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Theoretische Betrachtung der Seilschwingungen unter Einbeziehung
von Schwingungsdämpfern.
Von Josef Miiller-Strobel, Zürich-Altstetten. G21

Ks wird versucht, die theoretischen Grundlagen für eine
Berechnung von mechanischen Seildämpfern herzuleiten. Der
an das Seil befestigte, als elastisches Bindeglied zu betrachtende

Dämpfer erzeugt, mathematisch gesehen, eine Unstetig-
keitsstelle, weshalb für die Erfassung seines Einflusses die
allgemeinen Prinzipien der Mechanik unter Einschluss einiger

erlaubten Vernachlässigungen angewandt werden müssen.
Mittels einer Modellvorstellung gelingt es, die Fragestellung
so zu wenden, als würde eine äussere, nur an einem Punkt
angreifende Kraft die störende Schwingung dem Seil
aufzwingen. Zwei vereinfachte Beispiele weisen auf den für
eine exakte Rechnung durchzuführenden Weg hin.

1. Einleitung.
Seit der Einführung des Weitspannsystems bei

Hoclispannungsfreileitungen nahmen die
Untersuchungen über deren mechanische Sicherheit an
Bedeutung zu. Mit der Anwendung grosser Spannweiten

und hoher Zugspannungen erwuchs der
Freileitung eine neue Gefahr, die erhöhte
Schwingungsbeanspruchung. Mit teilweisem Erfolg wurden
pneumatische Schwingungsdämpfer 1) nach Fig. la
und rein mechanische nach Fig. lb verwendet. Alle
Bewegungen dieser einfachen Systeme sind durch
die Eigenfrequenzen und der durch die schwingende

Masse erzeugten, resultierenden Kraft Y
charakterisiert. Wegen der Wichtigkeit der Problemstellung

kann es nicht uninteressant sein, den
erwünschten Einfluss des Dämpfers angenähert
theoretisch zu erfassen.
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Fig. 1.

Schwingungsdämpfer für Freileitungsseile.

Leicht ist man versucht, bei einem so einfachen
System, wie es das Seil mit Dämpfer darstellt, die
Kräftespiele der bewegten Massen auf unzureichende
physikalische und mathematische Beziehungen
zurückzuführen. Zum voraus ist zu verraten, dass
eine theoretisch exakte Analyse, von welchen Grund-
annalimen sie auch ausgehen mag, erhebliche
Schwierigkeiten bietet. Der Grund hiefür ist in der
Unstetigkeit der angreifenden Kraft zu suchen. Man
bedient sich bis heute mit der gewöhnlichen,
althergebrachten Schwingungsgleichung unter gleichzeitiger

Einführung den Dämpfer berücksichtigenden
Randbedingungen2) (siehe Bemerkung am Schluss

1) ETZ 1934, H. 26.
2) R. Ruedy: Canadian Journal of Research, Sec. A. Vol.

13 (Nov.) 1935, B 99.
H. Maass: Forschung Bd. 4 (1933), S. 105.

S. Tiinoshenko: Vibration problems in engineering,
New York 1928, deutsch bei Julius Springer, Berlin.

.315.056.3

L'auteur essaye d'établir les bases théoriques pour le calcul

des amortisseurs de vibrations pour lignes aériennes.
L'amortisseur fixé au conducteur, que l'on doit considérer
comme un élément de liaison élastique, produit,
mathématiquement parlant, une solution de continuité; c'est pourquoi,
afin de saisir l'influence qu'elle exerce, on doit appliquer les
principes généraux de la mécanique, en se permettant de
négliger quelques termes d'importance minime. Au moyen
d'un modèle, l'auteur arrive à tourner la question comme si
une force extérieure appliquée en un seul point imprimait
au conducteur la vibration perturbatrice. Deux exemples
simplifiés montrent le chemin à suivre pour obtenir un calcul
exact.

des Aufsatzes). Dieses Rechenverfahren ist insofern
erfolgversprechend, als man sich mit der Ermittlung

eines sogenannten Dämpfungsfaktors begnügt,
der jedoch recht mühsam für jede Aenderung der
Schwingmassen (Dämpfer und Seil) der Eigenfrequenzen

und der Anordnung des Dämpfers ermittelt
werden muss. Trotz des Bekanntwerdens des
Massenverhältnisses von Dämpfer und Seillänge pro
Meter durch die Rechnung, zeigen sich erhebliche
Abweichungen, selbst bei idealisierten
Versuchsbedingungen.

Es sei hier versucht, die allein zuständigen,
allgemeinen Prinzipien der Mechanik auf das Problem
anzuwenden. Bei der Zuhilfenahme einer Modellvor-
stellung lassen sich die Kräfte der Schwingungserregung

gegenüber der natürlichen Dämpfung kompensieren,

was dann ermöglicht, die wesentlichen, leicht
beeinflussbaren Schwingungszustände zu erfassen.
Weiter wird angenommen, dass das Seil an den
Enden weder eine translatorische noch longitudinale
Verschiebung erleidet. Ohne besondere Schwierigkeiten

Hessen sich mit der hier angewandten
allgemeinen Methodik transversale und longitudinale,
quer und parallel zur Kraftrichtung der Erregung
wirkende Schwingungen beschreiben. Da es sich in
dieser Arbeit darum handelt, das Wesen der
physikalischen Gegebenheiten und die Art der mathematischen

Gedankenführung herauszuschälen, ist hier
nur eine zweidimensionale Anordnung (System mit
einem Freiheitsgrad) untersucht. Auf Einzelheiten
kann nicht eingegangen werden.

Die Frage, warum nicht auf die vektorielle
Darstellungsweise der harmonischen Schwingungen
eingegangen wird, könnte berechtigt sein. Es ist
einzuwenden, dass man hei der Untersuchung im
dreidimensionalen Raum mit der den meisten Lesern
geläufigen elementaren Vektordarstellung nicht
auskommt. Jedoch wird sie bei einer späteren und
eingehenderen Untersuchung, die viele ungeklärte
Einflüsse erfassen wird, nebst den nötigen
funktionentheoretischen Erörterungen zwangsläufig zur
Anwendung gelangen. Wieweit eine graphische Analysis

vermittels des Linienbildes einer Funktion der
erzwungenen Schwingungen bei periodischen
Störungen für eine Vereinfachung zweckdienlich
gewesen wäre, konnte leider nicht eindeutig genug
festgestellt werden.
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2. Herleitung der Bewegungsgleichungen eines
schwingenden Seiles mit Dämpfer.

a) Spannungszustände.
Ist der Leiter als Litzenseil ausgebildet, wird

zufolge der Reibung der einzelnen Drähte ein anderer
mechanischer Spannungszustand als in einem homogenen

Seile vorzufinden sein. Alle die Frequenz /
des Seiles erniedrigenden Einflüsse explizite in die
Rechnung einzubeziehen, ist aussichtslos. Ein
einfaches Ersatzschema oder Modell ermöglicht, diese
Schwierigkeiten zu überwinden.

Ist das Seil als Vollkörper ausgebildet und hat
es einen nicht allzu grossen Durchhang, bzw. eine

nur schwache Spannungsänderung in Abhängig-
ç) X

keit von der Koordinate x, stellt sich nach bekannter

Gesetzmässigkeit bei konstanter Erregung die
Frequenz

L 2l0]/- (I)

ein. Es bedeutet n die Ordnungszahl, a die mechanische

Spannung, l0 die Länge zwischen den Ein-
spannungen und o das Gewicht pro Längeneinheit
des Seiles.

Bei Seilen, in denen starke innere Reibungskräfte
eine merkliche Verminderung der elastischen
Dehnung oder der Formänderungsarbeit hervorrufen,
ist eine Verkleinerung der Frequenz in bezug auf
das ideale Seil zu erwarten. Wie kann ein derartiges

Seil modellmässig nachgebildet werden?
Grundsätzlich bandelt es sich bei dieser Untersuchung um
die Ermittlung des Spektrums der Schwingungen,
was in der späteren Entwicklung des Fourierschen
Integrals deutlich zum Ausdruck kommt. Dank
des integralen Charakters der mathematischen
Formulierung des Problems ist man gar nicht
gezwungen, alle technologischen Abmessungen oder
mechanischen Spannungen einzuhalten, wenn nur
die für eine «homologe Nachbildung» massgebenden

Grundzustände durch irgendeine Massnahme
erzeugt werden können. Um Vergleiche mit einem
von der Luft umströmten, Wirbel ablösenden Seil
anzustellen, ist es vorteilhaft, Durchmesser,
Verseilungsart und Länge l0 (bzw. p) beizubehalten. Als
Nachbildungsmass müsste die in Gl. (I) noch unberührt

gebliebene Grösse a, die mechanische Spannung

eingeführt werden.
Was für Beziehungen gelten bezüglich der

Spannungsänderung und Frequenzabhängigkeit bei den
in praxi ausgeführten Seilen? Wie ist die Spannung

a zu ändern, dass sich bei einem Seil die
gleichen Frequenzen wie bei den der Gl. (I) zugrunde
liegenden Zuständen, einstellen?

4) Karman: Nachr. Ges. Wiss. Göttingen 1911/12.
Karman und Rubach: Physik. Z. Bd. 13 (1912), S. 49.
II. Maass: Wiss. Veröff. Siemens-Konz. 10 (1931), S. 153.
R. Ruedy: Canadian J. Research. Sect. A. Vol. 13

(1935), Ottawa.
Fuchs-Hopf: Aerodynamik, Jul. Springer, Berlin 1935.
Th. Schmitt u. P. Behrens: ETZ Bd. 54 (1933), S. 603.
P. Behrens, IT. Hutter: Elektrizitätswirtschaft Bd. 36

(1937), S. 331.

Nach den neuesten Messungen 1 besteht zwischen

Luftgescliwindigkeit v (einer senkrecht zur
Schwingungsebene wirkenden Strömung, Achsenrichtung
z), Seildurchmesser d (cm), Spannung und Gewicht
die folgende Relation:

fs 2,05 -4-1/4- (")6)
vz \ Q

Die Spannung wird nach Auflösen der Gl. (II)

MV 2,105 d (III)

Bei gleichbleibender Erregung durch die
Wirbelablösung wird dem homogenen, mit der Eigenfrequenz

schwingenden Seil eine Schwingung mit der
Frequenz nach Gl. (II) und (III) aufgezwungen.
Angaben über die Frequenzabhängigkeit der Seile
für verschiedene Seildurchmesser, bzw. die Grössen
der Knotenabstände X in Abhängigkeit vom
Seildurchmesser d für verschiedene Windgeschwindigkeiten

v und Spannungen finden sich im bereits
erwähnten Aufsatz von Jaquet5).

Will man den Einfluss einer störenden Kraft, bzw.
die Wirkung eines Dämpfers erfassen, ist die
festzuhaltende Tatsache von Wichtigkeit, dass sich nur
zwei Resonanzlagen einstellen, die eine in der Nähe
der Grundfrequenz Gl. (I), die andere im Frequenzbereich

der erzwungenen Schwingung (Gl. II).
Um das theoretische Modell zu bilden, nimmt

man eine Umkehrung der Fragestellung vor, und
zwar so, dass man durch Einführen der neuen
Spannung as das Seil mit der Frequenz fs schwingen

lässt und demselben, durch äussere Einflüsse

verursacht, bei der Frequenz fn — y— ge-2 'o V Q
danklich eine Resonanz zuschreibt, während der
Stossdämpfer selbst durch Schwingungsenergie von
der Frequenz fs angeregt wird. Diese Umgestaltung
führt zu einer wesentlichen Vereinfachung der
mathematischen Analyse.

Die in die Berechnung neu anzusetzende Spannung

os folgt aus Gl. (I) und (III) :

2,05
2,5

(IV)

Die Eingliederung einer über die ganze Länge
konstanten Spannung verlangt, den Gültigkeitsbereich

bei einem stark durclihängenden Seil zu
bestimmen. Sehr genaue Angaben lassen sich vorderhand

nicht machen; trotzdem ist die getroffene
Annahme wie aus vielen Amplitudenaufzeichnungen
von Schwingungen an den verschiedensten Seilen
bei gleichen Mastquoten und selbst grossen Spannweiten

ersichtlich ist, zutreffend. Der Einfluss der
Spannungsänderung auf die Frequenz ist bei stark
durchhängenden Seile sehr gering. Eine analytische
Behandlung der ungestörten Schwingungsvorgänge

5) Jaquet: Bull. SEV Bd. 28 (1937), S. 200.
°) An Stelle der in der Aerodynamik die Zirkulation

charakterisierende Grösse r ist der Index s eingeführt.
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bei den eine Kettenlinie 7) darstellenden Seilen und
bei starken Ueberliöhungen der Fixpunkte7) gibt
Ruedy 8).

Als äussere, den Leiter in Schwingungen
versetzende Energiequelle ist die Luftströmung zu
betrachten. Die Schwingungsdämpfung selbst wird
durch die Formänderungs- und Reibungsarbeit9)
der einzelnen Drähte nebst dem Luftwiderstand
hervorgerufen. Tritt nicht Resonanz mit der
Grundfrequenz ein, halten sich die zugeführte und die
vernichtete Energie nach bekannten Gesetzen das

Gleichgewicht. Die Leitung schwingt mit konstanter

Amplitude. Bei gleichbleibender Luftströmung
ist dies laut Registrierung stets der Fall. Dank der
Einführung der neuen Spannung as, die als das
Charakteristikum für das mit niedriger Frequenz
schwingende Seil anzusehen ist, wurde der
verlorengegangene Energiebetrag etwa durch die Aen-
derung der Frequenz (Ek ^ J (M) ojq2 u)
berücksichtigt. Bei der spektralen Zerlegung werden,
ohne einen Fehler zu begehen, diese
Gleichgewichtszustände (stabile Gleichgewichtslage)
betrachtet.

Wie die Ableitung der allgemeinen
Bewegungsgleichungen zeigen wird, ist diese Modifikation
deshalb von Wichtigkeit, weil sie erlaubt, ein einfacheres

Lösungsverfahren anzuwenden.

Versuche, die an den verschiedensten Seilen
vorgenommen wurden, wiesen deutlich darauf hin, dass
die bis jetzt noch nicht berücksichtigte Luftdämpfung

10) bei der Veränderung der Frequenz durch
ein Störglied ohne Bedenken vernachlässigt werden
kann. Bei elektromagnetisch erregtem Seile in
ruhender Luft (Prüfstand) konnte ohne merkliche
Korrektur direkt auf die Formänderungs- und
Reibungsarbeit geschlossen werden.

bj Herleitung der Bewegungsgleichungen.
Um eine eindeutige Lösung der Aufgabe oder der

spektralen Zerlegung der Schwingungsvorgänge zu

Seil mit der in der Schwingungsebene liegenden äusseren
Kraft P Y (x, t). X Wellenlänge.

erhalten, sei die transversale Kraft Y (x, t) nach
Fig. 2 als bekannt vorausgesetzt. Die Problemstellung

erleidet, wie bereits erörtert, eine Umkehrung,
indem man sich primär den schwingenden Dämpfer

7) E. Maurer: Bull. SEV Bd. 27 (1936), S. 41 und 65;
Leitung Handeck-Innertkirchen.

8) Ruedy: Canadian, Research, Sect. A, Vol. 13 (1935).
9) ten Bosch: Maschinenelemente, Julius Springer 1929.

Schweiz. Bauztg. Bd. 9 (1936), S. 108.
10) J. S. Caroll und J. Koontz jun.: Eleetr. Engng. Bd. 56

(1936), S. 490).
J. S. Caroll: Electr. Engng. Bd. 55 (1936), S. 543.
ETZ Bd. 41 (1936), S. 1181.

11 Es bedeutet M die Masse des Dämpfers und coQ seine
Winkelgeschwindigkeit bezüglich dem Seilpunkt i, Ek
kinetische Energie.

denkt, der erst sekundär im Seil eine erzwungene
Schwingung verursacht. Diese Modifikation, die
öfters bei solchen komplexen Gebilden nötig ist,
hindert aber keineswegs, den physikalischen
Zustand folgerichtig zu erfassen. Die wesentliche
Fragestellung wird die sein: Wie lauten die Bewe-
gungsgleichungen eines Seiles, dem eine beliebig
veränderliche, äussere Kraft eine erzwungene
Schwingung aufdrängt. Um die Kraft Y (x,t), die
als diskontinuierliche Quelle zu deuten ist,
organisch in die mechanischen Beziehungen eingliedern
zu können, ist man genötigt, sich des Hamiltonschen
Variationsprinzipes und der Lagrangeschen
Bewegungsgleichungen zu bedienen.

Systeme mit unendlich vielen Freiheitsgraden,
die infolge periodischer Erregung sogenannte
erzwungene Schwingungen ausführen, können
bekanntlich durch verallgemeinerte Koordinaten
ausgedrückt werden. In einem ungestörten System lassen

sich die Lagrangeschen Bewegungsgleichungen
zweiter Art schreiben

d /8E,.\ 8U
17U.) + ~ (1)

Hiebei geben die Lagenkoordinaten qi; q.,, qn
die Abweichungen des Systems aus der
Gleichgewichtslage q1 0; qn — 0 an. Die kinetische
Energie Ek ist bei kleinen Schwingungen 12) als
homogene quadratische Formen mit konstanten
Koeffizienten der zeitlichen Ableitungen der Koordinaten

qn selbst gegeben. Es wird die kinetische Energie

in die positiv quadratische Form mit dem
Koeffizienten a? u übergehen.

n

l^it — av,fi Qv 9« (2)
V, IL - 1

Diese Vereinfachung ist berechtigt, da wegen des
Einsatzes des Dämpfers zum vornherein nur
Dissonanzen betrachtet werden und grosse Amplituden
überhaupt nicht zulässig sind (siehe später).

Die potentielle Energie mittels einer Reihenentwicklung

dargestellt, ergibt

E7=17<0,0)-f-S (-~) _n-9v +
v \ O Qv /Qv ~~ 0

1 y y b2 U \ •

~2~ vß\8qv 6q,J<iv o,o" qv q"'"

Wie bereits erwähnt, kann bei kleinen Verschiebungen

die Reihe mit den quadratischen Gliedern
abgebrochen werden. Die Berechtigung dieser
Vereinfachung kann ohne die obige theoretische Erwägung
auch durch bekannt gewordene Messresultate 13) an
Seilen belegt werden. Bei einem Seil von ca. 180

mm2 Querschnitt und einer Spannweite von 200 m,
hei Knotenabständen von 1 bis 4 m, wurden auf
Rekorderstreifen maximale Amplituden von durch-

12) Rayleigh: The theory of sound Bd. I.
M. Plancherel : Des petites oscillations, Vorlesg. ETH,

Zürich.
,:!) E. M. Wright und J. Mini jr.: Aluminio Bd. 4 (1935),

S. 138. Electr. Engng. Bd. 53 (1934).
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schnittlich 0,6 bis 1,0 cm aufgezeichnet. Dämpfer,
die eingebaut wurden, vermochten die Amplituden
bis auf 0,5 bis 0,2 cm und noch mehr zu erniedrigen,

was absolut eindeutig für die Gutheissung der
mathematischen Einschränkung spricht.

Um rascher an das Ziel zu gelangen, wählt man
die Lagrangeschen Koordinaten so, dass eine lineare
Transformation der ohnehin stets in die Ausgangslage

zurückkehrenden Systeme vorgenommen werden

kann. Die zugehörige Transformationsgleichung
lautet

% /C IL tp/L

ß 1

(4)

Das Wesentliche der Transformation, die Bestimmung

der Hauptachsen oder Eigenvektoren, wird
durch das Koeffizientenschema oder die Matrix 14

der Gl. (4)

A — («,.,() —

mit der Determinate

A — j Uv,/1 I

(5)

(6)

wiedergegeben. Zufolge dieser linearen Transformation
werden die Funktionen in quadratische

Einheitsformen von Ek und TJ, bzw. in Summen von
Quadraten übergehen. Für jede einzelne Koordinate

ergibt sich nun eine, von den anderen gänzlich
unabhängige, harmonische Schwingung mit
zugehörender Periode. Schwingungen, die hei bestimmten

Koordinaten variieren, während bei den andern
keine Bewegungen stattfinden, nennt man
Hauptschwingungen, die Koordinaten «Hauptkoordinaten».

Das ganze System auf derartige Koordinaten,
unter gleichzeitiger Vernachlässigung höherer
Ableitungen, bezogen, erlaubt, die kinetische Energie

1 "
e y 2 °v q

V \

2
Qv

(8)

und die potentielle Energie U0

U0 — "H" cv QV
* V 1

zu schreiben. Nach Einbeziehung der von aussen
eingreifenden Störungsfunktion Y (x, t) kann wegen
dem positiv definiten Charakter von Ek und U0

(die Werte av und cv positiv) jeder Koordinate qv
die erweiterte Differentialgleichung von der Form
der Lagrangeschen Bewegungsgleichung zweiter Art
genügen. Sie besitzt die Form

d (SE,^dt \8qr — av + c„ qv ~ Y (x, t) (9)
n.. Q t

') Hilbert-Courant : Methoden matliem. Physik, Springer,
Berlin 1931.

0. Schreier und E. Sperner: Vorlesungen über
Matrizen, Teubner 1932.

Für die erzwungene Schwingung eines Seiles mit
der mechanischen Spannung os, der Einheitsmasse o
und einer transversal beliebig veränderlichen Kraft
Y (x, t) (senkrecht zur Achsenrichtung des Seiles)
wird die Schwingungsgleichung in Kartesischen
Koordinaten

d2y
6><2

— o.
82y
Ä t-2

Y (x, t) (10)

Darauf ausgehend, die Lösung der Gleichungen mittels

periodischen Funktionen zu ermitteln, ist hier
auf eine besondere Tatsache verwiesen. Aus dem
gebräuchlichen Rechenverfahren bei der Herleitung
der Koeffizienten von Fourierschen Reihen kann
leicht geschlossen werden, dass die vorkommenden
Integralheziehungen keine speziellen Eingenschaf-
ten trigonometrischer Funktionen sind. Sie entsprechen

viel mehr einer allgemeinen Eigenschaft der
hier schon eingeführten Hauptkoordinaten. Wunsch-
gemäss sind alle Gleichungen mit Hauptkoordinaten
dadurch gekennzeichnet, dass sie nach ihrer Einführung

in die gegebenen Differentialgleichungen (9)
Beziehungen liefern, in denen ausser der Zeit t stets
nur eine einzige Koordinate vorkommt. Funktionen,

die Gleichungen eines Systems mit n Freiheitsgraden

befriedigen können, lieissen Eigenfunktionen
und sind von der Form

S cpv (*) • Wv (t) (H)

Definiert man die kinetische Energie Ek des

bewegten Systems durch Ueberführung der unendlichen

Summe mittels einem Integral, wird sie die
Form annehmen

E,*0 -tS ' 1 dx (12)

Analog schreibt sich die potentielle Energie

U, (13)

Unter Einschluss der wichtigsten Eigenschaften
der Hauptkoordinaten, die fordern, dass in den

Ausdrücken der Energiefunktionen nur Quadrate tpv2

und keine Produkte der verschiedenen Ableitungen

W Wv (ft =7^= v) auftreten 15), wird Gl. (12)
übergehen in

i
1 °° f

Ek -s-E Q(<fv(t))2\cpv2 (x) àx-\-
Z V=l J

0
l

Q Ê Z W (0 • YvO \ (P,1 (x) cPv (*) d* (14)
{1=1 v=l J

0

Für ein Orthogonalsystem bildende Funktionen

15) Riemann-Weber: Differential- und Integralgleichungen
der Mechanik und Physik, Bd. I, S. 217 (1935).
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wird das Integral über das Produkt der Faktoren
cpvm\d cpß nach bekannten Gesetzen

Vu (x) Vv (x) dx — 0 (15)

Bildlich gesprochen besagt diese Gl. (16) folgendes.

Die den einzelnen Veränderlichen cpv{x)
entsprechenden Vektoren des Funktionenraumes stehen
zueinander orthogonal. Normiert man dieselben so,
dass die Quadratintegrale

cpv2 (x) dx 1 (16)

werden, lässt sich die Energiegleichung (14) in einer
bedeutend vereinfachten Form schreiben, nämlich

i

Ek -y Q \ (Z Vv Wv (O)2 dx 4- Z V*2 (t) (17)
^ J V=1 * V=1

ü

Aus analogen Ueberlegungen sei die potentielle
Energie U ermittelt.

i

U Z w(0
v=L

d cpv (x)
dx

dx

\iy« )'"
o

i

(18)

dcpv
Eine partielle Integration des Integrales (j ^

dx

in Gl. (18) vorgenommen, führt es über in

d cpv(x) Y dx
i

cpv(x)~
d <pv(x)

dx — \ cpv (x)
d2 cpv (x)

dx2 •dx (19)

Sind die beiden Enden des Seiles in Klemmen
eingespannt (Fig. 3), wie es voraussetzungsgemäss
bei den meisten Freileitungsseilen in bezug auf eine
Aclisriclitung zutrifft, wird die Quadratur des ersten
Produktes mit den Grenzen 0—>-1 gleich Null. Ueber
die Bedingungen der stehenden Wellen ist folgendes

zu sagen. Das Integral rechts der Gl. (18) und
links der Gl. (19) wird gleich dem zweiten Faktor
in Gl. (18). Dieses Ergebnis in die Beziehung der
potentiellen Energie eingesetzt und die bereits früher

genannten Teillösungen vom Typus

d2 cpv (x)
dx — k2 cpv (x) (20)

berücksichtigt, führt auf das Quadratintegral der
normierten Funktionen

u
L v=l

Es bedeutet hierin der Faktor kv2

(21)

V 7t
Um

vollständige Beschreibung der Bewegungen
durchzuführen, ist es nötig, die Arbeit, welche der Dämpfer

jeweils phasenverschoben an das Seil abgibt,
analytisch einzugliedern. Die Energie, die er seihst
aufzehrt, wirkt sich als eine Vergrösserung der Dämpfung

aus (Wirkungsgrad sehr hoch). Man denkt sich
diese Energie durch die kontinuierliche Erregung
von der Luftströmung gedeckt und berücksichtigt
nach den Modellvorstellungen nur den Einfluss
der eintretenden Wellcninterferenzen. Weiter führt
man die auf die Spannung os des Seiles
bezugnehmende Kraft Y (x, t) ein. Die angreifenden
Kräfte des Dämpfers sind, wie auf Seite 591
vermerkt, nahezu in einem einzigen Punkt
vereinigt. Erfasst werden die Kräfte durch die sehr
anpassungsfähigen Quellfunktionen. Man stellt
sich diese analytischen und stetigen Funktionen

so vor, als besitzen sie ausserhalb eines festen
Intervalles .f — e, £ + e einen beliebig kleinen,
vernachlässigbaren Wert, im Intervalle ± s einen belie-

Fig. 3.

Ei'satzbild des schwingenden Seiles mit dem vollkommenen
elastischen Gliede bzw. der Krai't Y (x, t) nnd der neuen Zug-

Spannung a, Gl. (III).

big grossen. Solche Zackenfunktionen (Fig. 3 u. 4),
die eine Punktquelle darstellen, verursachen eine
nahezu sprungartigeAenderung der ersten Ableitung in
der Umgebung der Quelle. Die Ableitung im Intervalle

f + e—>£ — e wird

d cp (x)
dx

f+e

f-r
Iq(X)dx -f- — ~ 1 d- (22)

Es konvergiert die Funktion y rj (e) für e—>0.
Der negativ genommene Grenzwert der linken Seite
für e-—>-0 heisst die Ergiebigkeit der Quelle und
beim Passieren einer solchen mit der Ergiebigkeit 1

springt die Ableitung näherungsweise um den
Betrag

4^ f+°= 1 (23)dx |f_o

Die von den örtlich begrenzten Quellen oder den
Dämpfern, bezogen auf das schwingende Seil mit
den Koordinatenzahlen yj geleistete Arbeit A,
wird nach der Integration über ihren Wirkbereich
X—> l

A ^ as Y(x, t) dy dx
o i

Y oo

os Z à xp (t)\ Y (x, t) cpv (x) dx Z PV à xpv (0 (24)
V=i V=1

Diese angreifenden fremden Kräfte haben die
Koordinatenzahlen xplv xp2, xp3, xpn, Sind die xp
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an Grosse einander gleich, wird die einzelne
Kraft Pv

l

as ^ Y x, t) cpv (x) d x (25)

Man ersieht aus der Form der Gl. 25 die Möglichkeit,

die Kraft Pv als Koeffizienten der Fourier-
schen Entwicklung der Funktionen asY (x, t) nach
den Eigenfunktionen cpv (x) zu deuten. Setzt man
die erhaltenen, von den Eigenfunktionen cpv (x)
und der transversalen Kraft Y (x, t) abhängige
«Kraft P„» nebst der Teillösung

Cy C[y os K2 y>v (t)

in die Gl. 9 ein, ergibt sich für das Seil die
Bewegungsgleichung in Form einer Integralgleichung le)

/

J(^+== (26)

.39Wird die Dämpfung17) durch das Glied r die Erreger-
0 t

energie des Seiles durch CP (v, d) einbezogen, müsste die
obige Gl. übergehen in

ï1 g /» n —>
- 2- + cvqv— I Y (x, t) dx / 0 (v, d) —

d p
dt

0.

Ausgehend von der gewöhnlichen Gleichung, ist man gezwungen,
die durch den Dämpfer verursachte Kraftänderung Ao,

im Seil an der Unstetigkeitsstelle f zu erfassen. Diese kann
aber wegen der sehr geringen Spannungsänderung gegenübcr
den Auswirkungen in Form von Schwingungen nur sehr
unzureichend bestimmt werden.

c) Allgemeine Lösung der Bewegungsgleichung.

Die Bewegungsgleichung 26 des Seiles ist durch
die Umgestaltung in eine grundsätzlich andere Form
übergegangen. An Stelle der für einfache Verhältnisse

ausreichenden Differentialgleichung ist eine
Integralgleichung16) getreten. Die Lösung dieser
Integralgleichung bietet verschiedene mathematische
Schwierigkeiten, und man muss alle eine
Vereinfachung ermöglichenden physikalischen Bedingungen

berücksichtigen. Die willkürlich angesetzten
Funktionen müssen ermittelt werden und das ist
durchaus nicht möglich durch die Bildung von
gewöhnlichen Differentialgleichungen, wie sie
beispielsweise eine weitere Differentiation von Gl. 26

ergeben würde. Vielmehr ist es die Integralgleichung,

die hier als die alleinige Grundlage und den
natürlichen Ausgangspunkt für eine Reihenentwicklung

zu betrachten ist. Trotzdem das Suchen der
zum Kern gehörigen Eigenfunktion allgemein
sehr schwierig ist, gelingt es in unserem Fall, ein
brauchbares Resultat herzuleiten.

Die wesentlichste Eigenschaft des Dämpfers wird
die sein müssen, eine Schwingung zu erzeugen, die
im Sinne spektraler Zerlegung die kleinsten
Amplitudenwerte der Hauptkoordinaten am Seil erzwingt.
Aus der bekannten Gleichung einer ungedämpften
Saite, die für ein Seil ohne spezielle Vorbehalte an-

16) D. Hilbert: Grundzüge einer allgemeinen Theorie der
linearen Integralgleichungen, Teubner 1924.

wendbar ist17), erhält man nach Einführung der
Wellenlänge 1 aus Gl. (I) eine Schwingungszahl von

—l/J
2A\{

Es sei zum voraus der Fall der Resonanz der
Systeme ausser acht gelassen, denn sonst würde die
Frequenz der störenden Kräfte mit der Eigenfrequenz

des Seiles übereinstimmen und es könnten
die Amplituden keine Verringerung erfahren. Analoge

Verhältnisse 18) treten bei den sehr einfachen
Konstruktionen schwingungsfreier Aluminiumseile
auf, bei denen durch eine Metalleinlage einfach
Dissonanz angestrebt wird. Demzufolge setzt man
mit voller Berechtigung den folgenden
Zustand voraus: Der Dämpfer soll eine geringere,

bzw. grössere Eigenfrequenz aufweisen als
das Seil. Eine einfachere Lösung erhält man, wenn
die Trägheit des Systems vernachlässigt wird. Das

geschieht durch Null setzen der Glieder av
®

^
in Gl. (9). Dass die Genauigkeit der Rechnung unter

den genannten Absichten (Spektrum) keine Ein-
busse erleidet, ist dem folgenden Umstand zu
verdanken. Die Amplituden werden nach den
Bemerkungen auf S. 590 r. unten ziemlich klein (siehe
Ableitung der Systemgl. 3 u. 4). Das charakteristische
Verhältnis der Seilamplituden bei Einbeziehung
der Massenträgheit (dynamische Theorie) und bei
deren Vernachlässigung (statische Theorie) ist bei
der Umgestaltung oder Vereinfachung der
Systemgleichungen 1—26 allein massgebend. Ist cüq die
Eigenfrequenz des Dämpfers (Störungsquelle) und
a>$ die des Seiles, wird die dynamische Vergrösse-
rung p, die als eine Verhältniszahl zwischen
Frequenz und Eigenfrequenz zu werten ist, durch die
Beziehung dargestellt

ß
—I ü)Q

0),

(28)

Erreicht man genügend Dissonanz, etwa hei ^«-Werten

von 0,8 1,0, so ist die gestellte Bedingung der
Trägheitslosigkeit gerechtfertigt. Immer wird man
bemüht sein, die Grundfrequenz cos gegenüber cüq
genügend gross zu halten. Es lässt sich demzufolge
die Gl. (26) für die langsamen Schwingungen
umschreiben. Die Koordinate yj wird

Vv kv2
\ Y (x,t) cpv (je) dx (29)

Die so erhaltene yjv-Funktion in den Ansatz Gl. (11)
eingesetzt, führt auf die Koordinatengleichung

S cpv (x)
=1

Y (x, «) cpv (x) dx (30)

17) Ruedy: Canadian Journ. Research, Vol. 13, Sec. A.
18) Preiswerk: Bull. SEV 1934, S. 252, und ETZ 1934,

S. 1125.
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Betrachtet man den Grenzfall einer nahezu
punktförmig wirkenden Quelle, so wie die angreifende
Kraft des Dämpfers in x — £ eine ist, muss als
Koordinatenbegrenzung für die Funktion Y (x, t) die
Ungleichung gelten

<?+£• (31)

Für eine Ergiebigkeit von 1 wird das Integral über
die Kraft

f + e

Y(x,t) dx l19) (32)

t — «

Setzt man den erhaltenen Wert in Gl. (30) ein und
schreibt für den neuen Koordinatenwert die Funktion

K (x, t), so wird die Amplitude

K (x, g) IV=\

<Pv (*) <Pv

K2
(33)

Dieses transzendente Summengebilde lässt die
Schwierigkeit erkennen, dass man eine Lösung
gewöhnter Art nicht findet, weshalb man gezwungen

ist, diese in der Mathematik benannte Bilinear-
form nach den Eigenfunktionen zu entwickeln.
Man nennt die Greensche Funktion K(x, f) den
Kern der Integralgleichung. Das Resultat der
Lösung dieses Gleichungsgebildes, deren Eigenwerte

sich als Wurzeln einer transzendenten
Gleichung ergeben, werden die Eigenfunktionen <pv (x)
sein, von denen jede eine Hauptschwingung oder
«stehende» Welle darstellt.

Zur Lösung dieser Gleichung gelangt man fol-
gendermassen. Die Kraft Y (x, t denke man sich
auf eine periodische Funktion as f (x)-cos (coq t)
reduziert, eine in der Wirklichkeit durchaus zutreffende

Annahme. Y (x, t) in die im Seil tangential
wirkende Kraft Pv eingesetzt, führt auf die Gl. (34)

Pv cos (<ÜQ t) l 6S f (x) fv (X) d* (34)

Man erinnere sich der Gl. (9), die beim Einsetzen
der gestellten Bedingung die allgemeinen Koordinaten

qv bei periodischer Erregung lieferte. Mit dem
Ansatz qv — Av cos ojq t und bei der Gültigkeit der
Ungleichung cv a>Q2 av > 0 kann die Koordinate
der r-ten Schwingung nach dem Auflösen der Gl.
(25) geschrieben werden

Fv (x) cos toQ t
(Cv avj

(35)

ipv —

cos (ÜQ t > OA f (x) cpv (x) d X
(36)

wo

Q (0JV2 - (0Q2)

Tt

Mv Tu(I) Vê
gesetzt ist. Die Funktion yjv(t) in den Lösungsansatz

[Gl. (11)], die als Gleichung der Eigenfunk-
tionen zu bezeichnen ist, eingesetzt, ermöglicht die
Koordinate y bei Einführung der Abkürzung kgQi izu berechnen.

y cos K Vv{x) dx (37)

Um die Schreibweise zu vereinfachen, sei kv2= X

substituiert und die Funktion cpv(x) =-
COS ü)q t

wird

cp (*)= ijv:d* (38)

In dieser Funktion tritt die Unbekannte cp (x)
sowohl ausserhalb als auch innerhalb des Integralzeichens

auf. Es wird die Aufgabe sein, zu zeigen,
dass diese Gleichung einer Integralgleichung zweiten

Grades von der Form

cp (x)

l

— x\K(x,j;)f(g)dg F(x) (39)

genügt.

d) Herleitung der Integralgleichung.
Die bekannte Funktion, die eine quellenmässige

Darstellung erlaubt, sei

Diese Gl. (35) sagt aus, dass sich für jede
Hauptkoordinate eine bestimmte Amplitude ergibt. Die
Funktion tpv(t) des transformierten Systems wird
nun analog geschrieben

10) Selbstverständlich ist Y (x, t) eine Funktion der eigenen

Masse M, des Dämpfers, also

Y (x, t) (/ [MD fix, t, M, <u2)

Hiezu Gl. 24 und 25.

F (x) \ K ê) f (F) d (40)
Ô

Mit Benutzung der Bilinear formel Gl. (33) folgt
i

F (x) S q>v^X) \ cpv (g) f (g) d £ (41)
V=l A y J

0

Vergleicht man dies mit Gl. (38), so kann durch
Subtraktion der einzelnen Summenglieder nach E.
Schmidt20) eine ähnliche Gleichung nachgebildet
werden, und zwar gilt

i

E, (j7~zrx — 4") ,:;>v(x) \ <pv(g) f (.c) d<?

cp (x) — F (x) (421

20) E. Schmidt: Math. Ann. Bd. 63 (1907), S. 454; Bd. 64

(1907), S. 161—174. Einige die Grundzüge der Theorie
übermittelnde Literatur findet sich in 16) D. Hilbert, Grundzüge
einer allgemeinen Theorie der linearen Integralgleichungen,
Teubner 1924.

Hilbert Courant: Methoden der mathematischen Physik I,
Bd. 12, S. 96, 131, Springer, Berlin 1931.
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Durch Multiplikation und Integration erhält man
nach dem Einsetzen der Gl. (38) die Relation

i

K (x,>) cp (i) d§ =S f"{x) \ cpv(Ç) f (<f) d.i
p= i a v y^ v — a f }

(43)

die, wie vorher bewiesen [rechtes Glied der Gl.

(42)], mit ^00 ^—1^1 übereinstimmt. Folglich
wird die Funktion cp (x) identisch mit den in der
allgemeinen Form der Gl. (39) bezeichneten. Gl.
(3) aufgelöst liefert die Grösse cp (x), nämlich,

cp(x) F (x) -M' ^Kix,? (P (I) d <f (44)

Man sieht, dass die Funktion cp (x in der Tat der
obigen Integralgleichung genügt. Die Entwicklung
von F (x) in eine nach den Eigenfunktionen cpv ix)
fortschreitende Reihe ist der einzige Ausweg, um zu
einer Lösung zu gelangen. Man schreibt

F (x) A1 cpl (x) -h A2 cp2 (x) + + Äv cpv Oc) (45)

und findet aus den Orthogonalitätsbedingungen der
Eigenfunktionen und späterer Multiplikation mit
<pv(x) und Integration über die Länge l, die Zwi-
schengrösse Av:

Av F (x) cpv (x) dx (46)

Die allgemeine Fouriersche Entwicklung von
F (x) 21) lautet

i
00 f ?>

(x) Z (Pv (x) \ F (>) cp,, (g) d >. (47)
V \ J

0

Vergleicht man das erhaltene Resultat mit der Gl.
(40), so besteht eine Identität zwischen

/

^ F (s) >Pv (£) d e ^ cpv (g) f (ß) dß (48)
0 0

Da die Kraft des Dämpfers in dem Punkt x f
eingreift, lässt sich Gl. (38) bei Ueberführung der
Koordinate x in £ schreiben

i

>P (x) \ >pv (<f) F (>) dß (49)
*0

Durch Aufteilung der Summe und Anwendung
der allgemeinen Fourier-Entwicklung wird die
Amplitude an der Stelle x endgültig

cp (x) F(x) + Â' £ Ftf) dl? (5°)

Durch Gl. (50) ist das gestellte Problem allgemein
gelöst. Präziser gesagt, es gibt für alle Schwingzu-

21) Blochner: Vorlesungen Fourierscher Integrale, Teuh-
ner, Leipzig 1932.

stände entsprechende Lösungen. Schwierigkeiten
bietet die Fouriersche Entwicklung, denn erst ihre
definitive Form ermöglicht, die Werte der
Hauptschwingungen zu ermitteln. Wie eine Quellfunktion
F (£) anzusetzen ist, wird in einem folgenden
Beispiel gezeigt. Bedingungen können nun an alle
Glieder gestellt werden, und zwar so, dass bestimmte
Amplitudengrössen dank des Eingreifens des
Störers (oder Dämpfers) nicht erreicht werden. Dies
war die tiefere Absicht dieser methodischen
Entwicklung, eine Relation mit einer allgemeinen Fou-
rierschen Reihe zu finden, um den spektralen
Charakter der durch den Dämpfer verursachten
Interferenzen, welche in anderen Untersuchungen als
irgendeine Dämpfung zum Ausdruck kommen, zu
beweisen.

3. Beispiel.
Beim einfachsten Fall kann die Fouriersche

Entwicklung in der Integralgleichung umgangen werden,

sofern eine eindeutige und zugleich genügend
«einfache» Quelle in x ß vorhanden ist. Für eine

Kraft Y x, t), die sich auf die in t periodische
Funktion as f ix) cos ojq t reduzieren lässt, wird
nach Gl. (37) die Koordinate y eines jeden
Seilpunktes für v 1 (Grundharmonische)

y cos coQ t </-i(x)
<3" k2—k2 f(x) cpx{x) dx (51)

Für f (x) setzt man die schon angedeutete
Quellfunktion ein, die ihr Maximum bei ß hat und der
analytischen Gleichung

u — u2 (-T - f)!
f(x) y e (52)

yji
genügt (Fig. 4). Wird die Hauptkoordinate cp, ix)
eine Sinusfunktion mit einer Grundharmonischen

7t
Aj sin — x, geht Gl. (51) über in

A, fTT \ f u —u-(x-i)-
y kJ- V C0S (w<2 0 ' sin (r ' X

y7t

sin (y • xj dx (53)

Die konstanten Werte in und ausserhalb dem
Integrale in ß zusammengefasst, den Formfaktor der
Quelle u individuell eingetragen, führt die Gl. (53)
über in

Ylx,t)
Fig. 4.

Darstellung der räumlich ausgedehnten
Kraftquelle — s bis + s und der Einzelkraft

Y (x, t) in Richtung der Schwin¬
gungsebene [vgl. Gl. 30), (31), (32)].
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/ \ I71 \ [ -M2!*-?)2
y p-u cos (lüq t) sin I y • x I \ e

•insin j • x I d x (54)

Das Integral der Gl. 54) lässt sich mit einer
Reihenentwicklung in den gewünschten Grenzen 0 I
lösen.

Beabsichtigt ist, den Weg des Lösungsganges zu
zeigen, weshalb auf die Ueberfülirung des Integrales
in das komplexe Gebiet und der darauffolgenden
totalen Lösung verzichtet ist (vgl. 2). Substituiert

71

man die Veränderliche x — f d. und -p(a'-f- §) —
0

/.'d, wird das Integral J der Gl. (54) übergehen in

-(«a')2sin (/' a') da' (55)

-i
Die Exponentialfunktion in eine Reihe entwickelt

1-T ("ß')2 («ö')4
1! 2!

2 (-i)n (« «')
(56)

und dieselbe an Stelle der Exponentialfunktion in
Gl. 55) eingesetzt, ergibt die neue Beziehung

l-S
Z* oo 2 n

/ \ 2 (—1)" (a')2 sin (^'ß') (57)
J o n •

— s

Nach der Integrationsmethode für Potenz- und
trigonometrische Funktionen bei gleichzeitiger
Einführung des Parameters p wird nach bekannten
Gesetzen 22

a'" sin (/.'a') da' ^ 7x7771— • ?' " cos À'a' (58)
p ü(i')P+1 (n-p)!

Diese Gl. (58) der Integration der Summe Gl. (57)
zugrunde gelegt, führt, wenn n 2n ersetzt wird,
auf das endgültige Integral23) (cos-Glieder)

t y V <2">!
üo ' n Z—J (2 n -p)! (A>)p+

cos A'a'

(59)

P 0, 1, 2, 3,

Aus Gl. (56) ist die Tatsache ersichtlich, dass die
Wahl von n (Anzahl Glieder) nur von der gewünschten

Genauigkeit abhängt und dass ausserhalb dem
Bereiche e die Exponentialfunktion nahezu Null
wird. Die endgültige Koordinate y schreibt sich
heim Extrahieren des Faktors cos I'd

22) Handbuch der Physik VIII (1925), S. 172, Julius
Springer, Berlin.

23) Jahnke-Emde: Funktionentafeln, Teuhner, Leipzig 1933.

U ß

(/')P+1
cos (a»çt) • sin I— • x J cos (/'«') •

n An

2 r (- i>" \4 2 n
r(x—i) (2 n — p) (60)Z_J (2 ti — p)

P =0

n 0, 1, 2,

Greift man, um einen Ueberblick über die Gl. (60)
zu erhalten, auf Gl. (55) und (56) zurück, so ersieht
man einen Vorteil, den die Exponentialfunktion
bietet. Um ein genügend genaues Resultat zu erhalten,

muss die Integration praktisch nur über ein
kleines Gebiet ± e erfolgen.

Denkt man sich für eine Ergiebigkeit 1 der
Quelle die konstanten Summen in ß (x const.
unter gleichzeitiger Einbeziehung von A d zu-
sammengefasst, so bilden die Veränderlichen in
Abhängigkeit von der Frequenz des Dämpfers Wq und
der Eigenfrequenz mit den Grössen x — f die
folgende Relation

y — B cos (o»q t) cos
x konst.

sin
TT

X) (61)

Es wird nun die Aufgabe sein, die Schwebungen so

zu erzeugen (Interferenzmethode), dass nirgends
eine grosse Amplitude auftreten kann. Eine
Grundgleichung liegt in (61) vor. Ob es vom Standpunkt
der Ermüdungsfestigkeit vorteilhaft erscheint, kurze
Wellenlängen oder längere mit grösseren Amplituden

entstehen zu lassen, wird die Erfahrung zeigen.
Am aussichtsreichsten wird die Einführung der
Bedingung sein, niemals Resonanz entstehen zu lassen.

Gl. (61) hat sehr viel Aehnlichkeit mit der
Bewegungsgleichung (10) einer gezupften Saite,
abgesehen von der neu hinzugetretenen Quellenfunktion
exp (* — |)(2»-t>).

Der noch einfachere Fall ergibt sich, wenn man
eine punktförmige Quelle (o>q 0) von der
Ergiebigkeit24) 1 in v | annimmt [Gl. (32]. Weiter
beachte man die Normierung der Eigenfunktionen
Gl. (16) und versuche dann die Gl. (33) durch eine
Funktionenfolge zu bestätigen. Setzt man in Gl.

V^ JT^
(33) kv2 — Xv, so gilt A„ —p—•

Die Eigenfunktion

wird dann
P v TT x\

cpv Av sin I j~\ (62)

Die Sinusfunktion in Gl. (16) eingesetzt, ergibt
die Konstante Av, während die Eigenfunktion
cpv ix) selbst wird

l/2 fvx x\
cpv (x)

IIi l (63)

Die allgemeine Lösung erhält sodann die Form

y -

2 l0 s"1
v jr

X sin-Or*)
V l

(64)

-4) Im Punkte ir entsteht eine Punktquelle von der
Ergiebigkeit 1, wenn die Kraft P — as wird (siehe Gl. 22, 23).
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Wegen dem Faktor v'1 im Nenner werden die oberen
Harmonischen rasch unmerklich klein und für die
Grundwelle ergibt sich die sehr einfache Gleichung

einer stehenden Welle.
Durch diese angeführten Gleichungen wurden

die einfachsten Fälle errechnet. Es ist die weitere

Aufgabe, die Bedingungen einzuführen, die für die
Interferenz (Dämpfung genannt) der einzelnen
Wellen den vorteilhaftesten Zustand schaffen.
Beispielsweise verlangt man die minimalste Ampli-
tudengrösse. Da aber die Absicht leitend war, die
allgemeinen theoretischen Grundlagen vorerst
herzuleiten, fällt die Behandlung der individuell
wünschbaren Bedingungen aus dem Rahmen dieser
Arbeit.

Erfolgsaussichten der künstlichen Atmung bei elektrischen Unfällen.
(Mitgeteilt vom Starkstrominspektorat.) 014.8 : 621.3

Vor einigen Monaten erschien als Heft 4 der Schriftreihe

des Reichsgesundheitsamtes in Berlin von Dr. med.
W. Estler eine Broschüre, betitelt: «Mit welchen Aussichten
machen wir Wiederbelebungsversuche?» Der Inhalt dieser
Broschüre fusst auf Erhebungen in grösserem Umfange, die
in Deutschland vorgenommen wurden, um den Wert der
künstlichen Atmung an Hand praktischer Erfahrungen
festzustellen. Der Verfasser gelangt dabei zum Schlüsse, dass
die künstliche Atmung im allgemeinen keinen grossen Erfolg
verspreche und dass ihr therapeutischer Wert nicht so sehr
in einer wirklichen «Wiederbelebung» liegen dürfte, als
vielmehr in der Erhaltung des fliehenden Lehens, wenn nur eine
bedrohliche Beeinträchtigung der Herz- und Atemtätigkeit
vorliege. Die Erhebungen bezogen sich allerdings in der
weit überwiegenden Mehrzahl auf Fälle von Leuchtgas- und
Kohlenoxydvergiftungen sowie auf Ertrinken, denn unter den
insgesamt 415 untersuchten Fällen, in denen Wiederbelebungsversuche

vorgenommen wurden (wobei aber in 180 Fällen
keine strenge Indikation auf Atmungs- und Herzstillstand
vorlag), befanden sich nur 6 Starkstroinunfälle. Von diesen
Starkstromunfällen waren lediglich von dreien die getroffenen
Wiederbelebungsmassnahmen im einzelnen genau bekannt;
in allen diesen drei Fällen wurden aber die Wiederbelebungsversuche

verhältnismässig spät begonnen. Estler erwähnt
nun selbst, dass für die Beurteilung der Wiederbelebungsmöglichkeiten

bei elektrischen Unfällen die vorliegenden
sechs Beobachtungen an sich zahlenmässig zu gering seien.
Da wir auf die Broschüre von Estler durch die Schweizerische

Unfallversicherungsanstalt in Luzern aufmerksam
gemacht wurden, veranlassten wir den früheren Forschungsarzt

der Aerztekommission des VSE zum Studium der
Starkstromunfälle, Herrn Privatdozent Dr. med. R. Sulzer in
Genf, sich über deren Inhalt zu äussern. In der Annahme,
dass seine Darlegungen über den Wert der Wiederbelebungsversuche

hei Starkstromunfällen die elektrotechnischen
Fachkreise interessiere, veröffentlichen wir sie im folgenden.
Herr Privatdozent Dr. med. /{. Sulzer äussert sich folgender-
massen :

Die immer wieder auftauchenden Zweifel an der
Zweckmässigkeit der im wesentlichen auf künstlicher

Beatmung beruhenden Wiederbelebungsversuche

an Starkstromverunglückten sind durch den
kleinen Prozentsatz der damit erzielten Erfolge
bedingt.

Zur Klärung der Frage, welche Erfolge von
einer solchen Behandlung erhofft werden können,
mögen die folgenden Feststellungen von Nutzen
sein. Der Tod ist, biologisch betrachtet, kein
momentanes, sondern ein sich über Stunden und Tage
hinziehendes Ereignis. In der Praxis wird
allerdings der Herzstillstand als Moment des Todes
gewertet, weil erfahrungsgemäss ein Herz, das über
eine Minute lang stillgestanden ist, von selber seine
Tätigkeit nie wieder aufnimmt. Es besteht jedoch
vielfach die Möglichkeit, ein Herz kurz nach dem

Stillstand künstlich wieder in Gang zu bringen,
ähnlich wie ein stillgestandener Benzinmotor wieder

angekurbelt werden kann. Bleibt aber die
Herztätigkeit über längere Zeit aus, so verschlechtern
sich die Lebensbedingungen im Organismus infolge
des Stillstandes der Blutzirkulation, und die
Organe stellen, je nach ihrer Empfindlichkeit eines
um das andere ihre Tätigkeit unwiderruflich ein.
Wichtig ist, dass die lebenswichtigen Organe, wie
Gehirn und Herz, die ersten sind, die durch den
Kréislaufstillstand irreversibel geschädigt werden.

Es bedeutet eine Spitzfindigkeit, von wahrem
und falschem Scheintod und dergleichen zu
sprechen. Solche Begriffe sind wertlos, da in praxi ihre
gegenseitige Abgrenzung ein Ding der Unmöglichkeit

ist.

Die Mittel, welche gelegentlich imstande sind,
ein stillstehendes Herz von neuem zum Schlagen
zu veranlassen, sind vor allen Dingen die Herzmassage,

Reize, wie der Einstich einer Nadel ins Herz,
intrakardiale Einspritzungen von Mitteln wie
Adrenalin, Coramin und dergleichen. Aber im Falle der
Verunglückung durch Starkstrom hat man es meist
nicht mit stillgestandenen, sondern mit flimmernden

Herzen zu tun, und gegenüber solchen wurde
von den genannten Mitteln kaum je eine günstige
Wirkung beobachtet. Jedenfalls ist es durchaus
illusorisch, von der künstlichen Beatmung eine
Wiederherstellung der normalen Tätigkeit
flimmernder Herzen zu erwarten.

Nun gibt es aber offenbar durch Elektrizität
verursachte Unglücksfälle, wo ein primärer Atmungsstillstand

vorliegt, wo also das Herz dem Flimmern
entgangen ist und seine Tätigkeit, wenn auch unter
Umständen nur sehr schwach, noch anhält. In diesen

Fällen ist die künstliche Beatmung das beste,
uenn nicht das einzige Mittel der Wiederbelebung.
Das Wort «Wiederbelebung» ist hier so zu verstehen,

dass Menschen im genannten Zustand, sich
selbst überlassen, unfehlbar in den irreversiblen

Tod hinübergleiten würden. Die lebensret-
tende Wirkung (1er künstlichen Atmung kommt in
(1er Studie von W. Estler deutlich zum Ausdruck.
An einer Stelle (1er genannten Arbeit ist z. B. zu
lesen, dass von drei Fällen von Atmungsstillstand
mit noch feststellbarer Herztätigkeit alle durch
Pulmotorbehandlung gerettet werden konnten.
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