Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatswerke

Band: 28 (1937)

Heft: 19

Artikel: Die Doppelleitung als Vierpolkette
Autor: Boveri, Th.

DOl: https://doi.org/10.5169/seals-1059867

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-1059867
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SCHWEIZERISCHER ELEKTROTECHNISCHER VEREIN

BULLETIN

REDAKTION :
Generalsekretariat des Schweiz. Elektrotechn. Vereins und des
Verbandes Schweiz. Elektrizititswerke, Ziirich8, Seefeldstr.301

ADMINISTRATION :
Ziirich, Stauffacherquai 36 +« Telephon 51.742
Postcheck-Konto VIII 8481

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet

XXVIII. Jahrgang

N° 19
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Die Doppelleitung als Vierpolkette.

Von Th. Boveri, Baden.

Unter spezieller Benutzung eines Aufsatzes von L. Bril-
louin erliutert der Autor am Beispiel der gewdéhnlichen
Doppelleitung die Anwendung moderner algebraischer Me-
thoden auf die Losung elektrotechnischer Aufgaben. Er hat
sich dabei bemiiht, einen Mittelweg zu finden zwischen ge-
niigend breiter Darlegung der allgemeinen Grundsiitze einer-
seits und der trotzdem geniigend ausfiihrlichen Behandlung
eines konkreten Beispiels anderseits. Es besteht Grund zur
Annahme, dass Methoden, wie die beschriebene, sich bei der
mathematischen Behandlung technischer Probleme immer
mehr einfiihren werden.

1.
Man findet in der Mechanik und neuerdings auch
in der Elektrotechnik und sogar in der Atomtheorie
hiufig Beziehungen der folgenden Form

Y1 = 04 X + Q3 X3 + g3 Xg
Vo = Uy X = Uy Xy Uy Xy 1)
Y3 = dgy Xy —+ Ogp X3 —+ Ug3 X3

Betrachtet man die drei Grossen x und die drei
Grissen y je als Komponenten eines Vektors, so
driickt Gl. (1) das Bestehen einer linearen (und
homogenen) Vektorfunktion zwischen den Vekto-
ren vy und x aus. Die wichtigsten Beispiele aus der
Mechanik fiir solche sind die drei folgenden:

a) Die relative Verschiebung gegeneinander von zwei eng
benachbarten Punkten eines verformten elastischen festen
Kérpers ist eine lineare Vektorfunktion des Abstandes der
beiden Punkte.

b) Die auf ein Flichenelement im Innern eines gespann-
ten elastischen Koérpers wirkende Kraft ist eine lineare
Vektorfunktion der Normalen des betreffenden Flichenele-
mentes.

¢) Der Drehimpuls eines rotierenden starren Kérpers ist
eine lineare Vektorfunktion der Winkelgeschwindigkeit.

Die Koeffizienten «, die sogenannten Tensorkomponen-
ten, haben dabei besondere Namen. Diejenigen mit gleichen
Indices heissen in den drei Fillen Dehnungen, Normalspan-
nungen, bzw. Trigheitsmomente, die mit den gemischten In-
dices Scherungen, Schubspannungen, bzw. Zentrifugalmo-
mente. Dabei gilt in allen drei Fillen ai2 = o21 etc. Man
nennt in diesem wichtigen Spezialfalle die lineare Vektor-
funktion symmetrisch.

2.

Bei den Anwendungen der linearen Vektorfunk-
tionen auf andere Teile der Physik hat man unter
Umsténden in drei Richtungen mathematische Er-
weiterungen vorzunchmen, welche die Anschaulich-

621.391.31

En se servant tout particuliérement d’'un article de M. L.
Brillouin, Uauteur démontre a Uaide de la conduite électrique
a deux fils Uapplication des méthodes algébriques modernes
a la solution de problémes électrotechniques. Il s’est efforcé
de trouver un chemin intermédiaire entre une discussion
assez étendue des principes généraux d’une part et Uexpli-
cation assez détaillée d’'un exemple d’autre part. On a toute
raison a supposer que des méthodes analogues s'introduiront
de plus en plus dans le traitement mathématiques des pro-
blémes techniques.

keit beeintrichtigen, ohne im iibrigen grosse Schwie-
rigkeiten zu bereiten. Erstens ist die Zahl der Di-
mensionen statt drei eventuell beliebig; es sind dann
also Komponenten x, x, x, x, x; usw. und entspre-
chende fiir y in Betracht zu ziehen. . Dabei geht die
riumliche Vorstellbarkeit verloren. Zweitens kon-
nen die betrachteten Vektorkomponenten komplexe
Zahlen sein, wie z. B. im Falle von Wechselstrom-
grossen. Hierbei ist zu beachten, dass man gewohnt
ist, sich komplexe Grossen selbst wieder geometrisch
in einer Ebene zu veranschaulichen. Man hat dann
diese Ebene vollstindig zu trennen, von dem even-
tuell ja ebenfalls zweidimensionalen Raume, in dem
die Vektoren mit den Komponenten x, x, bzw. y, v,
abgebildet werden ). Drittens endlich kann es
zweckmissig sein, im Gegensatze zu den Beispielen
aus der Mechanik zwei Grossen verschiedener Di-
mension, etwa Spannung und Strom zu einem ein-
zigen Vektor zusammenzufassen. Dies bewirkt, dass
die ¢ in Gl. (1) verschiedene Dimensionen anneh-
men, beschrinkt aber dafiir im eben genannten Falle
die Dimensionszahl auf zwei, sofern man nicht
gleich die Strom- und Spannungsverhiltnisse ver-
schiedener Stromzweige in einen einzigen Vektor
zusammenfassen will.

Solche weitgehenden Zusammenfassungen von
Spannungen und Stromen, allerdings in Vektoren
mit Komponenten jeweils gleicher Dimension
(Spannungen bzw. Strome) erldutert G. Kron in sei-
nen Aufsiitzen 2). Dabei bedient er sich nach Bedarf
zweier verschiedener vereinfachender Schreibwei-

1) A. Pen-Tung Sah, Complex Vectors in 3-Phase Cir-
cuits. Electr. Engng. 1936, S. 1356.

2) Gabriel Kron, The application of Tensors to the Ana-
lysis of Rotating Electrical Machinery. Gen. Electr. Rev.
1935, S. 181.
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sen, die scheinbar nur Abkiirzungen bedeuten, aber
in Wirklichkeit doch einen neuen Begriff einfiih-
ren, denjenigen der Matrix namlich, worunter man
die Zusammenstellung der Tensorkomponenten aus
Gl. (1) in folgender Form versteht

0y @ O3 "
&y Gpp (3
Qg1 Cg Ggs
Diese Matrix ist nicht nur als eine Zusammenstel-
lung von mehreren Grossen, sondern nach Moglich-
keit als eine einzige «hyperkomplexe» Grosse auf-
zufassen, mit welcher etwa der Vektor x «multipli-
ziert> wird *). Um dies zu ermoglichen, verwendet
man in der Dyaden-Schreibweise von Gibbs Einheits-
vektoren, fiir die ja in der Vektorrechnung gilt
e?=1; e?=1usw. e;re,=0 usw.
und fiihrt sie in die Matrix ein:
@y €1 € + ap €€ - o€ e
+ ey ee; + apnere; + a6 (2)
+ ey e 4 ape3e; + ag3e3€

Beachtet man, dass mit Hilfe von Einheitsvektoren
die Vektoren y und x zu schreiben sind

A=

y=ey, T ey, T ey,
x=—exx, + ex, + exx,
so findet man, dass die Gleichung
y' = A X
tatsiichlich ausgeschrieben die Form der Gl. (1) an-
nimmt. . ’
Eine andere Schreibweise ist die Tensorschreib-
weise
Yo 0g1%; T g% T g%y T oo =3 g2y

n
abgekiirzt =— q,,x,

Hier ist ¢, das Symbol fiir die Matrix.

G. Kron fasst nun beispielsweise alle Zweig-
strome eines komplizierten Netzwerkes in einen
Vektor zusammen. Durch Multiplikation mit einer
dimensionslosen Matrix C erhilt er andere Strome,
wie sie durch geeignete Zusammenschaltung der
einzelnen Zweige sich einstellen und durch weitere
Multiplikation mit einer «Impedanz-Matrix» Z fol-
gen dann auf einen Schlag alle Teilspannungen.
Dabei ist zu beachten, dass Spannungen und Stréme

—7 —J/ —7 —=TJ/
Z
4 YU
2 2
o— ——o0 o —0
SEV 6396
Fig. la. Fig. 1b.

durch die Matrizen so transformiert werden miis-
sen,” dass die Erhaltung der Leistung gewihrleistet
wird, wo dies physikalisch notig ist. Besonders
klar erldutert dies A. Boyajian*).

3) M. Bocher, Introduction to higher Algebra. New
York 1936. S. 60.

4) A. Boyajian, The Tensor, a new Engineering Tool.

Electr. Engng. 1936, S. 856.

Geeigneter als diese komplizierten Beispiele ist
aber fiir die Einfithrung in die Matrizenrechnung
die Behandlung der einfachen Doppelleitung als
Kette, entstanden durch Aneinanderreihung von
Elementen nach Fig. 1la oder 1b, welche Elemente
man wegen ihren vier Klemmen auch Vierpole
nennt *). Dabei ergibt sich auch Gelegenheit, die
allgemein so wichtige Hauptachsenzerlegung anzu-
wenden. Allerdings hat man dafiir Vektoren mit
Komponenten gemischter Dimensionen in Kauf
zu nehmen.

3.

Die leicht abzuleitenden und in der Literatur ¢)
zu findenden Beziehungen zwischen Spannung und
Strom am «Eingang»: (UI) und am «Ausgang»
(U'T') unseres Leitungselementes kann man in der
Form schreiben:

U=a,U+ ! 3)
I'=a21U+a221 (

Dabei gilt fir Fig. la das T-Glied

g
“11=“22=1+yT§ Gy = —2 (l-l—%’—);

Gy =—Y
und fiir Fig. 1b das #-Glied

_ _ Y= — .
ay=0ayp=1 +‘2—’ Gpp = — %5

w=-y(1+%)

Weil a;; = a,,= « ist, nennt man den Vierpol
symmetrisch, und im folgenden wird der Einfach-
heit halber diese Beziehung im allgemeinen voraus-
gesetzt, deren Nichtbestehen aber keinerlei Schwie-
rigkeiten, sondern nur umstindlichere Formeln
verursachen wiirde. Man beachte dagegen, dass die
a-Matrix wegen a,, =£ a,, fiir beide'Typen von Ele-
menten keineswegs symmetrisch genannt werden
darf. Dafiir ist aber anderseits ihre Determinante

‘ ayy Ay
Gy Ay

= @0 —apa; =1 4)

welch wichtige Vereinfachung fiir alle Vierpole
gilt 7). Infolgedessen ist es fiir den mit der Lehre
von den Determinanten Vertrauten besonders ein-
fach, die «inverse» f-Matrix zu finden, mit Hilfe
welcher man U und I als Funktion von U’ und I’
ausdriickt. Schreibt man

U:ﬂuU' + /912['
I=p,,U" + BT

s0 ist

Bup == @3 Brz = — @y} foy = — @33 P = ey

5) L. Brillouin, Les filtres électriques et la théorie des
matrices. Rev. Gén. Electr, 4. 1. 1936.

6) Fraenckel, Theorie der Wechselstrome.
Seite 178.

7) Fraenckel, 1. c¢. S. 61.

Berlin 1930.
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Natiirlich kann man diese Gleichungen, genau wie
Gl. (1), auch direkt ableiten.

Schaltet man nun zunidchst zwei Vierpole, die
verschieden sein diirfen, in Reihe und bezeichnet
die Eingangsgrossen ohne Strich, die mittleren mit
einem und die Ausgangsgrossen mit zwei Strichen,
so gilt symbolisch

(Ul =A-(UI)

(ul” =«C-(UI)’, also

(D" =«C-A(UI)
Man kann das Multiplikationsgesetz der Matrizen
leicht ableiten, sowohl mit Hilfe der Dyaden- als
auch der Tensorschreibweise. Es sei die Dyaden-
methode benutzt:

C-A=(yee;+ y2eie + yaere; + rnee) -
(ay1 €81 +- ayp€1€; + €6 + @pese5) = (y10q +
V12¢) €8+ (Vi1 00 = Yia0n) €€y + (040 +
V22021) €€ (V21212 —+ V22 0) €8, ©®)
Man beachte, dass genau wie in Gl. (2) im End-
resultat je zwei Einheitsvektoren ohne dazwischen-
liegenden Multiplikationspunkt nebeneinander-
stehen. Diese Paare verschwinden nachher von
selbst, wenn man mit einem Vektor multipliziert;
z. B. ist

(Y1041 V12021) €18y - €%y = (py1eq = V1202) €%

Fiir das Verstindnis der oben ausgefiihrten Dyaden-
multiplikation mache man sich Beziehungen wie

die folgenden klar:

ee,
ee,

cee = elel; ee, : ee, = e¢e,

ee, = 03 ee, - ee, = 0 etc.

Die allgemeine Regel fiir die Multiplikation von
Matrizen wire nicht schwer aus Gl. (5) herauszu-
schilen; wir verzichten aber darauf, weil die wie-
derholte Multiplikation einer Matrix mit sich selbst,
wie man sie bei der Vierpolkette braucht, nach
dieser Regel zu umstéindlich wire. Viel bequemer
ist hierfiir eine sogenannte Diagonalmatrix von der
Form

o€, 0
A2€,€,

Fiir das Quadrat derselben erhilt man namlich:

(ere,0; + aze.e)) (aye,€, + apes€,) = a,2e e, + ay2ee,

und durch fortgesetzte Anwendung dieser Regel
(xje,e, |+ aye50,)" = o,"ee; 4~ a,"eye,

Das Hauptproblem besteht nun darin, die G1. (3)
auf die Diagonalform zu bringen, wobei symme-
trische Vierpole vorausgesetzt werden sollen. Man
macht den einer Diagonalmatrix mit gleichen Kom-
ponenten entsprechenden Ansatz

U=aU; I'=al
Physikalisch bedeutet er, dass das Verhiltnis von
Spannung zu Strom an den Eingangs- und Ausgangs-

klemmen des Vierpols dasselbe ist. Im allgemeinen
wird dies nicht zutreffen, sondern nur wenn man

zwischen die Ausgangs- oder Eingangsklemmen eine
ganz spezielle Impedanz Z schaltet. Diese ist leicht
zu berechnen.

Z__U’__E_U’/l_aZ—l—am’
- r 1 r/ o 0y Z + «a
a21Z2=a12;Z:] “ (6)
91

Bei der Leitung nennt man Z den Wellenwider-
stand; man kann ihn als diejenige Impedanz defi-
nieren, welche man zwischen die Ausgangsklemmen
der Leitung schalten muss, um ihr dasselbe Verhal-
ten zu geben, als setzte sie sich statt dem Anschluss
der Impedanz bis in die Unendlichkeit fort. Indem
man sich zunichst dariiber hinwegsetzt, dass ein
reiner Spezialfall behandelt wird, schreibt man:

U =aU=0aU + a,,]

I'—=al —q,U+ql (7
oder

(a—a) U+ a,,] =0

an U+ (a—a) =0 (8)

Hier muss man nun aus der Theorie der linearen
Gleichungen den Satz voraussetzen, dass die soeben
angeschriebenen zwei homogenen Gleichungen nur
dann fiir U und I von Null verschiedene Losungen
liefern, wenn die sogenannte Koeffizientendetermi-
nante verschwindet, d. h.

=0 =(z — @ —apoy =

(e—a) o
a? — 2aa + a? — a0y

ay (a-a)

Diese Gleichung liefert fiir a zwei im allgemeinen
verschiedene Werte

a=a+4 V“12“21 =a+ V21 9
das zweite wegen Gl. (4).
Man nennt die beiden a-Werte die Eigenwerte

der Matrix und bezeichnet sie mit a, und a,. Fer-
ner merke man als Wert ihres Produktes an

aa, =a® — a0, =2 —a®+1=1
Indem man gleich komplexe Werte in Betracht
zieht, schreibt man fiir a, willkiirlich
a, = e~ 9=V = e—0 (cos¥ — j - sinv)
und muss dann notgedrungen fiir a, setzen
a, = etV = etd (cosv -+ j - sinv)

damit a,a, =1 wird. Die Betrige von e~ und e+
d. h. die Lidngen der Vektoren in der Vektordarstel-
lung der komplexen Zahlen sind 1; also

o= ] =

-d

somit a, ’ - ' et ‘

fay =]
Nach Einsetzen von @, oder a, in Gl. (8) wird diese
durch unendlich viele Wertepaare U und I befrie-
digt, sofern diese nur im richtigen Verhiltnis zu-
einander stehen. Fiir dieses Verhiltnis hat man aus

Gl (8)
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— 7 = _ ®yo z_a—a (88.)

a —a a2l

U
I

Setzt . man ¢ aus Gl. (9) ein, so erhidlt man fiir Z
die beiden Wurzelwerte von Gl. (6).

Ferner kann man auch schreiben
(10)
Die Tatsache, dass man normalerweise iiber zwei

verschiedene a-Werte verfiigt, gestattet nun, den all-
gemeinen Fall zu behandeln. Man setzt

ae—ata,”Z

U ' =aU; I, —aJl, und
U, =a,U,; I, =a,l,

und superponiert
U! — Ul/ + U‘zl I/ P Ill + IZI
U=U, +U, I=I +1I,

Man eliminiert die Werte U,U, 1,1, usw.
U=U,+U,=17Z—17

= IL+1,
L _1Z+U  _1Z-U
1=z P h="7 "
lT1=Ilz=£éi]; Uy=—1,Z = [L;LZ

Damit hat man, gleich fiir die Reihenschaltung von
n Vierpolen

U=U/'+U)=a"U ~+ a,;U, = a,"]|Z. — a,"I,Z
2 v, (2

zZ

Vom mathematischen Standpunkte aus mag noch
folgendes bemerkt sein. Kennzeichnend fiir die
Vektoren (U,I,) und (U,l,) ist, dass sie nach aus-
gefithrter Transformation, d. h. bei Messung am
Ende einer Kette von Vierpolen, wobei man sie
dann mit U,"I,” usw. bezeichnet, immer noch die-
selbe «Richtung» im Koordinatensystem haben. Da-
mit dies zutrifft, miissen die Ausgangsvektoren in
bestimmte Richtungen, die «Hauptrichtungens fal-
len. Die Grosse der Komponenten spielt an sich
keine Rolle, nur ihr gegenseitiges Verhiltnis, wel-
ches eben die Richtung bestimmt. In der Mechanik
ist es iiblich, die Hauptrichtungen zu Richtungen
der Koordinatenachsen zu machen. Tite man dies
im vorliegenden Falle, so hitte man eine U- und
eine I-Hauptachse mit den Eigenwerten a, und a,
und die Transformationsgleichungen wiirden dann

U=aqU; I'=a,l

Unsere Diagonalmatrix hitte die iibliche Form

a, 0
0 a,

mit zwei verschiedenen «Tensorhauptwerten» a,
und a, angenommen. Es bedingt dies aber eine ganz
spezielle Zerlegung der gegebenen Vektoren in
Komponenten, welche im vorliegenden Falle keinen
physikalischen Sinn gehabt hitte. Es war ja nicht
der Vektor (UI) das primidr Gegebene, sondern
seine Komponenten U und I einzeln. Jede andere

I'=Il'+1)=qa L+ a)"l,= gé_ U, —

Zerlegung wiirde die Spaltung in Strom und Span-
nung zerstoren. Bei dieser Rechnung haben sich
spezielle Diagonalmatrizen mit gleichen Hauptwer-
ten ergeben; dafiir mussten anderseits zwei solche,
statt nur einer einzigen gewohnlichen, verwendet
werden. Es hat dies aber um so weniger Bedeutung,
als man, wie in der Algebra gezeigt wird, jede Dia-
gonalmatrix mit verschiedenen Koeffizienten durch
lineare Transformation in eine solche mit gleichen
Koeffizienten, die sogar alle gleich eins sein kon-
nen, iiberfithren kann. Es braucht hierauf nicht
weiter eingegangen zu werden.

Da im vorliegenden Beispiele also die Hauptrich-
tungen nicht in die Richtungen der Koordinaten-
achsen fallen, so sei noch darauf hingewiesen, dass

nach Gl. (8) und (8a)

¥
UI:U1=__ @y __ x—q — 4z
#
I, I, x— a ay,
U, U a a—a
bezw. 12, — —12 _ — 12 = - 2 A
2 2 a—ag gy

die beiden trigonomischen Tangenten der Winkel
bedeuten, welche die beiden Hauptachsen mit der
I-Koordinatenachse bilden. Die Hauptachsen ver-
laufen also spiegelbildlich symmetrisch zur I-Achse.
Man darf sich nicht daran stossen, dass diese Tan-
genten die Dimension eines Widerstandes haben,
statt reine Zahlen zu sein. Es rithrt dies von den
verschiedenen Dimensionen der beiden Komponen-
ten her. Die ganze bildliche Darstellung in einer
Koordinatenebene darf eben nur symbolisch aufge-
fasst werden, wie schon daraus hervorgeht, dass die
Koordinatenwerte im allgemeinen komplex sind.

4.

Zum Schlusse sollen noch einige Anwendungen
der abgeleiteten Formeln auf die gew6hnliche Dop-
pelleitung und auf einfache Siebketten gegeben
werden. Man berechnet zunichst den Wellenwider-
stand einer gewohnlichen Doppelleitung etwa auf

Grund des T-Gliedes

zZ— V_ _ ‘/i+fig VE =VR+J;wL
g y 4 ¥ A+ jwC

indem man z die Induktivitit L und den Widerstand
R, y dagegen die Kapazitiat C und die Ableitung 4
zuschreibt. Die gemachte Vereinfachung rechtfer-
tigt sich dadurch, dass die gegebene Leitung in eine
geniigend grosse Anzahl Vierpole unterteilt werden
muss, Je feiner man diese Unterteilung macht, desto

. . . . z
kleiner werden y und z einzeln; ihr Quotient —
; Y

strebt dabei einem bestimmten Wert zu, wihrend
z2 . ;

Tdagegen verschwindet. Man spricht von verzer-
rungsfreier Leitung, wenn Z denselben Wert hat
wie bei der verlustlosen Leitung, also frequenzun-

abhingig ist

7= ‘/R+J@L=‘/Z
AdrjocC C
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Dies bedingt gleiche «Richtungs der beiden Vek-
toren, die R+ jwL, bzw. A+ joC in der komplexen
Zahlenebene darstellen, also muss sein

R:L=4:C

Die Grossen U,l, und U,I, bedeuten die bekannten
Wanderwellen, durch welche man ja die Vorgéinge
auf der Leitung darstellen kann. Um dies einzu-
sehen, muss die zeitliche Abhingigkeit eingefiihrt
werden, etwa fiir die Stréme durch

I =1,e% I, = L - 6ot 8
Dann erhilt man aus Gl. (12)

I = Iw e— M . g il0t—rn) -+ 1209+0"n e i (0t +vn)

Das erste Glied bleibt, abgesehen vom Dampfungs-
faktor e ¢ konstant, wenn man in einer Zeit T' um

oT _ . . :
N=—"Vierpole vorwiirts, also nach rechts schrei-
v

tet. Demgemiss ist I, die rdaumliche Amplitude
einer mit der Geschwindigkeit

Nl°=3lo

T ) 13)

vV =

nach rechts schreitenden Stromwelle, wobei [, die
Linge eines Leitungselementes bedeutet.

Es soll v fiir die verlustlose Leitung berechnet
werden. Es sei die rdumliche Dimpfung gleich
Null, e*¢=1, wozu die Verlustlosigkeit eine nétige,
aber nicht hinreichende Bedingung ist. Um die wei-
teren Bedingungen fiir Ddmpfungsfreiheit zu fin-
den, schreibt man nach GIl. (9)

a=a«a+ ]/aT——1=cosv Fj.sinvy
a=-cosv; = 1 — a? = 7 siny
Diese Gleichung ist erfiillbar fiir
—1<g< +1
und liefert mit
2L C
a=14+Y7=1-222
0 < wLC <4

Die Vierpolkette stellt also ein sogenanntes Tief-
passfilter dar; Kreisfrequenzen, welche den Wert

w = ——— iibersteigen, erfahren trotz Verlustlosig-
keit rdumliche Ddmpfung, indem ein Teil des Stro-
mes durch die Sperrwirkung der Induktivititen in
die Parallelkondensatoren abgedrdngt wird. Ver-
tauscht man in der Kette die Spulen mit den Kon-
densatoren, schreibt also z—=1/jwC und y =1/jwL,
so erhilt man ein Hochpassfilter, bei dem die Kreis-

frequenzen unterhalb

rdumliche Dampfung

erfahren. Die Sperrwirkung rithrt nun von den
Reihenkondensatoren her; sie dringen den Strom
bei niedern Frequenzen in die Parallelspulen ab.
Indem man zur Bestimmung der Fortpflanzungs-
geschwindigkeit v der Wanderwellen zuriickkehrt,

8) Bull. SEV 1935, S. 615.

beachte man, dass iiblicherweise Induktivitit und
Kapazitit auf die Einheit der Leitungslinge be-
zogen werden, auf welche n, Vierpole entfallen mo-
gen, so dass

zu setzen ist, wodurch sich die Eigenwerte er-

geben zu
@ = _w2lc+ wtl2e? wllc
2nt2 " 4 nt n,2
2] 2
=1_gn:ime‘/1_jn’:
w? le ]/l—f;
g1—2n02_w -

Hierin ist wieder eine geniigend grosse Zahl r, von
Vierpolen vorausgesetzt und indem man von dieser
Vereinfachung nochmals Gebrauch macht, schreibt
man

und erhilt endlich, nach Gl (13)

w

v

| 1]
Vie
eine ja allgemein bekannte Formel.
" Man iiberzeugt sich leicht, dass I, in Gl. (12)
eine riickwirtsschreitende Welle bedeutet; der Be-
trag ihrer Fortpflanzungsgeschwindigkeit ist der-
selbe wie fiir die vorwirtsschreitende Welle.

Da weiter oben die Bedingung fiir rdumliche
Dampfungsfreiheit bei der verlustlosen Kette auf-
gestellt wurde, mége noch ein allgemeiner Ausdruck
fir die Dampfung bei der verzerrungsfreien Lei-
tung gegeben werden. Da Z hier reell ist, benutzt

man mit Vorteil Gl. (10) und setzt, wieder vom T-
Glied ausgehend,

v

o

a=1-4 yzz #Zy=1LAR — o?LC +
jo (RC + AL ZC) =
], s —g——szC+jw (2 RC ¥ ZC)

Durch geniigend feine Unterteilung in Vierpolele-
mente kann man bei gegebener Frequenz « alle
Glieder bis auf die zwei ersten zum Verschwinden
bringen und hat dann

R

'o"
e

|

Man erkennt dies als Nidherungsformel eines fiir
die kontinuierliche Leitung bestehenden Aus-
druckes

a

|

= — 9
o= )

9) Fraenckel, 1. c¢. S. 164 oben.



446

BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1937, No. 19

XXVIIL. Jahrgang

und es erklirt sich der Ausdruck «verzerrungsfreie
Leitung» durch die Unabhingigkeit der rdaumlichen
Déampfung von der Frequenz.

Von den vielen interessanten Problemen, die
man auf Grund der abgeleiteten Formeln noch 16sen
konnte, sollen nur noch mit Brillouin die Koeffi-
zienten der Reflexion der Wanderwellen an einer
beliebigen Impedanz Z, angegeben werden. Sofern
sich diese am rechten Ende der Leitung befindet,

’

hat man nach Fig. 1 Z,— Il{_’ fir das linke Ende
hingegen Z, = Der Reflexionskoeffizient ist

fiir den Strom und fiir Impedanz rechts, nach Gl.
(11), die ja auch fiir die gestrichenen Grossen gilt

r, rz—u

oy =-—-—=—-——
<1 11, 1!Z_+_U/
_E—2%,
- 2~Z

Bei Impedanz links hat man dasselbe o, denn

_ I, _1Z+U_72—1,
B=1 “E_T" Z1E

Fiir die Spannungen gelten wegen Gl. (11) die ne-
gativen Werte der Koeffizienten fiir die Strome.

Uy Iy Z
Q3_U1r__+llz—_—91

_ U _
w=g=-a

Man iiberzeugt sich leicht, dass keinerlei Re-
flexion stattfindet, wenn Z, gleich dem Wellen-
widerstand Z ist. Dies ist auf Grund der Definition
des Wellenwiderstandes natiirlich nétig.

Es ist bemerkenswert, dass man mit rein alge-
braischen Methoden Resultate ableiten kann, fir
deren Herleitung die Infinitesimalrechnung im all-
gemeinen als unentbehrlich gilt.

Der Anlaufvorgang bei elektromotorischen Antrieben.

Von St. Hopferwieser, Baden.

Es wird ein einfaches Hilfsmittel fiir die graphische Be-
handlung von Anlaufvorgingen angegeben. Nach einem Hin-
weis auf die Eigenanlaufzeiten iiblicher Motoren wird unter-
sucht, wie sich das wihrend des Anlaufs an die angetriebene
Maschine abgegebene Drehmoment zum gesamten, vom Motar
entwickelten Anlaufdrehmoment verhilt. Daraus wird ab-
geleitet, dass die Form der Drehmomentlinie eines Motors
auf die beim Anlauf in den Uebertragungsteilen erzeugten
Beschleunigungsdriicke nur bedingt einen Einfluss hat.

Eine Maschine in Betrieb setzen heisst, in der
Sprache der Mechanik, sie aus dem Zustand der
Ruhe in Bewegung zu iiberfithren und auf die ge-
wiinschte Geschwindigkeit zu beschleunigen. Die-
ser «Anlaufvorgang» erfordert ein Drehmoment, das
die gegebenen Bewegungswiderstinde iiberwindet
und mit einem verbleibenden Ueberschuss die zu
bewegenden Massen beschleunigt. Eine einfache
Beziehung zwischen Beschleunigungsdrehmoment
M (in mkg), dem GD? (in kgm?) der zu bewegen-
den Massen, bezogen auf die Enddrehzahl n (pro
min) und der Anlaufzeit ¢ (in s) auf deren Ablei-
tung hier wohl verzichtet werden kann!), ermog-
licht es, aus den gegebenen bekannten Grissen die
vierte zu errechnen:

: GD? n .
Anlaufzeit t = 2,67 M 1000 ™S oder
; - .GD? n
Beschleunigungsdrehmoment M = 2,67 —, 1000

in mkg.

Fiihrt man statt dem Drehmoment jenen Anteil
P der Motorleistung ein, der fiir die Beschleuni-
gung zur Verfiigung steht, ausgedriickt in kW, so

1) Vgl. Brown-Boveri-Mitt. 1922, Nr. 9: «Beitrag zur Gros-
senbestizizung von Motoren fiir Zentrifugenantriebe.»

621.316.717 : 621.313.13

L’auteur indique un moyen simple pour U'étude graphique
des phénoménes de démarrage. Aprés quelques considéra-
tions sur la durée de démarrage des moteurs courants, il
examine le rapport du couple appliqué pendant le démarrage
@ la machine entrainée au couple total développé par le mo-
teur au démarrage. Il en déduit que la forme de la carac-
téristique du couple d’un moteur n’a que sous certaines con-
ditions une influence sur les pressions d’accélération exercées
au démarrage dans les organes de couplage.

lautet die fiir den praktischen Gebrauch etwas
handlichere Bezichung, weil sich die Umrechnung
auf das Drehmoment eriibrigt:

GD?

2,75 -n?2.10% in s, oder

=

GD?

P = 2,75 -n%-10° in kW.

Diese fiir die Beschleunigung verfiighare Motor-
leistung P ist zu verstehen als jene Leistung, die
dem Beschleunigungsmoment M, bezogen auf die
Enddrehzahl n, entspricht.

Die Fluchtlinien Fig. 1 sind ein bequemes Hilfs-
mittel, um solche Beschleunigungsvorginge mit
praktisch ausreichender Genauigkeit zahlenmissig
zu erfassen. Thre Beniitzung soll an einem Beispiel
erklart werden. Ein Motor von (10 PS =)7,35 kW
Leistung und einer Drehzahl von 1430 min habe
beim Anlauf ein GD? = 2 kgm?, bezogen auf die
Motordrehzahl, zu beschleunigen, wobei aber nur
50 % seines normalen Drehmomentes fiir die Be-
schleunigung zur Verfiigung stehe. Das Beschleu-
nigungsdrehmoment ist also 2,5 mkg, die «Be-
schleunigungsleistung» rund 3,7 kW. Man zieht
vom Punkt 2,5 auf der M-Teilung eine Gerade
durch den Punkt fiir n 1430 bis zur Hilfslinie 0—O0.
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