Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 28 (1937)

Heft: 14

Artikel: Rekuperations- oder Widerstandsbremsung im Betriebe einer

elektrischen Adhäsionsbahn mittlerer Steigung?

Autor: Laternser, A.

DOI: https://doi.org/10.5169/seals-1059855

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SCHWEIZERISCHER ELEKTROTECHNISCHER VEREIN

BULLETIN

REDAKTION:

Generalsekretariat des Schweiz. Elektrotechn. Vereins und des Verbandes Schweiz. Elektrizitätswerke, Zürich8, Seefeldstr. 301 ADMINISTRATION:

Zürich, Stauffacherquai 36 Telephon 51.742
Postcheck-Konto VIII 8481

Nachdruck von Text oder Figuren ist nur mit Zustimmung der Redaktion und nur mit Quellenangabe gestattet

XXVIII. Jahrgang

Nº 14

Mittwoch, 7. Juli 1937

Rekuperations- oder Widerstandsbremsung im Betriebe einer elektrischen Adhäsionsbahn mittlerer Steigung?

Von A. Laternser, Zürich.

621.337.5 : 621.333.4

Für eine zu elektrifizierende schweizerische Nebenbahn werden die Verhältnisse bei Anwendung der Rekuperation sowohl technisch, als auch wirtschaftlich, untersucht. Es wird hiebei eine neue Einphasen-Wechselstrom-Rekuperationseinrichtung zur Diskussion gestellt. L'auteur examine les conditions de récupération pour un chemin de fer secondaire suisse à électrifier, au point de vue technique et économique. Il expose à cette occasion une nouvelle installation de récupération pour courant alternatif monophasé.

Ob eine elektrische Bergbahn mittlerer bis höchster Steigung eine elektrische Bremse anwenden soll oder nicht, steht ausser jedem Zweifel. Alle Bergbahnen, ob sie als Zahnradbahn oder Adhäsionsbahn gebaut sind, besitzen zur erhöhten Sicherheit, zur Schonung des Rollmaterials und zur Vermeidung von Bremsstaub eine elektrische Bremse. Die besondere Frage aber, ob eine elektrische Adhäsionsbahn mittlerer Steigung Rekuperations- oder Widerstandsbremse zu Hilfe ziehen soll, wird sehr verschieden beurteilt. Es besteht aber Neigung, sie auf Grund technischer und nicht wirtschaftlicher Erwägungen mehrheitlich zugunsten der Widerstandsbremse, also der Ueberführung der Bremsenergie in Wärme zu lösen. Diese Frage soll hier im Hinblick auf die bevorstehende Elektrifizierung einer dazu schon längst reifen, schweizerischen Nebenbahn (Schweizerische Südostbahn; Linien: Rapperswil—Arth Goldau und Wädenswil—Einsiedeln) mit maximal 50 % Steigung einer Betrachtung unterzogen werden, die dem wirtschaftlichen Moment ohne Beeinträchtigung gesunder technischer Grundsätze in allseitigem Interesse zum Rechte ver-

Die Bahn muss die Energie zu einem festen Preis kaufen, was eine klare Situation ergibt. Sie wird an das Versorgungsnetz der Schweiz. Bundesbahnen (SBB) angeschlossen, wird also mit Einphasenwechselstrom von 15 kV, $16^2/3$ Per./s betrieben. Damit ist ein Energieausgleich möglich, so dass Rückenergie unter allen Umständen Verwendung findet. Schon diese Umstände sprechen mindestens nicht gegen Rekuperation bei dieser Bahn.

Welches ist nun der Energiebedarf und welches sind die maximal möglichen Ersparnisse bei Energierückgewinnung? Die Energiebedarfsrechnung ist einfach. Sie fusst auf einem Fahrwiderstand von 5 kg/t bei einer Durchschnittsgeschwindigkeit von 50 km/h, auf der Gesamtlänge der Bahn von 55,4

km, auf der Gesamthöhendifferenz von 1422 m und auf der Zahl der vorhandenen Stationen (17). Es ist demnach:

Reibungsarbeit 110 800 · 5 =

 $554\,000\,\mathrm{mkg/t} \sim 13,5\,\mathrm{Wh/tkm} = 18,1\,\%$

Freiwerdende potentielle Energie $1000\cdot1422-55\,400\cdot5=$ 1 154 000 mkg/t \sim 28,0 Wh/tkm = 37,4 %

Freiwerdende kinet. Energie $(34 \cdot 1000 \cdot 1 \cdot 36^2/9,81 \cdot 2 \cdot 3,6^2)$ 1,1

 $= 190\ 000\ \text{mkg/t} \sim 4.6\ \text{Wh/tkm} = 6.2\ \%$

Rangieren, Leerfahrten, Materialzüge usw. $5\% = 95000 \text{ mkg/t} \sim 2,4 \text{ Wh/tkm} = 3,2 \%$

Gesamtarbeit an den Triebachsen =

 $1\,990\,000\,\mathrm{mkg/t} \sim 48,5\,\mathrm{Wh/tkm} = 65,0\,\%$

 $\begin{array}{lll} \mbox{Verluste in Fahrdraht und Schiene} & 1,4 \ \mbox{Wh/tkm} = & 2,0 \ \% \\ \mbox{Verluste in den Triebfahrzeugen} & . & 20,9 \ \mbox{Wh/tkm} = & 28,0 \ \% \\ \mbox{Nebenbetriebe auf den Triebfahrzeugen} & 0,7 \ \mbox{Wh/tkm} = & 1,0 \ \% \\ \mbox{Zugsheizung und Beleuchtung} & . & . & 3,0 \ \mbox{Wh/tkm} = & 4,0 \ \% \\ \mbox{Gesamtenergie im Speisepunkt} & . & . & 74,5 \ \mbox{Wh/tkm} = 100 \ \ \% \\ \end{array}$

Sicherheitszuschlag 5,5 Wh/tkm = 7,4 %

Gesamtenergie im Speisepunkt mit

Zuschlag 80,0 Wh/tkm

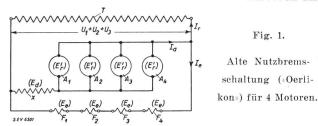
Der Sicherheitszuschlag berücksichtigt auch den Umstand, dass die verkehrsdichtere der beiden Strecken einen höheren spezifischen Energieverbrauch aufweist als das Mittel. Der so errechnete spezifische Energieverbrauch findet seine approximative Bestätigung durch eine Umrechnung der entsprechenden Energieverbrauchsziffer der Bern-Lötschberg-Simplonbahn (BLS), mitgeteilt durch L. Thormann 1), die bei ungefähr gleicher Linienführung, aber mit 27 % max. Steigung 47,4 Wh/tkm beträgt. Bei einem ebenfalls von Thormann¹) für die BLS ermittelten Fahrwiderstand von 4,2 kg/t und der weiteren wohl zulässigen Annahme, dass der über Hub- und Reibungsarbeit hinausgehende Arbeitsbetrag bei der BLS doppelt so hoch ist als bei der in Frage stehenden Bahn, ergibt sich für diese abgeleitet:

47.4(50+5)1.09/(27.0+4.2)1.18=77 Wh/tkm.

¹⁾ Schweiz. Bauztg. Bd. 68 (1916), S. 9.

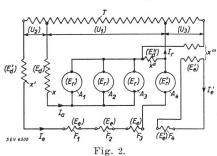
Ohne die Heranziehung der Energierückgewinnung müssten also bei der Energieübertragung in den Triebfahrzeugen, in elektrischen Widerständen in Radbandagen und Bremsklötzen vernichtet werden: $28\pm4.6=32.6$ Wh/tkm, d. h. 67 % der an den Triebachsen, bzw. 43.6 % der im Speisepunkt ohne Zuschlag aufgewendeten Energie.

Dies sind enorme Energiebeträge, deren 100 % ige Umsetzung in Wärme auf den Triebfahrzeugen keine leichte Aufgabe, ja schwierig durchzuführen ist und übrigens sogar das Gefühl des Nichtfachmanns berührt. Diese Energie musste einmal aufgewendet und deshalb auch bezahlt werden. Die Bahn ist ein Schulbeispiel für die Anwendung der Energierückgewinnung, hinsichtlich des Ausmasses der damit verbundenen Einsparung.


Um zu wissen, wieviel von diesen sonst als Verluste anzusprechenden Energiebeträgen rückgewonnen werden kann, muss der Wirkungsgrad der Energierückgewinnung bekannt sein. Wie im folgenden noch dargelegt wird, beträgt dieser Wirkungsgrad für sich allein etwa 65 %, ist also zufällig gleich gross wie der Wirkungsgrad für die elektrische Traktion ohne Rekuperation. Dieser wurde von Thormann 1) im Jahresmittel bis Speisepunkt für die BLS zu 65 % angegeben und wurde für unsere Energiebedarfsrechnung wie ersichtlich ebenfalls als zutreffend angenommen. Mit dem Rekuperationswirkungsgrad von 65 % kann man nun den Nettogewinn bei Anwendung der Rekuperation bei der betrachteten Bahn überblicken. Die an den Triebachsen frei werdenden 32,6 Wh/tkm erscheinen im Speisepunkt noch mit $32,6 \cdot 0,65 = 21,5$ Wh/tkm, was auf die sonst aufzuwendenden 74,5 Wh/tkm rund 30 % ausmacht. Im Speisepunkt sind demnach noch 74.5 - 21.5 = 53 Wh/tkm aufzubringen.

Um mit Vergleichen zu sprechen: Müsste die elektrische Energie aus dem Ausland bezogen werden, so könnte mit dieser Einsparung gerade die Frankenabwertung ausgeglichen werden. Oder, die Bahn könnte bei gleichem Betriebsergebnis wie bei Nichtanwendung der Rekuperation, einen um 42 % höheren Energiepreis zahlen. Oder, ein Energiepreis von beispielsweise 8 Rp./kWh käme bei gleichem Betriebsergebnis mit Rekuperation effektiv nur auf 5,5 Rp. zu stehen.

Der Rekuperationswirkungsgrad hängt wesentlich ab von der Einrichtung für Einphasenwechselstrom-Rekuperation auf den Triebfahrzeugen. Da ja mit dieser ein Maximum von Ersparnis erzielt und die Einrichtung nicht nur als Sicherheits- und Schonbremse benützt werden soll, sind die Uebertragungsverluste bei Rekuperation klein zu halten. Sie sind klein, wenn ein Leistungsmaximum mit einem Stromminimum erzielt wird, wenn der Leistungsfaktor hoch liegt, also in der Nähe von 1.


Für Einphasenwechselstrom-Rekuperation ist bis heute besonders die praktische Einrichtung bekannt geworden, die vor 20 Jahren von der Maschinenfabrik Oerlikon entwickelt wurde und sich seither in etwa 100 schweizerischen Einphasen-Triebfahrzeugen besonders vom Betriebsstandpunkt aus als durchaus brauchbar erwiesen hat. Eine elektrische Verbesserung hat in dieser Zeit nicht stattgefunden.

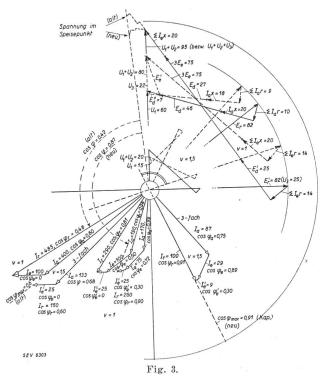
Diese Einrichtung besteht in der Nebenschlusserregung der Triebmotorfelder und der Kompensierung der phasenfalschen Erregung durch einen induktiven Widerstand im Ankerstromkreis. Eine weitere Erläuterung des Verfahrens erübrigt sich, weil es hinlänglich bekannt ist ²). In Fig. 1 ist es in vereinfachter schematischer Form für 4 Motoren un-

ter Weglassung von Kompensations- und Hilfsfeldwicklung der Motoren sowie der Regulierung vergleichshalber dargestellt. Da die 4 Felder mit vollem Strom gerade die Vollastspannung aufbringen, können Anker- und Feldstromkreis an gleiche Spannung gelegt, also bei Sekundärregulierung auch mit denselben Steuerapparaten reguliert werden.

Dieses Rekuperationsverfahren ist, wie ersichtlich, schematisch sehr einfach, übersichtlich und auch einfach in der Handhabung. Es ist auch selbsterregungsfrei, stabil³). Der Leistungsfaktor lässt indessen zu wünschen übrig, und der künstliche Reaktanzaufwand ist erheblich. Die Folge sind entsprechend grosse Rekuperationsverluste, bzw. eine begrenzte Leistungsfähigkeit. An Versuchen, die Sachlage zu verbessern, hat es nicht gefehlt; ein Erfolg war ihnen nicht beschieden. Sie scheiterten meist an der Selbsterregung, die bei besserem Leistungsfaktor auftrat. Im Hinblick auf die betrachtete Bahn möge daher eine neue Rekuperationsschaltung für Einphasenwechselstrom zur Diskussion gestellt werden, die alle Eigenschaften zu besitzen scheint, die eine Rekuperationsschaltung aufweisen soll.

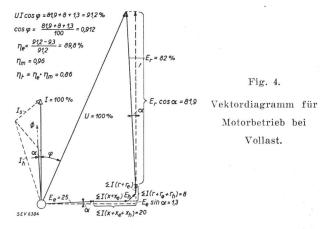
Neue Nutzbremsschaltung (x' fällt weg, wenn x'' vorhanden).

Diese neue Schaltung ist für 4 Motoren in Fig. 2 in gleicher schematischer Form wie die Schaltung nach Fig. 1 dargestellt. Sie ist dadurch gekennzeichnet, dass bei einem Triebfahrzeug mit einer Mehrzahl von Triebmotoren für Rekuperationsbetrieb das Feld eines Motors (Primärmotor) vom


²) Bull. SEV 1918, Nr. 10; Schweiz. Bauztg. Bd. 74 (1919), S. 84.

³⁾ Bull. SEV 1937, Nr. 10.

Reguliertransformator mit einer passenden Teilspannung fremd erregt wird, der Anker dieses Motors über die in Serie geschalteten Felder der übrigen Motoren (Sekundärmotoren) auf eine zweite Teilspannung des Reguliertransformators zurückarbeitet und die Anker der Sekundärmotoren über eine künstliche Reaktanz auf eine dritte Teilspannung des Reguliertransformators zurückarbeiten, wobei zur Verhinderung der Selbsterregung die elektrischen und magnetischen Verhältnisse der Anlage entsprechend der Stabilitätsbedingung


 $AnL_fM \le R_eL_a + R_aL_e$ bzw. $AnL_f\ddot{u} \le R_e\ddot{u}^2 + R_a$ gestaltet werden 4). Abgesehen von der Möglichkeit starker Eisensättigung von Reguliertransformator und Primärmotor sowie von der Einschaltungsmöglichkeit von induktionslosem Widerstand in den Primärfeldstromkreis, wird der genannten Stabilitätsbedingung insbesondere entsprochen durch einen stark gesättigten Zwischentransformator $X^{\prime\prime\prime}$ und durch eine Induktivität X'', welch beide einzeln oder miteinander in Serie vor das Primärfeld gelegt werden. In der für einen Motor in Nebenschluss-Schaltung gültigen, aber für die betrachtete Anlage sinngemäss anzuwendenden Stabilitätsbedingung bedeuten: AnL, den sogenannten elektromotorischen Widerstand des Ankers, d. h. das Verhältnis Rotations EMK zu Ankerstrom, L_t den Selbstinduktionskoeffizient des Motorfeldes, der an Stelle des Kraftflusses benützt wird, n die Motordrehzahl. A ist demzufolge eine Motorkonstante. M ist der Koeffizient der gegenseitigen Induktion für die transformatorische Verkettung des Ankers und des Feldes über den Reguliertransformator, ü das entsprechende Windungszahlverhältnis. R_aR_e sind die induktionslosen Widerstände des Anker- und Feldstromkreises, L_aL_e die entsprechenden Selbstinduktionskoeffizienten.

Die neue Schaltung verbindet mit allen günstigen Fahreigenschaften der alten Schaltung einen einwandfreien Leistungsfaktor, einen wesentlich geringeren Aufwand an künstlicher Induktivität als wie bei der alten Schaltung, d. h. nur etwa 30 %, und schliesslich eine Bremskraftcharakteristik, die die Bremskraft mit der Geschwindigkeit stark anwachsen lässt, also grössere Betriebsstabilität aufweisst. Die Folge des besseren Leistungsfaktors und des kleineren Reaktanzaufwandes sind wesentlich kleinere Rekuperationsverluste zwischen Speisepunkt und Triebachse. Die Begründung liegt im Vektordiagramm Fig. 3, dem ein fiktiver Triebmotor nach Vektordiagramm Fig. 4 nebst weiteren massgeblichen Charakteristiken nach Fig. 5 zugrunde liegen. Das Diagramm Fig. 3 berücksichtigt beide Schaltungen und vernachlässigt die Magnetisierungsströme. Es basiert auf Vollastspannung $U=100\,{}^{0}/_{0}$ für Motorbetrieb als Bezugsspannung für die verschiedenen Teilspannungen und auf einer max. Rotationsspannung im Rekuperationsbetrieb, die diejenige bei Motorbetrieb nicht übersteigt. Die Ströme sind auf Vollaststrom bei Motorbetrieb I=

Vektordiagramm für alte und neue Schaltung. Vollast, Fahrgeschwindigkeit v=1; Min. Last, v=1,5 Ströme und Spannungen in %.

 $400\,^{0}/_{0}$ bezogen und daneben noch auf der Teilspannung $U_{1}+U_{2}+U_{3}\!=\!95\,^{0}/_{0}$. Für den Leistungsfaktor im Speisepunkt ist der Reguliertransformator mit einem induktiven Spannungsabfall von 6 $^{0}/_{0}$ und einem induktionslosen Spannungsabfall von 1,5 $^{0}/_{0}$ beteiligt, der Fahrdraht und die Schiene mit 0,38 V

induktionslosem und 0,21 V induktivem Spannungsabfall pro Ampere und Kilometer bei 50-mm²-Fahrdraht. Die nichtberücksichtigte Zugsheizung ergibt noch eine Verschlechterung des Leistungsfaktors um einige Prozente, weil infolge der Zugsheizung bei gleichem Blindstrom weniger Wirkstrom ins Netz abgegeben wird. Es ist noch zu erwähnen,

⁴⁾ Bull. SEV 1937, Nr. 10. Die konkreten Stabilitätsbedingungen für die neue Schaltung (Fig. 2) lauten folgendermassen:

 $^{2~}R_{\mathrm{a}}+\ddot{u}_{\mathrm{1}}{}^{2}~R_{\mathrm{ea}}+\ddot{u}_{\mathrm{2}}{}^{2}~R_{\mathrm{e}}>AnL_{\mathrm{f}}~\ddot{u}_{\mathrm{1}}\left(\ddot{u}_{\mathrm{2}}+1
ight)$

 $² L_{\rm a} + \ddot{u}_{\rm 1}^2 L_{\rm ea} + \ddot{u}_{\rm 2}^2 L_{\rm e} > 3 (M\ddot{u}_{\rm 1} + M_{\rm 1} \ddot{u}_{\rm 2}) + 2 M_{\rm 2} \ddot{u}_{\rm 1} \ddot{u}_{\rm 2}$

 $^{2 \} L_a + \ddot{u}_1^2 \ L_{ea} + \ddot{u}_2^2 \ L_o > 0$; $\ddot{u}_1^2 = L_a/L_{ca}$; $\ddot{u}_2^2 = L_a/L_o$ wobei Indices a auf den Sekundäranker-, ea auf den Zwischenstrom- und e auf den Primärfeldstromkreis hinweisen.

dass die neue Schaltung ebenso wie die alte auf Stillstand zu bremsen gestattet, ebensosehr eine wirtschaftliche als eine Sicherheitsfrage.

Die künstliche Reaktanzleistung ist in alter Schaltung U4I = 4UI und diejenige in neuer Schaltung

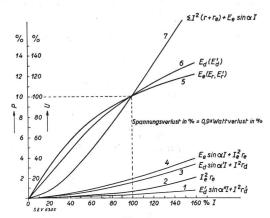
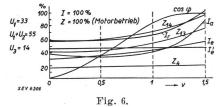



Fig. 5. Kennlinien für Motor und Drosselspulen. 1 Drosselspulenverluste (Spule x')

- Motorfeld-Kupferverluste.
 Drosselspulenverluste (Spule x)
- Motorfeldeisenverluste.
- Rotations-Feldspannung. Drosselspulenspannung.
- Motor verluste im Kurzschluss.

etwa 0.46U3I = 1.38UI also nur rund 30 % der bisherigen für die alte Schaltung (Zwischentransformator unberücksichtigt). Der Zwischentransformator benötigt eine Leistung von etwa 0,22UI, also etwa 1/20 des Reaktanzaufwandes für die alte Schaltung oder eine Vergrösserung des Reaktanzaufwandes für die neue Schaltung um etwa 16 %.

In Fig. 6 sind anhand der Charakteristiken Fig. 4 und 5 sowie der Vektordiagramme für eine mittlere Spannung die Kennlinien für die neue Schaltung herausgezeichnet. Diese sind sehr instruktiv und lassen den Verlauf des Leistungsfaktors sowie der Bremskraft für Primärmotor und Sekundärmotoren und ebenso aller 4 Motoren gut erkennen.

Kennlinien für neue Rekuperationsschaltung.

Es ist vielleicht noch besonders darauf hinzuweisen, dass bei alter Schaltung der Spannungsabfall Speisepunkt-Motoren in allen Fällen positiv ist, während bei neuer Schaltung, insbesondere bei kapazitiver Arbeitsweise, gleich wie bei Gleichstrom-Rekuperationsbetrieb ein umgekehrter Spannungsabfall eintreten kann. Dass das neue Verfahren neben einem induktiven Arbeitsgebiet bei höheren Geschwindigkeiten auch ein kapazitives aufweist, ist dem Diagramm Fig. 3 zu entnehmen. Die Kommutationsbedingungen für die Triebmotoren in Rekuperationsschaltung sind für die beiden Schaltungen nicht verschieden (Feldstrom ca. 45 Grad dem Ankerstrom voreilend) und sind mit entsprechender Hilfsfeldschaltung zu befriedigen. Die genauere Betrachtung der Fig. 1 und 2 sowie des Diagramms Fig. 3 lässt erkennen, dass der Primärmotor unter ungefähr gleichen Bedingungen arbeitet wie die Motoren in alter Schaltung, nur dass in wirtschaftlicher Weise die drei Felder der Sekundärmotoren dem Primärmotor als künstliche Reaktanz dienen, während die Sekundärmotoren phasenrichtiger erregt werden als in alter Schaltung.

Daraus gehen die wirtschaftlichen und betriebstechnischen Vorteile der neuen Schaltung zur Genüge hervor. Der springende Punkt ist natürlich die Selbsterregung. Ohne Zwischentransformator X''' und ohne Dämpfungsinduktivität X'' tritt von einem gewissen Punkt im kapazitiven Gebiet an Selbsterregung auf, weil der Primärmotor vom Fremdstrom generatorisch erregt werden kann. Der Wicklungsteil U_3 des Reguliertransformators wirkt im kapazitiven Arbeitsgebiet fremderregend. Schaltet man eine Dämpfungsinduktivität X" vorzugsweise in den Sekundärankerstromkreis (mit einer Anzapfung an der Induktivität X kann dasselbe erreicht werden), so wird ein Teil des Fremdstromes über den Wicklungsteil U_3 abgedrängt und kann demzufolge den Fremdstrom, der in diesem Wicklungsteil transformatorisch entsteht, aufheben. Voraussetzung ist natürlich entsprechende Dimensionierung, so dass auch im induktiven Arbeitsgebiet die gleiche Wirkung stattfindet. Der stark gesättigte Zwischentransformator erschwert allgemein den Uebertritt des Fremdstromes in das Primärfeld.

Es ist nun noch der Rekuperationswirkungsgrad, der bereits mit 65 % in der Energierechnung verwendet wurde, zu bestimmen. Zu diesem Zwecke wurde unter Verwendung der Charakteristiken des Motors die Verluste bei Vollast-Motorbetrieb und Rekuperations-Vollast und Minimallastbetrieb in der Beharrung tabellarisch ohne Berücksichtigung der Stillstandsbremsung zusammengestellt (Tab. I). Der Zusammenstellung ist zu entnehmen, dass der Wirkungsgrad im ersten Fall ca. 76 % und in den beiden andern Fällen 71,5 bzw. 23 % beträgt.

Die Steigungen der Bahn verteilen sich folgendermassen: $0^{0}/00:12,3$ km, $2,5...6,5^{0}/00:3,84$ km, $8 \dots 25^{0}/00 : 11.4 \text{ km}, 28 \dots 50^{0}/00 : 28.22 \text{ km}.$ Auf 49...50 % trifft es allein 14.76 km. Der massgebende Wirkungsgrad für Rekuperation muss also weit über dem arithmetischen Mittel der Extreme liegen, also erheblich über 47 %. Da zwischen Volllastwirkungsgrad und Wirkungsgrad im Jahresmittel mindestens das gleiche Verhältnis besteht wie bei Motorbetrieb, d. h. 76:69, so wäre demnach auch bei Einbezug der freiwerdenden kinetischen Energie der Wirkungsgrad der Stromrückgewinnung im Jahresmittel mindestens $71.5 \cdot 69/76 = 65 \, \%$.

Aus diesen Ueberlegungen geht hervor, dass sich die Anwendung der Rekuperation im vorliegenden konkreten Fall technisch und wirtschaftlich aufdrängt. Die neue Rekuperationseinrichtung tritt in Wirkungsgrad zwischen Triebachse und Speisepunkt bei Rekuperation. Tabelle L.

- (1) Motorbetrieb; Vollast; 50 %; Geschwindigkeit v = 1; Leistung P = (50+5)/0,86 entsprechend 100 %.
 (2) Rekuperationsbetrieb; Vollast; 50 %; v = 1; P = (50-5) 1 entsprechend 70,5 %.
- (3) Rekuperations betrieb; Min. Last; $10^{\circ}/_{00}$; v = 1.5;

P = (10-6) 1,5 entsprechend 9,5%.			
	(1) ⁰ / ₀	(2) 0/0	(3) ⁰ / ₀
Stromwärmeverluste der Motoren:			
im wesentl dem Quadrat des Anker- stromes prop	8,5	8,5	2,0
Statische Hysterese der Motoren:			
nach Charakteristik	1,5	1,5	0,2
Reibungsverluste der Motoren:			
bis Radachse inklus. dreh. Hysterese			
nach AIEE	4,0	2,4	0,8
Kupfer- und Hystereseverluste der Dros- selspulen:			
nach Charakteristik		1,6	0,6
Verluste zwischen Triebachse und Regu-			
liertransformator	14,0	14,0	3,7
Wirkungsgrad zwischen Triebachse und Reguliertransformator	86,0	86,0	61,5
Transformatorverluste, Kupfer	1,3	0,6	0,1
Eisen	0,7	0,7	0,7
Verluste in Fahrdraht und Schiene	6,0	3,0	1,0
Verluste in der Regulierung des Trieb-	,	,	,
fahrzeuges	0,2	0,1	
Nebenbetriebe des Triebfahrzeuges	1,8	1,8	1,8
Zugsheizung und Beleuchtung	_	_	_
Verluste zwischen Radachse und Speise-			
punkt	24,0	20,2	7,3
Wirkungsgrad zwischen Radachse und	76	71 5	22.0
Speisepunkt	76	71,5	23,0
	1	al.	E.

Die Verluste sind auf die eingeführte Leistung bei Motorbetrieb bezogen, die Wirkungsgrade auf die bezüglichen eingeführten Leistungen.

technischer Hinsicht, also bezüglich Gewicht und Preis 5), Platzbedarf, Handlichkeit der Bedienung, in erfolgreiche Konkurrenz mit einer sonst gleich leistungsfähigen und bewährten Widerstandsbremse, ist dieser aber mit Bezug auf die Stillstandsbremsung, der Wärmeentwicklung auf dem Triebfahrzeug und der Wärmeabfuhr, abgesehen von der Wirtschaftlichkeit, weit überlegen.

Es ist vielleicht noch anzudeuten, wie man in der Ausbildung der Triebfahrzeuge der beschriebe-

Rekuperationseinrichtung entgegenkommen kann: Motoren im Fahrbetrieb elektrisch parallel schalten (was nota bene ein allgemeiner Vorteil ist); Verwendung von Motorwagen an Stelle von Lokomotiven (Motorwagen haben reichliches Adhäsionsgewicht, der Pufferdruck ist ein Bruchteil desjenigen der Lokomotiven, die Rekuperationseinrichtung wird bei Motorwagen kleiner, die Rekupera-

Wirtschaftlichkeit der Rekuperation.

Tabelle II.

Grundlage: ca. 2,5 Mill. kWh/Jahr à 5,5 Rp./kWh. Reiner Motorwagen-Betrieb. Max. Einsparung $30^{\circ}/_{\circ} \cong Fr. 40000.-/Jahr.$ Max. Bremsleistung: 100 t Zugsgewicht auf 50 % mit 40 km/h. Angaben in runden Zahlen.

Wider-Rekupestandsration bremsung Bremswiderstand kg 1200 Erregertransformator 400 Wendeschalter, Leitungen etc. 200 Bremsspule kg 800 Erregertransformator kg 100 Wendeschalter, Leitungen etc. 600 Gewicht der elektrischen Bremseinrichtung 1800 1500 Taragewicht eines Motorwag. 38 000 ohne el. Bremsung $\mathbf{k}\mathbf{g}$ Mehrgewicht der elektrischen Bremsung Kosten eines Motorwagens ohne elektrische Bremsung 228 000 (6 Fr./kg) Mehrkosten der el. Bremsung 12 000 $12\ 000$

tionsleistungen werden kleiner). Schliesslich wäre noch zu erwähnen, dass bei der neuen Rekuperationsschaltung auf die Aufstellung eines statischen Kondensators im Speisepunkt verzichtet werden könnte, was bei der alten Rekuperationsschaltung wohl nicht möglich wäre.

Der allgemeine Einwand gegen Rekuperation, dass sie abhängig vom Fahrdraht ist, wird bei Motorwagenbetrieb und durchgehender Bremse hinfällig, besonders bei Einmannbetrieb, wo ohnehin alle Sicherheitsvorkehren getroffen werden müssen.

Die elektrischen Einrichtungen der Konsumbäckerei Winterthur.

Mehrkosten

Ersparnis pro Jahr max. .

Mehrkosten für ca. 10 Motor-

. Amortisation in Jahren

Von E. Stierli, Winterthur.

621.364.6:664.65

40 000

120 000

Es werden die elektrischen Einrichtungen einer modernen Grossbäckerei, insbesondere der zur Aufstellung gekommene Turnus-Backofen beschrieben. An Hand von Betriebsergebnissen sind Produktionsmengen, Betriebskosten und die spezifischen Werte von Beheizung und Ausnützung der Backfläche, des Energieverbrauches und der Backkosten ermittelt.

L'auteur décrit les installations électriques d'une grande boulangerie moderne, en particulier le four continu, dit four «Turnus». Se basant sur les résultats d'exploitation il indique la production, les frais d'exploitation ainsi que les valeurs spécifiques du chauffage et de l'utilisation de la surface de cuisson, de la consommation d'énergie et des frais de cuisson.

Allgemeines.

In der neuen Bäckerei des Konsumvereins Winterthur, welche anfangs November 1934 in Betrieb genommen wurde 1), ist ein sogenannter Turnus-

ofen in der Leichtbauart aufgestellt, dessen Konstruktion einige Neuerungen aufweist. Von diesem

⁵⁾ s. Tabelle II.

¹⁾ Siehe die Baubeschreibung in der Schweiz. Bauztg. Bd. 105 (1935), Nr. 3.