschlossene Vertrag betreffend das Recht zur Führung des SEV-Qualitätszeichens für *Verbindungsdosen* ist mit der neuen Firma abgeschlossen worden.

Die Vertreterfirma hat nicht gewechselt.

III. Radioschutzzeichen des SEV.

Auf Grund der bestandenen Annahmeprüfung gemäss § 5 des «Reglements zur Erteilung des Rechts zur Führung des Radioschutzzeichens des SEV» (siehe Veröffentlichung im Bulletin SEV 1934, Nr. 23 und 26) wurde das Recht zur Führung des SEV-Radioschutzzeichens erteilt:

Ab 1. Februar 1939.

Rudolf Weber, Elektromotorenfabrik, Pieterlen/Biel.

Fabrikmarke: Firmenschild.

Elektrische Staubsauger «Sevo», «Hoco», «Elektro-Boy»,210 W, für die Spannungen 110, 125, 145, 220 V.

Ab 15. Februar 1939.

Electrolux Aktiengesellschaft, Zürich (Vertretung der Aktiebolaget Lux, Stockholm).

Fabrikmarke:

Lectcolux

Elektrischer Staubsauger ZA 30, 275 W, für 105—115, 125—130, 140—150, 190—205, 210—225, 230, 235—250 V.

IV. Prüfberichte.

(Siehe Bull. SEV 1938, Nr. 16, S. 449.)

P. Nr. 53.

Gegenstand: Drei Einbau-Kipphebelschalter.

SEV-Prüfbericht: A. Nr. 15351 vom 17. Februar 1939. Auftraggeber: Schoeller & Co., Elektrotechnische Fabrik, Frankfurt a. M.

Aufschriften:

) P S 2/250

Bezeichnung:

mit rundem Kunstharzpreßstoff-Kipphebel: Nr. 260 » schwalbenschwanzförmigem » 267

» stimmgabelförmigem » 2077

Beschreibung: Zweipolige Kipphebelschalter für Geräteeinbau. Sockel und Schaltwippe aus Kunstharzpreßstoff. Lötanschlüsse. Befestigung der Schalter durch Muttern.

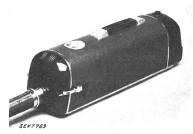
Die Schalter haben die Prüfung bestanden. Verwendung: zum Einbau in Geräte für max. 250 V, 2 A, auf nicht brennbarem Material.

P. Nr. 54.

Gegenstand: Zwei elektrische Staubsauger. SEV-Prüfbericht: A. Nr. 15375/I vom 16. Februar 1939. Auftraggeber: Electrolux Aktiengesellschaft, Zürich.

Aufschriften:

Apparat Prüf-Nr. 1:
World famous
Electro-lux
Made in Sweden
Radioschutzzeichen des SEV



Signe Antiparasite
de l'ASE
Mod. ZA 30 No. S 9001113
Volt 220 = Watt 275

Apparat Prüf-Nr. 2: World famous Electro-lux Made in Sweden Radioschutzzeichen des SEV

Signe Antiparasite de l'ASE Mod. ZA 30 No. S 9003779 Volt 110 = Watt 275

Beschreibung: Elektrische Staußsauger gemäss Abbildung. Zentrifugalgebläse, angetrieben durch Einphasen-Seriemotoren. Apparate mit Schlauch, Führungsrohren und anderer Zubehör, zum Saugen und Blasen verwendbar.

Die Apparate entsprechen den «Anforderungen an elektrische Staubsauger» (Publ. Nr. 139) und dem «Radioschutzzeichen-Reglement» (Publ. Nr. 117).

Vereinsnachrichten.

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen des Generalsekretariates des SEV und VSE.

Totenliste.

Am 28. Februar 1939 starb im Alter von 72 Jahren Herr Dr. Ing. e. h. *Emil Haefely-Meyer*, Präsident und Delegierter des Verwaltungsrates der Emil Haefely & Co. A.-G., Basel, Mitglied des SEV seit 1922. Wir sprechen der Trauerfamilie und der Unternehmung, der er vorstand, unser herzliches Beileid aus. — Ein Nachruf folgt.

Mitgliedsbeitrag SEV.

In der letzten Nummer wurde auf Seite 138 darauf hingewiesen, dass die Jahresbeiträge 1939 fällig sind. Die Einzelmitglieder in der Schweiz wurden gebeten, den der Nummer beigelegten Einzahlungsschein für die Zahlung zu verwenden. Infolge eines Versehens ist die Beilage nur der französischen Ausgabe mitgegeben worden. Wir holen das Versäumnis nach und lassen den Einzahlungsschein nun dieser Nummer beilegen.

Ferner gestatten wir uns, nochmals darauf hinzuweisen, dass Einzelmitgliederbeiträge, die bis Ende April nicht eingegangen sind, unter Spesenzuschlag gegen Nachnahme erhoben werden. Die Freimitglieder sind natürlich von der Beitragspflicht entbunden.

Den Kollektivmitgliedern wird, wie bisher, demnächst eine Rechnung zugestellt; die darin eingesetzten Beiträge entsprechen den auf Seite 35 des Jahresheftes angegebenen Ansätzen.

Arbeiten unter Spannung und «auf Zeit».

Seit einiger Zeit liegt bei den Bundesbehörden ein Begehren unserer Verbände um Revision der Artikel 7 (Arbeiten an Starkstromanlagen) und 8 (Massnahmen zum Schutze der Arbeitenden) der Verordnung vom 7. Juli 1933 über die Erstellung, den Betrieb und den Unterhalt von elektrischen Starkstromanlagen. Am 21. Februar fasste der Bundesrat Beschluss über die neuen Texte, die unseren Begehren Rechnung tragen. Wir werden nächstens auf die Angelegenheit zurückkommen.

Feier des 70. Geburtstages von Herrn alt Direktor A. Zaruski.

In einer schönen, von herzlicher Zuneigung und Freundschaft getragenen Zusammenkunft von Ehren- und Vorstandsmitgliedern des SEV, der Mitglieder der Hausinstallationskommission, die gerade die 40. Sitzung abhielten, und einiger weiterer Freunde und Gäste wurde am Abend des 13. Februar der am 14. fällig gewesene 70. Geburtstag eines der Treuesten des SEV, des Herrn A. Zaruski, gefeiert. 1896 bis 1936 Ingenieur, Betriebsleiter und, seit 1906, Direktor des Elektri-

zitätswerkes und der Trambahn St. Gallen, 1906—1911 Präsident (Vorort) des VSE, seit 1913 Vorstandsmitglied des SEV, seit 1925 dessen Vizepräsident und, 1933, dessen Präsident, seit der Gründung am 14. Juli 1921 Präsident der Hausinstallationskommission, seit 1. Juli 1913 Delegierter für das Starkstrominspektorat, seit 1936 Ehrenmitglied des SEV — stets auf dem Posten, wenn immer der Ruf an ihn erging und trotz alledem unauffällig, im Stillen wirkend: Was das alles an Hingabe an das Ganze, an persönlichen Opfern, Selbstlosigkeit und auch an vielfachen Enttäuschungen bedeutet, das wissen nur wenige, das können nur die abschätzen, die das Glück hatten, während langer Jahre nahe um ihn zu sein. Das meinte der Präsident des SEV, Herr Dr. h. c. M.

Schiesser, als er in seiner warmherzigen Dank- und Glückwunschrede Herrn Zaruski den Mann der grossen Treue nannte. Das meinte auch Herr Dr. E. Tissot, als er an der Generalversammlung des SEV von St. Moritz im Jahre 1929 Herrn Zaruski, der damals als Vizepräsident die Versammlung leitete, in einer herzlichen, spontanen Ansprache ehrte und von ihm sagte: «...son dévouement n'a d'égal que sa Herr Direktor R. A. Schmidt, der Präsident modestie». des VSE, gedachte der grossen Verdienste des Jubilaren um den VSE, den er 5 Jahre lang leitete, zu einer in ihrer Bescheidenheit grossen Zeit, als der Verband noch ein Vermögen von 1500 Fr. hatte und es der allergrössten Mühe bedurfte, von 172 Werken 4000 Fr. für die gemeinsame Anschaffung des eben aufgekommenen Schleifenoszillographen zusammenzutreiben. Auch unser hochverehrtes Ehrenmitglied Herr El. Dubochet erweckte Reminiszenzen aus der kommissionslosen, goldigen Zeit: «Continuez, vous avez bien travaillé», rief er Herrn Zaruski zu. Er ehrte auch die ebenfalls anwesende treue Frau Gemahlin, die an den Verdiensten des Herrn Zaruski als stets verständnisvolle Gefährtin auch Anteil hat.

Der Jubilar dankte in ernsten Worten. Ob der SEV auf dem richtigen Weg sei? fragte er zum Schluss. Ja, dürfe man ohne Uebertreibung sagen. Wir alle dürfen stolz sein auf die beiden Verbände, die immer mehr der wirkliche Sammelpunkt der Elektrotechnik und der Elektrizitätswirtschaft werden.

Aenderungsvorschläge zu den Kleintransformatorennormalien des SEV.

Die Normalienkommission des SEV und VSE mit den Mitarbeitern für die Kleintransformatoren schlägt verschiedene Aenderungen zu den Kleintransformatorennormalien vor. Bevor diese Aenderungen der Verwaltungskommission des SEV und VSE zur Genehmigung und Inkraftsetzung unterbreitet werden, laden wir hiermit Interessenten ein, die in Aussicht genommenen Aenderungen beim Generalsekretariat des SEV und VSE, Seefeldstrasse 301, Zürich 8, zu beziehen und allfällige Bemerkungen dazu dann diesem Sekretariat bis spätestens 31. März 1939 schriftlich im Doppel bekanntzugeben.

Internationales Wörterbuch der Lichttechnik.

Die Internationale Beleuchtungs-Kommission lässt durch den unter dem Vorsitz von Herrn Prof. Dr. P. Joye, Direktor der Entreprises Electriques Fribourgeoises, stehenden Arbeitsausschuss des Technischen Komitees 1a, Vokabular, ein Wörterbuch bearbeiten, dessen erste Ausgabe soeben herausgekommen ist. Sie ist beim Generalsekretariat des SEV und VSE zum Preis von Fr. 3.— (Mitglieder) und Fr. 5.— (Nichtmitglieder) erhältlich.

Das Vokabular definiert gegen 100 lichttechnische Ausdrücke aus den Gebieten «Licht und Auge», «Photometrie» und «Beleuchtung» in französischer, deutscher und englischer Sprache. Für jede dieser Sprachen besteht ferner ein Schlagwortverzeichnis. Am Schluss sind sämtliche Ausdrücke (ohne Definitionen) noch in die italienische Sprache übersetzt.

Wir empfehlen dieses Vokabular allen, die irgendwie mit Lichttechnik zu tun haben; es wird ihnen bald unentbehrlich sein,

Meisterprüfungen im Elektro-Installationsgewerbe.

Die nächste Meisterprüfung in der deutschen Schweiz findet voraussichtlich Ende Mai 1939 statt. Der genaue Zeitpunkt und der Ort werden später bekanntgegeben. Anmeldungen sind mit den in Art. 11 des Meisterprüfungsreglementes verlangten Ausweisen dem Sekretariat des Verbandes Schweizerischer Elektro-Installationsfirmen, Walchestr. 25, Zürich, einzureichen, wo das Reglement und das Anmeldeformular bezogen werden können und welches auch die näheren Bedingungen bekanntgibt. Letzter Anmeldetermin: 1. April 1939. Verspätete Anmeldungen können nicht berücksichtigt werden.

Meisterprüfungskommission VSEI/VSE.