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Theoretische Betrachtung der Seilschwingungen unter Einbeziehung
von Schwingungsdimpfern.

Von Josef Miiller-Strobel, Ziirich-Alistetten.

Es wird versucht, die theoretischen Grundlagen fiir eine
Berechnung von mechanischen Seildimpfern herzuleiten. Der
an das Seil befestigte, als elastisches Bindeglied zu betrach-
tende Dimpfer erzeugt, mathematisch gesehen, eine Unstetig-
keitsstelle, weshalb fiir die Erfassung seines Einflusses die
allgemeinen Prinzipien der Mechanik unter Einschluss eini-
ger erlaubten Vernachlissigungen angewandt werden miissen.
Mittels einer Modellvorstellung gelingt es, die Fragestellung
so zu wenden, als wiirde eine dussere, nur an einem Punkt
angreifende Kraft die storende Schwingung dem Seil auf-
zwingen. Zwei vereinfachte Beispiele weisen auf den fiir
eine exakte Rechnung durchzufiihrenden Weg hin.

1. Einleitung.

Seit der Einfithrung des Weitspannsystems bei
Hochspannungsfreileitungen nahmen die Unter-
suchungen iiber deren mechanische Sicherheit an
Bedeutung zu. Mit der Anwendung grosser Spannwei-
ten und hoher Zugspannungen erwuchs der Frei-
leitung eine neue Gefahr, die erhohte Schwingungs-
beanspruchung. Mit teilweisem Erfolg wurden
pneumatische Schwingungsddmpfer ') nach Fig. la
und rein mechanische nach Fig. 1b verwendet. Alle
Bewegungen dieser einfachen Systeme sind durch
die Eigenfrequenzen und der durch die schwin-
gende Masse erzeugten, resultierenden Kraft Y cha-
rakterisiert. Wegen der Wichtigkeit der Problem-
stellung kann es nicht uninteressant sein, den er-
wiinschten Einfluss des Dampfers angenshert theo-
retisch zu erfassen.

Yix,t)
Yix,t)
Sq Sz
e
SEV6H2S a b

Fig. 1.
Schwingungsdimpfer fiir Freileitungsseile.

Leicht ist man versucht, bei einem so einfachen
System, wie es das Seil mit Ddampfer darstellt, die
Kriftespiele der bewegten Massen auf unzureichende
physikalische und mathematische Beziehungen zu-
riickzufithren. Zum voraus ist zu verraten, dass
eine theoretisch exakte Analyse, von welchen Grund-
annahmen sie auch ausgehen mag, erhebliche
Schwierigkeiten bietet. Der Grund hiefiir ist in der
Unstetigkeit der angreifenden Kraft zu suchen. Man
bedient sich bis heute mit der gewohnlichen, alther-
gebrachten Schwingungsgleichung unter gleichzei-
tiger Einfithrung den Dampfer beriicksichtigenden
Randbedingungen ) (sieche Bemerkung am Schluss

1) ETZ 1934, H. 26.
2) R. Ruedy: Canadian Journal of Research, Sec. A. Vol.
13 (Nov.) 1935, B 99.
H. Maass: Forschung Bd. 4 (1933), S. 105.
S. Timoshenko: Vibration problems in engineering,

New York 1928, deutsch bei Julius Springer, Berlin.

621.315.056.3

L’uuteur essaye d’établir les bases théoriques pour le cal-
cul des amortisseurs de vibrations pour lignes aériennes.
L’amortisseur fixé au conducteur, que l'on doit considérer
comme un élément de liaison élastique, produit, mathéma-
tiquement parlant, une solution de continuité; c’est pourquoi,
afin de saisir Pinfluence qu’elle exerce, on doit appliquer les
principes généraux de la mécanique, en se permettant de
négliger quelques termes d’importance minime. Au moyen
d’'un modéle, Uauteur arrive a tourner la question comme si
une force extérieure appliquée en un seui point imprimait
au conducteur la vibration perturbatrice. Deux exemples
simplifiés monirent le chemin @ suivre pour obtenir un calcul
exact.

des Aufsatzes). Dieses Rechenverfahren ist insofern
erfolgversprechend, als man sich mit der Ermitt-
lung eines sogenannten Diampfungsfaktors begniigt,
der jedoch recht mithsam fiir jede Aenderung der
Schwingmassen (Démpfer und Seil) der Eigenfre-
quenzen und der Anordnung des Dimpfers ermittelt
werden muss. Trotz des Bekanntwerdens des Mas-
senverhiltnisses von Démpfer und Seillinge pro
Meter durch die Rechnung, zeigen sich erhebliche
Abweichungen, selbst bei idealisierten Versuchs-
bedingungen.

Es sei hier versucht, die allein zustindigen, allge-
meinen Prinzipien der Mechanik auf das Problem
anzuwenden. Bei der Zuhilfenahme einer Modellvor-
stellung lassen sich die Krifte der Schwingungserre-
gung gegeniiber der natiirlichen Ddmpfung kompen-
sieren, was dann ermdoglicht, die wesentlichen, leicht
beeinflussbaren Schwingungszustiinde zu erfassen.
Weiter wird angenommen, dass das Seil an den En-
den weder eine translatorische noch longitudinale
Verschiebung erleidet. Ohne besondere Schwierig-
keiten liessen sich mit der hier angewandten allge-
meinen Methodik transversale und longitudinale,
quer und parallel zur Kraftrichtung der Erregung
wirkende Schwingungen beschreiben. Da es sich in
dieser Arbeit darum handelt, das Wesen der physi-
kalischen Gegebenheiten und die Art der mathema-
tischen Gedankenfithrung herauszuschilen, ist hier
nur eine zweidimensionale Anordnung (System mit
einem Freiheitsgrad) untersucht. Auf Einzelheiten
kann nicht eingegangen werden.

Die Frage, warum nicht auf die vektorielle Dar-
stellungsweise der harmonischen Schwingungen ein-
gegangen wird, kénnte berechtigt sein. Es ist ein-
zuwenden, dass man bei der Untersuchung im drei-
dimensionalen Raum mit der den meisten Lesern
geldufigen elementaren Vektordarstellung nicht
auskommt. Jedoch wird sie bei einer spiteren und
eingehenderen Untersuchung, die viele ungeklirte
Einfliisse erfassen wird, nebst den nétigen funktio-
nentheoretischen Erorterungen zwangsldufig zur
Anwendung gelangen. Wieweit eine graphische Ana-
lysis vermittels des Linienbildes einer Funktion der
erzwungenen Schwingungen bei periodischen Sto-
rungen fiir eine Vereinfachung zweckdienlich ge-
wesen wire, konnte leider nicht eindeutig genug
festgestellt werden.
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2. Herleitung der Bewegungsgleichungen eines
schwingenden Seiles mit Dampfer.

a) Spannungszustinde.

Ist der Leiter als Litzenseil ausgebildet, wird zu-
folge der Reibung der einzelnen Drihte ein anderer
mechanischer Spannungszustand als in einem homo-
genen Seile vorzufinden sein. Alle die Frequenz f
des Seiles erniedrigenden Einfliisse explizite in die
Rechnung einzubeziehen, ist aussichtslos. Ein ein-
faches Ersatzschema oder Modell erméoglicht, diese
Schwierigkeiten zu iiberwinden.

Ist das Seil als Vollkorper ausgebildet und hat
es einen nicht allzu grossen Durchhang, bzw. eine

nur schwache Spannungsinderung gin Abhingig-

keit von der Koordinate x, stellt sich nach bekann-
ter Gesetzmissigkeit hei konstanter Erregung die
Frequenz

n o
e o

ein. Es bedeutet n die Ordnungszahl, ¢ die mecha-
nische Spannung, I, die Linge zwischen den Ein-
spannungen und p das Gewicht pro Lingeneinheit
des Seiles.

Bei Seilen, in denen starke innere Reibungskriifte
eine merkliche Verminderung der elastischen Deh-
nung oder der Forménderungsarbeit hervorrufen,
ist eine Verkleinerung der Frequenz in bezug auf
das ideale Seil zu erwarten. Wie kann ein derarti-
ges Seil modellmissig nachgebildet werden? Grund-
sitzlich handelt es sich bei dieser Untersuchung um
die Ermittlung des Spektrums der Schwingungen,
was in der spiteren Entwicklung des Fourierschen
Integrals deutlich zum Ausdruck kommt. Dank
des integralen Charakters der mathematischen
Formulierung des Problems ist man gar nicht
gezwungen, alle technologischen Abmessungen oder
mechanischen Spannungen einzuhalten, wenn nur
die fiir eine «homologe Nachbildurig» massgeben-
den Grundzustinde durch irgendeine Massnahme
erzeugt werden konnen. Um Vergleiche mit einem
von der Luft umstromten, Wirbel ablésenden Seil
anzustellen, ist es vorteilhaft, Durchmesser, Versei-
lungsart und Linge I, (bzw. p) beizubehalten. Als
Nachbildungsmass miisste die in Gl. (I) noch unbe-
rilhrt gebliebene Grisse ¢, die mechanische Span-
nung eingefithrt werden.

Was fiir Beziehungen gelten beziiglich der Span-
nungsiinderung und Frequenzabhingigkeit bei den
in praxi ausgefithrten Seilen? Wie ist die Span-
nung ¢ zu dndern, dass sich bei einem Seil die glei-
chen Frequenzen wie bei den der Gl. (I) zugrunde
liegenden Zustinden, einstellen?

4) Karman: Nachr. Ges. Wiss. Géttingen 1911/12.
Karman und Rubach: Physik. Z. Bd. 13 (1912), S. 49.
H. Maass: Wiss. Veroff. Siemens-Konz. 10 (1931), S.153.
R. Ruedy: Canadian J. Research. Sect. A. Vol. 13

(1935), Ottawa.
Fuchs-Hopf: Aerodynamik, Jul. Springer, Berlin 1935.
Th. Schmitt u. P. Behrens: ETZ Bd. 54 (1933), S. 603.
P. Behrens, H. Hutter: Elektrizitiatswirtschaft Bd. 36
(1937), S. 331.

Nach den neuesten Messungen *) besteht zwischen

Luftgeschwindigkeit v (einer senkrecht zur Schwin-
gungsebene wirkenden Stromung, Achsenrichtung
z), Seildurchmesser d (em), Spannung und Gewicht
die folgende Relation:

£ = 205 &

v,

(1%

| a

Die Spannung wird nach Auflésen der G1..(1I)

_ (.t )20

%= \205 d/°¢

Bei gleichbleibender Erregung durch die Wirbel-
ablésung wird dem homogenen, mit der Eigenfre-
quenz schwingenden Seil eine Schwingung mit der
Frequenz nach Gl. (II) und (III) aufgezwungen.
Angaben iiber die Frequenzabhingigkeit der Seile
fiir verschiedene Seildurchmesser, bzw. die Grossen

der Knotenabstinde 1 in Abhingigkeit vom Seil-
durchmesser d fiir verschiedene Windgeschwin-

(I1)

digkeiten v und Spannungen finden sich im bereits
erwihnten Aufsatz von Jaquet®).

Will man den Einfluss einer storenden Kraft, bzw.
die Wirkung eines Didmpfers erfassen, ist die fest-
zuhaltende Tatsache von Wichtigkeit, dass sich nur
zwei Resonanzlagen einstellen, die eine in der Nihe
der Grundfrequenz Gl. (I), die andere im Frequenz-
bereich der erzwungenen Schwingung (Gl. II).

Um das theoretische Modell zu bilden, nimmt
man eine Umkehrung der Fragestellung vor, und
zwar so, dass man durch Einfiihren der neuen
Spannung ¢, das Seil mit der Frequenz f; schwin-
gen ldsst und demselben, durch dussere Einfliisse

i "
verursacht, bei der Frequenzf, = 5T 1/% ge-
0

danklich eine Resonanz zuschreibt, wihrend der
Stossddmpfer selbst durch Schwingungsenergie von
der Frequenz f; angeregt wird. Diese Umgestaltung
fithrt zu einer wesentlichen Vereinfachung der
mathematischen Analyse.

Die in die Berechnung neu anzusetzende Span-

nung o, folgt aus Gl. (I) und (III):

5 — 2,05)26
F TN 25

Die Eingliederung einer iiber die ganze Linge
konstanten Spannung verlangt, den Giiltigkeitshe-
reich bei einem stark durchhingenden Seil zu be-
stimmen. Sehr genaue Angaben lassen sich vorder-
hand nicht machen; trotzdem ist die getroffene An-
nahme wie aus vielen Amplitudenaufzeichnungen
von Schwingungen an den verschiedensten Seilen
bei gleichen Mastquoten und selbst grossen Spann-
weiten ersichtlich ist, zutreffend. Der Einfluss der
Spannungsiéinderung auf die Frequenz ist bei stark
durchhingenden Seile sehr gering. Eine analytische
Behandlung der ungestorten Schwingungsvorginge

5) Jaquet: Bull. SEV Bd. 28 (1937), S. 209.
6) An.Stelle der in der Aerodynamik die Zirkulation cha-
rakterisierende Grosse [' ist der Index s eingefiihrt.

(Iv)
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bei den eine Kettenlinie 7) darstellenden Seilen und
bei starken Ueberhohungen der Fixpunkte 7) gibt
Ruedy ®).

Als dussere, den Leiter in Schwingungen ver-
setzende Energiequelle ist die Luftstromung zu be-
trachten. Die Schwingungsddmpfung selbst wird
durch die Formanderungs- und Reibungsarbeit ?)
der einzelnen Drihte nebst dem Luftwiderstand her-
vorgerufen. Tritt nicht Resonanz mit der Grund-
frequenz ein, halten sich die zugefithrte und die
vernichtete Energie nach bekannten Gesetzen das
Gleichgewicht. Die Leitung schwingt mit konstan-
ter Amplitude. Bei gleichbleibender Luftstrémung
ist dies laut Registrierung stets der Fall. Dank der
Einfiihrung der neuen Spannung o, die als das
Charakteristikum fiir das mit niedriger Frequenz
schwingende Seil anzusehen ist, wurde der verlo-
rengegangene Energiebetrag etwa durch die Aen-
derung der Frequenz (E,=31J (M) wy21) be-
riicksichtigt. Bei der spektralen Zerlegung werden,
ohne einen Fehler zu begehen, diese Gleichge-
wichtszustinde  (stabile Gleichgewichtslage) be-
trachtet.

Wie die Ableitung der allgemeinen Bewegungs-
gleichungen zeigen wird, ist diese Modifikation des-
halb von Wichtigkeit, weil sie erlaubt, ein einfache-
res Losungsverfahren anzuwenden.

Versuche, die an den verschiedensten Seilen vor-
genommen wurden, wiesen deutlich darauf hin, dass
die bis jetzt noch nicht beriicksichtigte Luftdimp-
fung 1%) bei der Verdnderung der Frequenz durch
ein Storglied ohne Bedenken vernachlassigt werden
kann. Bei elektromagnetisch erregtem Seile in ru-
hender Luft (Priifstand) konnte ohne merkliche
Korrektur direkt auf die Formanderungs- und Rei-
bungsarbeit geschlossen werden.

b) Herleiturig der Bewegungsgleichungen.

Um eine eindeutige Losung der Aufgabe oder der
spektralen Zerlegung der Schwingungsvorginge zu

— l Iy

D i e o p—— . ==~
) \\j/h
SEVE6426 P= Y(Xl')

Fig. 2.

Seil mit der in der Schwingungsebene liegenden idusseren
Kraft P =Y (x, t). 1} Wellenlange.

erhalten, sei die transversale Kraft Y (x,t) nach
Fig. 2 als bekannt vorausgesetzt. Die Problemstel-
lung erleidet, wie bereits erortert, eine Umkehrung,
indem man sich primir den schwingenden Dimpfer

7) E. Maurer: Bull. SEV Bd. 27 (1936), S. 41 und 65;
Leitung Handeck-Innertkirchen.
8) Ruedy: Canadian, Research, Sect. A, Vol. 13 (1935).
9) ten Bosch: Maschinenelemente, Julius Springer 1929.
Schweiz. Bauztg. Bd. 9 (1936), S. 108.
10) J. S. Caroll und J. Koentz jun.:
(1936), S. 490).
J. S. Caroll: Electr. Engng. Bd. 55 (1936), S. 543.
ETZ Bd. 41 (1936), S. 1181.
11) Es bedeutet M die Masse des Dampfers und wqseine
Winkelgeschwindigkeit beziiglich dem Seilpunkt £, E, kine-
tische Energie.

Electr. Engng. Bd. 56

denkt, der erst sekundédr im Seil eine erzwungene
Schwingung verursacht. Diese Modifikation, die
6fters bei solchen komplexen Gebilden nétig ist,
hindert aber keineswegs, den physikalischen Zu-
stand folgerichtig zu erfassen. Die wesentliche
Fragestellung wird die sein: Wie lauten die Bewe-
gungsgleichungen eines Seiles, dem eine beliebig
verdnderliche, &ussere Kraft eine erzwungene
Schwingung aufdringt. Um die Kraft Y (x,¢), die
als diskontinuierliche Quelle zu deuten ist, orga-
nisch in die mechanischen Beziechungen eingliedern
zu konnen, ist man genotigt, sich des Hamiltonschen
Variationsprinzipes und der Lagrangeschen Bewe-
gungsgleichungen zu bedienen.

Systeme mit unendlich vielen Freiheitsgraden,
die infolge periodischer Erregung sogenannte er-
zwungene Schwingungen ausfithren, konnen be-
kanntlich durch verallgemeinerte Koordinaten aus-
gedriickt werden. In einem ungestérten System las-
sen sich die Lagrangeschen Bewegungsgleichungen
zweiter Art schreiben

d /OE, oU
L)+ ae o
de \ dq, oq,

Hiebei geben die Lagenkoordinaten gq,, q.,, ...q,
die Abweichungen des Systems aus der Gleichge-
wichtslage ¢, = 0; ¢, = 0... an. Die kinetische
Energie E, ist bei kleinen Schwingungen 12) als ho-
mogene quadratische Formen mit konstanten Koef-
fizienten der zeitlichen Ableitungen der Koordina-
ten g, selbst gegeben. Es wird die kinetische Ener-
gie in die positiv quadratische Form mit dem Koef-
fizienten a,, , iibergehen.

E, = Z Ay q.'v “],u (2)
vu=1

Diese Vereinfachung ist berechtigt, da wegen des
Einsatzes des Didmpfers zum vornherein nur Dis-
sonanzen betrachtet werden und grosse Amplituden
iiberhaupt nicht zuldssig sind (siehe spiter).

Die potentielle Energie mittels einer Reihenent-
wicklung dargestellt, ergibt

oU
U= U0 +Z(aqv>{w=0-qy+

22(

Wie bereits erwihnt, kann bei kleinen Verschiebun-
gen die Reihe mit den quadratischen Gliedern ab-
gebrochen werden. Die Berechtigung dieser Verein-
fachung kann ohne die obige theoretische Erwigung
auch durch bekannt gewordene Messresultate **) an
Seilen belegt werden. Bei einem Seil von ca. 180
mm? Querschnitt und einer Spannweite von 200 m,
bei Knotenabstinden von 1 bis 4 m, wurden auf
Rekorderstreifen maximale Amplituden von durch-

68U

oqy 8%)%'0 q,=0 "G ueee

12) Rayleigh: The theory of sound Bd. I
M. Plancherel: Des petites oscillations, Vorlesg. ETH,
Ziirich.
13) E. M. Wright und J. Mini jr.:
S. 138, Electr. Engng. Bd. 53 (1934).

Aluminio Bd. 4 (1935),
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schnittlich 0,6 bis 1,0 em aufgezeichnet. Dimpfer,
die eingebaut wurden, vermochten die Amplituden
bis auf 0,5 bis 0,2 cm und noch mehr zu erniedri-
gen, was absolut eindeutig fiir die Gutheissung der
mathematischen Einschrinkung spricht.

Um rascher an das Ziel zu gelangen, wihlt man
die Lagrangeschen Koordinaten so, dass eine lineare
Transformation der ohnehin stets in die Ausgangs-
lage zuriickkehrenden Systeme vorgenommen wer-
den kann. Die zugehorige Transformationsglei-
chung lautet

qu = Z Cop Yu 4)

=1
Das Wesentliche der Transformation, die Bestim-
mung der Hauptachsen oder Eigenvektoren, wird
durch das Koeffizientenschema oder die Matrix 14)

der G1. (4)

O Qg oeenene 0.
Qpy Ogg anennn «
4= (@ = @ oar) G
a-p’l --------- aqy,'u
mit der Determinate
4 = /av,u/ (6)

wiedergegeben. Zufolge dieser linearen Transforma-
tion werden die Funktionen in quadratische Ein-
heitsformen von E, und U, bzw. in Summen von
Quadraten iibergehen. Fiir jede einzelne Koordi-
nate ergibt sich nun eine, von den anderen ginzlich
unabhingige, harmonische Schwingung mit zuge-
hérender Periode. Schwingungen, die bei bestimm-
ten Koordinaten variieren, wihrend bei den andern
keine Bewegungen stattfinden, nennt man Haupt-
schwingungen, die Koordinaten «Hauptkoordina-
ten». Das ganze System auf derartige Koordinaten,
unter gleichzeitiger Vernachlidssigung héherer Ab-
leitungen, bezogen, erlaubt, die kinetische Energie

1< .
E = - Z a, qqz, (7)
r=1
und die potentielle Energie U,

1 n
U =526 (®)
r=1
zu schreiben. Nach Einbeziehung der von aussen
eingreifenden Stérungsfunktion Y (x, ) kann wegen
dem positiv definiten Charakter von E, und U,
(die Werte a, und ¢, positiv) jeder Koordinate q,
die erweiterte Differentialgleichung von der Form
der Lagrangeschen Bewegungsgleichung zweiter Art
geniigen. Sie besitzt die Form

j;ﬁﬁy+aU= d2q,

A \5q,] " aq " de et =YE9 )

14) Hilbert-Courant: Methoden mathem. Physik, Springer,
Berlin 1931.
O. Schreier und E. Sperner: Vorlesungen iiber Ma-
trizen, Teubner 1932.

Fiir die erzwungene Schwingung eines Seiles mit
der mechanischen Spannung o, der Einheitsmasse
und einer transversal beliebig verianderlichen Kraft
Y (x,t) (senkrecht zur Achsenrichtung des Seiles)
wird die Schwingungsgleichung in Kartesischen Ko-
ordinaten

%y

%y

saxz

= Y (x,0)

(10)

Darauf ausgehend, die Losung der Gleichungen mit-
tels periodischen Funktionen zu ermitteln, ist hier
auf eine besondere Tatsache verwiesen. Aus dem
gebriduchlichen Rechenverfahren bei der Herleitung
der Koeffizienten von Fourierschen Reihen kann
leicht geschlossen werden, dass die vorkommenden
Integralbeziehungen keine speziellen Eingenschaf-
ten trigonometrischer Funktionen sind. Sie entspre-
chen viel mehr einer allgemeinen Eigenschaft der
hier schon eingefiithrten Hauptkoordinaten. Wunsch-
gemiiss sind alle Gleichungen mit Hauptkoordinaten
dadurch gekennzeichnet, dass sie nach ihrer Einfiih-
rung in die gegebenen Differentialgleichungen (9)
Beziehungen liefern, in denen ausser der Zeit ¢ stets
nur eine einzige Kocrdinate vorkommt. Funktio-
nen, die Gleichungen eines Systems mit n Freiheits-
graden befriedigen konnen, heissen Eigenfunktionen
und sind von der Form

oo

D (1)« (1)

V=1

y = (11)

Definiert man die kinetische Energie E, des be-
wegten Systems durch Ueberfithrung der unend-
lichen Summe mittels einem Integral, wird sie die
Form annehmen

L

1 ( 8y 2
By = 5 ‘\Q (M) dx (12)
0
Analog schreibt sich die potentielle Energie
’ 2
1 oy
UO_U_—2~\6, (W)dt (13)
0

Unter Einschluss der wichtigsten Eigenschaften
der Hauptkoordinaten, die fordern, dass in den Aus-
driicken der Energiefunktionen nur Quadrate 1,2
und keine Produkte der verschiedenen Ableitungen
1})#, 1./)1, (u =& v) auftreten 15), wird Gl. (12) iiber-
gehen in

!
1
E, = 5 ?(wv(t) )2%g0,,2(x) dx

0

Hlaek

74

0 X T 0090\ 7@ g dx (19

n=—1 v=
i 0

Fiir ein Orthogonalsystem bildende Funktionen

15) Riemann-Weber: Differential- und Integralgleichungen
der Mechanik und Physik, Bd. I, S, 217 (1935).
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wird das Integral iiber das Produkt der Faktoren
¢yund ¢, nach bekannten Gesetzen
/

Swu () ¢y (x) dx = O
0
Bildlich gesprochen besagt diese Gl (16) folgen-
des. Die den einzelnen Veridnderlichen ¢,(x) ent-
sprechenden Vektoren des Funktionenraumes stehen
zueinander orthogonal. Normiert man dieselben so,

dass die Quadratintegrale
l

S(PvQ (x)dx =1
0
werden, lisst sich die Energiegleichung (14) in einer

bedeutend vereinfachten Form schreiben, nimlich
14

1 &l n S o .
B=go\Qaperd=24T00 an
J ov=1 Vel

(15)

(16)

Aus analogen Ueberlegungen sei die potentielle
Energie U ermittelt.
‘

v=7\(Zno

2(t)gl(flp”) dx

14
2
Eine partielle Integration des Integrales S(d(pv) dx

% Sy

=1

(18)

dx

in Gl. (18) vorgenommen, fiihrt es iiber in

\(d%(x)) _

o

=}
~

(/71) (x)

P (%) — (19)

Sind die beiden Enden des Seiles in Klemmen
eingespannt (Fig. 3), wie es voraussetzungsgemiss
bei den meisten Freileitungsseilen in bezug auf eine
Achsrichtung zutrifft, wird die Quadratur des ersten
Produktes mit den Grenzen 0—>1 gleich Null. Ueber
die Bedingungen der stehenden Wellen ist folgen-
des zu sagen. Das Integral rechts der Gl. (18) und
links der GI. (19) wird gleich dem zweiten Faktor
in Gl. (18). Dieses Ergebnis in die Beziehung der
potentiellen Energie eingesetzt und die bereits frii-
her genannten Teillésungen vom Typus

B d? g, (x)
dx

= — Ky, (20)

beriicksichtigt, fithrt auf das Quadratintegral der
normierten Funktionen

U = —

20 (21)

VT .
= . Um eine
0

Es bedeutet hierin der Faktor k,2

vollstindige Beschreibung der Bewegungen durch-
zufiihren, ist es notig, die Arbeit, welche der Déamp-
fer jeweils phasenverschoben an das Seil abgibt, ana-
lytisch einzugliedern. Die Energie, die er selbst auf-
zehrt, wirkt sich als eine Vergrosserung der Dimp-
fung aus (Wirkungsgrad sehr hoch). Man denkt sich
diese Emnergie durch die kontinuierliche Erregung
von der Luftstromung gedeckt und beruicksichtigt
nach den Modellvorstellungen nur den FEinfluss
der eintretenden Wellcninterferenzen. Weiter fiihrt
man die auf die Spannung o; des Seiles bezug-
nehmende Kraft Y (x,¢) ein. Die angreifenden
Krifte des Diampfers sind, wie auf Seite 591 ver-
merkt, nahezu in einem einzigen Punkt ver-
einigt. Erfasst werden die Krifte durch die sehr
anpassungsfidhigen Quellfunktionen. Man stellt
sich diese analytischen und stetigen Funktio-
nen so vor, als besitzen sie ausserhalb eines festen
Intervalles .& — ¢, & + ¢ einen beliebig kleinen, ver-
nachlissigharen Wert, im Intervalle * ¢ einen belie-

SEVE427

Fig. 3.

Ersatzbild des schwingenden Seiles mit dem vollkominenen
elastischen Gliede bzw. der Kraft Y (x, ) und der neuen Zug-
Spannung os Gl. (III).

big grossen. Solche Zackenfunktionen (Fig. 3 u.4),
die eine Punktquelle darstellen, verursachen eine na-
hezu sprungartige Aenderung der ersten Ableitung in
der Umgebung der Quelle. Die Ableitung im Inter-
valle &£ + e—&—¢ wird

4

SfQ(x)dx +np=—=145 (22)

Es konvergiert dle Funktion =1 (¢) fiir ¢—0.
Der negativ genommene Grenzwert der linken Seite
fiur ¢—>0 heisst die Ergiebigkeit der Quelle und
beim Passieren einer solchen mit der Ergiebigkeit 1
springt die Ableitung niherungsweise um den Be-
trag

(23)

Die von den ortlich begrenzten Quellen oder den
Dampfern, bezogen auf das schwingende Seil mit
den Koordinatenzahlen 1 geleistete Arbeit A,
wird nach der Integration iiber ihren Wirkbereich
x—>1

4
A =S o, Y (x,t) Oy dx =

o (2

Z (t)g (%, 8) (x) dx = ’Z=1P.,, oy () (24)

V=1

Diese angrelfenden fremden Krifte haben die
Koordinatenzahlen v, v., v ..., Sind diey
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an Grosse einander gleich, wird die einzelne

Kraft P,

!

P, = o, g Y (x,t) 0 (x) dx (25)
0

Man ersieht aus der Form der Gl. 25 die Moglich-
keit, die Kraft P, als Koeffizienten der Fourier-
schen Entwicklung der Funktionen 5.,Y (x, ) nach
den Eigenfunktionen ¢, (x) zu deuten. Setzt man
die erhaltenen, von den Eigenfunktionen ¢, (x)
und der transversalen Kraft Y (x,t) abhingige
«Kraft P,» nebst der Teillosung

Cyqy = O I? Yy (®)

in die Gl. 9 ein, ergibt sich fiir das Seil die Bewe-
gungsgleichung in Form einer Integralgleichung 16)

d2;/)t(t) + o,k2 y, (t) = o, S @y (x) Y (x,t)dx (26)

v

Wird die Dampfung 17) durch das Glied r %,dieErreger-

energie des Seiles durch @ (v, d) einbezogen, miisste die
obige Gl. iibergehen in

g . =
*0——(21—-{—01'(11)— Y(x,1)dx = (]S(ZJ)—T a_p_,o.
01 ot

Ausgehend von der gewéhnlichen Gleichung, ist man gezwun-
gen, die durch den Dampfer verursachte Kraftinderung 4o,
im Seil an der Unstetigkeitsstelle & zu erfassen. Diese kann
aber wegen der sehr geringen Spannungsinderung gegeniiber
den Auswirkungen in Form von Schwingungen nur sehr un-
zureichend bestimmt werden.

c) Allgemeine Losung der Bewegungsgleichung.

Die Bewegungsgleichung 26 des Seiles ist durch
die Umgestaltung in eine grundsitzlich andere Form
ithergegangen. An Stelle der fiir einfache Verhilt-
nisse ausreichenden Differentialgleichung ist eine
Integralgleichung!é) getreten. Die Losung dieser In-
tegralgleichung bietet verschiedene mathematische
Schwierigkeiten, und man muss alle eine Verein-
fachung ermoglichenden physikalischen Bedingun-
gen beriicksichtigen. Die willkiirlich angesetzten
Funktionen miissen ermittelt werden und das ist
durchaus nicht moglich durch die Bildung von ge-
wohnlichen Differentialgleichungen, wie sie bei-
spielsweise eine weitere Differentiation von Gl. 26
ergeben wiirde. Vielmehr ist es die Integralglei-
chung, die hier als die alleinige Grundlage und den
natiirlichen Ausgangspunkt fiir eine Reihenentwick-
lung zu betrachten ist. Trotzdem das Suchen der
zum Kern gehorigen FEigenfunktion allgemein
sehr schwierig ist, gelingt es in unserem Fall, ein
brauchbares Resultat herzuleiten.

Die wesentlichste Eigenschaft des Ddmpfers wird
die sein miissen, eine Schwingung zu erzeugen, die
im Sinne spektraler Zerlegung die kleinsten Ampli-
tudenwerte der Hauptkoordinaten am Seil erzwingt.
Aus der bekannten Gleichung einer ungeddmpften
Saite, die fiir ein Seil ohne spezielle Vorbehalte an-

16) D. Hilbert: Grundziige einer allgemeinen Theorie der
linearen Integralgleichungen, Teubner 1924.

wendbar ist 17), erhilt man nach Einfithrung der
Wellenldnge 2 aus Gl. (I) eine Schwingungszahl von

1 1 o

T, — 24V o

Es sei zum voraus der Fall der Resonanz der Sy-
steme ausser acht gelassen, denn sonst wiirde die
Frequenz der stérenden Krifte mit der Eigenfre-
quenz des Seiles iibereinstimmen und es konnten
die Amplituden keine Verringerung erfahren. Ana-
loge Verhiltnisse **) treten bei den sehr einfachen
Konstruktionen schwingungsfreier Aluminiumseile
auf, bei denen durch eine Metalleinlage einfach Dis-
sonanz angestrebt wird. Demzufolge setzt man
mit voller Berechtigung den folgenden Zu-
stand voraus: Der Dimpfer soll eine gerin-
gere, bzw. grossere Eigenfrequenz aufweisen als
das Seil. Eine einfachere Losung erhdlt man, wenn
die Trigheit des Systems vernachlissigt wird. Das
0%qy
e
in Gl. (9). Dass die Genauigkeit der Rechnung un-
ter den genannten Absichten (Spektrum) keine Ein-
busse erleidet, ist dem folgenden Umstand zu ver-
danken. Die Amplituden werden nach den Bemer-
kungen auf S. 590 r. unten ziemlich klein (siehe Ab-
leitung der Systemgl. 3 u. 4). Das charakteristische
Verhiltnis der Seilamplituden bei Einbeziehung
der Massentrigheit (dynamische Theorie) und bei
deren Vernachlissigung (statische Theorie) ist bei
der Umgestaltung oder Vereinfachung der System-
gleichungen 1—26 allein massgebend. Ist w, die
Eigenfrequenz des Dimpfers (Storungsquelle) und
w, die des Seiles, wird die dynamische Vergrisse-
rung u, die als eine Verhiltniszahl zwischen Fre-
quenz und Eigenfrequenz zu werten ist, durch die
Beziehung dargestellt

geschieht durch Null setzen der Glieder a,

1

(4)2
1_(w?2>

Erreicht man geniigend Dissonanz, etwa bei y-Wer-
ten von 0,8 ... 1,0, so ist die gestellte Bedingung der
Trigheitslosigkeit gercchtfertigt. Immer wird man
bemiiht sein, die Grundfrequenz w; gegeniiber v,
geniigend gross zu halten. Es lédsst sich demzufolge
die Gl. (26) fiir die langsamen Schwingungen um-
schreiben. Die Koordinate v wird
l

! \ Y x) d
kvz ) (x’ t) ‘7)1) (x) X

0

w= (28)

iy = (29)

Die so erhaltene v, -Funktion in den Ansatz G1. (11)
eingesetzt, fithrt auf die Koordinatengleichung

r=1

!l

S Y(x:t)py(x)dx  (30)

17) Ruedy: Canadian Journ. Research, Vol. 13, Sec. A.
18) Preiswerk: Bull. SEV 1934, S. 252, und ETZ 1934,
S. 1125.
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Betrachtet man den Grenzfall einer nahezu punkt- |

formig wirkenden Quelle, so wie die angreifende
Kraft des Dampfers in x = ¢ eine ist, muss als Ko-
ordinatenbegrenzung fir die Funktion Y (x,t) die
Ungleichung gelten

§—e = x =Z &+ (31)

Fiir eine Ergiebigkeit von 1 wird das Integral iiber
die Kraft

+ e

Y (x,0) dx = 1 1)

—¢€

(32)

B

Setzt man den erhaltenen Wert in G1. (30) ein und
schreibt fiir den neuen Koordinatenwert die Funk-

tion K (x,t), so wird die Amplitude
5 S (x) gy .
— K(no =Y W0l gy
r=1 v
Dieses transzendente Summengebilde lidsst die

Schwierigkeit erkennen, dass man eine Losung
gewohnter Art nicht findet, weshalb man gezwun-
gen ist, diese in der Mathematik benannte Bilinear-
form nach den Eigenfunktionen zu entwickeln.
Man nennt die Greensche Funktion K(x, &) den
Kern der Integralgleichung. Das Resultat der
Losung dieses Gleichungsgebildes, deren Eigen-
werte sich als Wurzeln einer transzendenten Glei-
chung ergeben, werden die Eigenfunktionen ¢, (x)
sein, von denen jede eine Hauptschwingung oder
«stehende» Welle darstellt.

Zur Losung dieser Gleichung gelangt man fol-
gendermassen Die Kraft Y (x,z) denke man sich
auf eine perlodlsche Funktion o f (x) -cos (wg t)
reduziert, eine in der Wirklichkeit durchaus zutref-
fende Annahme. Y (x,t) in die im Seil tangential
wirkende Kraft P, eingesetzt, fithrt auf die Gl. (34)

4
P, = cos (wyt) gos f(x) oo (x) dx

o

(34)

Man erinnere sich der Gl. (9), die beim Einsetzen
der gestellten Bedingung die allgemeinen Koordina-
ten g, bei periodischer Erregung lieferte. Mit dem
Ansatz q, = A, cos wq t und bei der Giiltigkeit der
Ungleichung ¢, — w,? a, z 0 kann die Koordinate
der y-ten Schwingung nach dem Auflésen der Gl.
(25) geschrieben werden

_ By (x) cos g ¢
= (cv — we? ay)

(35)

Diese G1. (35) sagt aus, dass sich fiir jede Haupt-
koordinate eine bestimmte Amplitude ergibt. Die
Funktion 1, (t) des transformierten Systems wird
nun analog geschrieben

19) Selbstverstindlich ist Y (x,t) eine Funktion der eige-
nen Masse M, des Dimpfers, also

Y (x,8) = (f[M]) = f (x,
Hiezu Gl. 24 und 25.

t, M, w?)

cos we ¢ - asglf ®) 25} dx e

P = 0 (02 —agd)

] Vo
wo wv—(%) —é

gesetzt ist. Die Funktion v, (#) in den L&sungsan-
satz [GL (11)], die als Gleichung der Eigenfunk-
tionen zu bezeichnen ist, eingesetzt, ermoglicht die
Koordinate y bei Einfithrung der Abkiirzung k2

0 w,?

s

y = cos (wq t) i’

zu berechnen.
!

VM%mu@n

0

Pv (-x

Um die Schreibweise zu vereinfachen, sei k,2=—}’

substituiert und die Funktion ¢, (x)=— Y wird

cos (,L)Qt

p (x) =

Z%MVw%wu(m
. v 0

In dieser Funktion tritt die Unbekannte ¢ (x) so-
wohl ausserhalb als auch innerhalb des Integral-
zeichens auf. Es wird die Aufgabe sein, zu zeigen,
dass diese Gleichung einer Integralgleichung zwei-

ten Grades von der Form
14

A'SK(x,§)f(§)d§ —Fx) (39

)

 (x)
gentigt.

d) Herleitung der Integralgleichung.

Die bekannte Funktion, die eine quellenmaissige
Darstellung erlaubt, sei
!

~\Kmoeeas

Mit Benutzung der Bilinearformel GIl. (33) folgt

F<x>=§1%‘f’ Svpv(§>f(§)d§ (41)

F (x) (40)

Vergleicht man dies mit Gl. (38), so kann durch
Subtraktion der einzelnen Summenglieder nach E.
Schmidt *°) eine #hnliche Gleichung nachgebildet
werden, und zwar gilt

-t 1
121 ( '?"v - /:" o
p(x) — F (x) (42)

20) K. Schmidt: Math. Ann. Bd. 63 (1907), S. 454; Bd. 64
(1907), S. 161--174. Einige die Grundziige der Theorie iiber-
mittelnde Literatur findet sich in 16) D. Hilbert, Grundziige
einer allgemeinen Theorie der linearen Integralgleichungen,
Teubner 1924.

Hilbert Courant: Methoden der mathematischen Physik 1,

!

1 e
7) f/)-u(x)gfpv(g)f(g)%:

| Bd. 12, S. 96, 131, Springer, Berlin 1931.
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Durch Multiplikation und Integration erhilt man
nach dem Einsetzen der Gl. (38) die Relation

l

K(xdg@di=Y . 2

vt Ay (Aly— A

’ (43)
die, wie vorher bewiesen [rechtes Glied der GL
(42) ], mit qi(ﬂx);,—F(x) iibereinstimmt. Folglich

wird die Funktion ¢ (x) identisch mit den in der

allgemeinen Form der Gl. (39) bezeichneten. Gl.

(3) aufgelost liefert die Grésse ¢ (x), nimlich,
s

P =F )+ 4\ Kmdy @ ds @9
0
Man sieht, dass die Funktion ¢ (x) in der Tat der
obigen Integralglelchung geniigt. Die Entwicklung
von F (x) in eine nach den Eigenfunktionen ¢, (x)
fortschreitende Reihe ist der einzige Ausweg, um zu
einer Losung zu gelangen. Man schreibt

F(x) = A1(/’1 \x)_f“AQ(/’z (x) 4+ -4+ 4,y (x) (45)

und findet aus den Orthogonalitiitshedingungen der
Eigenfunktionen und spiterer Multiplikation mit
@v(x) und Integration iiber die Linge I, die Zwi-
schengrosse 4,:

I3

Ay =\ F () 9, (x) dx (46)
[}
Die allgemeine Fouriersche Entwicklung von
F (x) *') lautet
1
B
F, (x) —Z% (x)gF(g)(/)v( 5 ds (47

0
Vergleicht man das erhaltene Resultat mit der GI.

(40), so besteht eine Identitit zwischen
14 l

P\Fr@n@a=\pnot@as o
0 o
Da die Kraft des Ddmpfers in dem Punkt x=¢&
eingreift, lisst sich Gl. (38) bei Ueberfithrung der
Koordinate x in & schreiben

p0) = § 76 g P (8) F(§) A8 (49)

0

Durch Aufteilung der Summe und Anwendung
der allgemeinen Fourier-Entwicklung wird die Am-
plitude an der Stelle x endgiiltig

2 =F@) + 2 3 2 & )) grpv (&) F(§) df (50)

Durch Gl. (50) ist das gestellte Problem allgemein
gelost. Priziser gesagt, es gibt fiir alle Schwingzu-

21) Blochner :
ner, Leipzig 1932.

Vorlesungen Fourierscher Integrale, Teub-

stinde entsprechende Losungen. Schwierigkeiten
bietet die Fouriersche Entwicklung, denn erst ihre
definitive Form erméglicht, die Werte der Haupt-
schwingungen zu ermitteln. Wie eine Quellfunktion
F (&) anzusetzen ist, wird in einem folgenden Bei-
spiel gezeigt. Bedingungen kénnen nun an alle
Glieder gestellt werden, und zwar so, dass bestimmte
Amplitudengréssen dank des Eingreifens des Sto-
rers (oder Dampfers) nicht erreicht werden. Dies
war die tiefere Absicht dieser methodischen Ent-
wicklung, eine Relation mit einer allgemeinen Fou-
rierschen Reihe zu finden, um den spektralen Cha-
rakter der durch den Dampfer verursachten Inter-
ferenzen, welche in anderen Untersuchungen als
irgendeine Dimpfung zum Ausdruck kommen, zu
beweisen.

3. Beispiel.

Beim einfachsten Fall kann die Fouriersche Ent-
wicklung in der Integralgleichung umgangen wer-
den, sofern eine eindeutige und zugleich geniigend
«einfachey Quelle in x = & vorhanden ist. Fiir eine

A
Yt TFig. 4.
Darstellung der rdumlich ausgedehnten
Kraftquelle — ¢ bis + ¢ und der Einzel-
kraft Y (x,t) in Richtung der Schwin-
gungsebene [vgl. G1. 30), (31), (32)].

Seillinie
oL

SEV6428

Kraft Y (x,t), die sich auf die in ¢ periodische
Funktion ¢, f (x) - coswy t reduzieren ldsst, wird
nach Gl. (37) die Koordinate y eines jeden Seil-
punktes fiir y =1 (Grundharmonische)

y = cos woe 1) gf(x) #(x) dx (1)

[

Fur f (x) setzt man die schon angedeutete Quell-
funktion ein, die ihr Maximum bei & hat und der
analytischen Gleichung

f(x) =

— u2 (x — 5)2

e (52)
geniigt (Fig. 4). Wird die Hauptkoordinate ¢, (x)
eine Sinusfunktion mit einer Grundharmonischen

A, sin lix, geht Gl. (51) iiber in
l
(@) (” ) womrey
= cos (w sin
Y= kE-k ¢ g m
sin (% . x) dx (53)

Die konstanten Werte in und ausserhalb dem Inte-
grale in f zusammengefasst, den Formfaktor der
Quelle u individuell eingetragen, fithrt die G1. (53)
iiber in
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—u? (x — §)?

z
y = fi-u cos (wgt)-sin (yltx) S e
0

sin (%-x)dx

Das Integral der Gl. (54) lésst sich mit einer Rei-
henentwicklung in den gewiinschten Grenzen 0...1
16sen.

(54)

Beabsichtigt ist, den Weg des Losungsganges zu
zeigen, weshalb auf die Ueberfithrung des Integrales
in das komplexe Gebiet und der darauffolgenden
totalen Losung verzichtet ist (vgl. 2). Substituiert
man die Verdnderliche x — & = ¢" und l£(a’—+— &) =

0
2'a’, wird das Integral J der Gl. (54) iibergehen in

<

-
J = S e “Vsin (1 o) de’

-1

(55)

Die Exponentialfunktion in eine Reihe entwickelt

(o)  (ua')?
1! 2!

Y (~1y

n=0

e utot = 1—

—— =

(ua)

(56)

und dieselbe an Stelle der Exponentialfunktion in
Gl. (55) eingesetzt ergibt die neue Beziehung

=
2n

S i (=T == (a') -sin (A a’)yda’  (57)

Nach der Integrationsmethode fiir Potenz- und tri-
gonometrische Funktionen bei gleichzeitiger Ein-
fithrung des Parameters p wird nach bekannten
Gesetzen 22)

T - 1 n!la-r
Sa sin(A'e¢’)d e __Pgu e .(n—p)!
Diese Gl. (58) der Integration der Summe Gl. (57)
zugrunde gelegt, fithrt, wenn n’ = 2n ersetzt wird,
auf das endgiiltige Integral **) (cos-Glieder)

cos Ao’ (58)

2n
2 n
2n) ! ()P .

. _1 - ( E Pt
J = "Z_O( ) (2n p)' (,1')P+1 cos L'«
p=0 (59)

p=0,1,23,.
Aus Gl. (56) ist die Tatsache ersichtlich, dass die

Wahl von n (Anzahl Glieder) nur von der gewiinsch-
ten Genauigkeit abhingt und dass ausserhalb dem
Bereiche ¢ die Exponentialfunktion nahezu Null
wird. Die endgiiltige Koordinate y schreibt sich
beim Extrahieren des Faktors cos 1'a/

22) Handbuch der Physik VIII
Springer, Berlin.
23) Jahnke-Emde: Funktionentafeln, Teubner, Leipzig 1933.

(1925), S. 172, Julius

y = #ﬂl +€os (wot)- sin (Tn . x) cos (A'a')

D

p=0
= 0, 1, 2,

Greift man, um einen Ueberblick iiber die Gl. (60)
zu erhalten, auf GL. (55) und (56) zuriick, so ersieht
man einen Vorteil, den die Exponentialfunktion
bietet. Um ein geniigend genaues Resultat zu erhal-
ten, muss die Integration praktisch nur iiber ein
kleines Gebiet * ¢ erfolgen.

Denkt man sich fiir eine Ergiebigkeit 1 der
Quelle die konstanten Summen in B (x = const.)
unter gleichzeitiger Einbeziehung von 1'¢’ zu-
sammengefasst, so bilden die Verdnderlichen in Ab-
hingigkeit von der Frequenz des Diampfers w, und
der Eigenfrequenz mit den Grossen x — ¢ die fol-
gende Relation

A\
y = Bcos (wgt) cos (% x)- sin (Jlt x) (61)

x = konst.

p), (x—&E P (60)

Es wird nun die Aufgabe sein, die Schwebungen so
zu erzeugen (Interferenzmethode), dass nirgends
eine grosse Amplitude auftreten kann. Eine Grund-
gleichung liegt in (61) vor. Ob es vom Standpunkt
der Ermiidungsfestigkeit vorteilhaft erscheint, kurze
Wellenldngen oder lingere mit grosseren Amplitu-
den entstehen zu lassen, wird die Erfahrung zeigen.
Am aussichtsreichsten wird die Einfithrung der Be-
dingung sein, niemals Resonanz entstehen zu lassen.

Gl. (61) hat sehr viel Aehnlichkeit mit der Be-
~wegungsgleichung (10) einer gezupften Saite, abge-
“sehen von der neu hinzugetretenen Quellenfunktion
exp (x— E) (2n—p),

Der noch einfachere Fall ergibt sich, wenn man
eine punktférmige Quelle (wy=10) von der Ergie-
bigkeit **) 1 in x=2¢ annimmt [Gl. (32]. Weiter
beachte man die Normierung der Eigenfunktionen
Gl. (16) und versuche dann die Gl. (33) durch eine
Funktionenfolge zu bestitigen. Setzt man in Gl.

. V2?2
(33) k2= 4,, so gilt 4, == 2

py = A, sm( y;x)

Die Sinusfunktion in Gl. (16) eingesetzt, ergibt
die Konstante A4,, wihrend die Eigenfunktion
@y (x) selbst wird

. Die Eigenfunktion

wird dann

(62)

2 VT X
@ (x) = e ; sin( i ) (63)
Vi
Die allgemeine Losung erhilt sodann die Form
w . [(vmw . (vmw .
y= 2o 372 )ie (7)o

e Y

24) Im Punkte & entsteht eine Punktquelle von der Er-
giebigkeit 1, wenn die Kraft P =0, wird (siche Gl. 22, 23).
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Wegen dem Faktor »* im Nenner werden die oberen
Harmonischen rasch unmerklich klein und fiir die
Grundwelle ergibt sich die sehr einfache Gleichung

-

= 2 i [ o ain P2
= L) in ()

einer stehenden Welle.
Durch diese angefiihrten Gleichungen wurden
die einfachsten Fille errechnet. Es ist die weitere

(65)

Aufgabe, die Bedingungen einzufiihren, die fiir die
Interferenz (Ddmpfung genannt) der einzelnen
Wellen den vorteilhaftesten Zustand schaffen. Bei-
spielsweise verlangt man die minimalste Ampli-
tudengrosse. Da aber die Absicht leitend war, die
allgemeinen theoretischen Grundlagen vorerst her-
zuleiten, f&llt die Behandlung der individuell
wiinschbaren Bedingungen aus dem Rahmen dieser
Arbeit.

Erfolgsaussichten der kiinstlichen Atmung bei elektrischen Unfillen.

(Mitgeteilt vom Starkstrominspektorat.)

Vor einigen Monaten erschien als Heft 4 der Schrift-
reihe des Reichsgesundheitsamtes in Berlin von Dr. med.
W. Estler eine Broschiire, betitelt: «Mit welchen Aussichten
machen wir Wiederbelebungsversuche?» Der Inhalt dieser
Broschiire fusst auf Erhebungen in grisserem Umfange, die
in Deutschland vorgenommen wurden, um den Wert der
kiinstlichen Atmung an Hand praktischer Erfahrungen fest-
zustellen. Der Verfasser gelangt dabei zum Schlusse, dass
die kiinstliche Atmung im allgemeinen keinen grossen Erfolg
verspreche und dass ihr therapeutischer Wert nicht so sehr

in einer wirklichen «Wiederbelebung» liegen diirfte, als viel- |

mehr in der Erhaltung des flichenden Lebens, wenn nur eine
bedrohliche Beeintrichtigung der Herz- und Atemtiitigkeit
vorliege. Die Erhebungen bezogen sich allerdings in der
weit iiberwiegenden Mehrzahl auf Fille von Leuchtgas- und
Kohlenoxydvergiftungen sowie auf Ertrinken, denn unter den
insgesamt 415 untersuchten Fillen, in denen Wiederbelebungs-
versuche vorgenommen wurden (wobei aber in 180 Fillen
keine strenge Indikation auf Atmungs- und Herzstillstand
vorlag), befanden sich nur 6 Starkstromunfille. Von diesen
Starkstromunfillen waren lediglich von dreien die getroffenen
Wiederbelebungsmassnahmen im einzelnen genau bekannt;
in allen diesen drei Fillen wurden aber die Wiederbelebungs-
versuche verhiilltnismiissig spit begonnen. Estler erwihnt
nun selbst, dass fiir die Beurteilung der Wiederbelebungs-
méglichkeiten bei elektrischen Unfilllen die vorliegenden
sechs Beobachtungen an sich zahlenmissig zu gering seien.
Da wir auf die Broschiire von Estler durch die Schweize-
rische Unfallversicherungsanstalt in Luzern aufmerksam ge-
macht wurden, veranlassten wir den fritheren Forschungs-
arzt der Aerztekommission des VSE zum Studium der Stark-
stromunfille, Herrn Privatdozent Dr. med. R. Sulzer in
Genf, sich iiber deren Inhalt zu Hussern. In der Annahme,
dass seine Darlegungen iiber den Wert der Wiederbelebungs-
versuche bei Starkstromunfillen die elektrotechnischen Fach-
kreise interessiere, veroffentlichen wir sie im folgenden.
Herr Privatdozent Dr. med. R. Sulzer idussert sich folgender-
massen:

Die immer wieder auftauchenden Zweifel an der |

Zweckmaissigkeit der im wesentlichen auf kiinst-
licher Beatmung beruhenden Wiederbelebungsver-
suche an Starkstromverungliickten sind durch den
kleinen Prozentsatz der damit erzielten Erfolge
bedingt.

Zur Klirung der Frage, welche Erfolge von

mogen die folgenden Feststellungen von Nutzen
sein, Der Tod ist, biologisch betrachtet, kein mo-
mentanes, sondern ein sich iiber Stunden und Tage
hinziehendes Ereignis. In der Praxis wird aller-
dings der Herzstillstand als Moment des Todes ge-
wertet, weil erfahrungsgemiss ein Herz, das iiber
eine Minute lang stillgestanden ist, von selber seine
Tatigkeit nie wieder aufnimmt. Es besteht jedoch
vielfach die Méglichkeit, ein Herz kurz nach dem

614.8 : 621.3

Stillstand kiinstlich wieder in Gang zu bringen,
ihnlich wie ein stillgestandener Benzinmotor wie-
der angekurbelt werden kann. Bleibt aber die Herz-
tatigkeit iiber ldngere Zeit aus, so verschlechtern
sich die Lebensbedingungen im Organismus infolge
des Stillstandes der Blutzirkulation, und die Or-
gane stellen, je nach ihrer Empfindlichkeit eines
um das andere ihre Titigkeit unwiderruflich ein.
Wichtig ist, dass die lebenswichtigen Organe, wie
Gehirn und Herz, die ersten sind, die durch den
Kreislaufstillstand irreversibel geschidigt werden.

Es bedeutet eine Spitzfindigkeit, von wahrem
und falschem Scheintod und dergleichen zu spre-
chen. Solche Begriffe sind wertlos, da in praxi ihre
gegenseitige Abgrenzung ein Ding der Unmaoglich-
keit ist.

Die Mittel, welche gelegentlich imstande sind,
ein stillstehendes Herz von neuem zum Schlagen
zu veranlassen, sind vor allen Dingen die Herzmas-
sage, Reize, wie der Einstich einer Nadel ins Herz,
intrakardiale Einspritzungen von Mitteln wie Adre-
nalin, Coramin und dergleichen. Aber im Falle der
Verungliickung durch Starkstrom hat man es meist
nicht mit stillgestandenen, sondern mit flimmern-
den Herzen zu tun, und gegeniiber solchen wurde
von den genannten Mitteln kaum je eine giinstige
Wirkung beobachtet. Jedenfalls ist es durchaus
illusorisch, von der kiinstlichen Beatmung eine
Wiederherstellung der normalen Titigkeit flim-
mernder Herzen zu erwarten.

Nun gibt es aber offenbar durch Elektrizitit ver-
ursachte Ungliicksfille, wo ein primirer Atmungs-
stillstand vorliegt, wo also das Herz dem Flimmern
entgangen ist und seine Titigkeit, wenn auch unter

| Umstidnden nur sehr schwach, noch anhilt. In die-
| sen Féllen ist die kiinstliche Beatmung das beste,
| wenn nicht das einzige Mittel der Wiederbelebung.
einer solchen Behandlung erhofft werden konnen, |

Das Wort «Wiederbelebungs ist hier so zu verste-
hen, dass Menschen im genannten Zustand, sich
selbst iiberlassen, unfehlbar in den irreversi-
blen Tod hiniibergleiten wiirden. Die lebensret-
tende Wirkung der kiinstlichen Atmung kommt in
der Studie von W. Estler deutlich zum Ausdruck.
An einer Stelle der genannten Arbeit ist z. B. zu
lesen, dass von drei Fillen von Atmungsstillstand
mit noch feststellbarer Herztitigkeit alle durch
Pulmotorbehandlung gerettet werden konnten.
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