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Die Doppelleitung als Vierpolkette.
Von Th. Boveriy Baden. 621.391.31

Unter spezieller Benutzung eines Aufsatzes von L. Bril-
louin erläutert der Autor am Beispiel der gewöhnlichen
Doppelleitung die Anwendung moderner algebraischer
Methoden auf die Lösung elektrotechnischer Aufgaben. Er hat
sich dabei bemüht, einen Mittelweg zu finden zwischen
genügend breiter Darlegung der allgemeinen Grundsätze einerseits

und der trotzdem genügend ausführlichen Behandlung
eines konkreten Beispiels anderseits. Es besteht Grund zur
Annahme, dass Methoden, wie die beschriebene, sich bei der
mathematischen Behandlung technischer Probleme immer
mehr einführen werden.

1.

Man findet in der Mechanik und neuerdings auch
in der Elektrotechnik und sogar in der Atomtheorie
häufig Beziehungen der folgenden Form

Vi «11 *1 + «12 *2 + «13 X3

y2 «21 *1 + «22 *2 4- «23 *3 C1)

Vs «31 *1 4- «32 x2 -+• «33 *3

Betrachtet man die drei Grössen x und die drei
Grössen y je als Komponenten eines Vektors, so
drückt Gl. (1) das Bestehen einer linearen (und
homogenen) Vektorfunktion zwischen den Vektoren

y und x aus. Die wichtigsten Beispiele aus der
Mechanik für solche sind die drei folgenden:

a) Die relative Verschiebung gegeneinander von zwei eng
benachbarten Punkten eines verformten elastischen festen
Körpers ist eine lineare Vektorfunktion des Abstandes der
beiden Punkte.

b) Die auf ein Flächenelement im Innern eines gespannten
elastischen Körpers wirkende Kraft ist eine lineare

Vektorfunktion der Normalen des betreffenden Flächenelementes.

c) Der Drehimpuls eines rotierenden starren Körpers ist
eine lineare Vektorfunktion der Winkelgeschwindigkeit.

Die Koeffizienten «, die sogenannten Tensorkomponenten,
haben dabei besondere Namen. Diejenigen mit gleichen

Indices heissen in den drei Fällen Dehnungen, Normalspannungen,

bzw. Trägheitsmomente, die mit den gemischten
Indices Scherungen, Schubspannungen, bzw. Zentrifugalmomente.

Dabei gilt in allen drei Fällen ai2 a»i etc. Man
nennt in diesem wichtigen Spezialfälle die lineare
Vektorfunktion symmetrisch.

2.
Bei den Anwendungen der linearen Vektorfunktionen

auf andere Teile der Physik hat man unter
Umständen in drei Richtungen mathematische
Erweiterungen vorzunehmen, welche die Anschaulich-

En se servant tout particulièrement d'un article de M. L.
Brillouin, l'auteur démontre à l'aide de la conduite électrique
à deux fils l'application des méthodes algébriques modernes
à la solution de problèmes électrotechniques. Il s'est efforcé
de trouver un chemin intermédiaire entre une discussion
assez étendue des principes généraux d'une part et l'explication

assez détaillée d'un exemple d'autre part. On a toute
raison à supposer que des méthodes analogues s'introduiront
de plus en plus dans le traitement mathématiques des
problèmes techniques.

keit beeinträchtigen, ohne im übrigen grosse
Schwierigkeiten zu bereiten. Erstens ist die Zahl der
Dimensionen statt drei eventuell beliebig; es sind dann
also Komponenten xr x2 x3 x4 x- usw. und entsprechende

für y in Betracht zu ziehen. Dabei geht die
räumliche Vorstellbarkeit verloren. Zweitens können

die betrachteten Vektorkomponenten komplexe
Zahlen sein, wie z. B. im Falle von Wechselstrom-
grössen. Hierbei ist zu beachten, dass man gewohnt
ist, sich komplexe Grössen selbst wieder geometrisch
in einer Ebene zu veranschaulichen. Man hat dann
diese Ebene vollständig zu trennen, von dem eventuell

ja ebenfalls zweidimensionalen Räume, in dem
die Vektoren mit den Komponenten xt x, bzw. yx y2
abgebildet werden1). Drittens endlich kann es

zweckmässig sein, im Gegensatze zu den Beispielen
aus der Mechanik zwei Grössen verschiedener
Dimension, etwa Spannung und Strom zu einem
einzigen Vektor zusammenzufassen. Dies bewirkt, dass

die a in Gl. (1) verschiedene Dimensionen annehmen,

beschränkt aber dafür im eben genannten Falle
die Dimensionszahl auf zwei, sofern man nicht
gleich die Strom- und Spannungsverhältnisse
verschiedener Stromzweige in einen einzigen Vektor
zusammenfassen will.

Solche weitgehenden Zusammenfassungen von
Spannungen und Strömen, allerdings in Vektoren
mit Komponenten jeweils gleicher Dimension
(Spannungen bzw. Ströme) erläutert G. Krön in

seinen Aufsätzen 2). Dabei bedient er sich nach Be'darf
zweier verschiedener vereinfachender Schreibwei-

') A. Pen-Tung Sah, Complex Vectors in 3-Phase
Circuits. Electr. Engng. 1936, S. 1356.

2) Gabriel Krön, The application of Tensors to the Analysis

of Rotating Electrical Machinery. Gen. Electr. Rev.
1935, S. 181.
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sen, die scheinbar nur Abkürzungen bedeuten, aber
in Wirklichkeit doch einen neuen Begriff einführen,

denjenigen der Matrix nämlich, worunter man
die Zusammenstellung der Tensorkomponenten aus
Gl. (1) in folgender Form versteht

^11 "12 "13
*2] tt22 a23

31 ß32 "33

Diese Matrix ist nicht nur als eine Zusammenstellung

von mehreren Grössen, sondern nach Möglichkeit
als eine einzige «hyperkomplexe» Grösse

aufzufassen, mit welcher etwa der Vektor x «multipliziert»

wird3). Um dies zu ermöglichen, verwendet
man in der Dyaden-Schreibweise von Gibbs
Einheitsvektoren, für die ja in der Vektorrechnung gilt

eß 1 ; e22 1 usw. e1-e., 0 usw.

und führt sie in die Matrix ein:

«H et -f- «12 e1 e2 + «13 ex e3
1

A + a21 e2 e, 4- a22 e2 e2 H~~ ß32 e2 e3 |
00

+ a3i e3 ey 4- «32 e3 e2 -f- a33 e3 e3 |

Beachtet man, dass mit Hilfe von Einheitsvektoren
die Vektoren y und x zu schreiben sind

y eiri + e2Ï-z + e3.r3

x — elx1 + e2x„ + e3x3

so findet man, dass die Gleichung

y — A-x
tatsächlich ausgeschrieben die Form der Gl. (1)
annimmt.

Eine andere Schreibweise ist die Tensorschreibweise

Ja aaixi ~k aa2x2 "k ^a3x3 ~k 2 CCanXn

Cto

abgekürzt : ' Q-anxn

Hier ist aan das Symbol für die Matrix.
G. Krön fasst nun beispielsweise alle

Zweigströme eines komplizierten Netzwerkes in einen
Vektor zusammen. Durch Multiplikation mit einer
dimensionslosen Matrix C erhält er andere Ströme,
wie sie durch geeignete Zusammenschaltung der
einzelnen Zweige sich einstellen und durch weitere
Multiplikation mit einer «Impedanz-Matrix» Z
folgen dann auf einen Schlag alle Teilspannungen.
Dabei ist zu beachten, dass Spannungen und Ströme

durch die Matrizen so transformiert werden müssen,*

dass die Erhaltung der Leistung gewährleistet
wird, wo dies physikalisch nötig ist. Besonders
klar erläutert dies A. Boyajian4).

:!) M. Bocher, Introduction to higher Algebra. New
York 1936. S. 60.

4) A. Boyajian, The Tensor, a new Engineering Tool.
Electr. Engng. 1936, S. 856.

Geeigneter als diese komplizierten Beispiele ist
aber für die Einführung in die Matrizenrechnung
die Behandlung der einfachen Doppelleitung als
Kette, entstanden durch Aneinanderreihung von
Elementen nach Fig. la oder lb, welche Elemente
man wegen ihren vier Klemmen auch Vierpole
nennt5). Dabei ergibt sich auch Gelegenheit, die
allgemein so wichtige Hauptachsenzerlegung
anzuwenden. Allerdings hat man dafür Vektoren mit
Komponenten gemischter Dimensionen in Kauf
zu nehmen.

3.

Die leicht abzuleitenden und in der Literatur 6)

zu findenden Beziehungen zwischen Spannung und
Strom am «Eingang»: (III) und am «Ausgang»
(UT) unseres Leitungselementes kann man in der
Form schreiben:

U' atlU+ aj
/' — a21U + a2.,I

Dabei gilt für Fig. la das T-Glied

(3)

'ii — «22 — 1 + yz

*21

und für Fig. lb das yr-Glied

«n «22 1 ÏL. a -2 ' 12 ~ z;

Weil «Ii a-22 — a ist, nennt man den Vierpol
symmetrisch, und im folgenden wird der Einfachheit

halber diese Beziehung im allgemeinen
vorausgesetzt, deren Nichtbestehen aber keinerlei
Schwierigkeiten, sondern nur umständlichere Formeln
verursachen würde. Man beachte dagegen, dass die
a-Matrix wegen a12 yL a21 für beide Typen von
Elementen keineswegs symmetrisch genannt werden
darf. Dafür ist aber anderseits ihre Determinante

an «12

2l "22
a., a11 22 12 "21 (4)

welch wichtige Vereinfachung für alle Vierpole
gilt7)- Infolgedessen ist es für den mit der Lehre
von den Determinanten Vertrauten besonders
einfach, die «inverse» /J-Matrix zu finden, mit Hilfe
welcher man U und I als Funktion von U' und /'
ausdrückt. Schreibt man

U ßuU' + ß12I'

i= ß21u> + ß22r
so ist

ßll a22' ß\2 : » ßzi — a2i ' ß:22

5) L. Brillouin, Les filtres électriques et la théorie des
matrices. Rev. Gén. Electr., 4. 1. 1936.

6) Fraenckel, Theorie der Wechselströme. Berlin 1930.
Seite 178.

7) Fraenckel, 1. c. S. 61.

se V 6396

Fi g. la. Fig. lb.
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Natürlich kann man diese Gleichungen, genau wie
Gl. (1), auch direkt ableiten.

Schaltet man nun zunächst zwei Vierpole, die
verschieden sein dürfen, in Reihe und bezeichnet
die Eingangsgrössen ohne Strich, die mittleren mit
einem und die Ausgangsgrössen mit zwei Strichen,
so gilt symbolisch

(VI)' — A- (VI)
(VI)" C-(VI)', also

(VI)" C-A(VI)
Man kann das Multiplikationsgesetz der Matrizen
leicht ableiten, sowohl mit Hilfe der Dyaden- als
auch der Tensorschreibweise. Es sei die Dyaden-
methode benutzt :

C A — (/11e1e1 + y12 e\e2 + y2\e2ei 4- }'22e2e2) '

(allelel 4" ai2eie2 4- «21e2el 4- ß22e2e2) (/llaU +
/i2«2i) e1e1 + (ynan 4- ^12 «22) cie2 + Q+ßn +
ri2a2\) e2el 4- (/21«12 4- y22 «22) e2e2 (5)

Man beachte, dass genau wie in Gl. (2) im
Endresultat je zwei Einheitsvektoren ohne dazwischenliegenden

Multiplikationspunkt nebeneinanderstehen.

Diese Paare verschwinden nachher von
selbst, wenn man mit einem Vektor multipliziert;
z. B. ist

(7n«ll 4- 7l2«2l) clel • C1*1 (7ll«n 4- 7l2«2l) Cl*l
Für das Verständnis der oben ausgeführten Dyaden-
multiplikation mache man sich Beziehungen wie
die folgenden klar:

1 2

2 1

eie! 0;
12 e2e2 — e, ei 2

exe2 • ete2 — ® e*C-

Die allgemeine Regel für die Multiplikation von
Matrizen wäre nicht schwer aus Gl. (5) herauszuschälen;

wir verzichten aber darauf, weil die
wiederholte Multiplikation einer Matrix mit sich selbst,
wie man sie bei der Vierpolkette braucht, nach
dieser Regel zu umständlich wäre. Viel bequemer
ist hierfür eine sogenannte Diagonalmatrix von der
Form

a1e1e1 0
0 a2e,e.

Für das Quadrat derselben erhält man nämlich:

(aieiei 4- «2e2e2) (a1elel + ß2e2e2) + ß22e2e2

und durch fortgesetzte Anwendung dieser Regel

(ßjejej -j- ß2e2e2)" ß1"e1e1 + ß2"e2e2

Das Hauptproblem besteht nun darin, die Gl. (3)
auf die Diagonalform zu bringen, wobei symmetrische

Vierpole vorausgesetzt werden sollen. Man
macht den einer Diagonalmatrix mit gleichen
Komponenten entsprechenden Ansatz

V' aV; I'=al
Physikalisch bedeutet er, dass das Verhältnis von
Spannung zu Strom an den Eingangs- und Ausgangsklemmen

des Vierpols dasselbe ist. Im allgemeinen
wird dies nicht zutreffen, sondern nur wenn man

zwischen die Ausgangs- oder Eingangsklemmen eine
ganz spezielle Impedanz Z schaltet. Diese ist leicht
zu berechnen.

Z V V V'jl ß Z + ß, 2

I' ~ 1 - I'll ß2I Z + a

ß2i Z2 ß;2 5 Z 1+ (6)
21

Bei der Leitung nennt man Z den Wellenwiderstand;

man kann ihn als diejenige Impedanz
definieren, welche man zwischen die Ausgangsklemmen
der Leitung schalten muss, um ihr dasselbe Verhalten

zu geben, als setzte sie sich statt dem Anschluss
der Impedanz bis in die Unendlichkeit fort. Indem
man sich zunächst darüber hinwegsetzt, dass ein
reiner Spezialfall behandelt wird, schreibt man:

oder

V' aV aV + a12I

/' =al a21V + al

(a — a) V + a12I 0

a21V + (a~~a) 1 0

(V

(8)

Hier muss man nun aus der Theorie der linearen
Gleichungen den Satz voraussetzen, dass die soeben
angeschriebenen zwei homogenen Gleichungen nur
dann für V und / von Null verschiedene Lösungen
liefern, wenn die sogenannte Koeffizientendeterminante

verschwindet, d. h.

(ß—a) 12

21 (ß - a)
0 (ß — a)2 — ß12a21 —

2ßa -{- a2 — «i2a2i

Diese Gleichung liefert für a zwei im allgemeinen
verschiedene Werte

a ~ a ± Vai2a2i « ± V«2 ~ 1 (9)

das zweite wegen Gl. (4).
Man nennt die beiden a-Werte die Eigenwerte

der Matrix und bezeichnet sie mit a1 und a„. Ferner

merke man als Wert ihres Produktes an

xlu2 ß' ß19ß12 21
r/2 + 1 1

Indem man gleich komplexe Werte in Betracht
zieht, schreibt man für aL willkürlich

ßj e—ö—jv _ e— s jcosi' — j • siniQ

und muss dann notgedrungen für a2 setzen

a2 e +'1"+i,; e+à (cosv + j sini')
damit a1a2 — 1 wird. Die Beträge von e~iv und e+iv
d. h. die Längen der Vektoren in der Vektordarstel-
lung der komplexen Zahlen sind 1; also

*~>v 1

somit

Nach Einsetzen von a1 oder a2 in Gl. (8) wird diese
durch unendlich viele Wertepaare V und / befriedigt,

sofern diese nur im richtigen Verhältnis
zueinander stehen. Für dieses Verhältnis hat man aus
Gl. (8)
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u
X z - 12

a — a
(8a)

21

Setzt man a aus Gl. (9) ein, so erhält man für Z
die beiden Wurzelwerte von Gl. (6).

Ferner kann man auch schreiben

a — a± a21Z (10)

Die Tatsache, dass man normalerweise über zwei
verschiedene a-Werte verfügt, gestattet nun, den
allgemeinen Fall zu behandeln. Man setzt

tX
EX

// öj/j und

X - (I j / 2

u

"1U1;
(l„U.y

und superponiert
17' 17/ + 17/
u u^ + uß

Man eliminiert die Werte UJJ2 IJ> usw.

U U1 + U2 I1Z — I2Z
/= /, + /2

IZ -\-U „ 7Z — 17

/' //
J /,

^ 2 Z

17, /,Z

h

/Z-+- 17

2 Z

u2 — JgZ
17-/Z (11)

Damit hat man, gleich für die Reihenschaltung von
re Vierpolen

17' — 17/-f- U2' «i"Uj -j- a2nU2 a//,Z — a2"I2 Z

I'—12,:= a2"Z2= [7j - "J- U2 (12)

Vom mathematischen Standpunkte aus mag noch
folgendes bemerkt sein. Kennzeichnend für die
Vektoren (UX) und (172/2) ist, dass sie nach
ausgeführter Transformation, d. h. bei Messung am
Ende einer Kette von Vierpolen, wobei man sie
dann mit 17/ /, ' usw. bezeichnet, immer noch
dieselbe «Richtung» im Koordinatensystem haben.
Damit dies zutrifft, müssen die Ausgangsvektoren in
bestimmte Richtungen, die «Hauptrichtungen»
fallen. Die Grösse der Komponenten spielt an sich
keine Rolle, nur ihr gegenseitiges Verhältnis,
welches eben die Richtung bestimmt. In der Mechanik
ist es üblich, die Hauptrichtungen zu Richtungen
der Koordinatenachsen zu machen. Täte man dies
im vorliegenden Falle, so hätte man eine 17- und
eine /-Hauptachse mit den Eigenwerten a, und a2
und die Transformationsgleichungen würden dann

U' — aJJ; I' a„I

Unsere Diagonalmatrix hätte die übliche Form

a, 0 \l 0 a2

mit zwei verschiedenen «Tensorhauptwerten» a1
und a, angenommen. Es bedingt dies aber eine ganz
spezielle Zerlegung der gegebenen Vektoren in
Komponenten, welche im vorliegenden Falle keinen
physikalischen Sinn gehabt hätte. Es war ja nicht
der Vektor (17/) das primär Gegebene, sondern
seine Komponenten 17 und / einzeln. Jede andere

Zerlegung würde die Spaltung in Strom und Spannung

zerstören. Bei dieser Rechnung haben sich
spezielle Diagonalmatrizen mit gleichen Hauptwerten

ergeben; dafür mussten anderseits zwei solche,
statt nur einer einzigen gewöhnlichen, verwendet
werden. Es hat dies aber um so weniger Bedeutung,
als man, wie in der Algebra gezeigt wird, jede
Diagonalmatrix mit verschiedenen Koeffizienten durch
lineare Transformation in eine solche mit gleichen
Koeffizienten, die sogar alle gleich eins sein können,

überführen kann. Es braucht hierauf nicht
weiter eingegangen zu werden.

Da im vorliegenden Beispiele also die Hauptrichtungen

nicht in die Richtungen der Koordinatenachsen

fallen, so sei noch darauf hingewiesen, dass
nach Gl. (8) und (8a)

u, «12 « - «1 7
h'

| JA

a — a21

bezw. U/ U2 cq g or — a2

V Z2 a — a2 ß2i

die beiden trigonomischen Tangenten der Winkel
bedeuten, welche die beiden Hauptachsen mit der
/-Koordinatenachse bilden. Die Hauptachsen
verlaufen also spiegelbildlich symmetrisch zur /-Achse.
Man darf sich nicht daran stossen, dass diese
Tangenten die Dimension eines Widerstandes haben,
statt reine Zahlen zu sein. Es rührt dies von den
verschiedenen Dimensionen der beiden Komponenten

her. Die ganze bildliche Darstellung in einer
Koordinatenebene darf eben nur symbolisch aufge-
fasst werden, wie schon daraus hervorgeht, dass die
Koordinatenwerte im allgemeinen komplex sind.

4.
Zum Schlüsse sollen noch einige Anwendungen

der abgeleiteten Formeln auf die gewöhnliche
Doppelleitung und auf einfache Siebketten gegeben
werden. Man berechnet zunächst den Wellenwiderstand

einer gewöhnlichen Doppelleitung etwa auf
Grund des T-Gliedes

z lAx 1/—+— - ./r «2i \ y 4 \ y M A+iwC
indem man z die Induktivität L und den Widerstand
R, y dagegen die Kapazität C und die Ableitung A
zuschreibt. Die gemachte Vereinfachung rechtfertigt

sich dadurch, dass die gegebene Leitung in eine
genügend grosse Anzahl Vierpole unterteilt werden
muss. Je feiner man diese Unterteilung macht, desto

kleiner werden y und z einzeln; ihr Quotient —

strebt dabei einem bestimmten Wert zu, während
z2
-^-dagegen verschwindet. Man spricht von

verzerrungsfreier Leitung, wenn Z denselben Wert hat
wie bei der verlustlosen Leitung, also frequenzunabhängig

ist

Vf -Vf+i"L

y/R+jcoL 1f\ A + jœ C \
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Dies bedingt gleiche «Richtung» der beiden
Vektoren, die R+jcoL, bzw. A + jtoC in der komplexen
Zahlenebene darstellen, also muss sein

R : L A : C

Die Grössen U1I1 und U2I,, bedeuten die bekannten
Wanderwellen, durch welche man ja die Vorgänge
auf der Leitung darstellen kann. Um dies
einzusehen, muss die zeitliche Abhängigkeit eingeführt
werden, etwa für die Ströme durch

h ho ^ h ho ^ 8)

Dann erhält man aus Gl. (12

I' L10
<5n j (at — vn) _|_ J,

20
j (at + vn)

Das erste Glied bleibt, abgesehen vom Dämpfungsfaktor
e~6 konstant, wenn man in einer Zeit T um

coTN'= Vierpole vorwärts, also nach rechts schrei-
v

tet. Demgemäss ist JL die räumliche Amplitude
einer mit der Geschwindigkeit

Nl" œ " (13)A — °hl
i *'n

nach rechts schreitenden Stromwelle, wobei la die
Länge eines Leitungselementes bedeutet.

Es soll v für die verlustlose Leitung berechnet
werden. Es sei die räumliche Dämpfung gleich
Null, e~^= 1, wozu die Verlustlosigkeit eine nötige,
aber nicht hinreichende Bedingung ist. Um die
weiteren Bedingungen für Dämpfungsfreiheit zu
finden, schreibt man nach Gl. (9)

a a ± j/a2 -
a cosv; ± "[/l

1 := cos v + j • sin v

a* + sin v

Diese Gleichung ist erfüllbar für
— 1 < a< + 1

und liefert mit

y z tjj2 L C
- 1

Die Vierpolkette stellt also ein sogenanntes
Tiefpassfilter dar; Kreisfrequenzen, welche den Wert

2
co —7= übersteigen, erfahren trotz Verlustlosig-

1LC
keit räumliche Dämpfung, indem ein Teil des Stromes

durch die Sperrwirkung der Induktivitäten in
die Parallelkondensatoren abgedrängt wird.
Vertauscht man in der Kette die Spulen mit den
Kondensatoren, schreibt also z= 1/ja>C und y 1/jtoL,
so erhält man ein Hochpassfilter, bei dem die

Kreisfrequenzen unterhalb —-=. räumliche Dämpfung
21/LC

erfahren. Die Sperrwirkung rührt nun von den
Reihenkondensatoren her; sie drängen den Strom
bei niedern Frequenzen in die Parallelspulen ab.
Indem man zur Bestimmung der
Fortpflanzungsgeschwindigkeit v der Wanderwellen zurückkehrt,

8) Bull. SEV 1935, S. 615.

beachte man, dass üblicherweise Induktivität und
Kapazität auf die Einheit der Leitungslänge
bezogen werden, auf welche n0 Vierpole entfallen
mögen, so dass

L C
l

zu setzen ist, wodurch sich die Eigenwerte
ergeben zu

CO2 le
a 1

1

2 n02

CO2 l c

ud U c2

Tn7V

'•fV'-Sle
Y

co2 le 1hc
Yn^±J0J —z "o 110

Hierin ist wieder eine genügend grosse Zahl n0 von
Vierpolen vorausgesetzt und indem man von dieser
Vereinfachung nochmals Gebrauch macht, schreibt
man

sin v co y10 ~ ; r
1 »0 1

;

und erhält endlich, nach Gl. (13)

— • L
]/l,

eine ja allgemein bekannte Formel.
Man überzeugt sich leicht, dass L, in Gl. (12)

eine rückwärtsschreitende Welle bedeutet; der
Betrag ihrer Fortpflanzungsgeschwindigkeit ist
derselbe wie für die vorwärtsschreitende Welle.

Da weiter oben die Bedingung für räumliche
Dämpfungsfreiheit hei der verlustlosen Kette
aufgestellt wurde, möge noch ein allgemeiner Ausdruck
für die Dämpfung bei der verzerrungsfreien
Leitung gegeben werden. Da Z hier reell ist, benutzt
man mit Vorteil Gl. (10) und setzt, wieder vom T-
Glied ausgehend,

a — 1 4- + Zy 1-l-AR oß LC 4-

joj (RC -(- AL -\- ZC)

1 co2 LC -f- jco (2 RC ZC)

Durch genügend feine Unterteilung in Vierpolele-
mente kann man bei gegebener Frequenz co alle
Glieder bis auf die zwei ersten zum Verschwinden
bringen und hat dann

o R
a — e — 1 H~~z\

Man erkennt dies als Näherungsformel eines für
die kontinuierliche Leitung bestehenden
Ausdruckes

s
R

9)

9) Fraenckel, 1. c. S. 164 oben.
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und es erklärt sich der Ausdruck «verzerrungsfreie
Leitung» durch die Unabhängigkeit der räumlichen
Dämpfung von der Frequenz.

Von den vielen interessanten Problemen, die
man auf Grund der abgeleiteten Formeln noch lösen
könnte, sollen nur noch mit Brillouin die
Koeffizienten der Reflexion der Wanderwellen an einer
beliebigen Impedanz Z0 angegeben werden. Sofern
sich diese am rechten Ende der Leitung befindet,

U'
hat man nach Fig. 1 Z0=—, für das linke Ende

hingegen Z0 ^ Der Reflexionskoeffizient ist

für den Strom und für Impedanz rechts, nach Gl.
(11), die ja auch für die gestrichenen Grössen gilt

P2 V Z —V
9l ~ ~ i'Z+v

- z~zq
Z + Z0

Bei Impedanz links hat man dasselbe p, denn

lx _ IZ-t-U _
Z — Z0

92 ~T^~ iz-u ~ z + z0

Für die Spannungen gelten wegen Gl. (11) die
negativen Werte der Koeffizienten für die Ströme.

US IS Z
93 - Ux' - ~~ + 7j z ~ — ei

_ ul _— TT — £*2
2

Man überzeugt sich leicht, dass keinerlei
Reflexion stattfindet, wenn Z0 gleich dem
Wellenwiderstand Z ist. Dies ist auf Grund der Definition
des Wellenwiderstandes natürlich nötig.

Es ist bemerkenswert, dass man mit rein
algebraischen Methoden Resultate ableiten kann, für
deren Herleitung die Infinitesimalrechnung im
allgemeinen als unentbehrlich gilt.

Der Anlaufvorgang bei elektromotorischen Antrieben.
Von St. Hopferwieser, Baden. 621.316.717:621.313.13

Es wird ein einfaches Hilfsmittel für die graphische
Behandlung von AnlaufVorgängen angegeben. Nach einem Hinweis

auf die Eigenanlaufzeiten üblicher Motoren wird untersucht,

wie sich das während des Anlaufs an die angetriebene
Maschine abgegebene Drehmoment zum gesamten, vom Motor
entwickelten Anlaufdrehmoment verhält. Daraus wird
abgeleitet, dass die Form der Drehmomentlinie eines Motors
auf die beim Anlauf in den Uebertragungsteilen erzeugten
Beschleunigungsdrücke nur bedingt einen Einfluss hat.

L'auteur indique un moyen simple pour l'étude graphique
des phénomènes de démarrage. Après quelques considérations

sur la durée de démarrage des moteurs courants, il
examine le rapport du couple appliqué pendant le démarrage
â la machine entraînée au couple total développé par le
moteur au démarrage. Il en déduit que la forme de la
caractéristique du couple d'un moteur n'a que sous certaines
conditions une influence sur les pressions d'accélération exercées
au démarrage dans les organes de couplage.

Eine Maschine in Betrieb setzen heisst, in der
Sprache der Mechanik, sie aus dem Zustand der
Ruhe in Bewegung zu überführen und auf die
gewünschte Geschwindigkeit zu beschleunigen. Dieser

«Anlaufvorgang» erfordert ein Drehmoment, das
die gegebenen Bewegungswiderstände überwindet
und mit einem verbleibenden Ueberschuss die zu
bewegenden Massen beschleunigt. Eine einfache
Beziehung zwischen Beschleunigungsdrehmoment
M (in mkg), dem GD2 (in kgm2) der zu bewegenden

Massen, bezogen auf die Enddrehzahl rt (pro
min) und der Anlaufzeit t (in s) auf deren Ableitung

hier wohl verzichtet werden kann1), ermöglicht

es, aus den gegebenen bekannten Grössen die
vierte zu errechnen:

GD2 nAnlaufzeit f 2,67 • —— in s, oder
M 1000

Beschleunigungsdrehmoment M 2,67 —-— jqqq
in mkg.

Führt man statt dem Drehmoment jenen Anteil
P der Motorleistung ein, der für die Beschleunigung

zur Verfügung steht, ausgedrückt in kW, so

1) Vgl. Brown-Boveri-Mitt. 1922, Nr. 9: «Beitrag zur Grös-
senbestir.:i::u.ng von Motoren für Zentrifugenantriebe.»

lautet die für den praktischen Gebrauch etwas
handlichere Beziehung, weil sich die Umrechnung
auf das Drehmoment erübrigt:

GD2
t 2,75 —p—

•n2-10'6 in s, oder

GD2
P 2,75 — n2 • 10-6 in kW.

t

Diese für die Beschleunigung verfügbare
Motorleistung P ist zu verstehen als jene Leistung, die
dem Beschleunigungsmoment M, bezogen auf die
Enddrehzahl n, entspricht.

Die Fluchtlinien Fig. 1 sind ein bequemes
Hilfsmittel, um solche Beschleunigungsvorgänge mit
praktisch ausreichender Genauigkeit zahlenmässig
zu erfassen. Ihre Benützung soll an einem Beispiel
erklärt werden. Ein Motor von (10 PS 7,35 kW
Leistung und einer Drehzahl von 1430 min habe
beim Anlauf ein GD2 2 kgm2, bezogen auf die
Motordrehzahl, zu beschleunigen, wobei aber nur
50 % seines normalen Drehmomentes für die
Beschleunigung zur Verfügung stehe. Das
Beschleunigungsdrehmoment ist also 2,5 mkg, die
«Beschleunigungsleistung» rund 3,7 kW. Man zieht
vom Punkt 2,5 auf der M-Teilung eine Gerade
durch den Punkt für rt 1430 bis zur Hilfslinie 0—0.
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